Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features

Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 5; no. 3; p. e9603
Main Authors He, Zhisong, Zhang, Jian, Shi, Xiao-He, Hu, Le-Le, Kong, Xiangyin, Cai, Yu-Dong, Chou, Kuo-Chen
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 11.03.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0009603

Cover

Abstract Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Our results indicate that the network prediction system thus established is quite promising and encouraging.
AbstractList BackgroundStudy of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner.Methods/principal findingsTo realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively.Conclusion/significanceOur results indicate that the network prediction system thus established is quite promising and encouraging.
Background Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. Methods/Principal Findings To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Conclusion/Significance Our results indicate that the network prediction system thus established is quite promising and encouraging.
Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Our results indicate that the network prediction system thus established is quite promising and encouraging.
Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Our results indicate that the network prediction system thus established is quite promising and encouraging.
Background Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. Methods/Principal Findings To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Conclusion/Significance Our results indicate that the network prediction system thus established is quite promising and encouraging.
Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner.BACKGROUNDStudy of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner.To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively.METHODS/PRINCIPAL FINDINGSTo realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively.Our results indicate that the network prediction system thus established is quite promising and encouraging.CONCLUSION/SIGNIFICANCEOur results indicate that the network prediction system thus established is quite promising and encouraging.
Audience Academic
Author Chou, Kuo-Chen
He, Zhisong
Zhang, Jian
Shi, Xiao-He
Kong, Xiangyin
Cai, Yu-Dong
Hu, Le-Le
AuthorAffiliation 3 Department of Ophthalmology, Yangpu District Central Hospital, Shanghai, China
Cairo University, Egypt
7 Gordon Life Science Institute, San Diego, California, United States of America
4 Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
1 Institute of System Biology, Shanghai University, Shanghai, China
2 CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
6 State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
5 Centre for Computational Systems Biology, Fudan University, Shanghai, China
AuthorAffiliation_xml – name: 3 Department of Ophthalmology, Yangpu District Central Hospital, Shanghai, China
– name: Cairo University, Egypt
– name: 6 State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
– name: 7 Gordon Life Science Institute, San Diego, California, United States of America
– name: 2 CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
– name: 1 Institute of System Biology, Shanghai University, Shanghai, China
– name: 4 Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
– name: 5 Centre for Computational Systems Biology, Fudan University, Shanghai, China
Author_xml – sequence: 1
  givenname: Zhisong
  surname: He
  fullname: He, Zhisong
– sequence: 2
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
– sequence: 3
  givenname: Xiao-He
  surname: Shi
  fullname: Shi, Xiao-He
– sequence: 4
  givenname: Le-Le
  surname: Hu
  fullname: Hu, Le-Le
– sequence: 5
  givenname: Xiangyin
  surname: Kong
  fullname: Kong, Xiangyin
– sequence: 6
  givenname: Yu-Dong
  surname: Cai
  fullname: Cai, Yu-Dong
– sequence: 7
  givenname: Kuo-Chen
  surname: Chou
  fullname: Chou, Kuo-Chen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20300175$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhiM0xD7gHyCIhATiosUfiZNwgbQNOipNDMHgEuvUcTJ3rl1sh7F_j9N2UzNNaMpFrNfPeX38Hu8nO8YamSTPMRpjWuB3c9s5A3q8jPIYIVQxRB8le7iiZMQIojtb691k3_s5QjktGXuS7EYJIVzke8mvr07WSgRl2vSj69rRObhWhnRqgnQQdWvSLzJcWXfp0yPwsk6jMunMagt0euJst_QpmDo9UlbbVomoTiSEzkn_NHncgPby2eZ_kPyYfDo__jw6PTuZHh-ejgSrcBhlQDCLK9QwgkVJiagKoGUDORFCQo4bRDLR4KYmM8YaKAXFqCRlUWQ1MCrpQfJy7bvU1vNNNJ5jUlZZhjCmkZiuidrCnC-dWoC75hYUXwnWtRxcUEJLTogsy6qoGYn-TZbPsGQsz0hFM5THNqJXvvbqzBKur0DrW0OMeD-dmxZ4Px2-mU6s-7DpspstZC2kCQ70oJnhjlEXvLV_OCkpo0Vv8GZj4OzvTvrAF8oLqTUYaTvPI1KUZb4iX90h7w9lQ7UQ761MY-Oxovfkh1lBKxQTZpEa30PFr5YLJeIFGxX1QcHbQUFkgvwbWui859Pv3x7Onv0csq-32AsJOlx4q7v-Kfoh-GI76NuEb959BLI1IJz13snmoQN8f6dMqAD98TERpf9f_A9nrylP
CitedBy_id crossref_primary_10_1007_s12539_013_0195_4
crossref_primary_10_1371_journal_pcbi_1007129
crossref_primary_10_1016_j_bmc_2016_05_020
crossref_primary_10_1016_j_molstruc_2023_135409
crossref_primary_10_1109_ACCESS_2019_2910277
crossref_primary_10_1109_TCBB_2021_3095369
crossref_primary_10_1002_biot_201000450
crossref_primary_10_1155_2013_731969
crossref_primary_10_1016_j_jtbi_2018_12_024
crossref_primary_10_1093_bioinformatics_bts502
crossref_primary_10_1109_JBHI_2024_3384238
crossref_primary_10_2217_pgs_13_162
crossref_primary_10_1016_j_biosystems_2013_04_005
crossref_primary_10_1016_j_prp_2015_07_007
crossref_primary_10_1038_nchembio_1199
crossref_primary_10_1109_TCBB_2016_2570211
crossref_primary_10_1186_s13321_015_0109_z
crossref_primary_10_1371_journal_pone_0011335
crossref_primary_10_1517_17425255_2014_950222
crossref_primary_10_1155_2013_723780
crossref_primary_10_1016_j_jprot_2011_12_003
crossref_primary_10_1109_TBME_2013_2245129
crossref_primary_10_1016_j_jtbi_2011_06_003
crossref_primary_10_1016_j_prp_2016_09_017
crossref_primary_10_1371_journal_pone_0025297
crossref_primary_10_3390_ijms21010024
crossref_primary_10_1186_s13321_022_00612_9
crossref_primary_10_1007_s00438_014_0922_5
crossref_primary_10_1039_C6RA03743G
crossref_primary_10_1177_11769343241272414
crossref_primary_10_1016_j_chemolab_2011_08_007
crossref_primary_10_1186_s12859_019_3263_x
crossref_primary_10_4028_www_scientific_net_AMM_229_231_2634
crossref_primary_10_1016_j_compbiomed_2015_09_015
crossref_primary_10_1039_D0CB00226G
crossref_primary_10_1109_TCBB_2022_3204188
crossref_primary_10_1186_s12859_016_1377_y
crossref_primary_10_1016_j_jtbi_2010_12_024
crossref_primary_10_3389_fcell_2020_623858
crossref_primary_10_1155_2014_438341
crossref_primary_10_1016_j_jmgm_2011_06_014
crossref_primary_10_1371_journal_pone_0141719
crossref_primary_10_2174_1381612826666200116145057
crossref_primary_10_2174_1568026619666191018100141
crossref_primary_10_1080_08927022_2011_554548
crossref_primary_10_1002_minf_201400009
crossref_primary_10_1016_j_ab_2012_02_007
crossref_primary_10_1371_journal_pone_0144426
crossref_primary_10_1016_j_jbi_2019_103159
crossref_primary_10_1093_bioinformatics_btae347
crossref_primary_10_1080_07391102_2014_998710
crossref_primary_10_2174_1389450120666181204164721
crossref_primary_10_1016_j_neucom_2022_04_104
crossref_primary_10_1093_bioinformatics_btv256
crossref_primary_10_1109_TCBB_2019_2940187
crossref_primary_10_1016_j_compbiolchem_2011_05_003
crossref_primary_10_1016_j_biochi_2010_10_022
crossref_primary_10_1016_j_jtbi_2012_07_020
crossref_primary_10_1016_j_jtbi_2013_11_005
crossref_primary_10_1371_journal_pcbi_1002315
crossref_primary_10_1093_bioinformatics_btt072
crossref_primary_10_1111_cbdd_13599
crossref_primary_10_1371_journal_pone_0123147
crossref_primary_10_5665_sleep_4664
crossref_primary_10_1155_2013_414327
crossref_primary_10_1074_jbc_R110_174797
crossref_primary_10_1016_j_tips_2013_05_002
crossref_primary_10_1155_2021_5542224
crossref_primary_10_1371_journal_pone_0107464
crossref_primary_10_1021_ci400127q
crossref_primary_10_3390_biom11121783
crossref_primary_10_1007_s11434_012_4996_3
crossref_primary_10_1016_j_chemolab_2021_104270
crossref_primary_10_1016_j_compbiomed_2010_09_004
crossref_primary_10_1016_j_yrtph_2013_07_010
crossref_primary_10_1016_j_ymeth_2024_01_017
crossref_primary_10_3390_ijms15034915
crossref_primary_10_1016_j_ab_2019_113507
crossref_primary_10_1093_bioinformatics_btaa451
crossref_primary_10_3389_fchem_2019_00895
crossref_primary_10_1016_j_jtbi_2010_08_001
crossref_primary_10_1371_journal_pone_0066678
crossref_primary_10_4236_ns_2017_94007
crossref_primary_10_1093_bioinformatics_btu624
crossref_primary_10_1016_j_jtbi_2011_06_030
crossref_primary_10_1039_C4MB00199K
crossref_primary_10_1016_j_jtbi_2010_10_019
crossref_primary_10_1093_bioinformatics_bts670
crossref_primary_10_1111_j_1747_0285_2011_01155_x
crossref_primary_10_1155_2013_798743
crossref_primary_10_1016_j_neucom_2015_10_148
crossref_primary_10_1155_2013_674215
crossref_primary_10_3390_ijms12129236
crossref_primary_10_1016_j_chemolab_2012_06_007
crossref_primary_10_1080_07391102_2014_1001793
crossref_primary_10_1007_s00438_016_1240_x
crossref_primary_10_1016_j_jtbi_2014_06_008
crossref_primary_10_1021_acschembio_6b00762
crossref_primary_10_1016_j_addr_2012_12_004
crossref_primary_10_1093_bib_bbz157
crossref_primary_10_1002_wsbm_1323
crossref_primary_10_1039_c2mb25110h
crossref_primary_10_1080_21681163_2021_1956369
crossref_primary_10_3389_fphar_2019_00743
crossref_primary_10_1016_j_compbiomed_2012_01_003
crossref_primary_10_1155_2013_132724
crossref_primary_10_1093_bioinformatics_btv055
crossref_primary_10_1038_s41598_020_63842_7
crossref_primary_10_1007_s00521_024_10714_0
crossref_primary_10_1016_j_ab_2020_113978
crossref_primary_10_1146_annurev_pharmtox_010611_134630
crossref_primary_10_1371_journal_pone_0105902
crossref_primary_10_1155_2013_861269
crossref_primary_10_2174_1570180819666220622085659
crossref_primary_10_1186_s13321_022_00644_1
crossref_primary_10_1371_journal_pcbi_1002503
crossref_primary_10_1371_journal_pcbi_1005219
crossref_primary_10_1016_j_str_2020_09_003
crossref_primary_10_1038_s41598_017_18025_2
crossref_primary_10_3389_fgene_2022_859188
crossref_primary_10_3390_ph16040516
crossref_primary_10_1016_j_jtbi_2018_03_034
crossref_primary_10_1016_j_compbiomed_2013_06_001
crossref_primary_10_1016_j_bbapap_2013_07_008
crossref_primary_10_1093_bioinformatics_btaa010
crossref_primary_10_3390_ijms22126598
crossref_primary_10_1021_acs_jcim_4c00957
crossref_primary_10_3389_fpubh_2022_902123
crossref_primary_10_1016_j_jtbi_2017_01_019
crossref_primary_10_1007_s13238_012_2011_z
crossref_primary_10_1371_journal_pone_0072234
crossref_primary_10_1016_j_compbiolchem_2019_03_016
crossref_primary_10_1371_journal_pone_0039308
crossref_primary_10_1016_j_heliyon_2020_e03444
crossref_primary_10_1371_journal_pone_0030617
crossref_primary_10_1039_C0MB00170H
crossref_primary_10_1016_j_compbiolchem_2015_11_007
crossref_primary_10_1016_j_jtbi_2013_08_017
crossref_primary_10_1371_journal_pone_0014556
crossref_primary_10_1016_j_neucom_2011_07_019
crossref_primary_10_3390_molecules28031182
crossref_primary_10_1016_j_jtbi_2017_08_014
crossref_primary_10_1016_j_jtbi_2013_08_013
crossref_primary_10_1186_s12859_021_04464_2
crossref_primary_10_1093_bioinformatics_btt234
crossref_primary_10_1016_j_cmpb_2018_08_011
crossref_primary_10_1016_j_rechem_2023_101002
crossref_primary_10_1016_j_jgg_2015_11_002
crossref_primary_10_3390_ijms241814061
crossref_primary_10_1111_cbdd_13753
crossref_primary_10_1007_s11831_021_09556_z
crossref_primary_10_1016_j_drudis_2023_103730
crossref_primary_10_1186_s12859_016_0977_x
crossref_primary_10_1007_s10822_016_9915_2
crossref_primary_10_3390_molecules23040954
crossref_primary_10_1093_bib_bbx041
crossref_primary_10_2174_1386207322666190702103927
crossref_primary_10_1038_s41598_019_43125_6
crossref_primary_10_1093_bib_bbab046
crossref_primary_10_1016_j_jprot_2011_05_011
crossref_primary_10_1016_j_ymeth_2017_05_016
crossref_primary_10_1093_bib_bby002
crossref_primary_10_1016_j_jbi_2017_04_021
crossref_primary_10_1016_j_vascn_2015_11_002
crossref_primary_10_1371_journal_pone_0037155
crossref_primary_10_1016_j_jtbi_2011_10_021
crossref_primary_10_1179_1607845414Y_0000000209
crossref_primary_10_1186_s12859_020_3488_8
crossref_primary_10_1016_j_aca_2013_07_003
crossref_primary_10_1016_j_gene_2015_11_010
crossref_primary_10_1074_mcp_M112_021790
crossref_primary_10_1016_j_jtbi_2012_06_039
crossref_primary_10_1039_D4RA01937G
crossref_primary_10_1093_bioinformatics_btq666
crossref_primary_10_2174_0929867326666190808154841
crossref_primary_10_1371_journal_pone_0226484
crossref_primary_10_1016_j_jtbi_2011_08_009
crossref_primary_10_1016_j_jtbi_2011_10_016
crossref_primary_10_1016_j_jtbi_2011_10_015
crossref_primary_10_1109_JBHI_2024_3402529
crossref_primary_10_1016_j_pharmthera_2013_01_016
crossref_primary_10_1371_journal_pone_0037608
crossref_primary_10_1002_minf_201900062
crossref_primary_10_1155_2017_6340316
crossref_primary_10_1089_dna_2015_2923
crossref_primary_10_1016_j_jtbi_2018_07_040
crossref_primary_10_1016_j_neucom_2016_10_039
crossref_primary_10_1016_j_ygeno_2018_12_007
crossref_primary_10_3390_ijms21165694
crossref_primary_10_1016_j_jtbi_2010_06_006
crossref_primary_10_1016_j_bbagen_2016_06_003
crossref_primary_10_1371_journal_pone_0057680
crossref_primary_10_1111_j_1865_1682_2012_01323_x
crossref_primary_10_1093_nar_gkz087
crossref_primary_10_3390_molecules15118177
crossref_primary_10_1093_cvr_cvs289
crossref_primary_10_1371_journal_pone_0034460
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
2010 He et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
He et al. 2010
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: 2010 He et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: He et al. 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0009603
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE


Agricultural Science Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
DocumentTitleAlternate Drug-Target Interactions
EISSN 1932-6203
ExternalDocumentID 1289440113
oai_doaj_org_article_22e8897d62774f45b1e66542934054cf
10.1371/journal.pone.0009603
PMC2836373
2897087921
A473908776
20300175
10_1371_journal_pone_0009603
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
California
GeographicLocations_xml – name: United States--US
– name: California
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PYCSY
RIG
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ACCTH
ADTOC
AFFHD
BBTPI
PV9
RZL
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c691t-4a2166910f621c832c97a38fa52ccea51f024cf1fd2b66fa8c310828774da63e3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:51 EST 2021
Fri Oct 03 12:44:37 EDT 2025
Wed Oct 29 11:50:27 EDT 2025
Tue Sep 30 16:55:51 EDT 2025
Thu Oct 02 09:11:51 EDT 2025
Tue Oct 07 06:23:41 EDT 2025
Mon Oct 20 22:04:35 EDT 2025
Wed Oct 15 13:48:17 EDT 2025
Thu Oct 16 14:40:35 EDT 2025
Thu Oct 16 15:33:30 EDT 2025
Thu May 22 20:54:42 EDT 2025
Mon Jul 21 05:48:43 EDT 2025
Thu Apr 24 22:52:49 EDT 2025
Wed Oct 01 00:27:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c691t-4a2166910f621c832c97a38fa52ccea51f024cf1fd2b66fa8c310828774da63e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: ZH JZ LH XK YDC. Performed the experiments: ZH JZ LH. Analyzed the data: XHS. Contributed reagents/materials/analysis tools: JZ YDC. Wrote the paper: ZH XHS KCC.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0009603
PMID 20300175
PQID 1289440113
PQPubID 1436336
PageCount e9603
ParticipantIDs plos_journals_1289440113
doaj_primary_oai_doaj_org_article_22e8897d62774f45b1e66542934054cf
unpaywall_primary_10_1371_journal_pone_0009603
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2836373
proquest_miscellaneous_733788573
proquest_journals_1289440113
gale_infotracmisc_A473908776
gale_infotracacademiconefile_A473908776
gale_incontextgauss_ISR_A473908776
gale_incontextgauss_IOV_A473908776
gale_healthsolutions_A473908776
pubmed_primary_20300175
crossref_primary_10_1371_journal_pone_0009603
crossref_citationtrail_10_1371_journal_pone_0009603
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-11
PublicationDateYYYYMMDD 2010-03-11
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References 19356130 - Protein Pept Lett. 2009;16(4):351-5
18991767 - Protein Pept Lett. 2008;15(9):915-21
17520325 - Amino Acids. 2008 Jan;34(1):111-7
18680458 - Protein Pept Lett. 2008;15(6):612-6
8071322 - J Biol Chem. 1994 Sep 2;269(35):22014-20
18235503 - Nature. 2008 Jan 31;451(7178):591-5
11288174 - Proteins. 2001 May 15;43(3):246-55
10336379 - Proteins. 1999 Jan 1;34(1):137-53
19169652 - Acta Biotheor. 2009 Sep;57(3):321-30
10089205 - Bioinformatics. 1999 Feb;15(2):176-7
16983686 - J Cell Biochem. 2007 Feb 15;100(3):665-78
18355838 - J Theor Biol. 2008 May 21;252(2):350-6
8313840 - Drug Metab Rev. 1993;25(4):503-17
16892386 - ChemMedChem. 2006 May;1(5):504-23
19056401 - J Theor Biol. 2009 Mar 7;257(1):17-26
17395128 - Neurotherapeutics. 2007 Apr;4(2):184-98
16325146 - Biochem Biophys Res Commun. 2006 Jan 20;339(3):1015-20
18471832 - J Theor Biol. 2008 Jul 21;253(2):310-5
12509760 - Nat Rev Drug Discov. 2003 Jan;2(1):63-9
19075768 - Curr Top Med Chem. 2008;8(18):1573-9
18473953 - Protein Pept Lett. 2008;15(4):392-6
13678304 - J Protein Chem. 2003 May;22(4):395-402
19689387 - Med Chem. 2009 Jul;5(4):305-17
18037612 - Bioinformatics. 2008 Jan 15;24(2):225-33
11354006 - Proteins. 2001 Jul 1;44(1):57-9
11097339 - Clin Chem Lab Med. 2000 Sep;38(9):853-6
2197975 - Annu Rev Biochem. 1990;59:1007-39
19364489 - Anal Biochem. 2009 Jul 1;390(1):68-73
15359741 - J Proteome Res. 2004 Jul-Aug;3(4):856-61
16381885 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7
19037861 - J Comput Chem. 2009 Jul 15;30(9):1414-23
18996090 - Biochem Biophys Res Commun. 2008 Dec 26;377(4):1243-7
16718615 - Pharm Res. 2006 Jun;23(6):1089-116
16040052 - J Theor Biol. 2006 Jan 21;238(2):395-400
17330882 - J Comput Chem. 2007 Jul 15;28(9):1463-6
17508935 - Curr Top Med Chem. 2007;7(10):1015-29
10202136 - EMBO J. 1999 Apr 1;18(7):1723-9
7670379 - Protein Sci. 1995 Jul;4(7):1365-83
12890493 - Biochem Biophys Res Commun. 2003 Aug 15;308(1):148-51
7567954 - Proteins. 1995 Apr;21(4):319-44
15314209 - Protein Eng Des Sel. 2004 Jun;17(6):509-16
17986454 - Nucleic Acids Res. 2008 Jan;36(Database issue):D907-12
19075826 - Protein Pept Lett. 2008;15(10):1132-7
17628605 - J Theor Biol. 2007 Oct 7;248(3):546-51
18274516 - Nat Protoc. 2008;3(2):153-62
19341746 - J Theor Biol. 2009 Jul 21;259(2):366-72
19383794 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7379-84
8349584 - J Biol Chem. 1993 Aug 15;268(23):16938-48
11018595 - Drug Discov Today. 2000 Oct 1;5(10):445-454
15498588 - J Theor Biol. 2005 Jan 7;232(1):7-15
16083294 - J Proteome Res. 2005 Jul-Aug;4(4):1413-8
9730924 - Bioinformatics. 1998;14(7):591-9
18045228 - Protein Pept Lett. 2007;14(9):871-5
16808903 - Biochem Biophys Res Commun. 2006 Aug 18;347(1):150-7
8789141 - Anal Biochem. 1996 Jan 1;233(1):1-14
18618097 - Arch Toxicol. 2008 Oct;82(10):667-715
12824396 - Nucleic Acids Res. 2003 Jul 1;31(13):3692-7
16429410 - J Comput Chem. 2006 Mar;27(4):478-82
18782071 - Protein Pept Lett. 2008;15(7):739-44
15680586 - Comput Biol Chem. 2005 Feb;29(1):55-67
17307149 - Biochem Biophys Res Commun. 2007 Apr 6;355(2):513-9
19776029 - Protein Eng Des Sel. 2009 Nov;22(11):699-705
12471598 - Proteins. 2003 Jan 1;50(1):44-8
18586719 - Bioinformatics. 2008 Jul 1;24(13):i232-40
17586467 - Biochem Biophys Res Commun. 2007 Aug 24;360(2):339-45
19149574 - Curr Med Chem. 2009;16(2):232-44
18634802 - J Theor Biol. 2008 Oct 7;254(3):691-6
18297652 - Proteomics. 2008 Feb;8(4):750-78
16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38
19281186 - Mol Pharm. 2009 May-Jun;6(3):825-35
17211405 - Nat Biotechnol. 2007 Jan;25(1):71-5
17698024 - Anal Biochem. 2007 Nov 1;370(1):1-16
19503826 - PLoS Comput Biol. 2009 Jun;5(6):e1000397
15889221 - Amino Acids. 2005 Jun;28(4):373-6
8780787 - J Mol Biol. 1996 Aug 23;261(3):470-89
17510168 - Bioinformatics. 2007 Aug 1;23(15):2004-12
15700108 - Amino Acids. 2005 Feb;28(1):29-35
7587280 - Crit Rev Biochem Mol Biol. 1995;30(4):275-349
18381630 - J Comput Chem. 2008 Sep;29(12):2018-24
16140260 - Biochem Biophys Res Commun. 2005 Oct 28;336(3):737-9
16044193 - Amino Acids. 2006 Feb;30(1):49-54
19149669 - Protein Pept Lett. 2009;16(1):27-31
16889410 - J Proteome Res. 2006 Aug;5(8):1888-97
18821775 - Biochemistry. 2008 Oct 21;47(42):11013-23
17168850 - Curr Med Chem. 2006;13(27):3263-70
16212421 - J Proteome Res. 2005 Sep-Oct;4(5):1681-6
9094735 - Proteins. 1997 Mar;27(3):329-35
15308540 - Bioinformatics. 2005 Jan 1;21(1):10-9
12186861 - J Biol Chem. 2002 Nov 29;277(48):45765-9
17434148 - Biochem Biophys Res Commun. 2007 Jun 8;357(3):633-40
10382667 - Proteins. 1999 Jun 1;35(4):401-7
18221009 - Protein Pept Lett. 2008;15(1):27-32
9988519 - J Protein Chem. 1998 Nov;17(8):729-38
15279552 - Curr Med Chem. 2004 Aug;11(16):2105-34
17397210 - J Proteome Res. 2007 May;6(5):1728-34
16204113 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii245-51
12719255 - Biophys J. 2003 May;84(5):3257-63
18774775 - Biochem Biophys Res Commun. 2008 Nov 14;376(2):321-5
17591774 - J Biol Chem. 2007 Aug 31;282(35):25677-86
16043693 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10870-5
References_xml – reference: 16983686 - J Cell Biochem. 2007 Feb 15;100(3):665-78
– reference: 17397210 - J Proteome Res. 2007 May;6(5):1728-34
– reference: 19056401 - J Theor Biol. 2009 Mar 7;257(1):17-26
– reference: 18821775 - Biochemistry. 2008 Oct 21;47(42):11013-23
– reference: 17520325 - Amino Acids. 2008 Jan;34(1):111-7
– reference: 18355838 - J Theor Biol. 2008 May 21;252(2):350-6
– reference: 17698024 - Anal Biochem. 2007 Nov 1;370(1):1-16
– reference: 17434148 - Biochem Biophys Res Commun. 2007 Jun 8;357(3):633-40
– reference: 12824396 - Nucleic Acids Res. 2003 Jul 1;31(13):3692-7
– reference: 18680458 - Protein Pept Lett. 2008;15(6):612-6
– reference: 16892386 - ChemMedChem. 2006 May;1(5):504-23
– reference: 18297652 - Proteomics. 2008 Feb;8(4):750-78
– reference: 13678304 - J Protein Chem. 2003 May;22(4):395-402
– reference: 18235503 - Nature. 2008 Jan 31;451(7178):591-5
– reference: 9094735 - Proteins. 1997 Mar;27(3):329-35
– reference: 16204113 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii245-51
– reference: 12890493 - Biochem Biophys Res Commun. 2003 Aug 15;308(1):148-51
– reference: 16044193 - Amino Acids. 2006 Feb;30(1):49-54
– reference: 11018595 - Drug Discov Today. 2000 Oct 1;5(10):445-454
– reference: 19503826 - PLoS Comput Biol. 2009 Jun;5(6):e1000397
– reference: 12509760 - Nat Rev Drug Discov. 2003 Jan;2(1):63-9
– reference: 10089205 - Bioinformatics. 1999 Feb;15(2):176-7
– reference: 17628605 - J Theor Biol. 2007 Oct 7;248(3):546-51
– reference: 18991767 - Protein Pept Lett. 2008;15(9):915-21
– reference: 19341746 - J Theor Biol. 2009 Jul 21;259(2):366-72
– reference: 18037612 - Bioinformatics. 2008 Jan 15;24(2):225-33
– reference: 18045228 - Protein Pept Lett. 2007;14(9):871-5
– reference: 15889221 - Amino Acids. 2005 Jun;28(4):373-6
– reference: 19037861 - J Comput Chem. 2009 Jul 15;30(9):1414-23
– reference: 19075768 - Curr Top Med Chem. 2008;8(18):1573-9
– reference: 15314209 - Protein Eng Des Sel. 2004 Jun;17(6):509-16
– reference: 16212421 - J Proteome Res. 2005 Sep-Oct;4(5):1681-6
– reference: 12719255 - Biophys J. 2003 May;84(5):3257-63
– reference: 16889410 - J Proteome Res. 2006 Aug;5(8):1888-97
– reference: 10202136 - EMBO J. 1999 Apr 1;18(7):1723-9
– reference: 18996090 - Biochem Biophys Res Commun. 2008 Dec 26;377(4):1243-7
– reference: 19383794 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7379-84
– reference: 15498588 - J Theor Biol. 2005 Jan 7;232(1):7-15
– reference: 16808903 - Biochem Biophys Res Commun. 2006 Aug 18;347(1):150-7
– reference: 12471598 - Proteins. 2003 Jan 1;50(1):44-8
– reference: 16718615 - Pharm Res. 2006 Jun;23(6):1089-116
– reference: 16325146 - Biochem Biophys Res Commun. 2006 Jan 20;339(3):1015-20
– reference: 15359741 - J Proteome Res. 2004 Jul-Aug;3(4):856-61
– reference: 19356130 - Protein Pept Lett. 2009;16(4):351-5
– reference: 19281186 - Mol Pharm. 2009 May-Jun;6(3):825-35
– reference: 7587280 - Crit Rev Biochem Mol Biol. 1995;30(4):275-349
– reference: 11097339 - Clin Chem Lab Med. 2000 Sep;38(9):853-6
– reference: 7670379 - Protein Sci. 1995 Jul;4(7):1365-83
– reference: 10382667 - Proteins. 1999 Jun 1;35(4):401-7
– reference: 11288174 - Proteins. 2001 May 15;43(3):246-55
– reference: 18586719 - Bioinformatics. 2008 Jul 1;24(13):i232-40
– reference: 11354006 - Proteins. 2001 Jul 1;44(1):57-9
– reference: 19776029 - Protein Eng Des Sel. 2009 Nov;22(11):699-705
– reference: 16043693 - Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10870-5
– reference: 9988519 - J Protein Chem. 1998 Nov;17(8):729-38
– reference: 18221009 - Protein Pept Lett. 2008;15(1):27-32
– reference: 8780787 - J Mol Biol. 1996 Aug 23;261(3):470-89
– reference: 7567954 - Proteins. 1995 Apr;21(4):319-44
– reference: 19149574 - Curr Med Chem. 2009;16(2):232-44
– reference: 18634802 - J Theor Biol. 2008 Oct 7;254(3):691-6
– reference: 17168850 - Curr Med Chem. 2006;13(27):3263-70
– reference: 9730924 - Bioinformatics. 1998;14(7):591-9
– reference: 15279552 - Curr Med Chem. 2004 Aug;11(16):2105-34
– reference: 19169652 - Acta Biotheor. 2009 Sep;57(3):321-30
– reference: 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38
– reference: 19149669 - Protein Pept Lett. 2009;16(1):27-31
– reference: 16140260 - Biochem Biophys Res Commun. 2005 Oct 28;336(3):737-9
– reference: 17307149 - Biochem Biophys Res Commun. 2007 Apr 6;355(2):513-9
– reference: 17508935 - Curr Top Med Chem. 2007;7(10):1015-29
– reference: 15308540 - Bioinformatics. 2005 Jan 1;21(1):10-9
– reference: 18274516 - Nat Protoc. 2008;3(2):153-62
– reference: 16429410 - J Comput Chem. 2006 Mar;27(4):478-82
– reference: 15700108 - Amino Acids. 2005 Feb;28(1):29-35
– reference: 17330882 - J Comput Chem. 2007 Jul 15;28(9):1463-6
– reference: 19689387 - Med Chem. 2009 Jul;5(4):305-17
– reference: 2197975 - Annu Rev Biochem. 1990;59:1007-39
– reference: 10336379 - Proteins. 1999 Jan 1;34(1):137-53
– reference: 18381630 - J Comput Chem. 2008 Sep;29(12):2018-24
– reference: 8789141 - Anal Biochem. 1996 Jan 1;233(1):1-14
– reference: 18782071 - Protein Pept Lett. 2008;15(7):739-44
– reference: 18774775 - Biochem Biophys Res Commun. 2008 Nov 14;376(2):321-5
– reference: 12186861 - J Biol Chem. 2002 Nov 29;277(48):45765-9
– reference: 19075826 - Protein Pept Lett. 2008;15(10):1132-7
– reference: 8349584 - J Biol Chem. 1993 Aug 15;268(23):16938-48
– reference: 8313840 - Drug Metab Rev. 1993;25(4):503-17
– reference: 17591774 - J Biol Chem. 2007 Aug 31;282(35):25677-86
– reference: 17395128 - Neurotherapeutics. 2007 Apr;4(2):184-98
– reference: 18471832 - J Theor Biol. 2008 Jul 21;253(2):310-5
– reference: 19364489 - Anal Biochem. 2009 Jul 1;390(1):68-73
– reference: 17586467 - Biochem Biophys Res Commun. 2007 Aug 24;360(2):339-45
– reference: 16381885 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7
– reference: 17510168 - Bioinformatics. 2007 Aug 1;23(15):2004-12
– reference: 8071322 - J Biol Chem. 1994 Sep 2;269(35):22014-20
– reference: 18473953 - Protein Pept Lett. 2008;15(4):392-6
– reference: 15680586 - Comput Biol Chem. 2005 Feb;29(1):55-67
– reference: 16040052 - J Theor Biol. 2006 Jan 21;238(2):395-400
– reference: 18618097 - Arch Toxicol. 2008 Oct;82(10):667-715
– reference: 17211405 - Nat Biotechnol. 2007 Jan;25(1):71-5
– reference: 17986454 - Nucleic Acids Res. 2008 Jan;36(Database issue):D907-12
– reference: 16083294 - J Proteome Res. 2005 Jul-Aug;4(4):1413-8
SSID ssj0053866
Score 2.4884086
Snippet Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine compound-protein...
Background Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine...
BackgroundStudy of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine...
Background Study of drug-target interaction networks is an important topic for drug development. It is both time-consuming and costly to determine...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e9603
SubjectTerms Acids
Algorithms
Amino acids
Binding Sites
Biochemistry/Bioinformatics
Bioinformatics
Biology
Coding
Computational Biology
Computational Biology - methods
Cytochrome
Datasets
Drug development
Drugs
Enzymes
Functional groups
Genes
Genomes
Genomics
Health sciences
Humans
Influenza
Ion channels
Life sciences
Ligands
Models, Statistical
Non-Clinical Medicine/Medical Informatics
Nuclear receptors
Pharmaceutical Preparations - chemistry
Physicochemical properties
Predictions
Protein Conformation
Protein interaction
Protein Structure, Secondary
Proteins
Proteins - chemistry
Receptors
Receptors, G-Protein-Coupled - metabolism
Redundancy
Studies
Technology, Pharmaceutical - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdQL3BBjAHLKMyakIBDujp27OQ4ENOGxIeAoZ2wHMceSFVaNY0Q_z3vxW60iEnbgVsVv0bK-_w5ee9nQl4wyIumEvPUzVWVisrLtCo8h2RoTOV4zgqHA84fPsrTc_H-Ir-4ctQX9oQFeuCguKMsc0VRqlpmAFS8yCvmZH_IEgeoIazH7Dsvyu1mKuRgiGIp46AcV-wo2mW2WjZuFmA7HxWinq9_yMqT1WLZXgc5_-2cvNs1K_Pnt1ksrpSlkwfkfsST9Dg8xw6545qHZCdGbEtfRVrp17vkx-c1fpTBNmdar7vLNDSBUySMWIfxBtqEpvCWYnGrKVzBuhdeF9J-AKSlpqlpoG5C-1LvemrQ9hE5P3n37e1pGk9XSK0s2SYVJmMSfs29zJiFwLalMrzwJs-sdSZnHsq39czXWSWlN4UFJIj0-ErURnLHH5NJA_rcI7TmUoANvOLSACAoIKhVLQAYClfUgNgSwreq1jZSj-MJGAvdf09TsAUJ2tJoIB0NlJB0-NcqUG_cIP8GrTjIInF2fwHcSUd30je5U0IO0Ad0mEIdwl8fC8VLJE-UCTnsJZA8o8HunEvTta0--_T9FkJfv4yEXkYhvwR1WBMnIuCZkJRrJDkdSUIKsKPlPfTYrVZaDaCjFLBzZqCU6daLr1-mwzLeFDvuGrfsWq04njSQKxB5Enx-UGwGhQESeZ4QNYqGkebHK82vnz11OYBZ8A2452yIm1vZdv9_2PYpuRd6P3jK2JRMNuvOPQNIuame99njL7JRcsI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwQvExsf6xhgISTgIV0dJ3bygNAKqwYSZRob2tMsJ3EKUpWUphHaf89d7AQiJthbFV9S-Xxftu9-R8gLBnZRJ8HYM2OZeEGSCy-Jcg7GUOvE8JBFBgucP83E8Xnw8SK82CCzthYG0ypbm9gY6qxM8Yz8AOxoHMBmgPG3yx8edo3C29W2hYZ2rRWyNw3E2C2y6SMy1oBsTo5mJ6etbQbtFsIV0HHJDtx6jZZlYUY2nOc9B9Xg-HfWerBclNV1oejfGZV36mKpr37qxeIPdzW9R7ZcnEkPrWBskw1T7JDbtvPk1Q7Zdjpd0VcOePr1fXJ5ssJrG0yEpu9X9dw7a9LEaXNqaAsg6MymjVd0Au4vo_BkCp7RHijS5iCrorrIqP0nlACKUWYNu_oH5Hx6dPbu2HP9F7xUxGztBdpnAn6Nc-GzFFQ_jaXmUa5DP02NDlkODj7NWZ75iRC5jlKIFRFAXwaZFtzwh2RQAGd3Cc24CMZRnEsuNIQMEai9zAIIHQMTZRDTDQlvma5SB06OPTIWqrlxk7BJsXxTuFTKLdWQeN1bSwvO8R_6Ca5nR4vQ2s2DcjVXTlOV75soimUmfJhHHoQJM6Lp6sUhtoXpDskzlAZl61Q7A6EOA8ljhFcUQ_K8oUB4jQLzd-a6rir14fPXGxB9Oe0RvXREeQnsSLWrmYA5IWxXj3K_RwlGIu0N76Lstlyp1G91gjdbeb5-mHbD-FHMyStMWVdKcuxFEEogeWSlv2OsD64DTH04JLKnFz3O90eK798acHMId0E24JujToNutLZ7_57GY3LX5n1wj7F9MlivavMEwsl18tTZiF-JFnQe
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGd4ALML5WKGAhxMchWR07dnLsgGogUSZY0ThA5CTOQFRp1TRCcOBv573YiQgMMQ7cIvvZip_t55_t934m5D4Du6hTMfbMWKWeSAvppVHBwRhqnRoesshggPPLmTyYixfH4fEWed_GwjgNwh5xsayam3z8WJZmz2lyD_mK7O2pz7hibQl_BUK-heT8QcM4hCdjGwxAOke2ZQjpA7I9nx1O3tmb5sCTwZi7cLo_1dRbrhpW_852D_DPTgOmv_tXnq_Llf76RS8WPy1e00vke9ts67Py2a83qZ99-4UR8r_p5TK56GAvndhadsiWKa-QHWdYKvrIsV8_vko-HK7x7gi9senTdX3iHTW-6rQ5urRRGHRmfdcrug9rcE4hZQrLsz3VpM1pWkV1mVP70CYOQ4pQt16b6hqZT58dPTnw3CMQXiZjtvGEDpiEr3EhA5aB_clipXlU6DDIMqNDVgDKyApW5EEqZaGjDAArsvgrkWvJDb9OBiWoYJfQnEsxjuJCcakBt0Rge1QuAL8KE-UALIeEt32dZI4hHR_qWCTNtZ-CnZLVVoI6TZxOh8TrSq0sQ8hf5PdxGHWyyO_dJECnJq4zkyAwURSrXAbQjkKEKTOyeVqMA8CG5g7JXRyEiQ2W7axUMhGKx8jxKIfkXiOBHB8lOhGd6Lqqkuev3p5B6M3rntBDJ1QsQR2ZdoEb0CYccz3JUU8SLFXWy97FQdtqpUoAG8UCNvgMlDJqp9Hp2bTLxkrRMbA0y7pKFMcHEUIFIjfspOsUC5MbMVg4JKo3HXua7-eUnz42DOuAuWFsQJ1-N3HP1Lc3_7XALXLBuqNwj7ERGWzWtbkNKHeT3nG26gdYP6pj
  priority: 102
  providerName: Unpaywall
Title Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features
URI https://www.ncbi.nlm.nih.gov/pubmed/20300175
https://www.proquest.com/docview/1289440113
https://www.proquest.com/docview/733788573
https://pubmed.ncbi.nlm.nih.gov/PMC2836373
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0009603&type=printable
https://doaj.org/article/22e8897d62774f45b1e66542934054cf
http://dx.doi.org/10.1371/journal.pone.0009603
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (ODIN)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27gFeEONrHaVYCAl4SFXHjp08INSOlYG0Uo0VlRciJ3HKpCotTSPYf8-dk0ZEFNhLFNmXSD7fx8_2-Y6Q5wzsoo5E3zF9FTkiSqUT-SkHY6h1ZLjHfIMXnM_H8mwqPsy82R7Z1mytGJjvXNphPanpetH7-f36DSj8a1u1QbHtR73VMjO9EpTzfXIAvirAYg7noj5XAO22p5eIWhzp9nl1me5vf2k4K5vTv7bcrdVime-CpX9GV94qspW-_qEXi99c1-guuVNhTjooheSQ7JnsHjmstDqnL6vU06_uk6-TNR7cYCg0fbsu5s6lDRSndt-wvAJBx2XgeE6H4AATCi0j8I3lliK1W1k51VlCyyqXKAMUcWYB6_oHZDo6vTw5c6oKDE4sA7ZxhHaZhLd-Kl0Wg_LHgdLcT7XnxrHRHkvBxccpSxM3kjLVfgxoEVPoK5FoyQ1_SFoZ8POI0IRL0feDVHGpATT4oPgqEQAehfETQHVtwresDuMqPTlWyViE9sxNwTKl5FaIExRWE9QmTv3VqkzP8R_6Ic5iTYvJtW3Dcj0PK10NXdf4fqAS6cI4UuFFzEhb14sDuoXhtslTlIGwvKlam4hwIBQPMMGibJNnlgITbGQYwTPXRZ6H7z9-vgHRp4sG0YuKKF0CO2Jd3ZqAMWHirgZlp0EJZiJudB-hxG65kocATAIBq2sGTOlspXh3N6278acYlZeZZZGHimM1Ak8ByaNS5mvGgm4hAPLaRDW0ocH5Zk929c2mNwfAC7IB_-zVenOjuT3-NwMek9tl5Ad3GOuQ1mZdmCcAKDdRl-yrmYKnf8LwOXrXJQfD0_Hkomu3aLrWhkDbdDwZfPkFYAJ4-A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGERoviI2PFQazEAh4SFfHjp08ILQxqpZtBUGH-oRxEqcgVUlpGk39p_gbOcdJIGKCveytii-pfHf-3dm-D4SeEsBFFbK-o_sidFiYcCf0EwpgqFSoqUd8bRKcT8d8eMbeTb3pBvpZ58KYsMoaE0ugjrPInJHvA44GDDYDhL5e_HBM1yhzu1q30LBqcazX57Bly1-NjkC-z1x38HbyZuhUXQWciAdk5TDlEg6_-gl3SQQKHQVCUT9RnhtFWnkkAbMVJSSJ3ZDzRPkReECmLLxgseJUU_juNXSdUcASWD9i2mzwADs4r9LzqCD7lTb0Flmqe3azQFvmr-wS0NiCzmKe5Rc5un_Ha24W6UKtz9V8_ocxHNxGtyovFh9YtdtCGzrdRjdsX8v1NtqqECPHL6qy1i_voC8fluZSyIRZ46NlMXMmZRA6Ls8kbXoFHtug9BwfgnGNMTwZgN21x5W4PCbLsUpjbP_J6Bc2Pmyx1PlddHYlcriHOilwdgfhmHLW94NEUK7AIfEBVETMwDFl2o_BY-wiWjNdRlXpc9OBYy7L-zwBWyDLN2lEJStRdZHTvLWwpT_-Q39o5NnQmsLd5YNsOZMVDkjX1b4fiJi7MI-EeSHRvOwZRsFzhul20Z7RBmmzYBv4kQdM0MAUb-Rd9KSkMMU7UhMdNFNFnsvR-8-XIPr0sUX0vCJKMmBHpKqMDJiTKQrWotxtUQIERa3hHaO7NVdy-Xuxwpu1Pl88jJth81ET8ZfqrMiloKbTgSeA5L7V_oaxLhgmMCReF4nWumhxvj2Sfv9Wlk4HZxp0A77Za1bQpWT74N_T2EObw8npiTwZjY8fops2woQ6hOyizmpZ6EfguK7CxyVaYPT1quHpF3pfqcM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGER8viI2PFQazEAh4SNvEiZ08ILRRqpVBmdiG-oRxErsgVUlpGk391_jrOMdOIGKCveytii-pfHf-3dm-D4SeuoCLIvYHjhyw2PFjRZ04VATAUIhYksANpU5w_jChB6f-u2kw3UA_61wYHVZZY2IF1Gme6DPyPuBo5MNmwCV9ZcMijoaj14sfju4gpW9a63YaRkUO5foMtm_Fq_EQZP3M80ZvT94cOLbDgJPQyF05vvBcCr8GinpuAsqdREyQUInASxIpAleBCUuUq1IvplSJMAFvSJeIZ34qKJEEvnsFXWWERDqckE2bzR7gCKU2VY8wt281o7fIM9kzGwfSMoVVx4DGLnQW87w4z-n9O3bzRpktxPpMzOd_GMbRbXTLerR4z6jgJtqQ2Ra6ZnpcrrfQpkWPAr-wJa5f3kFfjpb6gkiHXOPhspw5J1VAOq7OJ02qBZ6YAPUC74OhTTE8GYENNkeXuDoyK7DIUmz-Sesa1v5suZTFXXR6KXK4hzoZcHYb4ZRQfxBGihEqwDkJAWBY6oOT6sswBe-xi0jNdJ7YMui6G8ecV3d7DLZDhm9ci4pbUXWR07y1MGVA_kO_r-XZ0Ooi3tWDfDnjFhO458kwjFhKPZiH8oPYlbTqH0bAi4bpdtGu1gZuMmIbKOJ7PiORLuRIu-hJRaELeWR6ScxEWRR8_PHzBYiOP7WInlsilQM7EmGzM2BOukBYi3KnRQlwlLSGt7Xu1lwp-O-FC2_W-nz-MG6G9Ud19F8m87LgsL5YGAYMSO4b7W8Y64GRAqMSdBFrrYsW59sj2fdvVRl1cKxBN-CbvWYFXUi2D_49jV10HYCJvx9PDh-imybYhDiuu4M6q2UpH4EPu4ofV2CB0dfLRqdf3WyuBg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGd4ALML5WKGAhxMchWR07dnLsgGogUSZY0ThA5CTOQFRp1TRCcOBv573YiQgMMQ7cIvvZip_t55_t934m5D4Du6hTMfbMWKWeSAvppVHBwRhqnRoesshggPPLmTyYixfH4fEWed_GwjgNwh5xsayam3z8WJZmz2lyD_mK7O2pz7hibQl_BUK-heT8QcM4hCdjGwxAOke2ZQjpA7I9nx1O3tmb5sCTwZi7cLo_1dRbrhpW_852D_DPTgOmv_tXnq_Llf76RS8WPy1e00vke9ts67Py2a83qZ99-4UR8r_p5TK56GAvndhadsiWKa-QHWdYKvrIsV8_vko-HK7x7gi9senTdX3iHTW-6rQ5urRRGHRmfdcrug9rcE4hZQrLsz3VpM1pWkV1mVP70CYOQ4pQt16b6hqZT58dPTnw3CMQXiZjtvGEDpiEr3EhA5aB_clipXlU6DDIMqNDVgDKyApW5EEqZaGjDAArsvgrkWvJDb9OBiWoYJfQnEsxjuJCcakBt0Rge1QuAL8KE-UALIeEt32dZI4hHR_qWCTNtZ-CnZLVVoI6TZxOh8TrSq0sQ8hf5PdxGHWyyO_dJECnJq4zkyAwURSrXAbQjkKEKTOyeVqMA8CG5g7JXRyEiQ2W7axUMhGKx8jxKIfkXiOBHB8lOhGd6Lqqkuev3p5B6M3rntBDJ1QsQR2ZdoEb0CYccz3JUU8SLFXWy97FQdtqpUoAG8UCNvgMlDJqp9Hp2bTLxkrRMbA0y7pKFMcHEUIFIjfspOsUC5MbMVg4JKo3HXua7-eUnz42DOuAuWFsQJ1-N3HP1Lc3_7XALXLBuqNwj7ERGWzWtbkNKHeT3nG26gdYP6pj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Drug-Target+Interaction+Networks+Based+on+Functional+Groups+and+Biological+Features&rft.jtitle=PloS+one&rft.au=He%2C+Zhisong&rft.au=Zhang%2C+Jian&rft.au=Shi%2C+Xiao-He&rft.au=Hu%2C+Le-Le&rft.date=2010-03-11&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=5&rft.issue=3&rft.spage=e9603&rft_id=info:doi/10.1371%2Fjournal.pone.0009603&rft.externalDocID=A473908776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon