Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features
Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very...
Saved in:
| Published in | PloS one Vol. 5; no. 3; p. e9603 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
11.03.2010
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0009603 |
Cover
| Abstract | Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner.
To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively.
Our results indicate that the network prediction system thus established is quite promising and encouraging. |
|---|---|
| AbstractList | BackgroundStudy of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner.Methods/principal findingsTo realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively.Conclusion/significanceOur results indicate that the network prediction system thus established is quite promising and encouraging. Background Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. Methods/Principal Findings To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Conclusion/Significance Our results indicate that the network prediction system thus established is quite promising and encouraging. Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Our results indicate that the network prediction system thus established is quite promising and encouraging. Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Our results indicate that the network prediction system thus established is quite promising and encouraging. Background Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. Methods/Principal Findings To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Conclusion/Significance Our results indicate that the network prediction system thus established is quite promising and encouraging. Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner.BACKGROUNDStudy of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner.To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively.METHODS/PRINCIPAL FINDINGSTo realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively.Our results indicate that the network prediction system thus established is quite promising and encouraging.CONCLUSION/SIGNIFICANCEOur results indicate that the network prediction system thus established is quite promising and encouraging. |
| Audience | Academic |
| Author | Chou, Kuo-Chen He, Zhisong Zhang, Jian Shi, Xiao-He Kong, Xiangyin Cai, Yu-Dong Hu, Le-Le |
| AuthorAffiliation | 3 Department of Ophthalmology, Yangpu District Central Hospital, Shanghai, China Cairo University, Egypt 7 Gordon Life Science Institute, San Diego, California, United States of America 4 Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China 1 Institute of System Biology, Shanghai University, Shanghai, China 2 CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China 6 State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China 5 Centre for Computational Systems Biology, Fudan University, Shanghai, China |
| AuthorAffiliation_xml | – name: 3 Department of Ophthalmology, Yangpu District Central Hospital, Shanghai, China – name: Cairo University, Egypt – name: 6 State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China – name: 7 Gordon Life Science Institute, San Diego, California, United States of America – name: 2 CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China – name: 1 Institute of System Biology, Shanghai University, Shanghai, China – name: 4 Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China – name: 5 Centre for Computational Systems Biology, Fudan University, Shanghai, China |
| Author_xml | – sequence: 1 givenname: Zhisong surname: He fullname: He, Zhisong – sequence: 2 givenname: Jian surname: Zhang fullname: Zhang, Jian – sequence: 3 givenname: Xiao-He surname: Shi fullname: Shi, Xiao-He – sequence: 4 givenname: Le-Le surname: Hu fullname: Hu, Le-Le – sequence: 5 givenname: Xiangyin surname: Kong fullname: Kong, Xiangyin – sequence: 6 givenname: Yu-Dong surname: Cai fullname: Cai, Yu-Dong – sequence: 7 givenname: Kuo-Chen surname: Chou fullname: Chou, Kuo-Chen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20300175$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1v0zAUhiM0xD7gHyCIhATiosUfiZNwgbQNOipNDMHgEuvUcTJ3rl1sh7F_j9N2UzNNaMpFrNfPeX38Hu8nO8YamSTPMRpjWuB3c9s5A3q8jPIYIVQxRB8le7iiZMQIojtb691k3_s5QjktGXuS7EYJIVzke8mvr07WSgRl2vSj69rRObhWhnRqgnQQdWvSLzJcWXfp0yPwsk6jMunMagt0euJst_QpmDo9UlbbVomoTiSEzkn_NHncgPby2eZ_kPyYfDo__jw6PTuZHh-ejgSrcBhlQDCLK9QwgkVJiagKoGUDORFCQo4bRDLR4KYmM8YaKAXFqCRlUWQ1MCrpQfJy7bvU1vNNNJ5jUlZZhjCmkZiuidrCnC-dWoC75hYUXwnWtRxcUEJLTogsy6qoGYn-TZbPsGQsz0hFM5THNqJXvvbqzBKur0DrW0OMeD-dmxZ4Px2-mU6s-7DpspstZC2kCQ70oJnhjlEXvLV_OCkpo0Vv8GZj4OzvTvrAF8oLqTUYaTvPI1KUZb4iX90h7w9lQ7UQ761MY-Oxovfkh1lBKxQTZpEa30PFr5YLJeIFGxX1QcHbQUFkgvwbWui859Pv3x7Onv0csq-32AsJOlx4q7v-Kfoh-GI76NuEb959BLI1IJz13snmoQN8f6dMqAD98TERpf9f_A9nrylP |
