A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits

Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. W...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of disease Vol. 81; pp. 119 - 133
Main Authors Maccarinelli, Federica, Pagani, Antonella, Cozzi, Anna, Codazzi, Franca, Di Giacomo, Giuseppina, Capoccia, Sara, Rapino, Stefania, Finazzi, Dario, Politi, Letterio Salvatore, Cirulli, Francesca, Giorgio, Marco, Cremona, Ottavio, Grohovaz, Fabio, Levi, Sonia
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2015
Academic Press
Elsevier
Subjects
Online AccessGet full text
ISSN0969-9961
1095-953X
1095-953X
DOI10.1016/j.nbd.2014.10.023

Cover

Abstract Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy. •We developed two new neuroferritinopathy mice models (NF).•NF brains are characterized by iron/ferritin accumulation and oxidative damage.•NF brains show granules of lipofuscine associated with iron.•A mechanism of lipofuscine formation is proposed.•NF mice show impaired motor coordination increasing with age.
AbstractList Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy. •We developed two new neuroferritinopathy mice models (NF).•NF brains are characterized by iron/ferritin accumulation and oxidative damage.•NF brains show granules of lipofuscine associated with iron.•A mechanism of lipofuscine formation is proposed.•NF mice show impaired motor coordination increasing with age.
Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498-499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron-ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498-499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy.
Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498-499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron-ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498-499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy.Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498-499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron-ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498-499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy.
Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy. • We developed two new neuroferritinopathy mice models (NF). • NF brains are characterized by iron/ferritin accumulation and oxidative damage. • NF brains show granules of lipofuscine associated with iron. • A mechanism of lipofuscine formation is proposed. • NF mice show impaired motor coordination increasing with age.
Abstract Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene ( FTL ). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L -ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo , we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy.
Author Capoccia, Sara
Rapino, Stefania
Maccarinelli, Federica
Pagani, Antonella
Di Giacomo, Giuseppina
Finazzi, Dario
Politi, Letterio Salvatore
Cremona, Ottavio
Codazzi, Franca
Levi, Sonia
Cozzi, Anna
Giorgio, Marco
Cirulli, Francesca
Grohovaz, Fabio
AuthorAffiliation c Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
a Department of Molecular and Translational Medicine, University of Brescia, Italy
e Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
b San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
d Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
AuthorAffiliation_xml – name: b San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
– name: d Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
– name: a Department of Molecular and Translational Medicine, University of Brescia, Italy
– name: c Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
– name: e Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
Author_xml – sequence: 1
  givenname: Federica
  surname: Maccarinelli
  fullname: Maccarinelli, Federica
  organization: Department of Molecular and Translational Medicine, University of Brescia, Italy
– sequence: 2
  givenname: Antonella
  surname: Pagani
  fullname: Pagani, Antonella
  organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
– sequence: 3
  givenname: Anna
  surname: Cozzi
  fullname: Cozzi, Anna
  organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
– sequence: 4
  givenname: Franca
  surname: Codazzi
  fullname: Codazzi, Franca
  organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
– sequence: 5
  givenname: Giuseppina
  surname: Di Giacomo
  fullname: Di Giacomo, Giuseppina
  organization: Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
– sequence: 6
  givenname: Sara
  surname: Capoccia
  fullname: Capoccia, Sara
  organization: Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
– sequence: 7
  givenname: Stefania
  surname: Rapino
  fullname: Rapino, Stefania
  organization: Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
– sequence: 8
  givenname: Dario
  surname: Finazzi
  fullname: Finazzi, Dario
  organization: Department of Molecular and Translational Medicine, University of Brescia, Italy
– sequence: 9
  givenname: Letterio Salvatore
  surname: Politi
  fullname: Politi, Letterio Salvatore
  organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
– sequence: 10
  givenname: Francesca
  surname: Cirulli
  fullname: Cirulli, Francesca
  organization: Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy
– sequence: 11
  givenname: Marco
  surname: Giorgio
  fullname: Giorgio, Marco
  organization: Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
– sequence: 12
  givenname: Ottavio
  surname: Cremona
  fullname: Cremona, Ottavio
  organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
– sequence: 13
  givenname: Fabio
  surname: Grohovaz
  fullname: Grohovaz, Fabio
  email: grohovaz.fabio@hsr.it
  organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
– sequence: 14
  givenname: Sonia
  surname: Levi
  fullname: Levi, Sonia
  email: levi.sonia@hsr.it
  organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25447222$$D View this record in MEDLINE/PubMed
BookMark eNqFUl2LEzEUHWTF_dAf4IvkcRdsTTKZZIKwsBRXCwUfrOBbSJM709RpUpNppT_Lf2im3RV3wfUlITf3nMO955wXJz54KIrXBI8JJvzdauwXdkwxYfk9xrR8VpwRLKuRrMpvJ8UZllyOpOTktDhPaYUxIZUUL4pTWjEmKKVnxa8b5MMOOuRhG0MDMbre-bDR_XKP1mGbIJ82_1_ezmeIyXrq03xyhdIy_ExoE0MbISW3A7SI2nnkYvDI7lOEdtvp3gX_NhPEzTJ0oXVGdyi51icUGgQ6dvujroUWPMRDP9LeZkgfIjIhROv8sWyhccb16WXxvNFdgld390Xx9fbDfPJpNPv8cTq5mY0Ml7QfUSLKmhtR6bopQYhmgeuqMkzohje1kMYQbqWoaI3LkhsqFpZJK0pWcoah0uVFMT3y2qBXahPdWse9CtqpQyHEVunYO9OB0gtWY8DUVBlvidFaUk45Yw3hpYGB6_rItdku1mAN-D7q7gHpwx_vlqoNO8U4o6LCmeDyjiCGH1tIvVq7ZKDrtIdsksrDElEzeWh987fWH5F7z3ODODaYGFI2qlF5rYcdZ2nXKYLVkC61UjldakjXUMrpykjyCHlP_hTm_RED2audg6iSceANWBfB9HmZ7kn09SO06ZwfcvQd9pBWYRt9DoEiKlGF1Zch8UPgCcODrcOw8t8E_xH_DWILE5k
CitedBy_id crossref_primary_10_1016_j_xhgg_2023_100236
crossref_primary_10_1038_s41380_023_02399_z
crossref_primary_10_1016_j_dib_2017_09_062
crossref_primary_10_1089_rej_2024_0034
crossref_primary_10_1007_s00018_020_03747_w
crossref_primary_10_1021_acs_biochem_8b01068
crossref_primary_10_3390_antiox12030731
crossref_primary_10_1016_j_ejpn_2018_01_008
crossref_primary_10_3389_fneur_2019_00833
crossref_primary_10_1186_s13578_022_00791_w
crossref_primary_10_3389_fnagi_2018_00065
crossref_primary_10_3390_ijms252312987
crossref_primary_10_1021_acschemneuro_4c00400
crossref_primary_10_1038_s41419_023_05738_8
crossref_primary_10_1016_j_nbd_2015_08_012
crossref_primary_10_1093_hmg_ddw252
crossref_primary_10_1111_ejh_12820
crossref_primary_10_3390_ph12010027
crossref_primary_10_3390_antiox9040313
crossref_primary_10_3390_ph11040124
crossref_primary_10_1016_j_bbr_2016_07_015
crossref_primary_10_1111_nan_12634
crossref_primary_10_1007_s10048_023_00725_9
crossref_primary_10_1007_s11011_016_9834_x
crossref_primary_10_3389_fnins_2018_00464
crossref_primary_10_1007_s12011_023_03911_w
crossref_primary_10_1007_s00702_020_02275_y
crossref_primary_10_1016_j_stemcr_2019_09_002
crossref_primary_10_1007_s12640_017_9721_1
crossref_primary_10_1177_1535370220953065
Cites_doi 10.1016/j.nbd.2009.09.009
10.1369/jhc.7A7273.2007
10.1038/76095
10.1007/s100720200083
10.1016/S0006-8993(98)01258-X
10.1007/978-1-4419-5635-4_5
10.1177/1352458509106609
10.1016/0014-5793(92)80911-Y
10.1016/j.redox.2013.01.006
10.1111/j.1471-4159.2009.06028.x
10.1016/j.nbd.2006.05.004
10.1074/jbc.M805532200
10.1016/j.physbeh.2005.09.002
10.1002/mds.23751
10.1523/JNEUROSCI.0478-06.2006
10.3389/fnagi.2013.00032
10.1074/jbc.M109.096404
10.1016/j.elecom.2009.02.005
10.1016/j.freeradbiomed.2012.02.015
10.1155/2012/197438
10.1006/abbi.2000.1717
10.1007/s00018-008-7581-9
10.1091/mbc.8.8.1501
10.1186/1750-1326-5-50
10.1111/j.1474-9726.2010.00652.x
10.1002/mds.22435
10.1038/nrn2652
10.1038/nrn3453
10.1074/jbc.M003797200
10.1016/j.neulet.2010.05.025
10.1523/JNEUROSCI.3962-07.2008
10.1212/01.wnl.0000178224.81169.c2
10.1523/JNEUROSCI.18-01-00266.1998
10.1016/j.bbagen.2010.02.005
10.1093/jnen/64.4.280
10.1016/j.jns.2014.03.060
10.1016/S0891-5849(02)00959-0
10.1111/j.1552-6569.2010.00516.x
10.1126/scisignal.2001232
10.1212/01.wnl.0000310985.40011.d6
10.1038/ng571
10.1016/S1050-3862(96)00167-2
10.1093/brain/awn274
10.1097/WCO.0b013e3283550cac
10.3389/fphar.2014.00099
10.1101/lm.025015.111
10.1093/jnen/63.4.363
ContentType Journal Article
Copyright 2014
Copyright © 2014. Published by Elsevier Inc.
2014 The Authors. Published by Elsevier Inc. 2014
Copyright_xml – notice: 2014
– notice: Copyright © 2014. Published by Elsevier Inc.
– notice: 2014 The Authors. Published by Elsevier Inc. 2014
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.nbd.2014.10.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1095-953X
EndPage 133
ExternalDocumentID oai_doaj_org_article_ab480e02c5734d1caa9262644f163cea
PMC4642750
25447222
10_1016_j_nbd_2014_10_023
S0969996114003362
1_s2_0_S0969996114003362
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Telethon
  grantid: GGP10099
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
X7M
XPP
Z5R
ZGI
ZMT
ZU3
~G-
0SF
6I.
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
PKN
RIG
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
ACLOT
CITATION
~HD
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c692t-217386c75a8f3e77fb0855c47af6f879cc16d975280336c27bd49d7343640e5a3
IEDL.DBID .~1
ISSN 0969-9961
1095-953X
IngestDate Wed Aug 27 01:23:23 EDT 2025
Tue Sep 30 16:59:08 EDT 2025
Sun Sep 28 11:45:05 EDT 2025
Mon Jul 21 06:03:04 EDT 2025
Thu Apr 24 22:53:09 EDT 2025
Wed Oct 01 03:48:33 EDT 2025
Fri Feb 23 02:30:29 EST 2024
Sun Feb 23 10:19:14 EST 2025
Tue Aug 26 16:32:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neurodegenerative disorder
Tg
Oxidative damage
ROS
Ferritin
NF
Iron
FtH
WT
Neuroferritinopathy
FTL
neuroferritinopathy
ferritin light chain gene
ferritin light chain protein
reactive oxygen species
transgenic
wild type
ferritin heavy chain protein
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
Copyright © 2014. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-217386c75a8f3e77fb0855c47af6f879cc16d975280336c27bd49d7343640e5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors contributed equally to this work.
The authors share senior authorship.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0969996114003362
PMID 25447222
PQID 1731784950
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_ab480e02c5734d1caa9262644f163cea
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4642750
proquest_miscellaneous_1731784950
pubmed_primary_25447222
crossref_citationtrail_10_1016_j_nbd_2014_10_023
crossref_primary_10_1016_j_nbd_2014_10_023
elsevier_sciencedirect_doi_10_1016_j_nbd_2014_10_023
elsevier_clinicalkeyesjournals_1_s2_0_S0969996114003362
elsevier_clinicalkey_doi_10_1016_j_nbd_2014_10_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of disease
PublicationTitleAlternate Neurobiol Dis
PublicationYear 2015
Publisher Elsevier Inc
Academic Press
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Academic Press
– name: Elsevier
References Arosio, Levi (bb0005) 2010; 1800
Devos, Tchofo, Vuillaume, Destee, Batey, Burn, Chinnery (bb0085) 2009; 132
Paylor, Spencer, Yuva-Paylor, Pieke-Dahl (bb0175) 2006; 87
Pezzati, Bossi, Podini, Meldolesi, Grohovaz (bb0185) 1997; 8
Pelizzoni, Macco, Morini, Zacchetti, Grohovaz, Codazzi (bb0180) 2011; 10
Luscieti, Santambrogio, Langlois d'Estaintot, Granier, Cozzi, Poli, Gallois, Finazzi, Cattaneo, Levi, Arosio (bb0135) 2010; 285
Bard, Faulkner (bb0240) 2001
Levi, Finazzi (bb0130) 2014; 5
Hohn, Grune (bb0115) 2013; 1
Crawley (bb0070) 1999; 835
Maciel, Cruz, Constante, Iniesta, Costa, Gallati, Sousa, Sequeiros, Coutinho, Santos (bb0140) 2005; 65
Zorzi, Zibordi, Chiapparini, Bertini, Russo, Piga, Longo, Garavaglia, Aquino, Savoiardo, Solari, Nardocci (bb0235) 2011; 26
Brunk, Terman (bb0045) 2002; 33
Deng, Vidal, Englander (bb0080) 2010; 479
Reinheckel, Ullrich, Sitte, Grune (bb0195) 2000; 377
Cozzi, Corsi, Levi, Santambrogio, Albertini, Arosio (bb0055) 2000; 275
Halliwell, Gutteridge (bb0250) 1992; 307
Sparrow (bb0215) 2010; 703
Ohta, Takiyama (bb0255) 2012
McNeill, Birchall, Hayflick, Gregory, Schenk, Zimmerman, Shang, Miyajima, Chinnery (bb0150) 2008; 70
Santambrogio, Biasiotto, Sanvito, Olivieri, Arosio, Levi (bb9000) 2007; 55
Plenz, Kitai (bb0190) 1998; 18
Baraibar, Barbeito, Muhoberac, Vidal (bb0010) 2008; 283
Ritzert, Casella, Zapien (bb0200) 2009; 11
Follenzi, Ailles, Bakovic, Geuna, Naldini (bb0105) 2000; 25
Mondino, Filippi, Magliola, Duca (bb0155) 2002; 23
Baraibar, Barbeito, Muhoberac, Vidal (bb0015) 2012; 52
Borchelt, Davis, Fischer, Lee, Slunt, Ratovitsky, Regard, Copeland, Jenkins, Sisodia, Price (bb0035) 1996; 13
Double, Dedov, Fedorow, Kettle, Halliday, Garner, Brunk (bb0095) 2008; 65
Cozzi, Santambrogio, Corsi, Campanella, Arosio, Levi (bb0065) 2006; 23
Barbeito, Levade, Delisle, Ghetti, Vidal (bb0025) 2010; 5
Barbeito, Garringer, Baraibar, Gao, Arredondo, Nunez, Smith, Ghetti, Vidal (bb0020) 2009; 109
Vidal, Miravalle, Gao, Barbeito, Baraibar, Hekmatyar, Widel, Bansal, Delisle, Ghetti (bb0225) 2008; 28
Kubota, Hida, Ichikawa, Momose, Goto, Igeta, Hashida, Yoshida, Ikeda, Kanazawa, Tsuji (bb0125) 2009; 24
Vidal, Ghetti, Takao, Brefel-Courbon, Uro-Coste, Glazier, Siani, Benson, Calvas, Miravalle, Rascol, Delisle (bb0220) 2004; 63
Rouault (bb0210) 2013; 14
Brooks, Dunnett (bb0040) 2009; 10
Do, Kim, Bakes, Lee, Kaang (bb0245) 2013; 20
Mancuso, Davidzon, Kurlan, Tawil, Bonilla, Di Mauro, Powers (bb0145) 2005; 64
Curtis, Fey, Morris, Bindoff, Ince, Chinnery, Coulthard, Jackson, Jackson, McHale, Hay, Barker, Markham, Bates, Curtis, Burn (bb0075) 2001; 28
Muhoberac, Vidal (bb0160) 2013; 5
Khalil, Enzinger, Langkammer, Tscherner, Wallner-Blazek, Jehna, Ropele, Fuchs, Fazekas (bb0120) 2009; 15
Nishida, Garringer, Futamura, Funakawa, Jinnai, Vidal, Takao (bb0165) 2014; 342
Codazzi, Di Cesare, Chiulli, Albanese, Meyer, Zacchetti, Grohovaz (bb0050) 2006; 26
Dusek, Schneider (bb0100) 2012; 25
Robinson, Bhuta (bb0205) 2011; 21
Wang, Yen, Kaiser, Huang (bb0260) 2010; 3
Cozzi, Rovelli, Frizzale, Campanella, Amendola, Arosio, Levi (bb0060) 2010; 37
Deng (10.1016/j.nbd.2014.10.023_bb0080) 2010; 479
Wang (10.1016/j.nbd.2014.10.023_bb0260) 2010; 3
Curtis (10.1016/j.nbd.2014.10.023_bb0075) 2001; 28
Arosio (10.1016/j.nbd.2014.10.023_bb0005) 2010; 1800
Mondino (10.1016/j.nbd.2014.10.023_bb0155) 2002; 23
Plenz (10.1016/j.nbd.2014.10.023_bb0190) 1998; 18
Mancuso (10.1016/j.nbd.2014.10.023_bb0145) 2005; 64
Vidal (10.1016/j.nbd.2014.10.023_bb0225) 2008; 28
Crawley (10.1016/j.nbd.2014.10.023_bb0070) 1999; 835
Do (10.1016/j.nbd.2014.10.023_bb0245) 2013; 20
Dusek (10.1016/j.nbd.2014.10.023_bb0100) 2012; 25
Reinheckel (10.1016/j.nbd.2014.10.023_bb0195) 2000; 377
Zorzi (10.1016/j.nbd.2014.10.023_bb0235) 2011; 26
Codazzi (10.1016/j.nbd.2014.10.023_bb0050) 2006; 26
Cozzi (10.1016/j.nbd.2014.10.023_bb0065) 2006; 23
Halliwell (10.1016/j.nbd.2014.10.023_bb0250) 1992; 307
Rouault (10.1016/j.nbd.2014.10.023_bb0210) 2013; 14
