Magnetic resonance imaging reconstruction algorithm under complex convolutional neural network in diagnosis and prognosis of cerebral infarction

This study was to explore the application value of magnetic resonance imaging (MRI) image reconstruction model based on complex convolutional neural network (CCNN) in the diagnosis and prognosis of cerebral infarction. Two image reconstruction methods, frequency domain reconstruction network (FDRN)...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 5; p. e0251529
Main Authors Dong, Jie, Zhao, Shujun, Meng, Yun, Zhang, Yong, Li, Suxiao
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 17.05.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0251529

Cover

Abstract This study was to explore the application value of magnetic resonance imaging (MRI) image reconstruction model based on complex convolutional neural network (CCNN) in the diagnosis and prognosis of cerebral infarction. Two image reconstruction methods, frequency domain reconstruction network (FDRN) and image domain reconstruction network (IDRN), were introduced based on the CCNN algorithm. In addition, they were integrated to form two new MRI image reconstruction models, namely D-FDRN and D-IDRN. The peak signal to noise ratio (PSNR) value and structural similarity index measure (SSIM) value of the image were compared and analyzed before and after the integration. The MRI images of patients with cerebral infarction in the dataset were undertaken as the data source, the average diffusion coefficient (DCavg) and apparent diffusion coefficient (ADC) values of different parts of the MRI image were measured, respectively. The correlation of the vein abnormality grading (VABG) to the infarct size and the degree of stenosis of the responsible vessel was analyzed in this study. The results showed that the PSNR and SSIM values of the MRI reconstructed image of the D-IDRN algorithm based on the CCNN algorithm in this study were higher than those of other algorithms. There was a positive correlation between the VABG and the infarct size (r = 0.48 and P = 0.002), and there was a positive correlation between the VABG the degree of stenosis of the responsible vessel (r = 0.58 and P < 0.0001). The ADC value of the central area of the infarct on the affected side was significantly greatly lower than that of the normal side ( P < 0.01), and the DCavg value of the central area of the infarct was much lower in contrast to the normal side ( P < 0.05). It indicated that an image reconstruction algorithm constructed in this study could improve the quality of MRI images. The ADC value and DCavg value changed in the infarct central area could be used as the basis for the diagnosis of cerebral infarction. If the vein was abnormal, the patient suffered from severe vascular stenosis, large infarction area, and poorer prognosis.
AbstractList This study was to explore the application value of magnetic resonance imaging (MRI) image reconstruction model based on complex convolutional neural network (CCNN) in the diagnosis and prognosis of cerebral infarction. Two image reconstruction methods, frequency domain reconstruction network (FDRN) and image domain reconstruction network (IDRN), were introduced based on the CCNN algorithm. In addition, they were integrated to form two new MRI image reconstruction models, namely D-FDRN and D-IDRN. The peak signal to noise ratio (PSNR) value and structural similarity index measure (SSIM) value of the image were compared and analyzed before and after the integration. The MRI images of patients with cerebral infarction in the dataset were undertaken as the data source, the average diffusion coefficient (DCavg) and apparent diffusion coefficient (ADC) values of different parts of the MRI image were measured, respectively. The correlation of the vein abnormality grading (VABG) to the infarct size and the degree of stenosis of the responsible vessel was analyzed in this study. The results showed that the PSNR and SSIM values of the MRI reconstructed image of the D-IDRN algorithm based on the CCNN algorithm in this study were higher than those of other algorithms. There was a positive correlation between the VABG and the infarct size (r = 0.48 and P = 0.002), and there was a positive correlation between the VABG the degree of stenosis of the responsible vessel (r = 0.58 and P < 0.0001). The ADC value of the central area of the infarct on the affected side was significantly greatly lower than that of the normal side (P < 0.01), and the DCavg value of the central area of the infarct was much lower in contrast to the normal side (P < 0.05). It indicated that an image reconstruction algorithm constructed in this study could improve the quality of MRI images. The ADC value and DCavg value changed in the infarct central area could be used as the basis for the diagnosis of cerebral infarction. If the vein was abnormal, the patient suffered from severe vascular stenosis, large infarction area, and poorer prognosis.This study was to explore the application value of magnetic resonance imaging (MRI) image reconstruction model based on complex convolutional neural network (CCNN) in the diagnosis and prognosis of cerebral infarction. Two image reconstruction methods, frequency domain reconstruction network (FDRN) and image domain reconstruction network (IDRN), were introduced based on the CCNN algorithm. In addition, they were integrated to form two new MRI image reconstruction models, namely D-FDRN and D-IDRN. The peak signal to noise ratio (PSNR) value and structural similarity index measure (SSIM) value of the image were compared and analyzed before and after the integration. The MRI images of patients with cerebral infarction in the dataset were undertaken as the data source, the average diffusion coefficient (DCavg) and apparent diffusion coefficient (ADC) values of different parts of the MRI image were measured, respectively. The correlation of the vein abnormality grading (VABG) to the infarct size and the degree of stenosis of the responsible vessel was analyzed in this study. The results showed that the PSNR and SSIM values of the MRI reconstructed image of the D-IDRN algorithm based on the CCNN algorithm in this study were higher than those of other algorithms. There was a positive correlation between the VABG and the infarct size (r = 0.48 and P = 0.002), and there was a positive correlation between the VABG the degree of stenosis of the responsible vessel (r = 0.58 and P < 0.0001). The ADC value of the central area of the infarct on the affected side was significantly greatly lower than that of the normal side (P < 0.01), and the DCavg value of the central area of the infarct was much lower in contrast to the normal side (P < 0.05). It indicated that an image reconstruction algorithm constructed in this study could improve the quality of MRI images. The ADC value and DCavg value changed in the infarct central area could be used as the basis for the diagnosis of cerebral infarction. If the vein was abnormal, the patient suffered from severe vascular stenosis, large infarction area, and poorer prognosis.
This study was to explore the application value of magnetic resonance imaging (MRI) image reconstruction model based on complex convolutional neural network (CCNN) in the diagnosis and prognosis of cerebral infarction. Two image reconstruction methods, frequency domain reconstruction network (FDRN) and image domain reconstruction network (IDRN), were introduced based on the CCNN algorithm. In addition, they were integrated to form two new MRI image reconstruction models, namely D-FDRN and D-IDRN. The peak signal to noise ratio (PSNR) value and structural similarity index measure (SSIM) value of the image were compared and analyzed before and after the integration. The MRI images of patients with cerebral infarction in the dataset were undertaken as the data source, the average diffusion coefficient (DCavg) and apparent diffusion coefficient (ADC) values of different parts of the MRI image were measured, respectively. The correlation of the vein abnormality grading (VABG) to the infarct size and the degree of stenosis of the responsible vessel was analyzed in this study. The results showed that the PSNR and SSIM values of the MRI reconstructed image of the D-IDRN algorithm based on the CCNN algorithm in this study were higher than those of other algorithms. There was a positive correlation between the VABG and the infarct size (r = 0.48 and P = 0.002), and there was a positive correlation between the VABG the degree of stenosis of the responsible vessel (r = 0.58 and P < 0.0001). The ADC value of the central area of the infarct on the affected side was significantly greatly lower than that of the normal side (P < 0.01), and the DCavg value of the central area of the infarct was much lower in contrast to the normal side (P < 0.05). It indicated that an image reconstruction algorithm constructed in this study could improve the quality of MRI images. The ADC value and DCavg value changed in the infarct central area could be used as the basis for the diagnosis of cerebral infarction. If the vein was abnormal, the patient suffered from severe vascular stenosis, large infarction area, and poorer prognosis.
This study was to explore the application value of magnetic resonance imaging (MRI) image reconstruction model based on complex convolutional neural network (CCNN) in the diagnosis and prognosis of cerebral infarction. Two image reconstruction methods, frequency domain reconstruction network (FDRN) and image domain reconstruction network (IDRN), were introduced based on the CCNN algorithm. In addition, they were integrated to form two new MRI image reconstruction models, namely D-FDRN and D-IDRN. The peak signal to noise ratio (PSNR) value and structural similarity index measure (SSIM) value of the image were compared and analyzed before and after the integration. The MRI images of patients with cerebral infarction in the dataset were undertaken as the data source, the average diffusion coefficient (DCavg) and apparent diffusion coefficient (ADC) values of different parts of the MRI image were measured, respectively. The correlation of the vein abnormality grading (VABG) to the infarct size and the degree of stenosis of the responsible vessel was analyzed in this study. The results showed that the PSNR and SSIM values of the MRI reconstructed image of the D-IDRN algorithm based on the CCNN algorithm in this study were higher than those of other algorithms. There was a positive correlation between the VABG and the infarct size (r = 0.48 and P = 0.002), and there was a positive correlation between the VABG the degree of stenosis of the responsible vessel (r = 0.58 and P < 0.0001). The ADC value of the central area of the infarct on the affected side was significantly greatly lower than that of the normal side ( P < 0.01), and the DCavg value of the central area of the infarct was much lower in contrast to the normal side ( P < 0.05). It indicated that an image reconstruction algorithm constructed in this study could improve the quality of MRI images. The ADC value and DCavg value changed in the infarct central area could be used as the basis for the diagnosis of cerebral infarction. If the vein was abnormal, the patient suffered from severe vascular stenosis, large infarction area, and poorer prognosis.
Audience Academic
Author Zhao, Shujun
Dong, Jie
Meng, Yun
Li, Suxiao
Zhang, Yong
AuthorAffiliation 2 Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
Ministry of Natural Resources North Sea Bureau, CHINA
1 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, P.R. China
AuthorAffiliation_xml – name: Ministry of Natural Resources North Sea Bureau, CHINA
– name: 1 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, P.R. China
– name: 2 Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
Author_xml – sequence: 1
  givenname: Jie
  surname: Dong
  fullname: Dong, Jie
– sequence: 2
  givenname: Shujun
  surname: Zhao
  fullname: Zhao, Shujun
– sequence: 3
  givenname: Yun
  surname: Meng
  fullname: Meng, Yun
– sequence: 4
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
– sequence: 5
  givenname: Suxiao
  orcidid: 0000-0003-4068-1560
  surname: Li
  fullname: Li, Suxiao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33999951$$D View this record in MEDLINE/PubMed
BookMark eNqNk1lv1DAQxyNURA_4BggiISF42MVxTvOAVFUcKxVV4nq1Js446-K1Fzvp8S34yDi7abWpKtHkYZzJb_72HD6M9ow1GEXPEzJP0jJ5d257Z0DP18E9JzRPcsoeRQcJS-msoCTd21nvR4fenxOSp1VRPIn205SFJ08Oor9foTXYKRE79NaAERirFbTKtMEjrPGd60WnrIlBt9apbrmKe9Ogi4VdrTVeBWsurO4HBnRssHcb011a9ztWJm5U2MJ65WMwTbx2dvyyMhbosB5wZSS4zTZPo8cStMdnoz2Kfn76-OPky-z07PPi5Ph0JgpGu1lSQEUEiDrDWpZlWhNJWVVKklCJVYOE1mlJG0mFYA0TWVpDDYSxIpUyLEl6FL3c6q619Xwspuc0p1VGs4pVgVhsicbCOV-7UBZ3zS0ovnFY13JwoXIaeclYXdKS0jIvMyIkkyQFWtSkyUrMgAatfKvVmzVcX4LWt4IJ4UM_b47Ah37ysZ8h7sN4yr5eYSPQdA705DDTP0YteWsveJXQimZJEHgzCjj7p0ff8ZXyArUGg7bf5lslWV4VAX11B72_KiPVQkg89M2GfcUgyo-LMGsZKYpBa34PFd4GVyoMDEoV_JOAt5OAwHR41bXQe88X3789nD37NWVf77BLBN0t_Titfgq-2K30bYlvrkoA3m8B4az3DiUXqoNBJ6Sm9P_6mN0JflD7_wGhQEBV
CitedBy_id crossref_primary_10_1371_journal_pone_0290864
crossref_primary_10_1016_j_jrras_2022_100504
Cites_doi 10.1016/j.hrthm.2019.03.013
10.1016/j.media.2018.03.011
10.3892/mmr.2015.3165
10.1007/s10072-018-3467-2
10.1007/s10278-018-0062-2
10.1097/MD.0000000000010804
10.5551/jat.43240
10.1016/j.ejpn.2018.08.008
10.5692/clinicalneurol.cn-001101
10.6009/jjrt.2018_JSRT_74.6.531
10.1002/cphc.201800917
10.1159/000455229
10.12659/MSM.896898
10.1016/j.jneumeth.2016.10.007
10.1016/j.jns.2015.07.016
10.1097/CM9.0000000000000111
10.1007/s00330-019-06205-9
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Dong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Dong et al 2021 Dong et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Dong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Dong et al 2021 Dong et al
DBID AAYXX
CITATION
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0251529
DatabaseName CrossRef
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef



PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
DocumentTitleAlternate Magnetic resonance imaging reconstruction algorithm in diagnosis and prognosis of cerebral infarction
EISSN 1932-6203
ExternalDocumentID 2528424898
oai_doaj_org_article_799b7272275740cf9f03a26b0d47e4a2
10.1371/journal.pone.0251529
PMC8128241
A662040666
33999951
10_1371_journal_pone_0251529
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 81871327
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
ID FETCH-LOGICAL-c692t-16a80cacb4ebf773b0f2987f012fe8de02b372df2cc9d9c43baba09963ffbab03
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:35 EDT 2023
Tue Oct 14 19:04:02 EDT 2025
Sun Oct 26 02:22:26 EDT 2025
Tue Sep 30 16:36:57 EDT 2025
Fri Sep 05 14:53:02 EDT 2025
Tue Oct 07 09:15:29 EDT 2025
Mon Oct 20 22:05:47 EDT 2025
Mon Oct 20 16:49:48 EDT 2025
Thu Oct 16 14:11:23 EDT 2025
Thu Oct 16 15:21:50 EDT 2025
Thu May 22 21:23:06 EDT 2025
Thu Apr 03 07:00:51 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Wed Oct 01 03:22:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c692t-16a80cacb4ebf773b0f2987f012fe8de02b372df2cc9d9c43baba09963ffbab03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Correction/Retraction-3
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-4068-1560
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251529&type=printable
PMID 33999951
PQID 2528424898
PQPubID 1436336
PageCount e0251529
ParticipantIDs plos_journals_2528424898
doaj_primary_oai_doaj_org_article_799b7272275740cf9f03a26b0d47e4a2
unpaywall_primary_10_1371_journal_pone_0251529
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8128241
proquest_miscellaneous_2528814586
proquest_journals_2528424898
gale_infotracmisc_A662040666
gale_infotracacademiconefile_A662040666
gale_incontextgauss_ISR_A662040666
gale_incontextgauss_IOV_A662040666
gale_healthsolutions_A662040666
pubmed_primary_33999951
crossref_citationtrail_10_1371_journal_pone_0251529
crossref_primary_10_1371_journal_pone_0251529
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-17
PublicationDateYYYYMMDD 2021-05-17
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References L Yang (pone.0251529.ref007) 2016; 22
FJ Kirkham (pone.0251529.ref009) 2018; 22
Q Wang (pone.0251529.ref016) 2018; 97
K Sato (pone.0251529.ref020) 2018; 46
F Hoseini (pone.0251529.ref013) 2018; 31
M Koh (pone.0251529.ref017) 2016; 44
J Li (pone.0251529.ref018) 2019; 40
JQ Zhang (pone.0251529.ref010) 2019; 132
DP Downes (pone.0251529.ref004) 2019; 20
W Chen (pone.0251529.ref019) 2015; 357
W Sun (pone.0251529.ref002) 2018; 25
MM Li (pone.0251529.ref008) 2015; 61
A Bahrami (pone.0251529.ref006) 2020
CA Hamm (pone.0251529.ref011) 2019; 29
LJ De Cocker (pone.0251529.ref003) 2017; 77
M Takahashi (pone.0251529.ref015) 2018; 74
T Kanbayashi (pone.0251529.ref022) 2018; 58
L Xiang (pone.0251529.ref012) 2018; 47
H Choi (pone.0251529.ref005) 2016; 274
K Miki (pone.0251529.ref014) 2019; 16
J Ye (pone.0251529.ref001) 2018; 47
D Huang (pone.0251529.ref021) 2015; 11
References_xml – volume: 16
  start-page: 1305
  issue: 9
  year: 2019
  ident: pone.0251529.ref014
  article-title: Risk factors and localization of silent cerebral infarction in patients with atrial fibrillation
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2019.03.013
– volume: 47
  start-page: 31
  year: 2018
  ident: pone.0251529.ref012
  article-title: Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.03.011
– volume: 44
  start-page: 965
  issue: 11
  year: 2016
  ident: pone.0251529.ref017
  article-title: A Case of Juvenile Cerebral Infarction due to Reversible Cerebral Vasoconstriction Syndrome
  publication-title: No Shinkei Geka
– volume: 47
  start-page: 493
  issue: 5
  year: 2018
  ident: pone.0251529.ref001
  article-title: Roles of astrocytes in cerebral infarction and related therapeutic strategies
  publication-title: Zhejiang Da Xue Xue Bao Yi Xue Ban
– year: 2020
  ident: pone.0251529.ref006
  article-title: A new deep convolutional neural network design with efficient learning capability: Application to CT image synthesis from MRI
  publication-title: Med Phys
– volume: 61
  start-page: 1727
  issue: 11
  year: 2015
  ident: pone.0251529.ref008
  article-title: Association of Apolipoprotein A1, B with Stenosis of Intracranial and Extracranial Arteries in Patients with Cerebral Infarction
  publication-title: Clin Lab
– volume: 46
  start-page: 123
  issue: 2
  year: 2018
  ident: pone.0251529.ref020
  article-title: A Case of Moyamoya Disease with Postoperative Cerebral Hyperperfusion Syndrome Followed by Cerebral Infarction due to Watershed Shift
  publication-title: No Shinkei Geka
– volume: 11
  start-page: 3279
  issue: 5
  year: 2015
  ident: pone.0251529.ref021
  article-title: Novel gradient echo sequence–based amide proton transfer magnetic resonance imaging in hyperacute cerebral infarction
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2015.3165
– volume: 40
  start-page: 899
  issue: 4
  year: 2019
  ident: pone.0251529.ref018
  article-title: The imaging features of cerebral septic infarction in two patients with infective endocarditis
  publication-title: Neurol Sci
  doi: 10.1007/s10072-018-3467-2
– volume: 31
  start-page: 738
  issue: 5
  year: 2018
  ident: pone.0251529.ref013
  article-title: An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0062-2
– volume: 97
  start-page: e10804
  issue: 20
  year: 2018
  ident: pone.0251529.ref016
  article-title: Cerebral infarction as initial presentation in stress cardiomyopathy: Case report and literature review
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000010804
– volume: 25
  start-page: 720
  issue: 8
  year: 2018
  ident: pone.0251529.ref002
  article-title: Clinical and Imaging Characteristics of Cerebral Infarction in Patients with Nonvalvular Atrial Fibrillation Combined with Cerebral Artery Stenosis
  publication-title: J Atheroscler Thromb
  doi: 10.5551/jat.43240
– volume: 22
  start-page: 989
  issue: 6
  year: 2018
  ident: pone.0251529.ref009
  article-title: Fetal stroke and cerebrovascular disease: Advances in understanding from lenticulostriate and venous imaging, alloimmune thrombocytopaenia and monochorionic twins
  publication-title: Eur J Paediatr Neurol
  doi: 10.1016/j.ejpn.2018.08.008
– volume: 58
  start-page: 287
  issue: 5
  year: 2018
  ident: pone.0251529.ref022
  article-title: Right parietal cerebral infarction with symptoms challenging to differentiate between alien hand sign and sensory ataxia: a case report
  publication-title: Rinsho Shinkeigaku
  doi: 10.5692/clinicalneurol.cn-001101
– volume: 74
  start-page: 531
  issue: 6
  year: 2018
  ident: pone.0251529.ref015
  article-title: Preparation of a Small Acute-phase Cerebral Infarction Phantom for Diffusion-weighted Imaging
  publication-title: Nihon Hoshasen Gijutsu Gakkai Zasshi
  doi: 10.6009/jjrt.2018_JSRT_74.6.531
– volume: 20
  start-page: 216
  issue: 2
  year: 2019
  ident: pone.0251529.ref004
  article-title: Characterization of Brain Metabolism by Nuclear Magnetic Resonance
  publication-title: Chemphyschem
  doi: 10.1002/cphc.201800917
– volume: 77
  start-page: 137
  issue: 3–4
  year: 2017
  ident: pone.0251529.ref003
  article-title: MRI of Cerebellar Infarction
  publication-title: Eur Neurol
  doi: 10.1159/000455229
– volume: 22
  start-page: 211
  year: 2016
  ident: pone.0251529.ref007
  article-title: Infarct Size May Distinguish the Pathogenesis of Lacunar Infarction of the Middle Cerebral Artery Territory
  publication-title: Med Sci Monit
  doi: 10.12659/MSM.896898
– volume: 274
  start-page: 146
  year: 2016
  ident: pone.0251529.ref005
  article-title: Fast and robust segmentation of the striatum using deep convolutional neural networks
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2016.10.007
– volume: 357
  start-page: 131
  issue: 1–2
  year: 2015
  ident: pone.0251529.ref019
  article-title: Assessment of bilateral cerebral peduncular infarction: Magnetic resonance imaging, clinical features, and prognosis
  publication-title: J Neurol Sci
  doi: 10.1016/j.jns.2015.07.016
– volume: 132
  start-page: 611
  issue: 5
  year: 2019
  ident: pone.0251529.ref010
  article-title: A case of acute cerebral infarction caused by myxoma of the left atrium
  publication-title: Chin Med J (Engl)
  doi: 10.1097/CM9.0000000000000111
– volume: 29
  start-page: 3338
  issue: 7
  year: 2019
  ident: pone.0251529.ref011
  article-title: Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06205-9
SSID ssj0053866
Score 2.3654268
SecondaryResourceType retracted_publication
Snippet This study was to explore the application value of magnetic resonance imaging (MRI) image reconstruction model based on complex convolutional neural network...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0251529
SubjectTerms Algorithms
Analysis
Artificial neural networks
Biology and Life Sciences
Cerebral infarction
Computer programs
Data analysis
Data collection
Data encryption
Decision analysis
Diagnosis
Drafting software
Editing
Electronic mail
Evaluation
Funding
Image processing
Image reconstruction
Infarction
Magnetic resonance
Magnetic resonance imaging
Medical diagnosis
Medical imaging
Medical prognosis
Medical treatment
Medicine and Health Sciences
Methodology
Methods
Microelectronics
Movement
Neural networks
Physics
Posture
Prognosis
Research and Analysis Methods
Resonance
Reviews
Software
Stroke
Stroke (Disease)
Visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8uFDAICThk6zhObB8LoipIBQko6i1yHHu7UpqsNrsC_gU_mRknGxpRqT1w2ocnjjIvf1ZmPhPyUgEG8MqmkeYqjYR3PDKesSjNVMpiJ1NhsRv5-FN2dCI-nqanF476wpqwjh64U9y-1LrAl4VcplIw67VnieFZwUohnTAh-zKlt5upLgdDFGdZ3yiXyHi_t8ts2dRuhqg6DZDy70IU-PqHrDxZVk17GeT8t3Ly5qZeml8_TFVdWJYO75DbPZ6kB91z7JAbrr5LdvqIbenrnlb6zT3y-9jMa2xZpLDDbpBnw9HFeTikiIZt8UAlS001b1aL9dk5xRazFQ115-4nxRL13lXhnkiFGT5CITld1LTs6vYWLTV1SbH0q_vVeGrdCl9RVyDmIbZwivvk5PD9t3dHUX8eQ2QzzddRnBnFrLGFcIWXMimY51pJD2ucd6p0jBeJ5KXn1upSW5EUpjCAQLPEe_jKkgdkUoMFdgkFv1Gx0Y6DrChjVUimykT4RDsrCp9NSbI1Tm57snI8M6PKwxs4CZuWTr85mjTvTTol0XDVsiPruEL-Ldp9kEWq7fAHOGDeO2B-lQNOyTP0mrzrWx0SRn6QIdU_bg-n5EWQQLqNGut55mbTtvmHz9-vIfT1y0joVS_kG1AH2KLroYBnQhqvkeTeSBKShh0N76KPb7XS5jwFnMKF0gqu3Pr95cPPh2GcFGv0atdsOhkVi1TB7A-7MBk0mwAO1gDmp0SOAmik-vFIvTgLbOeAQBXAzCmZDaF2LeM--h_GfUxucSxiQrpeuUcmEIjuCaDQdfE0JJw_oLmKAg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdGJwQviA3YCgMMQgIe0qWOEzsPCG1o00DaQIOhvUWOY3eVuqQ0nYBvwUfmznEyIibYU5r64ir3z-f67neEvJAQA1ip4yBlMg64NSxQNgyDOJFxODYi5hqrkQ-PkoMT_uE0Pl0hR20tDKZVtj7ROeqi0vgf-TaLwZEyLlP5dv4twK5ReLrattBQvrVC8cZBjN0gqwyRsQZkdXfv6NNx65vBupPEF9BFYrzt5TWaV6UZYbQdu1DzcoFyOP6dtx7MZ1V9VSj6d0blrYtyrn5-V7PZH8vV_l1yx8eZdKdRjDWyYsp1ctPle-p6nax5m67pKw88_foe-XWoJiUWNVLYg1eIxGHo9Ny1MaJu49yBzVI1mwBzlmfnFIvQFtRlppsfFJPYvTLDryNYpru4VHM6LWnRZPZNa6rKgmJyWHNXWarNAg-xZ0BmwfpwivvkZH_vy7uDwHdsCHSSsmUwTpQMtdI5N7kVIspDy1IpLKyC1sjChCyPBCss0zotUs2jXOUKYtQkshY-htEDMihBFpuEgmbJsUoNA1pejGUuQllE3Eap0Ty3yZBErZgy7eHMsavGLHNndAK2NQ2nMxRu5oU7JEH31LyB8_gP_S5qQEeLYNzui2oxybxtZyJNczzPZiIWPNQ2tWGkWJKHBReGKzYkT1F_sqaytXMp2U6CzQBwAzkkzx0FAnKUmPEzURd1nb3_-PUaRJ-Pe0QvPZGtgB0gi6bKAt4Jgb56lFs9SnAruje8idrecqXOLg0Qnmwt4OrhZ90wTopZfKWpLhoaOeaxhNk3GoPpOBtBpJxCuD8komdKPdb3R8rpmcNDhxhVQiA6JKPO6K4l3If_fo9H5DbDBCaE6hVbZAAmZh5DBLrMn3i38huz94wS
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvwPhaYYBBSMBDssRxYuexIKaBtIGAovGAIsexu4ourZpWfDzwN_Anc5c4EYEhxgNPTeuz25zvLne9u58JeSDBB7BSx17KZOxxa5inbBB4cSLjIDQi5hq7kQ8Ok_0xf3EUH22QD20vjOMgxIizeVVn8vFiXppdx8ldxCtqsqd-GImwneEvgMhHjzmGELpGHMJ_xlbYgHSObCYxuOoDsjk-fDV632SamZewIHLtdH9aqfe4qlH9O9s9wF92mmP6e33l-XW5UF8-qdnsp4fX3iXyrb3tpmblo79e5b7--gsi5H_jy2Vy0bm9dNSsskU2THmFbDnDUtFHDv368VXy_UBNSuyspEuDYQKM0-lJfZYSraP3DvGWqtlkvpyujk8odsItaV0ebz5TrKR3GgXfiYid9Utd706nJS2a8sJpRVVZUKxQa97NLdVmiZn0GZBZMAG4xDUy3nv29um-546N8HSSspUXJkoGWumcm9wKEeWBZakUFh7F1sjCBCyPBCss0zotUs2jXOUKHOUkshYug-g6GZTAtG1CQbxlqFLDgJYXocxFIIuI2yg1muc2GZKolY5MO0x1PNpjltWJQgGxVcPfDHchc7swJF43a9FgivyF_gkKXkeLiOD1ByAGmdv-TKRpjkl1JmLBA21TG0SKJXlQcGG4YkNyF8U2a9prO7uWjRI8kQCj2CG5X1MgKkiJZUcTta6q7PnLd2cgevO6R_TQEdk5sAP2omn1gHtCKe1R7vQowbbp3vA2innLlSpjMbhTjMtUwsxW8U4fvtcN46JYSlia-bqhkSGPJax-o9HTjrMRuOspxBxDInoa3GN9f6ScHteg7OAoS_CGh8TvdP1Mm3vzXyfcIhcY1lUhgrDYIQNQOnMbHONVfseZtx_jfcI1
  priority: 102
  providerName: Unpaywall
Title Magnetic resonance imaging reconstruction algorithm under complex convolutional neural network in diagnosis and prognosis of cerebral infarction
URI https://www.ncbi.nlm.nih.gov/pubmed/33999951
https://www.proquest.com/docview/2528424898
https://www.proquest.com/docview/2528814586
https://pubmed.ncbi.nlm.nih.gov/PMC8128241
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251529&type=printable
https://doaj.org/article/799b7272275740cf9f03a26b0d47e4a2
http://dx.doi.org/10.1371/journal.pone.0251529
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELa27gFeEOPXCqMYhAQ8pEocJ7YfENqmjYG0MQ2KxlPkJHZXKUtKs4ntv-BP5s5JIyKGGC9pG19c1Xdnf67vviPkpQQMYGUWeYrJyOPWME9b3_eiWEZ-YETEM8xGPjiM9yf840l0skKWNVvbAayv3dphPanJohhffr96Bw7_1lVtEMHyofG8Ks0YMXPE1CpZg7VKYTGHA96dK4B3u9NLRC1ezPywTab7Wy-9xcpx-ncz92BeVPV1sPTP6MpbF-VcX_3QRfHb0rV3l9xpMSfdaoxknayY8h5Zb726pq9b6uk398nPAz0tMa2Rwi68Qi4OQ2dnrpARdVvnjm6W6mJaLWbnp2cU09AW1MWmm0uKYeytOcN3Il2me3HB5nRW0ryJ7ZvVVJc5xfCw5lNlaWYWeIxdgJgF_8MuHpDJ3u6XnX2vrdngZbFi514Qa-lnOku5Sa0QYepbpqSwsA5aI3PjszQULLcsy1SuMh6mOtWAUuPQWnjrhw_JoAQNbBAKtiUDrQwDWZ4HMhW-zENuQ2Uyntp4SMKlcpKsJTTHuhpF4k7pBGxsmvFNUKVJq9Ih8bqn5g2hxz_kt1HvnSzScbsb1WKatN6dCKVSPNFmIhLcz6yyfqhZnPo5F4ZrNiTP0GqSJre1m1SSrRjLAeAWckheOAmk5Cgx5meqL-o6-fDp6w2EPh_3hF61QraC4QBdNHkW8JuQ6qsnudmThIkl6zVvoI0vR6VOWARYhnGpJDy5tPvrm593zdgpxvGVprpoZGTAIwm9P2rcpBvZELCyAsA_JKLnQL2h77eUs1PHiA4oVQIUHZJx52o3Uu7j_zSGJ-Q2w5gmZO8Vm2QAPmeeAig9T0dkVZwIuMqdAK9770dkbXv38Oh45P7mGbl5CO5NDo-2vv0CSvSXOQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBoviI3LCoMZBAIesqWOEzsPCI3L1LJ1SLChvgXHsbtKXVKaTWP_gl_Cb-QcJ82ImGAve-rFJ65yLl_Oqc-FkGcSfAArdejFTIYet4Z5yvq-F0Yy9LtGhFxjNfJgL-od8I_DcLhAfs1rYTCtco6JDqizQuN_5JssBCBlXMbyzfS7h1Oj8HR1PkKjUosdc3YKIVv5uv8e5Pucse0P--96Xj1VwNNRzI69bqSkr5VOuUmtEEHqWwaBtwWktkZmxmdpIFhmmdZxFmsepCpV4EdFgbXw1g9g32vkOg8AS8B-xLAJ8AA7oqguzwtEd7PWho1pkZsN9OVD58ieP_7clIDmWbA4nRTlRY7u3_maSyf5VJ2dqsnkj4fh9m1yq_Zi6ValdstkweQr5IbLJtXlClmuEaOkL-u21q_ukJ8DNcqxZJJChF9gnw9Dx0duSBJ1YXnTypaqyQhYf3x4RLHEbUZd3rv5QTFFvjYV-HVsxeleXCI7Hec0q_IGxyVVeUYx9az6VFiqzQyPyCdAZkGIuMVdcnAlkrtHFnOQxSqhoLeyq2LDgJZnXZkKX2YBt0FsNE9t1CHBXEyJrpul48yOSeJOAAUETRWnExRuUgu3Q7zmqmnVLOQ_9G9RAxpabPXtvihmo6RGjkTEcYqn5UyEgvvaxtYPFItSP-PCcMU6ZB31J6nqZhvASrYiHDWA4WmHPHUU2O4jx3yikTopy6T_6esliL58bhG9qIlsAewAWVQ1HHBP2EasRbnWogTQ0q3lVdT2OVfK5Ny84cq5BVy8_KRZxk0xRzA3xUlFI7s8lLD7_cpgGs4G4IfHEEx0iGiZUov17ZV8fOi6rYMHLMHN7ZCNxuguJdwH_76PdbLU2x_sJrv9vZ2H5CbDVClsCizWyCKYm3kEvu5x-tgBDCXfrhrRfgNd0MSz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGER8viI2PFQYzCAQ8ZEscJ3YeEBqMaWNsIGCob8Fx7K5Sl5Rm09h_wd_DX8edk2ZETLCX9aVNfXEV34fv6t_dEfJEgg9gpY68hMnI49YwT1nf96JYRn5gRMQ1ZiPv7Mabe_zdIBrMkV-zXBiEVc5sojPUeanxP_JVFoEhZVwmctU2sIiP6xuvJt897CCFJ62zdhq1iGybk2MI36qXW-vA66eMbbz98mbTazoMeDpO2KEXxEr6WumMm8wKEWa-ZRCEW7Da1sjc-CwLBcst0zrJE83DTGUKfKo4tBY--iHMe4lcFmGYIJxQDNpgD-xIHDepeqEIVhvJWJmUhVlBvz5yTu3pVug6BrT7Qm8yLquznN6_sZvXjoqJOjlW4_EfG-PGTXKj8WjpWi2C82TOFAvkikOW6mqBzDfWo6LPmxLXL26RnztqWGD6JIVov8SaH4aODlzDJOpC9LasLVXjISz94f4BxXS3KXUYePODIly-URv4dSzL6d4cqJ2OCprXGMJRRVWRU4Sh1VelpdpM8bh8DGQWmIhT3CZ7F8K5O6RXAC8WCQUZloFKDANangcyE77MQ27DxGie2bhPwhmbUt0UTsf-HePUnQYKCKDqlU6RuWnD3D7x2rsmdeGQ_9C_RgloabHst_uinA7TxoqkIkkyPDlnIhLc1zaxfqhYnPk5F4Yr1ifLKD9pnUPbGq90Lca2Axiq9sljR4GlPwpUoqE6qqp068PXcxB9_tQhetYQ2RKWA3hR53PAM2FJsQ7lUocSDJjuDC-itM9WpUpPVR3unGnA2cOP2mGcFPGChSmPahoZ8EjC7HdrhWlXFpQVXlHQJ6KjSp2l744Uo31XeR28YQkub5-stEp3Lube-_dzLJOrYMvS91u72_fJdYaoKawPLJZID7TNPAC39zB76OwLJd8u2qD9BophyPY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvwPhaYYBBSMBDssRxYuexIKaBtIGAovGAIsexu4ourZpWfDzwN_Anc5c4EYEhxgNPTeuz25zvLne9u58JeSDBB7BSx17KZOxxa5inbBB4cSLjIDQi5hq7kQ8Ok_0xf3EUH22QD20vjOMgxIizeVVn8vFiXppdx8ldxCtqsqd-GImwneEvgMhHjzmGELpGHMJ_xlbYgHSObCYxuOoDsjk-fDV632SamZewIHLtdH9aqfe4qlH9O9s9wF92mmP6e33l-XW5UF8-qdnsp4fX3iXyrb3tpmblo79e5b7--gsi5H_jy2Vy0bm9dNSsskU2THmFbDnDUtFHDv368VXy_UBNSuyspEuDYQKM0-lJfZYSraP3DvGWqtlkvpyujk8odsItaV0ebz5TrKR3GgXfiYid9Utd706nJS2a8sJpRVVZUKxQa97NLdVmiZn0GZBZMAG4xDUy3nv29um-546N8HSSspUXJkoGWumcm9wKEeWBZakUFh7F1sjCBCyPBCss0zotUs2jXOUKHOUkshYug-g6GZTAtG1CQbxlqFLDgJYXocxFIIuI2yg1muc2GZKolY5MO0x1PNpjltWJQgGxVcPfDHchc7swJF43a9FgivyF_gkKXkeLiOD1ByAGmdv-TKRpjkl1JmLBA21TG0SKJXlQcGG4YkNyF8U2a9prO7uWjRI8kQCj2CG5X1MgKkiJZUcTta6q7PnLd2cgevO6R_TQEdk5sAP2omn1gHtCKe1R7vQowbbp3vA2innLlSpjMbhTjMtUwsxW8U4fvtcN46JYSlia-bqhkSGPJax-o9HTjrMRuOspxBxDInoa3GN9f6ScHteg7OAoS_CGh8TvdP1Mm3vzXyfcIhcY1lUhgrDYIQNQOnMbHONVfseZtx_jfcI1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+resonance+imaging+reconstruction+algorithm+under+complex+convolutional+neural+network+in+diagnosis+and+prognosis+of+cerebral+infarction&rft.jtitle=PloS+one&rft.au=Dong%2C+Jie&rft.au=Zhao%2C+Shujun&rft.au=Meng%2C+Yun&rft.au=Zhang%2C+Yong&rft.date=2021-05-17&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=5&rft.spage=e0251529&rft_id=info:doi/10.1371%2Fjournal.pone.0251529&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0251529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon