A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits
Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. W...
Saved in:
Published in | Neurobiology of disease Vol. 81; pp. 119 - 133 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2015
Academic Press Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0969-9961 1095-953X 1095-953X |
DOI | 10.1016/j.nbd.2014.10.023 |
Cover
Abstract | Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains.
Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy.
•We developed two new neuroferritinopathy mice models (NF).•NF brains are characterized by iron/ferritin accumulation and oxidative damage.•NF brains show granules of lipofuscine associated with iron.•A mechanism of lipofuscine formation is proposed.•NF mice show impaired motor coordination increasing with age. |
---|---|
AbstractList | Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains.
Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy.
•We developed two new neuroferritinopathy mice models (NF).•NF brains are characterized by iron/ferritin accumulation and oxidative damage.•NF brains show granules of lipofuscine associated with iron.•A mechanism of lipofuscine formation is proposed.•NF mice show impaired motor coordination increasing with age. Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498-499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron-ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498-499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy. Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498-499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron-ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498-499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy.Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498-499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron-ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498-499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy. Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L-ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo, we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy. • We developed two new neuroferritinopathy mice models (NF). • NF brains are characterized by iron/ferritin accumulation and oxidative damage. • NF brains show granules of lipofuscine associated with iron. • A mechanism of lipofuscine formation is proposed. • NF mice show impaired motor coordination increasing with age. Abstract Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene ( FTL ). It belongs to Neurodegeneration with Brain Iron Accumulation, a group of disorders where iron dysregulation is tightly associated with neurodegeneration. We studied the 498–499InsTC mutation which causes the substitution of the last 9 amino acids and an elongation of extra 16 amino acids at the C-terminus of L -ferritin peptide. An analysis with cyclic voltammetry on the purified protein showed that this structural modification severely reduces the ability of the protein to store iron. In order to analyze the impact of the mutation in vivo , we generated mouse models for the some pathogenic human FTL gene in FVB and C57BL/6J strains. Transgenic mice in the FVB background showed high accumulation of the mutated ferritin in brain where it correlated with increased iron deposition with age, as scored by magnetic resonance imaging. Notably, the accumulation of iron–ferritin bodies was accompanied by signs of oxidative damage. In the C57BL/6 background, both the expression of the mutant ferritin and the iron levels were lower than in the FVB strain. Nevertheless, also these mice showed oxidative alterations in the brain. Furthermore, post-natal hippocampal neurons obtained from these mice experienced a marked increased cell death in response to chronic iron overload and/or acute oxidative stress, in comparison to wild-type neurons. Ultrastructural analyses revealed an accumulation of lipofuscin granules associated with iron deposits, particularly enriched in the cerebellum and striatum of our transgenic mice. Finally, experimental subjects were tested throughout development and aging at 2-, 8- and 18-months for behavioral phenotype. Rotarod test revealed a progressive impaired motor coordination building up with age, FTL mutant old mice showing a shorter latency to fall from the apparatus, according to higher accumulation of iron aggregates in the striatum. Our data show that our 498–499InsTC mouse models recapitulate early pathological and clinical traits of the human neuroferritinopathy, thus providing a valuable model for the study of the disease. Finally, we propose a mechanistic model of lipofuscine formation that can account for the etiopathogenesis of human neuroferritinopathy. |
Author | Capoccia, Sara Rapino, Stefania Maccarinelli, Federica Pagani, Antonella Di Giacomo, Giuseppina Finazzi, Dario Politi, Letterio Salvatore Cremona, Ottavio Codazzi, Franca Levi, Sonia Cozzi, Anna Giorgio, Marco Cirulli, Francesca Grohovaz, Fabio |
AuthorAffiliation | c Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy a Department of Molecular and Translational Medicine, University of Brescia, Italy e Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy b San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy d Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy |
AuthorAffiliation_xml | – name: b San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy – name: d Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy – name: a Department of Molecular and Translational Medicine, University of Brescia, Italy – name: c Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy – name: e Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy |
Author_xml | – sequence: 1 givenname: Federica surname: Maccarinelli fullname: Maccarinelli, Federica organization: Department of Molecular and Translational Medicine, University of Brescia, Italy – sequence: 2 givenname: Antonella surname: Pagani fullname: Pagani, Antonella organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy – sequence: 3 givenname: Anna surname: Cozzi fullname: Cozzi, Anna organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy – sequence: 4 givenname: Franca surname: Codazzi fullname: Codazzi, Franca organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy – sequence: 5 givenname: Giuseppina surname: Di Giacomo fullname: Di Giacomo, Giuseppina organization: Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy – sequence: 6 givenname: Sara surname: Capoccia fullname: Capoccia, Sara organization: Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy – sequence: 7 givenname: Stefania surname: Rapino fullname: Rapino, Stefania organization: Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy – sequence: 8 givenname: Dario surname: Finazzi fullname: Finazzi, Dario organization: Department of Molecular and Translational Medicine, University of Brescia, Italy – sequence: 9 givenname: Letterio Salvatore surname: Politi fullname: Politi, Letterio Salvatore organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy – sequence: 10 givenname: Francesca surname: Cirulli fullname: Cirulli, Francesca organization: Section of Behavioral Neuroscience, Department of Cell Biology, Istituto Superiore di Sanità, Rome, Italy – sequence: 11 givenname: Marco surname: Giorgio fullname: Giorgio, Marco organization: Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy – sequence: 12 givenname: Ottavio surname: Cremona fullname: Cremona, Ottavio organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy – sequence: 13 givenname: Fabio surname: Grohovaz fullname: Grohovaz, Fabio email: grohovaz.fabio@hsr.it organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy – sequence: 14 givenname: Sonia surname: Levi fullname: Levi, Sonia email: levi.sonia@hsr.it organization: San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25447222$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl2LEzEUHWTF_dAf4IvkcRdsTTKZZIKwsBRXCwUfrOBbSJM709RpUpNppT_Lf2im3RV3wfUlITf3nMO955wXJz54KIrXBI8JJvzdauwXdkwxYfk9xrR8VpwRLKuRrMpvJ8UZllyOpOTktDhPaYUxIZUUL4pTWjEmKKVnxa8b5MMOOuRhG0MDMbre-bDR_XKP1mGbIJ82_1_ezmeIyXrq03xyhdIy_ExoE0MbISW3A7SI2nnkYvDI7lOEdtvp3gX_NhPEzTJ0oXVGdyi51icUGgQ6dvujroUWPMRDP9LeZkgfIjIhROv8sWyhccb16WXxvNFdgld390Xx9fbDfPJpNPv8cTq5mY0Ml7QfUSLKmhtR6bopQYhmgeuqMkzohje1kMYQbqWoaI3LkhsqFpZJK0pWcoah0uVFMT3y2qBXahPdWse9CtqpQyHEVunYO9OB0gtWY8DUVBlvidFaUk45Yw3hpYGB6_rItdku1mAN-D7q7gHpwx_vlqoNO8U4o6LCmeDyjiCGH1tIvVq7ZKDrtIdsksrDElEzeWh987fWH5F7z3ODODaYGFI2qlF5rYcdZ2nXKYLVkC61UjldakjXUMrpykjyCHlP_hTm_RED2audg6iSceANWBfB9HmZ7kn09SO06ZwfcvQd9pBWYRt9DoEiKlGF1Zch8UPgCcODrcOw8t8E_xH_DWILE5k |
CitedBy_id | crossref_primary_10_1016_j_xhgg_2023_100236 crossref_primary_10_1038_s41380_023_02399_z crossref_primary_10_1016_j_dib_2017_09_062 crossref_primary_10_1089_rej_2024_0034 crossref_primary_10_1007_s00018_020_03747_w crossref_primary_10_1021_acs_biochem_8b01068 crossref_primary_10_3390_antiox12030731 crossref_primary_10_1016_j_ejpn_2018_01_008 crossref_primary_10_3389_fneur_2019_00833 crossref_primary_10_1186_s13578_022_00791_w crossref_primary_10_3389_fnagi_2018_00065 crossref_primary_10_3390_ijms252312987 crossref_primary_10_1021_acschemneuro_4c00400 crossref_primary_10_1038_s41419_023_05738_8 crossref_primary_10_1016_j_nbd_2015_08_012 crossref_primary_10_1093_hmg_ddw252 crossref_primary_10_1111_ejh_12820 crossref_primary_10_3390_ph12010027 crossref_primary_10_3390_antiox9040313 crossref_primary_10_3390_ph11040124 crossref_primary_10_1016_j_bbr_2016_07_015 crossref_primary_10_1111_nan_12634 crossref_primary_10_1007_s10048_023_00725_9 crossref_primary_10_1007_s11011_016_9834_x crossref_primary_10_3389_fnins_2018_00464 crossref_primary_10_1007_s12011_023_03911_w crossref_primary_10_1007_s00702_020_02275_y crossref_primary_10_1016_j_stemcr_2019_09_002 crossref_primary_10_1007_s12640_017_9721_1 crossref_primary_10_1177_1535370220953065 |
Cites_doi | 10.1016/j.nbd.2009.09.009 10.1369/jhc.7A7273.2007 10.1038/76095 10.1007/s100720200083 10.1016/S0006-8993(98)01258-X 10.1007/978-1-4419-5635-4_5 10.1177/1352458509106609 10.1016/0014-5793(92)80911-Y 10.1016/j.redox.2013.01.006 10.1111/j.1471-4159.2009.06028.x 10.1016/j.nbd.2006.05.004 10.1074/jbc.M805532200 10.1016/j.physbeh.2005.09.002 10.1002/mds.23751 10.1523/JNEUROSCI.0478-06.2006 10.3389/fnagi.2013.00032 10.1074/jbc.M109.096404 10.1016/j.elecom.2009.02.005 10.1016/j.freeradbiomed.2012.02.015 10.1155/2012/197438 10.1006/abbi.2000.1717 10.1007/s00018-008-7581-9 10.1091/mbc.8.8.1501 10.1186/1750-1326-5-50 10.1111/j.1474-9726.2010.00652.x 10.1002/mds.22435 10.1038/nrn2652 10.1038/nrn3453 10.1074/jbc.M003797200 10.1016/j.neulet.2010.05.025 10.1523/JNEUROSCI.3962-07.2008 10.1212/01.wnl.0000178224.81169.c2 10.1523/JNEUROSCI.18-01-00266.1998 10.1016/j.bbagen.2010.02.005 10.1093/jnen/64.4.280 10.1016/j.jns.2014.03.060 10.1016/S0891-5849(02)00959-0 10.1111/j.1552-6569.2010.00516.x 10.1126/scisignal.2001232 10.1212/01.wnl.0000310985.40011.d6 10.1038/ng571 10.1016/S1050-3862(96)00167-2 10.1093/brain/awn274 10.1097/WCO.0b013e3283550cac 10.3389/fphar.2014.00099 10.1101/lm.025015.111 10.1093/jnen/63.4.363 |
ContentType | Journal Article |
Copyright | 2014 Copyright © 2014. Published by Elsevier Inc. 2014 The Authors. Published by Elsevier Inc. 2014 |
Copyright_xml | – notice: 2014 – notice: Copyright © 2014. Published by Elsevier Inc. – notice: 2014 The Authors. Published by Elsevier Inc. 2014 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.nbd.2014.10.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1095-953X |
EndPage | 133 |
ExternalDocumentID | oai_doaj_org_article_ab480e02c5734d1caa9262644f163cea PMC4642750 25447222 10_1016_j_nbd_2014_10_023 S0969996114003362 1_s2_0_S0969996114003362 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Telethon grantid: GGP10099 |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AIEXJ AIGII AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W K-O KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K X7M XPP Z5R ZGI ZMT ZU3 ~G- 0SF 6I. AACTN AFCTW AFKWA AJOXV AMFUW NCXOZ PKN RIG AADPK AAFTH AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX ACLOT CITATION ~HD AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c692t-217386c75a8f3e77fb0855c47af6f879cc16d975280336c27bd49d7343640e5a3 |
IEDL.DBID | .~1 |
ISSN | 0969-9961 1095-953X |
IngestDate | Wed Aug 27 01:23:23 EDT 2025 Tue Sep 30 16:59:08 EDT 2025 Sun Sep 28 11:45:05 EDT 2025 Mon Jul 21 06:03:04 EDT 2025 Thu Apr 24 22:53:09 EDT 2025 Wed Oct 01 03:48:33 EDT 2025 Fri Feb 23 02:30:29 EST 2024 Sun Feb 23 10:19:14 EST 2025 Tue Aug 26 16:32:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neurodegenerative disorder Tg Oxidative damage ROS Ferritin NF Iron FtH WT Neuroferritinopathy FTL neuroferritinopathy ferritin light chain gene ferritin light chain protein reactive oxygen species transgenic wild type ferritin heavy chain protein |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 Copyright © 2014. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c692t-217386c75a8f3e77fb0855c47af6f879cc16d975280336c27bd49d7343640e5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors contributed equally to this work. The authors share senior authorship. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0969996114003362 |
PMID | 25447222 |
PQID | 1731784950 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab480e02c5734d1caa9262644f163cea pubmedcentral_primary_oai_pubmedcentral_nih_gov_4642750 proquest_miscellaneous_1731784950 pubmed_primary_25447222 crossref_citationtrail_10_1016_j_nbd_2014_10_023 crossref_primary_10_1016_j_nbd_2014_10_023 elsevier_sciencedirect_doi_10_1016_j_nbd_2014_10_023 elsevier_clinicalkeyesjournals_1_s2_0_S0969996114003362 elsevier_clinicalkey_doi_10_1016_j_nbd_2014_10_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of disease |
PublicationTitleAlternate | Neurobiol Dis |
PublicationYear | 2015 |
Publisher | Elsevier Inc Academic Press Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Academic Press – name: Elsevier |
References | Arosio, Levi (bb0005) 2010; 1800 Devos, Tchofo, Vuillaume, Destee, Batey, Burn, Chinnery (bb0085) 2009; 132 Paylor, Spencer, Yuva-Paylor, Pieke-Dahl (bb0175) 2006; 87 Pezzati, Bossi, Podini, Meldolesi, Grohovaz (bb0185) 1997; 8 Pelizzoni, Macco, Morini, Zacchetti, Grohovaz, Codazzi (bb0180) 2011; 10 Luscieti, Santambrogio, Langlois d'Estaintot, Granier, Cozzi, Poli, Gallois, Finazzi, Cattaneo, Levi, Arosio (bb0135) 2010; 285 Bard, Faulkner (bb0240) 2001 Levi, Finazzi (bb0130) 2014; 5 Hohn, Grune (bb0115) 2013; 1 Crawley (bb0070) 1999; 835 Maciel, Cruz, Constante, Iniesta, Costa, Gallati, Sousa, Sequeiros, Coutinho, Santos (bb0140) 2005; 65 Zorzi, Zibordi, Chiapparini, Bertini, Russo, Piga, Longo, Garavaglia, Aquino, Savoiardo, Solari, Nardocci (bb0235) 2011; 26 Brunk, Terman (bb0045) 2002; 33 Deng, Vidal, Englander (bb0080) 2010; 479 Reinheckel, Ullrich, Sitte, Grune (bb0195) 2000; 377 Cozzi, Corsi, Levi, Santambrogio, Albertini, Arosio (bb0055) 2000; 275 Halliwell, Gutteridge (bb0250) 1992; 307 Sparrow (bb0215) 2010; 703 Ohta, Takiyama (bb0255) 2012 McNeill, Birchall, Hayflick, Gregory, Schenk, Zimmerman, Shang, Miyajima, Chinnery (bb0150) 2008; 70 Santambrogio, Biasiotto, Sanvito, Olivieri, Arosio, Levi (bb9000) 2007; 55 Plenz, Kitai (bb0190) 1998; 18 Baraibar, Barbeito, Muhoberac, Vidal (bb0010) 2008; 283 Ritzert, Casella, Zapien (bb0200) 2009; 11 Follenzi, Ailles, Bakovic, Geuna, Naldini (bb0105) 2000; 25 Mondino, Filippi, Magliola, Duca (bb0155) 2002; 23 Baraibar, Barbeito, Muhoberac, Vidal (bb0015) 2012; 52 Borchelt, Davis, Fischer, Lee, Slunt, Ratovitsky, Regard, Copeland, Jenkins, Sisodia, Price (bb0035) 1996; 13 Double, Dedov, Fedorow, Kettle, Halliday, Garner, Brunk (bb0095) 2008; 65 Cozzi, Santambrogio, Corsi, Campanella, Arosio, Levi (bb0065) 2006; 23 Barbeito, Levade, Delisle, Ghetti, Vidal (bb0025) 2010; 5 Barbeito, Garringer, Baraibar, Gao, Arredondo, Nunez, Smith, Ghetti, Vidal (bb0020) 2009; 109 Vidal, Miravalle, Gao, Barbeito, Baraibar, Hekmatyar, Widel, Bansal, Delisle, Ghetti (bb0225) 2008; 28 Kubota, Hida, Ichikawa, Momose, Goto, Igeta, Hashida, Yoshida, Ikeda, Kanazawa, Tsuji (bb0125) 2009; 24 Vidal, Ghetti, Takao, Brefel-Courbon, Uro-Coste, Glazier, Siani, Benson, Calvas, Miravalle, Rascol, Delisle (bb0220) 2004; 63 Rouault (bb0210) 2013; 14 Brooks, Dunnett (bb0040) 2009; 10 Do, Kim, Bakes, Lee, Kaang (bb0245) 2013; 20 Mancuso, Davidzon, Kurlan, Tawil, Bonilla, Di Mauro, Powers (bb0145) 2005; 64 Curtis, Fey, Morris, Bindoff, Ince, Chinnery, Coulthard, Jackson, Jackson, McHale, Hay, Barker, Markham, Bates, Curtis, Burn (bb0075) 2001; 28 Muhoberac, Vidal (bb0160) 2013; 5 Khalil, Enzinger, Langkammer, Tscherner, Wallner-Blazek, Jehna, Ropele, Fuchs, Fazekas (bb0120) 2009; 15 Nishida, Garringer, Futamura, Funakawa, Jinnai, Vidal, Takao (bb0165) 2014; 342 Codazzi, Di Cesare, Chiulli, Albanese, Meyer, Zacchetti, Grohovaz (bb0050) 2006; 26 Dusek, Schneider (bb0100) 2012; 25 Robinson, Bhuta (bb0205) 2011; 21 Wang, Yen, Kaiser, Huang (bb0260) 2010; 3 Cozzi, Rovelli, Frizzale, Campanella, Amendola, Arosio, Levi (bb0060) 2010; 37 Deng (10.1016/j.nbd.2014.10.023_bb0080) 2010; 479 Wang (10.1016/j.nbd.2014.10.023_bb0260) 2010; 3 Curtis (10.1016/j.nbd.2014.10.023_bb0075) 2001; 28 Arosio (10.1016/j.nbd.2014.10.023_bb0005) 2010; 1800 Mondino (10.1016/j.nbd.2014.10.023_bb0155) 2002; 23 Plenz (10.1016/j.nbd.2014.10.023_bb0190) 1998; 18 Mancuso (10.1016/j.nbd.2014.10.023_bb0145) 2005; 64 Vidal (10.1016/j.nbd.2014.10.023_bb0225) 2008; 28 Crawley (10.1016/j.nbd.2014.10.023_bb0070) 1999; 835 Do (10.1016/j.nbd.2014.10.023_bb0245) 2013; 20 Dusek (10.1016/j.nbd.2014.10.023_bb0100) 2012; 25 Reinheckel (10.1016/j.nbd.2014.10.023_bb0195) 2000; 377 Zorzi (10.1016/j.nbd.2014.10.023_bb0235) 2011; 26 Codazzi (10.1016/j.nbd.2014.10.023_bb0050) 2006; 26 Cozzi (10.1016/j.nbd.2014.10.023_bb0065) 2006; 23 Halliwell (10.1016/j.nbd.2014.10.023_bb0250) 1992; 307 Rouault (10.1016/j.nbd.2014.10.023_bb0210) 2013; 14 Santambrogio (10.1016/j.nbd.2014.10.023_bb9000) 2007; 55 McNeill (10.1016/j.nbd.2014.10.023_bb0150) 2008; 70 Robinson (10.1016/j.nbd.2014.10.023_bb0205) 2011; 21 Borchelt (10.1016/j.nbd.2014.10.023_bb0035) 1996; 13 Brunk (10.1016/j.nbd.2014.10.023_bb0045) 2002; 33 Bard (10.1016/j.nbd.2014.10.023_bb0240) 2001 Luscieti (10.1016/j.nbd.2014.10.023_bb0135) 2010; 285 Barbeito (10.1016/j.nbd.2014.10.023_bb0025) 2010; 5 Pelizzoni (10.1016/j.nbd.2014.10.023_bb0180) 2011; 10 Nishida (10.1016/j.nbd.2014.10.023_bb0165) 2014; 342 Pezzati (10.1016/j.nbd.2014.10.023_bb0185) 1997; 8 Barbeito (10.1016/j.nbd.2014.10.023_bb0020) 2009; 109 Khalil (10.1016/j.nbd.2014.10.023_bb0120) 2009; 15 Cozzi (10.1016/j.nbd.2014.10.023_bb0055) 2000; 275 Vidal (10.1016/j.nbd.2014.10.023_bb0220) 2004; 63 Kubota (10.1016/j.nbd.2014.10.023_bb0125) 2009; 24 Brooks (10.1016/j.nbd.2014.10.023_bb0040) 2009; 10 Follenzi (10.1016/j.nbd.2014.10.023_bb0105) 2000; 25 Hohn (10.1016/j.nbd.2014.10.023_bb0115) 2013; 1 Sparrow (10.1016/j.nbd.2014.10.023_bb0215) 2010; 703 Ritzert (10.1016/j.nbd.2014.10.023_bb0200) 2009; 11 Double (10.1016/j.nbd.2014.10.023_bb0095) 2008; 65 Maciel (10.1016/j.nbd.2014.10.023_bb0140) 2005; 65 Devos (10.1016/j.nbd.2014.10.023_bb0085) 2009; 132 Baraibar (10.1016/j.nbd.2014.10.023_bb0015) 2012; 52 Muhoberac (10.1016/j.nbd.2014.10.023_bb0160) 2013; 5 Ohta (10.1016/j.nbd.2014.10.023_bb0255) 2012 Baraibar (10.1016/j.nbd.2014.10.023_bb0010) 2008; 283 Cozzi (10.1016/j.nbd.2014.10.023_bb0060) 2010; 37 Levi (10.1016/j.nbd.2014.10.023_bb0130) 2014; 5 Paylor (10.1016/j.nbd.2014.10.023_bb0175) 2006; 87 |
References_xml | – volume: 23 start-page: 644 year: 2006 end-page: 652 ident: bb0065 article-title: Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder publication-title: Neurobiol. Dis. – volume: 33 start-page: 611 year: 2002 end-page: 619 ident: bb0045 article-title: Lipofuscin: mechanisms of age-related accumulation and influence on cell function publication-title: Free Radic. Biol. Med. – volume: 703 start-page: 63 year: 2010 end-page: 74 ident: bb0215 article-title: Bisretinoids of RPE lipofuscin: trigger for complement activation in age-related macular degeneration publication-title: Adv. Exp. Med. Biol. – volume: 275 start-page: 25122 year: 2000 end-page: 25129 ident: bb0055 article-title: Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity publication-title: J. Biol. Chem. – volume: 5 start-page: 50 year: 2010 ident: bb0025 article-title: Abnormal iron metabolism in fibroblasts from a patient with the neurodegenerative disease hereditary ferritinopathy publication-title: Mol. Neurodegener. – volume: 1 start-page: 140 year: 2013 end-page: 144 ident: bb0115 article-title: Lipofuscin: formation, effects and role of macroautophagy publication-title: Redox Biol. – volume: 25 start-page: 499 year: 2012 end-page: 506 ident: bb0100 article-title: Neurodegeneration with brain iron accumulation publication-title: Curr. Opin. Neurol. – volume: 63 start-page: 363 year: 2004 end-page: 380 ident: bb0220 article-title: Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene publication-title: J. Neuropathol. Exp. Neurol. – volume: 87 start-page: 95 year: 2006 end-page: 102 ident: bb0175 article-title: The use of behavioral test batteries, II: effect of test interval publication-title: Physiol. Behav. – volume: 15 start-page: 1048 year: 2009 end-page: 1054 ident: bb0120 article-title: Quantitative assessment of brain iron by R(2)* relaxometry in patients with clinically isolated syndrome and relapsing–remitting multiple sclerosis publication-title: Mult. Scler. – volume: 23 start-page: S87 year: 2002 end-page: S88 ident: bb0155 article-title: Magnetic resonance relaxometry in Parkinson's disease publication-title: Neurol. Sci. – volume: 479 start-page: 44 year: 2010 end-page: 48 ident: bb0080 article-title: Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy publication-title: Neurosci. Lett. – volume: 64 start-page: 280 year: 2005 end-page: 294 ident: bb0145 article-title: Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights publication-title: J. Neuropathol. Exp. Neurol. – volume: 342 start-page: 173 year: 2014 end-page: 177 ident: bb0165 article-title: A novel ferritin light chain mutation in neuroferritinopathy with an atypical presentation publication-title: J. Neurol. Sci. – volume: 10 start-page: 172 year: 2011 end-page: 183 ident: bb0180 article-title: Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity publication-title: Aging Cell – volume: 18 start-page: 266 year: 1998 end-page: 283 ident: bb0190 article-title: Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex–striatum–substantia nigra organotypic cultures publication-title: J. Neurosci. – year: 2012 ident: bb0255 article-title: MRI findings in neuroferritinopathy publication-title: Neurol. Res. Int. – volume: 8 start-page: 1501 year: 1997 end-page: 1512 ident: bb0185 article-title: High-resolution calcium mapping of the endoplasmic reticulum–Golgi–exocytic membrane system. Electron energy loss imaging analysis of quick frozen-freeze dried PC12 cells publication-title: Mol. Biol. Cell – volume: 377 start-page: 65 year: 2000 end-page: 68 ident: bb0195 article-title: Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress publication-title: Arch. Biochem. Biophys. – volume: 10 start-page: 519 year: 2009 end-page: 529 ident: bb0040 article-title: Tests to assess motor phenotype in mice: a user's guide publication-title: Nat. Rev. – volume: 26 start-page: 1756 year: 2011 end-page: 1759 ident: bb0235 article-title: Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: results of a phase II pilot trial publication-title: Mov. Disord. – volume: 5 start-page: 32 year: 2013 ident: bb0160 article-title: Abnormal iron homeostasis and neurodegeneration publication-title: Front. Aging Neurosci. – volume: 55 start-page: 1129 year: 2007 end-page: 1137 ident: bb9000 article-title: Mitochondrial ferritin expression in adult mouse tissues publication-title: J Histochem Cytochem – volume: 28 start-page: 60 year: 2008 end-page: 67 ident: bb0225 article-title: Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice publication-title: J. Neurosci. – volume: 28 start-page: 350 year: 2001 end-page: 354 ident: bb0075 article-title: Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease publication-title: Nat. Genet. – volume: 285 start-page: 11948 year: 2010 end-page: 11957 ident: bb0135 article-title: Mutant ferritin L-chains that cause neurodegeneration act in a dominant-negative manner to reduce ferritin iron incorporation publication-title: J. Biol. Chem. – volume: 1800 start-page: 783 year: 2010 end-page: 792 ident: bb0005 article-title: Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage publication-title: Biochim. Biophys. Acta – volume: 109 start-page: 1067 year: 2009 end-page: 1078 ident: bb0020 article-title: Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene publication-title: J. Neurochem. – volume: 835 start-page: 18 year: 1999 end-page: 26 ident: bb0070 article-title: Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests publication-title: Brain Res. – volume: 3 start-page: ra88 year: 2010 ident: bb0260 article-title: Regulation of the 26S proteasome complex during oxidative stress publication-title: Sci. Signal. – volume: 13 start-page: 159 year: 1996 end-page: 163 ident: bb0035 article-title: A vector for expressing foreign genes in the brains and hearts of transgenic mice publication-title: Genet. Anal. – volume: 5 start-page: 99 year: 2014 ident: bb0130 article-title: Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms publication-title: Front. Pharmacol. – volume: 14 start-page: 551 year: 2013 end-page: 564 ident: bb0210 article-title: Iron metabolism in the CNS: implications for neurodegenerative diseases publication-title: Nat. Rev. Neurosci. – volume: 70 start-page: 1614 year: 2008 end-page: 1619 ident: bb0150 article-title: T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation publication-title: Neurology – volume: 20 start-page: 21 year: 2013 end-page: 28 ident: bb0245 article-title: Functional roles of neurotransmitters and neuromodulators in the dorsal striatum publication-title: Learn. Mem. – volume: 26 start-page: 3404 year: 2006 end-page: 3411 ident: bb0050 article-title: Synergistic control of protein kinase C gamma activity by ionotropic and metabotropic glutamate receptor inputs in hippocampal neurons publication-title: J. Neurosci. – volume: 37 start-page: 77 year: 2010 end-page: 85 ident: bb0060 article-title: Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy publication-title: Neurobiol. Dis. – volume: 65 start-page: 1669 year: 2008 end-page: 1682 ident: bb0095 article-title: The comparative biology of neuromelanin and lipofuscin in the human brain publication-title: Cell. Mol. Life Sci. – volume: 52 start-page: 1692 year: 2012 end-page: 1697 ident: bb0015 article-title: A mutant light-chain ferritin that causes neurodegeneration has enhanced propensity toward oxidative damage publication-title: Free Radic. Biol. Med. – volume: 307 start-page: 108 year: 1992 end-page: 112 ident: bb0250 article-title: Biologically relevant metal ion-dependent hydroxyl radical generation. An update publication-title: FEBS Lett. – volume: 283 start-page: 31679 year: 2008 end-page: 31689 ident: bb0010 article-title: Iron-mediated aggregation and a localized structural change characterize ferritin from a mutant light chain polypeptide that causes neurodegeneration publication-title: J. Biol. Chem. – volume: 25 start-page: 217 year: 2000 end-page: 222 ident: bb0105 article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences publication-title: Nat. Genet. – year: 2001 ident: bb0240 article-title: Electrochemical Methods, Fundamentals And Applications – volume: 11 start-page: 827 year: 2009 end-page: 830 ident: bb0200 publication-title: Electrochem. Commun. – volume: 21 start-page: e189 year: 2011 end-page: e204 ident: bb0205 article-title: Susceptibility-weighted imaging of the brain: current utility and potential applications publication-title: J. Neuroimaging – volume: 24 start-page: 441 year: 2009 end-page: 445 ident: bb0125 article-title: A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype–phenotype correlations publication-title: Mov. Disord. – volume: 65 start-page: 603 year: 2005 end-page: 605 ident: bb0140 article-title: Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement publication-title: Neurology – volume: 132 start-page: e109 year: 2009 ident: bb0085 article-title: Clinical features and natural history of neuroferritinopathy caused by the 458dupA FTL mutation publication-title: Brain – volume: 37 start-page: 77 year: 2010 ident: 10.1016/j.nbd.2014.10.023_bb0060 article-title: Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2009.09.009 – volume: 55 start-page: 1129 year: 2007 ident: 10.1016/j.nbd.2014.10.023_bb9000 article-title: Mitochondrial ferritin expression in adult mouse tissues publication-title: J Histochem Cytochem doi: 10.1369/jhc.7A7273.2007 – volume: 25 start-page: 217 year: 2000 ident: 10.1016/j.nbd.2014.10.023_bb0105 article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences publication-title: Nat. Genet. doi: 10.1038/76095 – volume: 23 start-page: S87 issue: Suppl. 2 year: 2002 ident: 10.1016/j.nbd.2014.10.023_bb0155 article-title: Magnetic resonance relaxometry in Parkinson's disease publication-title: Neurol. Sci. doi: 10.1007/s100720200083 – volume: 835 start-page: 18 issue: 1 year: 1999 ident: 10.1016/j.nbd.2014.10.023_bb0070 article-title: Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests publication-title: Brain Res. doi: 10.1016/S0006-8993(98)01258-X – volume: 703 start-page: 63 year: 2010 ident: 10.1016/j.nbd.2014.10.023_bb0215 article-title: Bisretinoids of RPE lipofuscin: trigger for complement activation in age-related macular degeneration publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4419-5635-4_5 – volume: 15 start-page: 1048 year: 2009 ident: 10.1016/j.nbd.2014.10.023_bb0120 article-title: Quantitative assessment of brain iron by R(2)* relaxometry in patients with clinically isolated syndrome and relapsing–remitting multiple sclerosis publication-title: Mult. Scler. doi: 10.1177/1352458509106609 – volume: 307 start-page: 108 year: 1992 ident: 10.1016/j.nbd.2014.10.023_bb0250 article-title: Biologically relevant metal ion-dependent hydroxyl radical generation. An update publication-title: FEBS Lett. doi: 10.1016/0014-5793(92)80911-Y – volume: 1 start-page: 140 year: 2013 ident: 10.1016/j.nbd.2014.10.023_bb0115 article-title: Lipofuscin: formation, effects and role of macroautophagy publication-title: Redox Biol. doi: 10.1016/j.redox.2013.01.006 – volume: 109 start-page: 1067 year: 2009 ident: 10.1016/j.nbd.2014.10.023_bb0020 article-title: Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2009.06028.x – volume: 23 start-page: 644 year: 2006 ident: 10.1016/j.nbd.2014.10.023_bb0065 article-title: Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2006.05.004 – volume: 283 start-page: 31679 year: 2008 ident: 10.1016/j.nbd.2014.10.023_bb0010 article-title: Iron-mediated aggregation and a localized structural change characterize ferritin from a mutant light chain polypeptide that causes neurodegeneration publication-title: J. Biol. Chem. doi: 10.1074/jbc.M805532200 – volume: 87 start-page: 95 year: 2006 ident: 10.1016/j.nbd.2014.10.023_bb0175 article-title: The use of behavioral test batteries, II: effect of test interval publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2005.09.002 – volume: 26 start-page: 1756 year: 2011 ident: 10.1016/j.nbd.2014.10.023_bb0235 article-title: Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: results of a phase II pilot trial publication-title: Mov. Disord. doi: 10.1002/mds.23751 – volume: 26 start-page: 3404 year: 2006 ident: 10.1016/j.nbd.2014.10.023_bb0050 article-title: Synergistic control of protein kinase C gamma activity by ionotropic and metabotropic glutamate receptor inputs in hippocampal neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0478-06.2006 – volume: 5 start-page: 32 year: 2013 ident: 10.1016/j.nbd.2014.10.023_bb0160 article-title: Abnormal iron homeostasis and neurodegeneration publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2013.00032 – volume: 285 start-page: 11948 year: 2010 ident: 10.1016/j.nbd.2014.10.023_bb0135 article-title: Mutant ferritin L-chains that cause neurodegeneration act in a dominant-negative manner to reduce ferritin iron incorporation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.096404 – volume: 11 start-page: 827 year: 2009 ident: 10.1016/j.nbd.2014.10.023_bb0200 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.02.005 – volume: 52 start-page: 1692 year: 2012 ident: 10.1016/j.nbd.2014.10.023_bb0015 article-title: A mutant light-chain ferritin that causes neurodegeneration has enhanced propensity toward oxidative damage publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.02.015 – year: 2012 ident: 10.1016/j.nbd.2014.10.023_bb0255 article-title: MRI findings in neuroferritinopathy publication-title: Neurol. Res. Int. doi: 10.1155/2012/197438 – volume: 377 start-page: 65 year: 2000 ident: 10.1016/j.nbd.2014.10.023_bb0195 article-title: Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.2000.1717 – volume: 65 start-page: 1669 year: 2008 ident: 10.1016/j.nbd.2014.10.023_bb0095 article-title: The comparative biology of neuromelanin and lipofuscin in the human brain publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-7581-9 – volume: 8 start-page: 1501 issue: 8 year: 1997 ident: 10.1016/j.nbd.2014.10.023_bb0185 article-title: High-resolution calcium mapping of the endoplasmic reticulum–Golgi–exocytic membrane system. Electron energy loss imaging analysis of quick frozen-freeze dried PC12 cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.8.8.1501 – volume: 5 start-page: 50 year: 2010 ident: 10.1016/j.nbd.2014.10.023_bb0025 article-title: Abnormal iron metabolism in fibroblasts from a patient with the neurodegenerative disease hereditary ferritinopathy publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-5-50 – volume: 10 start-page: 172 year: 2011 ident: 10.1016/j.nbd.2014.10.023_bb0180 article-title: Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity publication-title: Aging Cell doi: 10.1111/j.1474-9726.2010.00652.x – volume: 24 start-page: 441 year: 2009 ident: 10.1016/j.nbd.2014.10.023_bb0125 article-title: A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype–phenotype correlations publication-title: Mov. Disord. doi: 10.1002/mds.22435 – volume: 10 start-page: 519 issue: 7 year: 2009 ident: 10.1016/j.nbd.2014.10.023_bb0040 article-title: Tests to assess motor phenotype in mice: a user's guide publication-title: Nat. Rev. doi: 10.1038/nrn2652 – volume: 14 start-page: 551 year: 2013 ident: 10.1016/j.nbd.2014.10.023_bb0210 article-title: Iron metabolism in the CNS: implications for neurodegenerative diseases publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3453 – volume: 275 start-page: 25122 year: 2000 ident: 10.1016/j.nbd.2014.10.023_bb0055 article-title: Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M003797200 – volume: 479 start-page: 44 year: 2010 ident: 10.1016/j.nbd.2014.10.023_bb0080 article-title: Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.05.025 – volume: 28 start-page: 60 year: 2008 ident: 10.1016/j.nbd.2014.10.023_bb0225 article-title: Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3962-07.2008 – volume: 65 start-page: 603 year: 2005 ident: 10.1016/j.nbd.2014.10.023_bb0140 article-title: Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement publication-title: Neurology doi: 10.1212/01.wnl.0000178224.81169.c2 – volume: 18 start-page: 266 issue: 1 year: 1998 ident: 10.1016/j.nbd.2014.10.023_bb0190 article-title: Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex–striatum–substantia nigra organotypic cultures publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-01-00266.1998 – year: 2001 ident: 10.1016/j.nbd.2014.10.023_bb0240 – volume: 1800 start-page: 783 year: 2010 ident: 10.1016/j.nbd.2014.10.023_bb0005 article-title: Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2010.02.005 – volume: 64 start-page: 280 year: 2005 ident: 10.1016/j.nbd.2014.10.023_bb0145 article-title: Hereditary ferritinopathy: a novel mutation, its cellular pathology, and pathogenetic insights publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/64.4.280 – volume: 342 start-page: 173 issue: 1–2 year: 2014 ident: 10.1016/j.nbd.2014.10.023_bb0165 article-title: A novel ferritin light chain mutation in neuroferritinopathy with an atypical presentation publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2014.03.060 – volume: 33 start-page: 611 year: 2002 ident: 10.1016/j.nbd.2014.10.023_bb0045 article-title: Lipofuscin: mechanisms of age-related accumulation and influence on cell function publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(02)00959-0 – volume: 21 start-page: e189 year: 2011 ident: 10.1016/j.nbd.2014.10.023_bb0205 article-title: Susceptibility-weighted imaging of the brain: current utility and potential applications publication-title: J. Neuroimaging doi: 10.1111/j.1552-6569.2010.00516.x – volume: 3 start-page: ra88 year: 2010 ident: 10.1016/j.nbd.2014.10.023_bb0260 article-title: Regulation of the 26S proteasome complex during oxidative stress publication-title: Sci. Signal. doi: 10.1126/scisignal.2001232 – volume: 70 start-page: 1614 year: 2008 ident: 10.1016/j.nbd.2014.10.023_bb0150 article-title: T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation publication-title: Neurology doi: 10.1212/01.wnl.0000310985.40011.d6 – volume: 28 start-page: 350 year: 2001 ident: 10.1016/j.nbd.2014.10.023_bb0075 article-title: Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease publication-title: Nat. Genet. doi: 10.1038/ng571 – volume: 13 start-page: 159 year: 1996 ident: 10.1016/j.nbd.2014.10.023_bb0035 article-title: A vector for expressing foreign genes in the brains and hearts of transgenic mice publication-title: Genet. Anal. doi: 10.1016/S1050-3862(96)00167-2 – volume: 132 start-page: e109 year: 2009 ident: 10.1016/j.nbd.2014.10.023_bb0085 article-title: Clinical features and natural history of neuroferritinopathy caused by the 458dupA FTL mutation publication-title: Brain doi: 10.1093/brain/awn274 – volume: 25 start-page: 499 year: 2012 ident: 10.1016/j.nbd.2014.10.023_bb0100 article-title: Neurodegeneration with brain iron accumulation publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e3283550cac – volume: 5 start-page: 99 year: 2014 ident: 10.1016/j.nbd.2014.10.023_bb0130 article-title: Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms publication-title: Front. Pharmacol. doi: 10.3389/fphar.2014.00099 – volume: 20 start-page: 21 issue: 1 year: 2013 ident: 10.1016/j.nbd.2014.10.023_bb0245 article-title: Functional roles of neurotransmitters and neuromodulators in the dorsal striatum publication-title: Learn. Mem. doi: 10.1101/lm.025015.111 – volume: 63 start-page: 363 year: 2004 ident: 10.1016/j.nbd.2014.10.023_bb0220 article-title: Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the ferritin light polypeptide gene publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/63.4.363 |
SSID | ssj0011597 |
Score | 2.3332946 |
Snippet | Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene (FTL). It belongs to... Abstract Neuroferritinopathy is a rare genetic disease with a dominant autosomal transmission caused by mutations of the ferritin light chain gene ( FTL ). It... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119 |
SubjectTerms | Age Factors Animals Apoferritins - genetics Apoferritins - metabolism Brain - metabolism Brain - pathology Cell Death - genetics Cells, Cultured Disease Models, Animal Disease Progression DNA Damage - genetics Female Ferritin Hippocampus - cytology Humans Iron Iron Metabolism Disorders - complications Iron Metabolism Disorders - etiology Iron Metabolism Disorders - genetics Iron Metabolism Disorders - pathology Male Mice Mice, Inbred C57BL Mice, Transgenic Models, Molecular Neuroaxonal Dystrophies - complications Neuroaxonal Dystrophies - genetics Neuroaxonal Dystrophies - pathology Neurodegenerative Diseases - etiology Neurodegenerative disorder Neuroferritinopathy Neurology Neurons - drug effects Neurons - metabolism Oxidative damage Psychomotor Disorders - etiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLoi2P8NIgIQSIQB6OnRyXilVBlAtbqTfLdpx2UXGqZinan8U_ZMZJVg2g9sI1sePEM56ZLx5_w9jzXAvjcpHGGD24mONywzWXV7GuTGZ4arTldDj54IvYP-SfjoqjS6W-KCespwfuJ-6dNrxMXJLZQua8Tq3WxHCHXrzBSMK6EBqhGxvB1LB_gE5ajnuYIZvLG6IFTflbSuXK8okXCmT9E2f0d7D5Z87kJSc0v8NuD9EjzPq33mY3nN9huzOPyPn7Gl5AyOcMP8p32M2DYdt8l_2agW8v3Cn4norjnJiMfEvViNdA2N9BqIgDL-eLz8Cr8qPvFnuvoDtpf3YQUrgoW_bCgaGKEkBH46Be43cdD9W_3uADUGKjJQVKC-mgbcARgXI_bu2OA8c1tQfta-yCgB9si_h32f-UhNoRo8Wqu8sO5x8We_vxUKshtqLKVjEim7wUVha6bHInZWMoAc5yqRvRlLKyNhV1JQsqhpULm0lT86pGkeaCJ67Q-T225VvvHjCQVWZK7Qr0milalBoRocm0bmxSuVpWImLJKDtlByJzqqdxqsaMtW8Kxa1I3HQJxR2x15suZz2Lx1WN35NCbBoSAXe4gGqpBrVU16llxLJRndR4xhWtMj5oedXI8l-dXDfYlU6lqstUor4i8CSkimCWivGJLGJ803MInfqQ6LoBn42artCs0F6R9g7VTqE4U1kiek4idr_X_M2EEKudxLgSX3eyJiYzNr3jlyeBupwj3MUY9eH_mOJH7BZ-StEn_D1mW6vzH-4JRogr8zQYg99vq2bV priority: 102 providerName: Directory of Open Access Journals |
Title | A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0969996114003362 https://www.clinicalkey.es/playcontent/1-s2.0-S0969996114003362 https://dx.doi.org/10.1016/j.nbd.2014.10.023 https://www.ncbi.nlm.nih.gov/pubmed/25447222 https://www.proquest.com/docview/1731784950 https://pubmed.ncbi.nlm.nih.gov/PMC4642750 https://doaj.org/article/ab480e02c5734d1caa9262644f163cea |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-953X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011597 issn: 0969-9961 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-953X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011597 issn: 0969-9961 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-953X dateEnd: 20191130 omitProxy: true ssIdentifier: ssj0011597 issn: 0969-9961 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-953X dateEnd: 20191130 omitProxy: true ssIdentifier: ssj0011597 issn: 0969-9961 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-953X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011597 issn: 0969-9961 databaseCode: AKRWK dateStart: 19941101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemISFeEGx8hI3KSAgBIms-nDh5LBVVB9uEoJP2ZtmO0xUNZ2rKUF_4n_gPuXOSijA0JJ6qOnbs2Ofznf3z7wh5HstUmTgNfbAejM9gusGci3Nf5ipSLFRSM7ycfHySTk_Z-7PkbIuMu7swCKtsdX-j0522blOGbW8OLxeL4WcwvtFaB4MeA5I5PYzsXyDTBz82MA8weFyAFczsY-7uZNNhvKxCstCQHSDAK4p7a5Oj8O8tUddN0D-RlL8tTZN75G5rU9JR0-z7ZMvYHbI7suBPf13TF9ShPN32-Q65fdwepu-SnyNqqytzQW1D0LFEfiNbYYziNcUdAUNdnBz6cjI7oizPDm09G7-i9Xn1vaYO2IUY2itDFcaZoHhhjhZr-K55GxPsDbwAxrHTrxTBIjWtSmqQVrmptzBzx3yN-am0BRRZVUuqK_CKF81WJS0M8lys6gfkdPJuNp76bQQHX6d5tPLB34mzVPNEZmVsOC8VwuI047JMy4znWodpkfMEQ2TFqY64Klhe8JjFKQtMIuOHZNtW1jwmlOeRyqRJYC0NQc8U4CeqSMpSB7kpeJ56JOjGTuiW3hyjbFyIDsf2RcBwCxxuTILh9sjrTZHLhtvjpsxvUSA2GZGW2yVUy7lo5VJIxbLABJFO4BuKUEuJdIxgcpZg9mojPRJ14iS6m6-gq-FFi5tq5n8rZOpW29QiFHUkAnFtRniEbUr2JtW_KnzWSboAZYMnSNIaEDsBwxnyDHzqwCOPGsnfdAhy3XGwNqG5vTnR67H-E7s4d4TmDJxgsFyf_F9z98gd-Jc0wL99sr1afjNPwVJcqYFTBQNyazT-dPQRfw8_TE8Gbt_lFwM1bM0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTQJeEGx8lE8jIQSIrPlw4uSxVFQta_tCJ-3Nsh2nKxrO1JSh_ln8h9w5SUUYGhKvjh0nvvP5d_b5d4S8jmSiTJQEHqAH4zGYbjDnosyTmQoVC5TUDC8nz-bJ-JR9PovP9siwvQuDYZWN7a9turPWTUm_Gc3-5WrV_wLgG9E6AHpMSIZ2-IDFYJP3ycFgcjKe7w4TYMV2t6ahvocN2sNNF-ZlFfKFBuwYY7zCqLM8ORb_zip1HYX-GUz52-o0ukfuNrCSDuovv0_2jD0kRwMLLvW3LX1DXaCn20E_JLdmzXn6Efk5oLa8MhfU1hwda6Q4siWmKd5S3BQw1KXKoW9HiyllWTqx1WL4jlbn5Y-KutguDKO9MlRhqgmKd-ZovoX_WjZpwT7AC0CUrYmlGC9S0bKgBpmV635zs3Tk11ifSptDk025proEx3hV71bS3CDVxaZ6QE5HnxbDsdckcfB0koUbD1yeKE00j2VaRIbzQmFknGZcFkmR8kzrIMkzHmOWrCjRIVc5y3IesShhvoll9JDs29Kax4TyLFSpNDEspwGYmhxcRRVKWWg_MznPkh7xW9kJ3TCcY6KNC9GGsn0VIG6B4sYiEHePvN81uazpPW6q_BEVYlcRmbldQbleikY1hVQs9Y0f6hj-IQ-0lMjICKizAOSrjeyRsFUn0V5-BXMNL1rd1DP_WyNTNQanEoGoQuGLa5OiR9iuZWde_avDV62mC7A3eIgkrQG1EyDOgKfgVvs98qjW_N2AIN0dB8AJn9uZE50R6z6xq3PHac7ADwbw-uT_PvcluT1ezKZiOpmfPCV34ElcxwE-I_ub9XfzHIDjRr1oDMMvNsxs7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+neuroferritinopathy+mouse+model+%28FTL+498InsTC%29+shows+progressive+brain+iron+dysregulation%2C+morphological+signs+of+early+neurodegeneration+and+motor+coordination+deficits&rft.jtitle=Neurobiology+of+disease&rft.au=Maccarinelli%2C+Federica&rft.au=Pagani%2C+Antonella&rft.au=Cozzi%2C+Anna&rft.au=Codazzi%2C+Franca&rft.date=2015-09-01&rft.eissn=1095-953X&rft.volume=81&rft.spage=119&rft_id=info:doi/10.1016%2Fj.nbd.2014.10.023&rft_id=info%3Apmid%2F25447222&rft.externalDocID=25447222 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09699961%2FS0969996115X00088%2Fcov150h.gif |