Santambrogio (10.1016/j.nbd.2014.10.023_bb9000) 2007; 55
McNeill (10.1016/j.nbd.2014.10.023_bb0150) 2008; 70
Robinson (10.1016/j.nbd.2014.10.023_bb0205) 2011; 21
Borchelt (10.1016/j.nbd.2014.10.023_bb0035) 1996; 13
Brunk (10.1016/j.nbd.2014.10.023_bb0045) 2002; 33
Bard (10.1016/j.nbd.2014.10.023_bb0240) 2001
Luscieti (10.1016/j.nbd.2014.10.023_bb0135) 2010; 285
Barbeito (10.1016/j.nbd.2014.10.023_bb0025) 2010; 5
Pelizzoni (10.1016/j.nbd.2014.10.023_bb0180) 2011; 10
Nishida (10.1016/j.nbd.2014.10.023_bb0165) 2014; 342
Pezzati (10.1016/j.nbd.2014.10.023_bb0185) 1997; 8
Barbeito (10.1016/j.nbd.2014.10.023_bb0020) 2009; 109
Khalil (10.1016/j.nbd.2014.10.023_bb0120) 2009; 15
Cozzi (10.1016/j.nbd.2014.10.023_bb0055) 2000; 275
Vidal (10.1016/j.nbd.2014.10.023_bb0220) 2004; 63
Kubota (10.1016/j.nbd.2014.10.023_bb0125) 2009; 24
Brooks (10.1016/j.nbd.2014.10.023_bb0040) 2009; 10
Follenzi (10.1016/j.nbd.2014.10.023_bb0105) 2000; 25
Hohn (10.1016/j.nbd.2014.10.023_bb0115) 2013; 1
Sparrow (10.1016/j.nbd.2014.10.023_bb0215) 2010; 703
Ritzert (10.1016/j.nbd.2014.10.023_bb0200) 2009; 11
Double (10.1016/j.nbd.2014.10.023_bb0095) 2008; 65
Maciel (10.1016/j.nbd.2014.10.023_bb0140) 2005; 65
Devos (10.1016/j.nbd.2014.10.023_bb0085) 2009; 132
Baraibar (10.1016/j.nbd.2014.10.023_bb0015) 2012; 52
Muhoberac (10.1016/j.nbd.2014.10.023_bb0160) 2013; 5
Ohta (10.1016/j.nbd.2014.10.023_bb0255) 2012
Baraibar (10.1016/j.nbd.2014.10.023_bb0010) 2008; 283
Cozzi (10.1016/j.nbd.2014.10.023_bb0060) 2010; 37
Levi (10.1016/j.nbd.2014.10.023_bb0130) 2014; 5
Paylor (10.1016/j.nbd.2014.10.023_bb0175) 2006; 87
References_xml – volume: 23
  start-page: 644
  year: 2006
  end-page: 652
  ident: bb0065
  article-title: Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder
  publication-title: Neurobiol. Dis.
– volume: 33
  start-page: 611
  year: 2002
  end-page: 619
  ident: bb0045
  article-title: Lipofuscin: mechanisms of age-related accumulation and influence on cell function
  publication-title: Free Radic. Biol. Med.
– volume: 703
  start-page: 63
  year: 2010
  end-page: 74
  ident: bb0215
  article-title: Bisretinoids of RPE lipofuscin: trigger for complement activation in age-related macular degeneration
  publication-title: Adv. Exp. Med. Biol.
– volume: 275
  start-page: 25122
  year: 2000
  end-page: 25129
  ident: bb0055
  article-title: Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 50
  year: 2010
  ident: bb0025
  article-title: Abnormal iron metabolism in fibroblasts from a patient with the neurodegenerative disease hereditary ferritinopathy
  publication-title: Mol. Neurodegener.
– volume: 1
  start-page: 140
  year: 2013
  end-page: 144
  ident: bb0115
  article-title: Lipofuscin: formation, effects and role of macroautophagy
  publication-title: Redox Biol.
– volume: 25
  start-page: 499
  year: 2012
  end-page: 506
  ident: bb0100
  article-title: Neurodegeneration with brain iron accumulation
  publication-title: Curr. Opin. Neurol.
– volume: 63
  start-page: 363
  year: 2004
  end-page: 380
  ident: bb0220
  article-title: Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 87
  start-page: 95
  year: 2006
  end-page: 102
  ident: bb0175
  article-title: The use of behavioral test batteries, II: effect of test interval
  publication-title: Physiol. Behav.
– volume: 15
  start-page: 1048
  year: 2009
  end-page: 1054
  ident: bb0120
  article-title: Quantitative assessment of brain iron by R(2)* relaxometry in patients with clinically isolated syndrome and relapsing–remitting multiple sclerosis
  publication-title: Mult. Scler.
– volume: 23
  start-page: S87
  year: 2002
  end-page: S88
  ident: bb0155
  article-title: Magnetic resonance relaxometry in Parkinson's disease
  publication-title: Neurol. Sci.
– volume: 479
  start-page: 44
  year: 2010
  end-page: 48
  ident: bb0080
  article-title: Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy
  publication-title: Neurosci. Lett.
– volume: 64
  start-page: 280
  year: 2005
  end-page: 294
  ident: bb0145
  article-title: Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 342
  start-page: 173
  year: 2014
  end-page: 177
  ident: bb0165
  article-title: A novel ferritin light chain mutation in neuroferritinopathy with an atypical presentation
  publication-title: J. Neurol. Sci.
– volume: 10
  start-page: 172
  year: 2011
  end-page: 183
  ident: bb0180
  article-title: Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity
  publication-title: Aging Cell
– volume: 18
  start-page: 266
  year: 1998
  end-page: 283
  ident: bb0190
  article-title: Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex–striatum–substantia nigra organotypic cultures
  publication-title: J. Neurosci.
– year: 2012
  ident: bb0255
  article-title: MRI findings in neuroferritinopathy
  publication-title: Neurol. Res. Int.
– volume: 8
  start-page: 1501
  year: 1997
  end-page: 1512
  ident: bb0185
  article-title: High-resolution calcium mapping of the endoplasmic reticulum–Golgi–exocytic membrane system. Electron energy loss imaging analysis of quick frozen-freeze dried PC12 cells
  publication-title: Mol. Biol. Cell
– volume: 377
  start-page: 65
  year: 2000
  end-page: 68
  ident: bb0195
  article-title: Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress
  publication-title: Arch. Biochem. Biophys.
– volume: 10
  start-page: 519
  year: 2009
  end-page: 529
  ident: bb0040
  article-title: Tests to assess motor phenotype in mice: a user's guide
  publication-title: Nat. Rev.
– volume: 26
  start-page: 1756
  year: 2011
  end-page: 1759
  ident: bb0235
  article-title: Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: results of a phase II pilot trial
  publication-title: Mov. Disord.
– volume: 5
  start-page: 32
  year: 2013
  ident: bb0160
  article-title: Abnormal iron homeostasis and neurodegeneration
  publication-title: Front. Aging Neurosci.
– volume: 55
  start-page: 1129
  year: 2007
  end-page: 1137
  ident: bb9000
  article-title: Mitochondrial ferritin expression in adult mouse tissues
  publication-title: J Histochem Cytochem
– volume: 28
  start-page: 60
  year: 2008
  end-page: 67
  ident: bb0225
  article-title: Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice
  publication-title: J. Neurosci.
– volume: 28
  start-page: 350
  year: 2001
  end-page: 354
  ident: bb0075
  article-title: Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease
  publication-title: Nat. Genet.
– volume: 285
  start-page: 11948
  year: 2010
  end-page: 11957
  ident: bb0135
  article-title: Mutant ferritin L-chains that cause neurodegeneration act in a dominant-negative manner to reduce ferritin iron incorporation
  publication-title: J. Biol. Chem.
– volume: 1800
  start-page: 783
  year: 2010
  end-page: 792
  ident: bb0005
  article-title: Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage
  publication-title: Biochim. Biophys. Acta
– volume: 109
  start-page: 1067
  year: 2009
  end-page: 1078
  ident: bb0020
  article-title: Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene
  publication-title: J. Neurochem.
– volume: 835
  start-page: 18
  year: 1999
  end-page: 26
  ident: bb0070
  article-title: Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests
  publication-title: Brain Res.
– volume: 3
  start-page: ra88
  year: 2010
  ident: bb0260
  article-title: Regulation of the 26S proteasome complex during oxidative stress
  publication-title: Sci. Signal.
– volume: 13
  start-page: 159
  year: 1996
  end-page: 163
  ident: bb0035
  article-title: A vector for expressing foreign genes in the brains and hearts of transgenic mice
  publication-title: Genet. Anal.
– volume: 5
  start-page: 99
  year: 2014
  ident: bb0130
  article-title: Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms
  publication-title: Front. Pharmacol.
– volume: 14
  start-page: 551
  year: 2013
  end-page: 564
  ident: bb0210
  article-title: Iron metabolism in the CNS: implications for neurodegenerative diseases
  publication-title: Nat. Rev. Neurosci.
– volume: 70
  start-page: 1614
  year: 2008
  end-page: 1619
  ident: bb0150
  article-title: T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation
  publication-title: Neurology
– volume: 20
  start-page: 21
  year: 2013
  end-page: 28
  ident: bb0245
  article-title: Functional roles of neurotransmitters and neuromodulators in the dorsal striatum
  publication-title: Learn. Mem.
– volume: 26
  start-page: 3404
  year: 2006
  end-page: 3411
  ident: bb0050
  article-title: Synergistic control of protein kinase C gamma activity by ionotropic and metabotropic glutamate receptor inputs in hippocampal neurons
  publication-title: J. Neurosci.
– volume: 37
  start-page: 77
  year: 2010
  end-page: 85
  ident: bb0060
  article-title: Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy
  publication-title: Neurobiol. Dis.
– volume: 65
  start-page: 1669
  year: 2008
  end-page: 1682
  ident: bb0095
  article-title: The comparative biology of neuromelanin and lipofuscin in the human brain
  publication-title: Cell. Mol. Life Sci.
– volume: 52
  start-page: 1692
  year: 2012
  end-page: 1697
  ident: bb0015
  article-title: A mutant light-chain ferritin that causes neurodegeneration has enhanced propensity toward oxidative damage
  publication-title: Free Radic. Biol. Med.
– volume: 307
  start-page: 108
  year: 1992
  end-page: 112
  ident: bb0250
  article-title: Biologically relevant metal ion-dependent hydroxyl radical generation. An update
  publication-title: FEBS Lett.
– volume: 283
  start-page: 31679
  year: 2008
  end-page: 31689
  ident: bb0010
  article-title: Iron-mediated aggregation and a localized structural change characterize ferritin from a mutant light chain polypeptide that causes neurodegeneration
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 217
  year: 2000
  end-page: 222
  ident: bb0105
  article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences
  publication-title: Nat. Genet.
– year: 2001
  ident: bb0240
  article-title: Electrochemical Methods, Fundamentals And Applications
– volume: 11
  start-page: 827
  year: 2009
  end-page: 830
  ident: bb0200
  publication-title: Electrochem. Commun.
– volume: 21
  start-page: e189
  year: 2011
  end-page: e204
  ident: bb0205
  article-title: Susceptibility-weighted imaging of the brain: current utility and potential applications
  publication-title: J. Neuroimaging
– volume: 24
  start-page: 441
  year: 2009
  end-page: 445
  ident: bb0125
  article-title: A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype–phenotype correlations
  publication-title: Mov. Disord.
– volume: 65
  start-page: 603
  year: 2005
  end-page: 605
  ident: bb0140
  article-title: Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement
  publication-title: Neurology
– volume: 132
  start-page: e109
  year: 2009
  ident: bb0085
  article-title: Clinical features and natural history of neuroferritinopathy caused by the 458dupA FTL mutation
  publication-title: Brain
– volume: 37
  start-page: 77
  year: 2010
  ident: 10.1016/j.nbd.2014.10.023_bb0060
  article-title: Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2009.09.009
– volume: 55
  start-page: 1129
  year: 2007
  ident: 10.1016/j.nbd.2014.10.023_bb9000
  article-title: Mitochondrial ferritin expression in adult mouse tissues
  publication-title: J Histochem Cytochem
  doi: 10.1369/jhc.7A7273.2007
– volume: 25
  start-page: 217
  year: 2000
  ident: 10.1016/j.nbd.2014.10.023_bb0105
  article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences
  publication-title: Nat. Genet.
  doi: 10.1038/76095
– volume: 23
  start-page: S87
  issue: Suppl. 2
  year: 2002
  ident: 10.1016/j.nbd.2014.10.023_bb0155
  article-title: Magnetic resonance relaxometry in Parkinson's disease
  publication-title: Neurol. Sci.
  doi: 10.1007/s100720200083
– volume: 835
  start-page: 18
  issue: 1
  year: 1999
  ident: 10.1016/j.nbd.2014.10.023_bb0070
  article-title: Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(98)01258-X
– volume: 703
  start-page: 63
  year: 2010
  ident: 10.1016/j.nbd.2014.10.023_bb0215
  article-title: Bisretinoids of RPE lipofuscin: trigger for complement activation in age-related macular degeneration
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4419-5635-4_5
– volume: 15
  start-page: 1048
  year: 2009
  ident: 10.1016/j.nbd.2014.10.023_bb0120
  article-title: Quantitative assessment of brain iron by R(2)* relaxometry in patients with clinically isolated syndrome and relapsing–remitting multiple sclerosis
  publication-title: Mult. Scler.
  doi: 10.1177/1352458509106609
– volume: 307
  start-page: 108
  year: 1992
  ident: 10.1016/j.nbd.2014.10.023_bb0250
  article-title: Biologically relevant metal ion-dependent hydroxyl radical generation. An update
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(92)80911-Y
– volume: 1
  start-page: 140
  year: 2013
  ident: 10.1016/j.nbd.2014.10.023_bb0115
  article-title: Lipofuscin: formation, effects and role of macroautophagy
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2013.01.006
– volume: 109
  start-page: 1067
  year: 2009
  ident: 10.1016/j.nbd.2014.10.023_bb0020
  article-title: Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2009.06028.x
– volume: 23
  start-page: 644
  year: 2006
  ident: 10.1016/j.nbd.2014.10.023_bb0065
  article-title: Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2006.05.004
– volume: 283
  start-page: 31679
  year: 2008
  ident: 10.1016/j.nbd.2014.10.023_bb0010
  article-title: Iron-mediated aggregation and a localized structural change characterize ferritin from a mutant light chain polypeptide that causes neurodegeneration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M805532200
– volume: 87
  start-page: 95
  year: 2006
  ident: 10.1016/j.nbd.2014.10.023_bb0175
  article-title: The use of behavioral test batteries, II: effect of test interval
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2005.09.002
– volume: 26
  start-page: 1756
  year: 2011
  ident: 10.1016/j.nbd.2014.10.023_bb0235
  article-title: Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: results of a phase II pilot trial
  publication-title: Mov. Disord.
  doi: 10.1002/mds.23751
– volume: 26
  start-page: 3404
  year: 2006
  ident: 10.1016/j.nbd.2014.10.023_bb0050
  article-title: Synergistic control of protein kinase C gamma activity by ionotropic and metabotropic glutamate receptor inputs in hippocampal neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0478-06.2006
– volume: 5
  start-page: 32
  year: 2013
  ident: 10.1016/j.nbd.2014.10.023_bb0160
  article-title: Abnormal iron homeostasis and neurodegeneration
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2013.00032
– volume: 285
  start-page: 11948
  year: 2010
  ident: 10.1016/j.nbd.2014.10.023_bb0135
  article-title: Mutant ferritin L-chains that cause neurodegeneration act in a dominant-negative manner to reduce ferritin iron incorporation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.096404
– volume: 11
  start-page: 827
  year: 2009
  ident: 10.1016/j.nbd.2014.10.023_bb0200
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.02.005
– volume: 52
  start-page: 1692
  year: 2012
  ident: 10.1016/j.nbd.2014.10.023_bb0015
  article-title: A mutant light-chain ferritin that causes neurodegeneration has enhanced propensity toward oxidative damage
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.02.015
– year: 2012
  ident: 10.1016/j.nbd.2014.10.023_bb0255
  article-title: MRI findings in neuroferritinopathy
  publication-title: Neurol. Res. Int.
  doi: 10.1155/2012/197438
– volume: 377
  start-page: 65
  year: 2000
  ident: 10.1016/j.nbd.2014.10.023_bb0195
  article-title: Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.2000.1717
– volume: 65
  start-page: 1669
  year: 2008
  ident: 10.1016/j.nbd.2014.10.023_bb0095
  article-title: The comparative biology of neuromelanin and lipofuscin in the human brain
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-008-7581-9
– volume: 8
  start-page: 1501
  issue: 8
  year: 1997
  ident: 10.1016/j.nbd.2014.10.023_bb0185
  article-title: High-resolution calcium mapping of the endoplasmic reticulum–Golgi–exocytic membrane system. Electron energy loss imaging analysis of quick frozen-freeze dried PC12 cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.8.8.1501
– volume: 5
  start-page: 50
  year: 2010
  ident: 10.1016/j.nbd.2014.10.023_bb0025
  article-title: Abnormal iron metabolism in fibroblasts from a patient with the neurodegenerative disease hereditary ferritinopathy
  publication-title: Mol. Neurodegener.
  doi: 10.1186/1750-1326-5-50
– volume: 10
  start-page: 172
  year: 2011
  ident: 10.1016/j.nbd.2014.10.023_bb0180
  article-title: Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2010.00652.x
– volume: 24
  start-page: 441
  year: 2009
  ident: 10.1016/j.nbd.2014.10.023_bb0125
  article-title: A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype–phenotype correlations
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22435
– volume: 10
  start-page: 519
  issue: 7
  year: 2009
  ident: 10.1016/j.nbd.2014.10.023_bb0040
  article-title: Tests to assess motor phenotype in mice: a user's guide
  publication-title: Nat. Rev.
  doi: 10.1038/nrn2652
– volume: 14
  start-page: 551
  year: 2013
  ident: 10.1016/j.nbd.2014.10.023_bb0210
  article-title: Iron metabolism in the CNS: implications for neurodegenerative diseases
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3453
– volume: 275
  start-page: 25122
  year: 2000
  ident: 10.1016/j.nbd.2014.10.023_bb0055
  article-title: Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M003797200
– volume: 479
  start-page: 44
  year: 2010
  ident: 10.1016/j.nbd.2014.10.023_bb0080
  article-title: Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2010.05.025
– volume: 28
  start-page: 60
  year: 2008
  ident: 10.1016/j.nbd.2014.10.023_bb0225
  article-title: Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3962-07.2008
– volume: 65
  start-page: 603
  year: 2005
  ident: 10.1016/j.nbd.2014.10.023_bb0140
  article-title: Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000178224.81169.c2
– volume: 18
  start-page: 266
  issue: 1
  year: 1998
  ident: 10.1016/j.nbd.2014.10.023_bb0190
  article-title: Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex–striatum–substantia nigra organotypic cultures
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-01-00266.1998
– year: 2001
  ident: 10.1016/j.nbd.2014.10.023_bb0240
– volume: 1800
  start-page: 783
  year: 2010
  ident: 10.1016/j.nbd.2014.10.023_bb0005
  article-title: Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2010.02.005
– volume: 64
  start-page: 280
  year: 2005
  ident: 10.1016/j.nbd.2014.10.023_bb0145
  article-title: Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/64.4.280
– volume: 342
  start-page: 173
  issue: 1–2
  year: 2014
  ident: 10.1016/j.nbd.2014.10.023_bb0165
  article-title: A novel ferritin light chain mutation in neuroferritinopathy with an atypical presentation
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2014.03.060
– volume: 33
  start-page: 611
  year: 2002
  ident: 10.1016/j.nbd.2014.10.023_bb0045
  article-title: Lipofuscin: mechanisms of age-related accumulation and influence on cell function
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(02)00959-0
– volume: 21
  start-page: e189
  year: 2011
  ident: 10.1016/j.nbd.2014.10.023_bb0205
  article-title: Susceptibility-weighted imaging of the brain: current utility and potential applications
  publication-title: J. Neuroimaging
  doi: 10.1111/j.1552-6569.2010.00516.x
– volume: 3
  start-page: ra88
  year: 2010
  ident: 10.1016/j.nbd.2014.10.023_bb0260
  article-title: Regulation of the 26S proteasome complex during oxidative stress
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2001232
– volume: 70
  start-page: 1614
  year: 2008
  ident: 10.1016/j.nbd.2014.10.023_bb0150
  article-title: T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000310985.40011.d6
– volume: 28
  start-page: 350
  year: 2001
  ident: 10.1016/j.nbd.2014.10.023_bb0075
  article-title: Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng571
– volume: 13
  start-page: 159
  year: 1996
  ident: 10.1016/j.nbd.2014.10.023_bb0035
  article-title: A vector for expressing foreign genes in the brains and hearts of transgenic mice
  publication-title: Genet. Anal.
  doi: 10.1016/S1050-3862(96)00167-2
– volume: 132
  start-page: e109
  year: 2009
  ident: 10.1016/j.nbd.2014.10.023_bb0085
  article-title: Clinical features and natural history of neuroferritinopathy caused by the 458dupA FTL mutation
  publication-title: Brain
  doi: 10.1093/brain/awn274
– volume: 25
  start-page: 499
  year: 2012
  ident: 10.1016/j.nbd.2014.10.023_bb0100
  article-title: Neurodegeneration with brain iron accumulation
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e3283550cac
– volume: 5
  start-page: 99
  year: 2014
  ident: 10.1016/j.nbd.2014.10.023_bb0130
  article-title: Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2014.00099
– volume: 20
  start-page: 21
  issue: 1
  year: 2013
  ident: 10.1016/j.nbd.2014.10.023_bb0245
  article-title: Functional roles of neurotransmitters and neuromodulators in the dorsal striatum
  publication-title: Learn. Mem.
  doi: 10.1101/lm.025015.111
– volume: 63
  start-page: 363
  year: 2004
  ident: 10.1016/j.nbd.2014.10.023_bb0220
  article-title: Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/63.4.363
SSID ssj0011597
Score 2.3332946
Snippet Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to...
Abstract Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene ( FTL ). It...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms Age Factors
Animals
Apoferritins - genetics
Apoferritins - metabolism
Brain - metabolism
Brain - pathology
Cell Death - genetics
Cells, Cultured
Disease Models, Animal
Disease Progression
DNA Damage - genetics
Female
Ferritin
Hippocampus - cytology
Humans
Iron
Iron Metabolism Disorders - complications
Iron Metabolism Disorders - etiology
Iron Metabolism Disorders - genetics
Iron Metabolism Disorders - pathology
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Models, Molecular
Neuroaxonal Dystrophies - complications
Neuroaxonal Dystrophies - genetics
Neuroaxonal Dystrophies - pathology
Neurodegenerative Diseases - etiology
Neurodegenerative disorder
Neuroferritinopathy
Neurology
Neurons - drug effects
Neurons - metabolism
Oxidative damage
Psychomotor Disorders - etiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLoi2P8NIgIQSIQB6OnRyXilVBlAtbqTfLdpx2UXGqZinan8U_ZMZJVg2g9sI1sePEM56ZLx5_w9jzXAvjcpHGGD24mONywzWXV7GuTGZ4arTldDj54IvYP-SfjoqjS6W-KCespwfuJ-6dNrxMXJLZQua8Tq3WxHCHXrzBSMK6EBqhGxvB1LB_gE5ajnuYIZvLG6IFTflbSuXK8okXCmT9E2f0d7D5Z87kJSc0v8NuD9EjzPq33mY3nN9huzOPyPn7Gl5AyOcMP8p32M2DYdt8l_2agW8v3Cn4norjnJiMfEvViNdA2N9BqIgDL-eLz8Cr8qPvFnuvoDtpf3YQUrgoW_bCgaGKEkBH46Be43cdD9W_3uADUGKjJQVKC-mgbcARgXI_bu2OA8c1tQfta-yCgB9si_h32f-UhNoRo8Wqu8sO5x8We_vxUKshtqLKVjEim7wUVha6bHInZWMoAc5yqRvRlLKyNhV1JQsqhpULm0lT86pGkeaCJ67Q-T225VvvHjCQVWZK7Qr0milalBoRocm0bmxSuVpWImLJKDtlByJzqqdxqsaMtW8Kxa1I3HQJxR2x15suZz2Lx1WN35NCbBoSAXe4gGqpBrVU16llxLJRndR4xhWtMj5oedXI8l-dXDfYlU6lqstUor4i8CSkimCWivGJLGJ803MInfqQ6LoBn42artCs0F6R9g7VTqE4U1kiek4idr_X_M2EEKudxLgSX3eyJiYzNr3jlyeBupwj3MUY9eH_mOJH7BZ-StEn_D1mW6vzH-4JRogr8zQYg99vq2bV
  priority: 102
  providerName: Directory of Open Access Journals
Title A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0969996114003362
https://www.clinicalkey.es/playcontent/1-s2.0-S0969996114003362
https://dx.doi.org/10.1016/j.nbd.2014.10.023
https://www.ncbi.nlm.nih.gov/pubmed/25447222
https://www.proquest.com/docview/1731784950
https://pubmed.ncbi.nlm.nih.gov/PMC4642750
https://doaj.org/article/ab480e02c5734d1caa9262644f163cea
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-953X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011597
  issn: 0969-9961
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-953X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011597
  issn: 0969-9961
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-953X
  dateEnd: 20191130
  omitProxy: true
  ssIdentifier: ssj0011597
  issn: 0969-9961
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-953X
  dateEnd: 20191130
  omitProxy: true
  ssIdentifier: ssj0011597
  issn: 0969-9961
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-953X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011597
  issn: 0969-9961
  databaseCode: AKRWK
  dateStart: 19941101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemISFeEGx8hI3KSAgBIms-nDh5LBVVB9uEoJP2ZtmO0xUNZ2rKUF_4n_gPuXOSijA0JJ6qOnbs2Ofznf3z7wh5HstUmTgNfbAejM9gusGci3Nf5ipSLFRSM7ycfHySTk_Z-7PkbIuMu7swCKtsdX-j0522blOGbW8OLxeL4WcwvtFaB4MeA5I5PYzsXyDTBz82MA8weFyAFczsY-7uZNNhvKxCstCQHSDAK4p7a5Oj8O8tUddN0D-RlL8tTZN75G5rU9JR0-z7ZMvYHbI7suBPf13TF9ShPN32-Q65fdwepu-SnyNqqytzQW1D0LFEfiNbYYziNcUdAUNdnBz6cjI7oizPDm09G7-i9Xn1vaYO2IUY2itDFcaZoHhhjhZr-K55GxPsDbwAxrHTrxTBIjWtSmqQVrmptzBzx3yN-am0BRRZVUuqK_CKF81WJS0M8lys6gfkdPJuNp76bQQHX6d5tPLB34mzVPNEZmVsOC8VwuI047JMy4znWodpkfMEQ2TFqY64Klhe8JjFKQtMIuOHZNtW1jwmlOeRyqRJYC0NQc8U4CeqSMpSB7kpeJ56JOjGTuiW3hyjbFyIDsf2RcBwCxxuTILh9sjrTZHLhtvjpsxvUSA2GZGW2yVUy7lo5VJIxbLABJFO4BuKUEuJdIxgcpZg9mojPRJ14iS6m6-gq-FFi5tq5n8rZOpW29QiFHUkAnFtRniEbUr2JtW_KnzWSboAZYMnSNIaEDsBwxnyDHzqwCOPGsnfdAhy3XGwNqG5vTnR67H-E7s4d4TmDJxgsFyf_F9z98gd-Jc0wL99sr1afjNPwVJcqYFTBQNyazT-dPQRfw8_TE8Gbt_lFwM1bM0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTQJeEGx8lE8jIQSIrPlw4uSxVFQta_tCJ-3Nsh2nKxrO1JSh_ln8h9w5SUUYGhKvjh0nvvP5d_b5d4S8jmSiTJQEHqAH4zGYbjDnosyTmQoVC5TUDC8nz-bJ-JR9PovP9siwvQuDYZWN7a9turPWTUm_Gc3-5WrV_wLgG9E6AHpMSIZ2-IDFYJP3ycFgcjKe7w4TYMV2t6ahvocN2sNNF-ZlFfKFBuwYY7zCqLM8ORb_zip1HYX-GUz52-o0ukfuNrCSDuovv0_2jD0kRwMLLvW3LX1DXaCn20E_JLdmzXn6Efk5oLa8MhfU1hwda6Q4siWmKd5S3BQw1KXKoW9HiyllWTqx1WL4jlbn5Y-KutguDKO9MlRhqgmKd-ZovoX_WjZpwT7AC0CUrYmlGC9S0bKgBpmV635zs3Tk11ifSptDk025proEx3hV71bS3CDVxaZ6QE5HnxbDsdckcfB0koUbD1yeKE00j2VaRIbzQmFknGZcFkmR8kzrIMkzHmOWrCjRIVc5y3IesShhvoll9JDs29Kax4TyLFSpNDEspwGYmhxcRRVKWWg_MznPkh7xW9kJ3TCcY6KNC9GGsn0VIG6B4sYiEHePvN81uazpPW6q_BEVYlcRmbldQbleikY1hVQs9Y0f6hj-IQ-0lMjICKizAOSrjeyRsFUn0V5-BXMNL1rd1DP_WyNTNQanEoGoQuGLa5OiR9iuZWde_avDV62mC7A3eIgkrQG1EyDOgKfgVvs98qjW_N2AIN0dB8AJn9uZE50R6z6xq3PHac7ADwbw-uT_PvcluT1ezKZiOpmfPCV34ElcxwE-I_ub9XfzHIDjRr1oDMMvNsxs7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+neuroferritinopathy+mouse+model+%28FTL+498InsTC%29+shows+progressive+brain+iron+dysregulation%2C+morphological+signs+of+early+neurodegeneration+and+motor+coordination+deficits&rft.jtitle=Neurobiology+of+disease&rft.au=Maccarinelli%2C+Federica&rft.au=Pagani%2C+Antonella&rft.au=Cozzi%2C+Anna&rft.au=Codazzi%2C+Franca&rft.date=2015-09-01&rft.eissn=1095-953X&rft.volume=81&rft.spage=119&rft_id=info:doi/10.1016%2Fj.nbd.2014.10.023&rft_id=info%3Apmid%2F25447222&rft.externalDocID=25447222
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09699961%2FS0969996115X00088%2Fcov150h.gif