| CitedBy_id | crossref_primary_10_1007_s12539_013_0195_4 crossref_primary_10_1371_journal_pcbi_1007129 crossref_primary_10_1016_j_bmc_2016_05_020 crossref_primary_10_1016_j_molstruc_2023_135409 crossref_primary_10_1109_ACCESS_2019_2910277 crossref_primary_10_1109_TCBB_2021_3095369 crossref_primary_10_1002_biot_201000450 crossref_primary_10_1155_2013_731969 crossref_primary_10_1016_j_jtbi_2018_12_024 crossref_primary_10_1093_bioinformatics_bts502 crossref_primary_10_1109_JBHI_2024_3384238 crossref_primary_10_2217_pgs_13_162 crossref_primary_10_1016_j_biosystems_2013_04_005 crossref_primary_10_1016_j_prp_2015_07_007 crossref_primary_10_1038_nchembio_1199 crossref_primary_10_1109_TCBB_2016_2570211 crossref_primary_10_1186_s13321_015_0109_z crossref_primary_10_1371_journal_pone_0011335 crossref_primary_10_1517_17425255_2014_950222 crossref_primary_10_1155_2013_723780 crossref_primary_10_1016_j_jprot_2011_12_003 crossref_primary_10_1109_TBME_2013_2245129 crossref_primary_10_1016_j_jtbi_2011_06_003 crossref_primary_10_1016_j_prp_2016_09_017 crossref_primary_10_1371_journal_pone_0025297 crossref_primary_10_3390_ijms21010024 crossref_primary_10_1186_s13321_022_00612_9 crossref_primary_10_1007_s00438_014_0922_5 crossref_primary_10_1039_C6RA03743G crossref_primary_10_1177_11769343241272414 crossref_primary_10_1016_j_chemolab_2011_08_007 crossref_primary_10_1186_s12859_019_3263_x crossref_primary_10_4028_www_scientific_net_AMM_229_231_2634 crossref_primary_10_1016_j_compbiomed_2015_09_015 crossref_primary_10_1039_D0CB00226G crossref_primary_10_1109_TCBB_2022_3204188 crossref_primary_10_1186_s12859_016_1377_y crossref_primary_10_1016_j_jtbi_2010_12_024 crossref_primary_10_3389_fcell_2020_623858 crossref_primary_10_1155_2014_438341 crossref_primary_10_1016_j_jmgm_2011_06_014 crossref_primary_10_1371_journal_pone_0141719 crossref_primary_10_2174_1381612826666200116145057 crossref_primary_10_2174_1568026619666191018100141 crossref_primary_10_1080_08927022_2011_554548 crossref_primary_10_1002_minf_201400009 crossref_primary_10_1016_j_ab_2012_02_007 crossref_primary_10_1371_journal_pone_0144426 crossref_primary_10_1016_j_jbi_2019_103159 crossref_primary_10_1093_bioinformatics_btae347 crossref_primary_10_1080_07391102_2014_998710 crossref_primary_10_2174_1389450120666181204164721 crossref_primary_10_1016_j_neucom_2022_04_104 crossref_primary_10_1093_bioinformatics_btv256 crossref_primary_10_1109_TCBB_2019_2940187 crossref_primary_10_1016_j_compbiolchem_2011_05_003 crossref_primary_10_1016_j_biochi_2010_10_022 crossref_primary_10_1016_j_jtbi_2012_07_020 crossref_primary_10_1016_j_jtbi_2013_11_005 crossref_primary_10_1371_journal_pcbi_1002315 crossref_primary_10_1093_bioinformatics_btt072 crossref_primary_10_1111_cbdd_13599 crossref_primary_10_1371_journal_pone_0123147 crossref_primary_10_5665_sleep_4664 crossref_primary_10_1155_2013_414327 crossref_primary_10_1074_jbc_R110_174797 crossref_primary_10_1016_j_tips_2013_05_002 crossref_primary_10_1155_2021_5542224 crossref_primary_10_1371_journal_pone_0107464 crossref_primary_10_1021_ci400127q crossref_primary_10_3390_biom11121783 crossref_primary_10_1007_s11434_012_4996_3 crossref_primary_10_1016_j_chemolab_2021_104270 crossref_primary_10_1016_j_compbiomed_2010_09_004 crossref_primary_10_1016_j_yrtph_2013_07_010 crossref_primary_10_1016_j_ymeth_2024_01_017 crossref_primary_10_3390_ijms15034915 crossref_primary_10_1016_j_ab_2019_113507 crossref_primary_10_1093_bioinformatics_btaa451 crossref_primary_10_3389_fchem_2019_00895 crossref_primary_10_1016_j_jtbi_2010_08_001 crossref_primary_10_1371_journal_pone_0066678 crossref_primary_10_4236_ns_2017_94007 crossref_primary_10_1093_bioinformatics_btu624 crossref_primary_10_1016_j_jtbi_2011_06_030 crossref_primary_10_1039_C4MB00199K crossref_primary_10_1016_j_jtbi_2010_10_019 crossref_primary_10_1093_bioinformatics_bts670 crossref_primary_10_1111_j_1747_0285_2011_01155_x crossref_primary_10_1155_2013_798743 crossref_primary_10_1016_j_neucom_2015_10_148 crossref_primary_10_1155_2013_674215 crossref_primary_10_3390_ijms12129236 crossref_primary_10_1016_j_chemolab_2012_06_007 crossref_primary_10_1080_07391102_2014_1001793 crossref_primary_10_1007_s00438_016_1240_x crossref_primary_10_1016_j_jtbi_2014_06_008 crossref_primary_10_1021_acschembio_6b00762 crossref_primary_10_1016_j_addr_2012_12_004 crossref_primary_10_1093_bib_bbz157 crossref_primary_10_1002_wsbm_1323 crossref_primary_10_1039_c2mb25110h crossref_primary_10_1080_21681163_2021_1956369 crossref_primary_10_3389_fphar_2019_00743 crossref_primary_10_1016_j_compbiomed_2012_01_003 crossref_primary_10_1155_2013_132724 crossref_primary_10_1093_bioinformatics_btv055 crossref_primary_10_1038_s41598_020_63842_7 crossref_primary_10_1007_s00521_024_10714_0 crossref_primary_10_1016_j_ab_2020_113978 crossref_primary_10_1146_annurev_pharmtox_010611_134630 crossref_primary_10_1371_journal_pone_0105902 crossref_primary_10_1155_2013_861269 crossref_primary_10_2174_1570180819666220622085659 crossref_primary_10_1186_s13321_022_00644_1 crossref_primary_10_1371_journal_pcbi_1002503 crossref_primary_10_1371_journal_pcbi_1005219 crossref_primary_10_1016_j_str_2020_09_003 crossref_primary_10_1038_s41598_017_18025_2 crossref_primary_10_3389_fgene_2022_859188 crossref_primary_10_3390_ph16040516 crossref_primary_10_1016_j_jtbi_2018_03_034 crossref_primary_10_1016_j_compbiomed_2013_06_001 crossref_primary_10_1016_j_bbapap_2013_07_008 crossref_primary_10_1093_bioinformatics_btaa010 crossref_primary_10_3390_ijms22126598 crossref_primary_10_1021_acs_jcim_4c00957 crossref_primary_10_3389_fpubh_2022_902123 crossref_primary_10_1016_j_jtbi_2017_01_019 crossref_primary_10_1007_s13238_012_2011_z crossref_primary_10_1371_journal_pone_0072234 crossref_primary_10_1016_j_compbiolchem_2019_03_016 crossref_primary_10_1371_journal_pone_0039308 crossref_primary_10_1016_j_heliyon_2020_e03444 crossref_primary_10_1371_journal_pone_0030617 crossref_primary_10_1039_C0MB00170H crossref_primary_10_1016_j_compbiolchem_2015_11_007 crossref_primary_10_1016_j_jtbi_2013_08_017 crossref_primary_10_1371_journal_pone_0014556 crossref_primary_10_1016_j_neucom_2011_07_019 crossref_primary_10_3390_molecules28031182 crossref_primary_10_1016_j_jtbi_2017_08_014 crossref_primary_10_1016_j_jtbi_2013_08_013 crossref_primary_10_1186_s12859_021_04464_2 crossref_primary_10_1093_bioinformatics_btt234 crossref_primary_10_1016_j_cmpb_2018_08_011 crossref_primary_10_1016_j_rechem_2023_101002 crossref_primary_10_1016_j_jgg_2015_11_002 crossref_primary_10_3390_ijms241814061 crossref_primary_10_1111_cbdd_13753 crossref_primary_10_1007_s11831_021_09556_z crossref_primary_10_1016_j_drudis_2023_103730 crossref_primary_10_1186_s12859_016_0977_x crossref_primary_10_1007_s10822_016_9915_2 crossref_primary_10_3390_molecules23040954 crossref_primary_10_1093_bib_bbx041 crossref_primary_10_2174_1386207322666190702103927 crossref_primary_10_1038_s41598_019_43125_6 crossref_primary_10_1093_bib_bbab046 crossref_primary_10_1016_j_jprot_2011_05_011 crossref_primary_10_1016_j_ymeth_2017_05_016 crossref_primary_10_1093_bib_bby002 crossref_primary_10_1016_j_jbi_2017_04_021 crossref_primary_10_1016_j_vascn_2015_11_002 crossref_primary_10_1371_journal_pone_0037155 crossref_primary_10_1016_j_jtbi_2011_10_021 crossref_primary_10_1179_1607845414Y_0000000209 crossref_primary_10_1186_s12859_020_3488_8 crossref_primary_10_1016_j_aca_2013_07_003 crossref_primary_10_1016_j_gene_2015_11_010 crossref_primary_10_1074_mcp_M112_021790 crossref_primary_10_1016_j_jtbi_2012_06_039 crossref_primary_10_1039_D4RA01937G crossref_primary_10_1093_bioinformatics_btq666 crossref_primary_10_2174_0929867326666190808154841 crossref_primary_10_1371_journal_pone_0226484 crossref_primary_10_1016_j_jtbi_2011_08_009 crossref_primary_10_1016_j_jtbi_2011_10_016 crossref_primary_10_1016_j_jtbi_2011_10_015 crossref_primary_10_1109_JBHI_2024_3402529 crossref_primary_10_1016_j_pharmthera_2013_01_016 crossref_primary_10_1371_journal_pone_0037608 crossref_primary_10_1002_minf_201900062 crossref_primary_10_1155_2017_6340316 crossref_primary_10_1089_dna_2015_2923 crossref_primary_10_1016_j_jtbi_2018_07_040 crossref_primary_10_1016_j_neucom_2016_10_039 crossref_primary_10_1016_j_ygeno_2018_12_007 crossref_primary_10_3390_ijms21165694 crossref_primary_10_1016_j_jtbi_2010_06_006 crossref_primary_10_1016_j_bbagen_2016_06_003 crossref_primary_10_1371_journal_pone_0057680 crossref_primary_10_1111_j_1865_1682_2012_01323_x crossref_primary_10_1093_nar_gkz087 crossref_primary_10_3390_molecules15118177 crossref_primary_10_1093_cvr_cvs289 crossref_primary_10_1371_journal_pone_0034460 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2010 Public Library of Science 2010 He et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. He et al. 2010 |
| Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: 2010 He et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: He et al. 2010 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0009603 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (ODIN) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Biology |
| DocumentTitleAlternate | Drug-Target Interactions |
| EISSN | 1932-6203 |
| ExternalDocumentID | 1289440113 oai_doaj_org_article_22e8897d62774f45b1e66542934054cf 10.1371/journal.pone.0009603 PMC2836373 2897087921 A473908776 20300175 10_1371_journal_pone_0009603 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States--US California |
| GeographicLocations_xml | – name: United States--US – name: California |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV CGR CUY CVF ECM EIF NPM BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ACCTH ADTOC AFFHD BBTPI PV9 RZL UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c691t-4a2166910f621c832c97a38fa52ccea51f024cf1fd2b66fa8c310828774da63e3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:12:51 EST 2021 Fri Oct 03 12:44:37 EDT 2025 Wed Oct 29 11:50:27 EDT 2025 Tue Sep 30 16:55:51 EDT 2025 Thu Oct 02 09:11:51 EDT 2025 Tue Oct 07 06:23:41 EDT 2025 Mon Oct 20 22:04:35 EDT 2025 Wed Oct 15 13:48:17 EDT 2025 Thu Oct 16 14:40:35 EDT 2025 Thu Oct 16 15:33:30 EDT 2025 Thu May 22 20:54:42 EDT 2025 Mon Jul 21 05:48:43 EDT 2025 Thu Apr 24 22:52:49 EDT 2025 Wed Oct 01 00:27:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c691t-4a2166910f621c832c97a38fa52ccea51f024cf1fd2b66fa8c310828774da63e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: ZH JZ LH XK YDC. Performed the experiments: ZH JZ LH. Analyzed the data: XHS. Contributed reagents/materials/analysis tools: JZ YDC. Wrote the paper: ZH XHS KCC. |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0009603 |
| PMID | 20300175 |
| PQID | 1289440113 |
| PQPubID | 1436336 |
| PageCount | e9603 |
| ParticipantIDs | plos_journals_1289440113 doaj_primary_oai_doaj_org_article_22e8897d62774f45b1e66542934054cf unpaywall_primary_10_1371_journal_pone_0009603 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2836373 proquest_miscellaneous_733788573 proquest_journals_1289440113 gale_infotracmisc_A473908776 gale_infotracacademiconefile_A473908776 gale_incontextgauss_ISR_A473908776 gale_incontextgauss_IOV_A473908776 gale_healthsolutions_A473908776 pubmed_primary_20300175 crossref_primary_10_1371_journal_pone_0009603 crossref_citationtrail_10_1371_journal_pone_0009603 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-03-11 |
| PublicationDateYYYYMMDD | 2010-03-11 |
| PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2010 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | 19356130 - Protein Pept Lett. 2009;16(4):351-5 18991767 - Protein Pept Lett. 2008;15(9):915-21 17520325 - Amino Acids. 2008 Jan;34(1):111-7 18680458 - Protein Pept Lett. 2008;15(6):612-6 8071322 - J Biol Chem. 1994 Sep 2;269(35):22014-20 18235503 - Nature. 2008 Jan 31;451(7178):591-5 11288174 - Proteins. 2001 May 15;43(3):246-55 10336379 - Proteins. 1999 Jan 1;34(1):137-53 19169652 - Acta Biotheor. 2009 Sep;57(3):321-30 10089205 - Bioinformatics. 1999 Feb;15(2):176-7 16983686 - J Cell Biochem. 2007 Feb 15;100(3):665-78 18355838 - J Theor Biol. 2008 May 21;252(2):350-6 8313840 - Drug Metab Rev. 1993;25(4):503-17 16892386 - ChemMedChem. 2006 May;1(5):504-23 19056401 - J Theor Biol. 2009 Mar 7;257(1):17-26 17395128 - Neurotherapeutics. 2007 Apr;4(2):184-98 16325146 - Biochem Biophys Res Commun. 2006 Jan 20;339(3):1015-20 18471832 - J Theor Biol. 2008 Jul 21;253(2):310-5 12509760 - Nat Rev Drug Discov. 2003 Jan;2(1):63-9 19075768 - Curr Top Med Chem. 2008;8(18):1573-9 18473953 - Protein Pept Lett. 2008;15(4):392-6 13678304 - J Protein Chem. 2003 May;22(4):395-402 19689387 - Med Chem. 2009 Jul;5(4):305-17 18037612 - Bioinformatics. 2008 Jan 15;24(2):225-33 11354006 - Proteins. 2001 Jul 1;44(1):57-9 11097339 - Clin Chem Lab Med. 2000 Sep;38(9):853-6 2197975 - Annu Rev Biochem. 1990;59:1007-39 19364489 - Anal Biochem. 2009 Jul 1;390(1):68-73 15359741 - J Proteome Res. 2004 Jul-Aug;3(4):856-61 16381885 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7 19037861 - J Comput Chem. 2009 Jul 15;30(9):1414-23 18996090 - Biochem Biophys Res Commun. 2008 Dec 26;377(4):1243-7 16718615 - Pharm Res. 2006 Jun;23(6):1089-116 16040052 - J Theor Biol. 2006 Jan 21;238(2):395-400 17330882 - J Comput Chem. 2007 Jul 15;28(9):1463-6 17508935 - Curr Top Med Chem. 2007;7(10):1015-29 10202136 - EMBO J. 1999 Apr 1;18(7):1723-9 7670379 - Protein Sci. 1995 Jul;4(7):1365-83 12890493 - Biochem Biophys Res Commun. 2003 Aug 15;308(1):148-51 7567954 - Proteins. 1995 Apr;21(4):319-44 15314209 - Protein Eng Des Sel. 2004 Jun;17(6):509-16 17986454 - Nucleic Acids Res. 2008 Jan;36(Database issue):D907-12 19075826 - Protein Pept Lett. 2008;15(10):1132-7 17628605 - J Theor Biol. 2007 Oct 7;248(3):546-51 18274516 - Nat Protoc. 2008;3(2):153-62 19341746 - J Theor Biol. 2009 Jul 21;259(2):366-72 19383794 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7379-84 8349584 - J Biol Chem. 1993 Aug 15;268(23):16938-48 11018595 - Drug Discov Today. 2000 Oct 1;5(10):445-454 15498588 - J Theor Biol. 2005 Jan 7;232(1):7-15 16083294 - J Proteome Res. 2005 Jul-Aug;4(4):1413-8 9730924 - Bioinformatics. 1998;14(7):591-9 18045228 - Protein Pept Lett. 2007;14(9):871-5 16808903 - Biochem Biophys Res Commun. 2006 Aug 18;347(1):150-7 8789141 - Anal Biochem. 1996 Jan 1;233(1):1-14 18618097 - Arch Toxicol. 2008 Oct;82(10):667-715 12824396 - Nucleic Acids Res. 2003 Jul 1;31(13):3692-7 16429410 - J Comput Chem. 2006 Mar;27(4):478-82 18782071 - Protein Pept Lett. 2008;15(7):739-44 15680586 - Comput Biol Chem. 2005 Feb;29(1):55-67 17307149 - Biochem Biophys Res Commun. 2007 Apr 6;355(2):513-9 19776029 - Protein Eng Des Sel. 2009 Nov;22(11):699-705 12471598 - Proteins. 2003 Jan 1;50(1):44-8 18586719 - Bioinformatics. 2008 Jul 1;24(13):i232-40 17586467 - Biochem Biophys Res Commun. 2007 Aug 24;360(2):339-45 19149574 - Curr Med Chem. 2009;16(2):232-44 18634802 - J Theor Biol. 2008 Oct 7;254(3):691-6 18297652 - Proteomics. 2008 Feb;8(4):750-78 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 19281186 - Mol Pharm. 2009 May-Jun;6(3):825-35 17211405 - Nat Biotechnol. 2007 Jan;25(1):71-5 17698024 - Anal Biochem. 2007 Nov 1;370(1):1-16 19503826 - PLoS Comput Biol. 2009 Jun;5(6):e1000397 15889221 - Amino Acids. 2005 Jun;28(4):373-6 8780787 - J Mol Biol. 1996 Aug 23;261(3):470-89 17510168 - Bioinformatics. 2007 Aug 1;23(15):2004-12 15700108 - Amino Acids. 2005 Feb;28(1):29-35 7587280 - Crit Rev Biochem Mol Biol. 1995;30(4):275-349 18381630 - J Comput Chem. 2008 Sep;29(12):2018-24 16140260 - Biochem Biophys Res Commun. 2005 Oct 28;336(3):737-9 16044193 - Amino Acids. 2006 Feb;30(1):49-54 19149669 - Protein Pept Lett. 2009;16(1):27-31 16889410 - J Proteome Res. 2006 Aug;5(8):1888-97 18821775 - Biochemistry. 2008 Oct 21;47(42):11013-23 17168850 - Curr Med Chem. 2006;13(27):3263-70 16212421 - J Proteome Res. 2005 Sep-Oct;4(5):1681-6 9094735 - Proteins. 1997 Mar;27(3):329-35 15308540 - Bioinformatics. 2005 Jan 1;21(1):10-9 12186861 - J Biol Chem. 2002 Nov 29;277(48):45765-9 17434148 - Biochem Biophys Res Commun. 2007 Jun 8;357(3):633-40 10382667 - Proteins. 1999 Jun 1;35(4):401-7 18221009 - Protein Pept Lett. 2008;15(1):27-32 9988519 - J Protein Chem. 1998 Nov;17(8):729-38 15279552 - Curr Med Chem. 2004 Aug;11(16):2105-34 17397210 - J Proteome Res. 2007 May;6(5):1728-34 16204113 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii245-51 12719255 - Biophys J. 2003 May;84(5):3257-63 18774775 - Biochem Biophys Res Commun. 2008 Nov 14;376(2):321-5 17591774 - J Biol Chem. 2007 Aug 31;282(35):25677-86 16043693 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10870-5 |
| References_xml | – reference: 16983686 - J Cell Biochem. 2007 Feb 15;100(3):665-78 – reference: 17397210 - J Proteome Res. 2007 May;6(5):1728-34 – reference: 19056401 - J Theor Biol. 2009 Mar 7;257(1):17-26 – reference: 18821775 - Biochemistry. 2008 Oct 21;47(42):11013-23 – reference: 17520325 - Amino Acids. 2008 Jan;34(1):111-7 – reference: 18355838 - J Theor Biol. 2008 May 21;252(2):350-6 – reference: 17698024 - Anal Biochem. 2007 Nov 1;370(1):1-16 – reference: 17434148 - Biochem Biophys Res Commun. 2007 Jun 8;357(3):633-40 – reference: 12824396 - Nucleic Acids Res. 2003 Jul 1;31(13):3692-7 – reference: 18680458 - Protein Pept Lett. 2008;15(6):612-6 – reference: 16892386 - ChemMedChem. 2006 May;1(5):504-23 – reference: 18297652 - Proteomics. 2008 Feb;8(4):750-78 – reference: 13678304 - J Protein Chem. 2003 May;22(4):395-402 – reference: 18235503 - Nature. 2008 Jan 31;451(7178):591-5 – reference: 9094735 - Proteins. 1997 Mar;27(3):329-35 – reference: 16204113 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii245-51 – reference: 12890493 - Biochem Biophys Res Commun. 2003 Aug 15;308(1):148-51 – reference: 16044193 - Amino Acids. 2006 Feb;30(1):49-54 – reference: 11018595 - Drug Discov Today. 2000 Oct 1;5(10):445-454 – reference: 19503826 - PLoS Comput Biol. 2009 Jun;5(6):e1000397 – reference: 12509760 - Nat Rev Drug Discov. 2003 Jan;2(1):63-9 – reference: 10089205 - Bioinformatics. 1999 Feb;15(2):176-7 – reference: 17628605 - J Theor Biol. 2007 Oct 7;248(3):546-51 – reference: 18991767 - Protein Pept Lett. 2008;15(9):915-21 – reference: 19341746 - J Theor Biol. 2009 Jul 21;259(2):366-72 – reference: 18037612 - Bioinformatics. 2008 Jan 15;24(2):225-33 – reference: 18045228 - Protein Pept Lett. 2007;14(9):871-5 – reference: 15889221 - Amino Acids. 2005 Jun;28(4):373-6 – reference: 19037861 - J Comput Chem. 2009 Jul 15;30(9):1414-23 – reference: 19075768 - Curr Top Med Chem. 2008;8(18):1573-9 – reference: 15314209 - Protein Eng Des Sel. 2004 Jun;17(6):509-16 – reference: 16212421 - J Proteome Res. 2005 Sep-Oct;4(5):1681-6 – reference: 12719255 - Biophys J. 2003 May;84(5):3257-63 – reference: 16889410 - J Proteome Res. 2006 Aug;5(8):1888-97 – reference: 10202136 - EMBO J. 1999 Apr 1;18(7):1723-9 – reference: 18996090 - Biochem Biophys Res Commun. 2008 Dec 26;377(4):1243-7 – reference: 19383794 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7379-84 – reference: 15498588 - J Theor Biol. 2005 Jan 7;232(1):7-15 – reference: 16808903 - Biochem Biophys Res Commun. 2006 Aug 18;347(1):150-7 – reference: 12471598 - Proteins. 2003 Jan 1;50(1):44-8 – reference: 16718615 - Pharm Res. 2006 Jun;23(6):1089-116 – reference: 16325146 - Biochem Biophys Res Commun. 2006 Jan 20;339(3):1015-20 – reference: 15359741 - J Proteome Res. 2004 Jul-Aug;3(4):856-61 – reference: 19356130 - Protein Pept Lett. 2009;16(4):351-5 – reference: 19281186 - Mol Pharm. 2009 May-Jun;6(3):825-35 – reference: 7587280 - Crit Rev Biochem Mol Biol. 1995;30(4):275-349 – reference: 11097339 - Clin Chem Lab Med. 2000 Sep;38(9):853-6 – reference: 7670379 - Protein Sci. 1995 Jul;4(7):1365-83 – reference: 10382667 - Proteins. 1999 Jun 1;35(4):401-7 – reference: 11288174 - Proteins. 2001 May 15;43(3):246-55 – reference: 18586719 - Bioinformatics. 2008 Jul 1;24(13):i232-40 – reference: 11354006 - Proteins. 2001 Jul 1;44(1):57-9 – reference: 19776029 - Protein Eng Des Sel. 2009 Nov;22(11):699-705 – reference: 16043693 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10870-5 – reference: 9988519 - J Protein Chem. 1998 Nov;17(8):729-38 – reference: 18221009 - Protein Pept Lett. 2008;15(1):27-32 – reference: 8780787 - J Mol Biol. 1996 Aug 23;261(3):470-89 – reference: 7567954 - Proteins. 1995 Apr;21(4):319-44 – reference: 19149574 - Curr Med Chem. 2009;16(2):232-44 – reference: 18634802 - J Theor Biol. 2008 Oct 7;254(3):691-6 – reference: 17168850 - Curr Med Chem. 2006;13(27):3263-70 – reference: 9730924 - Bioinformatics. 1998;14(7):591-9 – reference: 15279552 - Curr Med Chem. 2004 Aug;11(16):2105-34 – reference: 19169652 - Acta Biotheor. 2009 Sep;57(3):321-30 – reference: 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 – reference: 19149669 - Protein Pept Lett. 2009;16(1):27-31 – reference: 16140260 - Biochem Biophys Res Commun. 2005 Oct 28;336(3):737-9 – reference: 17307149 - Biochem Biophys Res Commun. 2007 Apr 6;355(2):513-9 – reference: 17508935 - Curr Top Med Chem. 2007;7(10):1015-29 – reference: 15308540 - Bioinformatics. 2005 Jan 1;21(1):10-9 – reference: 18274516 - Nat Protoc. 2008;3(2):153-62 – reference: 16429410 - J Comput Chem. 2006 Mar;27(4):478-82 – reference: 15700108 - Amino Acids. 2005 Feb;28(1):29-35 – reference: 17330882 - J Comput Chem. 2007 Jul 15;28(9):1463-6 – reference: 19689387 - Med Chem. 2009 Jul;5(4):305-17 – reference: 2197975 - Annu Rev Biochem. 1990;59:1007-39 – reference: 10336379 - Proteins. 1999 Jan 1;34(1):137-53 – reference: 18381630 - J Comput Chem. 2008 Sep;29(12):2018-24 – reference: 8789141 - Anal Biochem. 1996 Jan 1;233(1):1-14 – reference: 18782071 - Protein Pept Lett. 2008;15(7):739-44 – reference: 18774775 - Biochem Biophys Res Commun. 2008 Nov 14;376(2):321-5 – reference: 12186861 - J Biol Chem. 2002 Nov 29;277(48):45765-9 – reference: 19075826 - Protein Pept Lett. 2008;15(10):1132-7 – reference: 8349584 - J Biol Chem. 1993 Aug 15;268(23):16938-48 – reference: 8313840 - Drug Metab Rev. 1993;25(4):503-17 – reference: 17591774 - J Biol Chem. 2007 Aug 31;282(35):25677-86 – reference: 17395128 - Neurotherapeutics. 2007 Apr;4(2):184-98 – reference: 18471832 - J Theor Biol. 2008 Jul 21;253(2):310-5 – reference: 19364489 - Anal Biochem. 2009 Jul 1;390(1):68-73 – reference: 17586467 - Biochem Biophys Res Commun. 2007 Aug 24;360(2):339-45 – reference: 16381885 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7 – reference: 17510168 - Bioinformatics. 2007 Aug 1;23(15):2004-12 – reference: 8071322 - J Biol Chem. 1994 Sep 2;269(35):22014-20 – reference: 18473953 - Protein Pept Lett. 2008;15(4):392-6 – reference: 15680586 - Comput Biol Chem. 2005 Feb;29(1):55-67 – reference: 16040052 - J Theor Biol. 2006 Jan 21;238(2):395-400 – reference: 18618097 - Arch Toxicol. 2008 Oct;82(10):667-715 – reference: 17211405 - Nat Biotechnol. 2007 Jan;25(1):71-5 – reference: 17986454 - Nucleic Acids Res. 2008 Jan;36(Database issue):D907-12 – reference: 16083294 - J Proteome Res. 2005 Jul-Aug;4(4):1413-8 |
| SSID | ssj0053866 |
| Score | 2.4884086 |
| Snippet | Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein... Background Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine... BackgroundStudy of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine... Background Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e9603 |
| SubjectTerms | Acids Algorithms Amino acids Binding Sites Biochemistry/Bioinformatics Bioinformatics Biology Coding Computational Biology Computational Biology - methods Cytochrome Datasets Drug development Drugs Enzymes Functional groups Genes Genomes Genomics Health sciences Humans Influenza Ion channels Life sciences Ligands Models, Statistical Non-Clinical Medicine/Medical Informatics Nuclear receptors Pharmaceutical Preparations - chemistry Physicochemical properties Predictions Protein Conformation Protein interaction Protein Structure, Secondary Proteins Proteins - chemistry Receptors Receptors, G-Protein-Coupled - metabolism Redundancy Studies Technology, Pharmaceutical - methods |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdQL3BBjAHLKMyakIBDujp27OQ4ENOGxIeAoZ2wHMceSFVaNY0Q_z3vxW60iEnbgVsVv0bK-_w5ee9nQl4wyIumEvPUzVWVisrLtCo8h2RoTOV4zgqHA84fPsrTc_H-Ir-4ctQX9oQFeuCguKMsc0VRqlpmAFS8yCvmZH_IEgeoIazH7Dsvyu1mKuRgiGIp46AcV-wo2mW2WjZuFmA7HxWinq9_yMqT1WLZXgc5_-2cvNs1K_Pnt1ksrpSlkwfkfsST9Dg8xw6545qHZCdGbEtfRVrp17vkx-c1fpTBNmdar7vLNDSBUySMWIfxBtqEpvCWYnGrKVzBuhdeF9J-AKSlpqlpoG5C-1LvemrQ9hE5P3n37e1pGk9XSK0s2SYVJmMSfs29zJiFwLalMrzwJs-sdSZnHsq39czXWSWlN4UFJIj0-ErURnLHH5NJA_rcI7TmUoANvOLSACAoIKhVLQAYClfUgNgSwreq1jZSj-MJGAvdf09TsAUJ2tJoIB0NlJB0-NcqUG_cIP8GrTjIInF2fwHcSUd30je5U0IO0Ad0mEIdwl8fC8VLJE-UCTnsJZA8o8HunEvTta0--_T9FkJfv4yEXkYhvwR1WBMnIuCZkJRrJDkdSUIKsKPlPfTYrVZaDaCjFLBzZqCU6daLr1-mwzLeFDvuGrfsWq04njSQKxB5Enx-UGwGhQESeZ4QNYqGkebHK82vnz11OYBZ8A2452yIm1vZdv9_2PYpuRd6P3jK2JRMNuvOPQNIuame99njL7JRcsI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwQvExsf6xhgISTgIV0dJ3bygNAKqwYSZRob2tMsJ3EKUpWUphHaf89d7AQiJthbFV9S-Xxftu9-R8gLBnZRJ8HYM2OZeEGSCy-Jcg7GUOvE8JBFBgucP83E8Xnw8SK82CCzthYG0ypbm9gY6qxM8Yz8AOxoHMBmgPG3yx8edo3C29W2hYZ2rRWyNw3E2C2y6SMy1oBsTo5mJ6etbQbtFsIV0HHJDtx6jZZlYUY2nOc9B9Xg-HfWerBclNV1oejfGZV36mKpr37qxeIPdzW9R7ZcnEkPrWBskw1T7JDbtvPk1Q7Zdjpd0VcOePr1fXJ5ssJrG0yEpu9X9dw7a9LEaXNqaAsg6MymjVd0Au4vo_BkCp7RHijS5iCrorrIqP0nlACKUWYNu_oH5Hx6dPbu2HP9F7xUxGztBdpnAn6Nc-GzFFQ_jaXmUa5DP02NDlkODj7NWZ75iRC5jlKIFRFAXwaZFtzwh2RQAGd3Cc24CMZRnEsuNIQMEai9zAIIHQMTZRDTDQlvma5SB06OPTIWqrlxk7BJsXxTuFTKLdWQeN1bSwvO8R_6Ca5nR4vQ2s2DcjVXTlOV75soimUmfJhHHoQJM6Lp6sUhtoXpDskzlAZl61Q7A6EOA8ljhFcUQ_K8oUB4jQLzd-a6rir14fPXGxB9Oe0RvXREeQnsSLWrmYA5IWxXj3K_RwlGIu0N76Lstlyp1G91gjdbeb5-mHbD-FHMyStMWVdKcuxFEEogeWSlv2OsD64DTH04JLKnFz3O90eK798acHMId0E24JujToNutLZ7_57GY3LX5n1wj7F9MlivavMEwsl18tTZiF-JFnQe priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGd4ALML5WKGAhxMchWR07dnLsgGogUSZY0ThA5CTOQFRp1TRCcOBv573YiQgMMQ7cIvvZip_t55_t934m5D4Du6hTMfbMWKWeSAvppVHBwRhqnRoesshggPPLmTyYixfH4fEWed_GwjgNwh5xsayam3z8WJZmz2lyD_mK7O2pz7hibQl_BUK-heT8QcM4hCdjGwxAOke2ZQjpA7I9nx1O3tmb5sCTwZi7cLo_1dRbrhpW_852D_DPTgOmv_tXnq_Llf76RS8WPy1e00vke9ts67Py2a83qZ99-4UR8r_p5TK56GAvndhadsiWKa-QHWdYKvrIsV8_vko-HK7x7gi9senTdX3iHTW-6rQ5urRRGHRmfdcrug9rcE4hZQrLsz3VpM1pWkV1mVP70CYOQ4pQt16b6hqZT58dPTnw3CMQXiZjtvGEDpiEr3EhA5aB_clipXlU6DDIMqNDVgDKyApW5EEqZaGjDAArsvgrkWvJDb9OBiWoYJfQnEsxjuJCcakBt0Rge1QuAL8KE-UALIeEt32dZI4hHR_qWCTNtZ-CnZLVVoI6TZxOh8TrSq0sQ8hf5PdxGHWyyO_dJECnJq4zkyAwURSrXAbQjkKEKTOyeVqMA8CG5g7JXRyEiQ2W7axUMhGKx8jxKIfkXiOBHB8lOhGd6Lqqkuev3p5B6M3rntBDJ1QsQR2ZdoEb0CYccz3JUU8SLFXWy97FQdtqpUoAG8UCNvgMlDJqp9Hp2bTLxkrRMbA0y7pKFMcHEUIFIjfspOsUC5MbMVg4JKo3HXua7-eUnz42DOuAuWFsQJ1-N3HP1Lc3_7XALXLBuqNwj7ERGWzWtbkNKHeT3nG26gdYP6pj priority: 102 providerName: Unpaywall |
| Title | Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/20300175 https://www.proquest.com/docview/1289440113 https://www.proquest.com/docview/733788573 https://pubmed.ncbi.nlm.nih.gov/PMC2836373 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0009603&type=printable https://doaj.org/article/22e8897d62774f45b1e66542934054cf http://dx.doi.org/10.1371/journal.pone.0009603 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (ODIN) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrHaVYCAl4SFXHjp08INSOlYG0Uo0VlRciJ3HKpCotTSPYf8-dk0ZEFNhLFNmXSD7fx8_2-Y6Q5wzsoo5E3zF9FTkiSqUT-SkHY6h1ZLjHfIMXnM_H8mwqPsy82R7Z1mytGJjvXNphPanpetH7-f36DSj8a1u1QbHtR73VMjO9EpTzfXIAvirAYg7noj5XAO22p5eIWhzp9nl1me5vf2k4K5vTv7bcrdVime-CpX9GV94qspW-_qEXi99c1-guuVNhTjooheSQ7JnsHjmstDqnL6vU06_uk6-TNR7cYCg0fbsu5s6lDRSndt-wvAJBx2XgeE6H4AATCi0j8I3lliK1W1k51VlCyyqXKAMUcWYB6_oHZDo6vTw5c6oKDE4sA7ZxhHaZhLd-Kl0Wg_LHgdLcT7XnxrHRHkvBxccpSxM3kjLVfgxoEVPoK5FoyQ1_SFoZ8POI0IRL0feDVHGpATT4oPgqEQAehfETQHVtwresDuMqPTlWyViE9sxNwTKl5FaIExRWE9QmTv3VqkzP8R_6Ic5iTYvJtW3Dcj0PK10NXdf4fqAS6cI4UuFFzEhb14sDuoXhtslTlIGwvKlam4hwIBQPMMGibJNnlgITbGQYwTPXRZ6H7z9-vgHRp4sG0YuKKF0CO2Jd3ZqAMWHirgZlp0EJZiJudB-hxG65kocATAIBq2sGTOlspXh3N6278acYlZeZZZGHimM1Ak8ByaNS5mvGgm4hAPLaRDW0ocH5Zk929c2mNwfAC7IB_-zVenOjuT3-NwMek9tl5Ad3GOuQ1mZdmCcAKDdRl-yrmYKnf8LwOXrXJQfD0_Hkomu3aLrWhkDbdDwZfPkFYAJ4-A |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGERoviI2PFQazEAh4SFfHjp08ILQxqpZtBUGH-oRxEqcgVUlpGk39p_gbOcdJIGKCveytii-pfHf-3dm-D4SeEsBFFbK-o_sidFiYcCf0EwpgqFSoqUd8bRKcT8d8eMbeTb3pBvpZ58KYsMoaE0ugjrPInJHvA44GDDYDhL5e_HBM1yhzu1q30LBqcazX57Bly1-NjkC-z1x38HbyZuhUXQWciAdk5TDlEg6_-gl3SQQKHQVCUT9RnhtFWnkkAbMVJSSJ3ZDzRPkReECmLLxgseJUU_juNXSdUcASWD9i2mzwADs4r9LzqCD7lTb0Flmqe3azQFvmr-wS0NiCzmKe5Rc5un_Ha24W6UKtz9V8_ocxHNxGtyovFh9YtdtCGzrdRjdsX8v1NtqqECPHL6qy1i_voC8fluZSyIRZ46NlMXMmZRA6Ls8kbXoFHtug9BwfgnGNMTwZgN21x5W4PCbLsUpjbP_J6Bc2Pmyx1PlddHYlcriHOilwdgfhmHLW94NEUK7AIfEBVETMwDFl2o_BY-wiWjNdRlXpc9OBYy7L-zwBWyDLN2lEJStRdZHTvLWwpT_-Q39o5NnQmsLd5YNsOZMVDkjX1b4fiJi7MI-EeSHRvOwZRsFzhul20Z7RBmmzYBv4kQdM0MAUb-Rd9KSkMMU7UhMdNFNFnsvR-8-XIPr0sUX0vCJKMmBHpKqMDJiTKQrWotxtUQIERa3hHaO7NVdy-Xuxwpu1Pl88jJth81ET8ZfqrMiloKbTgSeA5L7V_oaxLhgmMCReF4nWumhxvj2Sfv9Wlk4HZxp0A77Za1bQpWT74N_T2EObw8npiTwZjY8fops2woQ6hOyizmpZ6EfguK7CxyVaYPT1quHpF3pfqcM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGER8viI2PFQazEAh4SNvEiZ08ILRRqpVBmdiG-oRxErsgVUlpGk391_jrOMdOIGKCveytii-pfHf-3dm-D4SeuoCLIvYHjhyw2PFjRZ04VATAUIhYksANpU5w_jChB6f-u2kw3UA_61wYHVZZY2IF1Gme6DPyPuBo5MNmwCV9ZcMijoaj14sfju4gpW9a63YaRkUO5foMtm_Fq_EQZP3M80ZvT94cOLbDgJPQyF05vvBcCr8GinpuAsqdREyQUInASxIpAleBCUuUq1IvplSJMAFvSJeIZ34qKJEEvnsFXWWERDqckE2bzR7gCKU2VY8wt281o7fIM9kzGwfSMoVVx4DGLnQW87w4z-n9O3bzRpktxPpMzOd_GMbRbXTLerR4z6jgJtqQ2Ra6ZnpcrrfQpkWPAr-wJa5f3kFfjpb6gkiHXOPhspw5J1VAOq7OJ02qBZ6YAPUC74OhTTE8GYENNkeXuDoyK7DIUmz-Sesa1v5suZTFXXR6KXK4hzoZcHYb4ZRQfxBGihEqwDkJAWBY6oOT6sswBe-xi0jNdJ7YMui6G8ecV3d7DLZDhm9ci4pbUXWR07y1MGVA_kO_r-XZ0Ooi3tWDfDnjFhO458kwjFhKPZiH8oPYlbTqH0bAi4bpdtGu1gZuMmIbKOJ7PiORLuRIu-hJRaELeWR6ScxEWRR8_PHzBYiOP7WInlsilQM7EmGzM2BOukBYi3KnRQlwlLSGt7Xu1lwp-O-FC2_W-nz-MG6G9Ud19F8m87LgsL5YGAYMSO4b7W8Y64GRAqMSdBFrrYsW59sj2fdvVRl1cKxBN-CbvWYFXUi2D_49jV10HYCJvx9PDh-imybYhDiuu4M6q2UpH4EPu4ofV2CB0dfLRqdf3WyuBg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGd4ALML5WKGAhxMchWR07dnLsgGogUSZY0ThA5CTOQFRp1TRCcOBv573YiQgMMQ7cIvvZip_t55_t934m5D4Du6hTMfbMWKWeSAvppVHBwRhqnRoesshggPPLmTyYixfH4fEWed_GwjgNwh5xsayam3z8WJZmz2lyD_mK7O2pz7hibQl_BUK-heT8QcM4hCdjGwxAOke2ZQjpA7I9nx1O3tmb5sCTwZi7cLo_1dRbrhpW_852D_DPTgOmv_tXnq_Llf76RS8WPy1e00vke9ts67Py2a83qZ99-4UR8r_p5TK56GAvndhadsiWKa-QHWdYKvrIsV8_vko-HK7x7gi9senTdX3iHTW-6rQ5urRRGHRmfdcrug9rcE4hZQrLsz3VpM1pWkV1mVP70CYOQ4pQt16b6hqZT58dPTnw3CMQXiZjtvGEDpiEr3EhA5aB_clipXlU6DDIMqNDVgDKyApW5EEqZaGjDAArsvgrkWvJDb9OBiWoYJfQnEsxjuJCcakBt0Rge1QuAL8KE-UALIeEt32dZI4hHR_qWCTNtZ-CnZLVVoI6TZxOh8TrSq0sQ8hf5PdxGHWyyO_dJECnJq4zkyAwURSrXAbQjkKEKTOyeVqMA8CG5g7JXRyEiQ2W7axUMhGKx8jxKIfkXiOBHB8lOhGd6Lqqkuev3p5B6M3rntBDJ1QsQR2ZdoEb0CYccz3JUU8SLFXWy97FQdtqpUoAG8UCNvgMlDJqp9Hp2bTLxkrRMbA0y7pKFMcHEUIFIjfspOsUC5MbMVg4JKo3HXua7-eUnz42DOuAuWFsQJ1-N3HP1Lc3_7XALXLBuqNwj7ERGWzWtbkNKHeT3nG26gdYP6pj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Drug-Target+Interaction+Networks+Based+on+Functional+Groups+and+Biological+Features&rft.jtitle=PloS+one&rft.au=He%2C+Zhisong&rft.au=Zhang%2C+Jian&rft.au=Shi%2C+Xiao-He&rft.au=Hu%2C+Le-Le&rft.date=2010-03-11&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=5&rft.issue=3&rft.spage=e9603&rft_id=info:doi/10.1371%2Fjournal.pone.0009603&rft.externalDocID=A473908776 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |