Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus) and humans

Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens . Results We identified three major clades among bonobos that separated approxima...

Full description

Saved in:
Bibliographic Details
Published inBMC evolutionary biology Vol. 10; no. 1; p. 270
Main Authors Zsurka, Gábor, Kudina, Tatiana, Peeva, Viktoriya, Hallmann, Kerstin, Elger, Christian E, Khrapko, Konstantin, Kunz, Wolfram S
Format Journal Article
LanguageEnglish
Published London BioMed Central 02.09.2010
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2148
1471-2148
DOI10.1186/1471-2148-10-270

Cover

Abstract Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens . Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes ( d N /d S ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F 0 F 1 -ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased d N /d S ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.
AbstractList We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (d.sub.N /d.sub.S ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F.sub.0 F.sub.1 -ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased d.sub.N /d.sub.S ratios when compared to bonobos. Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.
We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.
Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens . Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes ( d N /d S ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F 0 F 1 -ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased d N /d S ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.
Abstract Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.
Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (d N /d S ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased d N /d S ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.
We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens.BACKGROUNDWe have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens.We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos.RESULTSWe identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos.Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.CONCLUSIONSSome variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.
Abstract Background: We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens . Results: We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0 F1 -ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Conclusions: Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.
Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (d.sub.N /d.sub.S ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F.sub.0 F.sub.1 -ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased d.sub.N /d.sub.S ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.
ArticleNumber 270
Audience Academic
Author Hallmann, Kerstin
Elger, Christian E
Zsurka, Gábor
Kunz, Wolfram S
Kudina, Tatiana
Peeva, Viktoriya
Khrapko, Konstantin
AuthorAffiliation 1 Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
2 Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
AuthorAffiliation_xml – name: 1 Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
– name: 2 Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
Author_xml – sequence: 1
  givenname: Gábor
  surname: Zsurka
  fullname: Zsurka, Gábor
  organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn
– sequence: 2
  givenname: Tatiana
  surname: Kudina
  fullname: Kudina, Tatiana
  organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn
– sequence: 3
  givenname: Viktoriya
  surname: Peeva
  fullname: Peeva, Viktoriya
  organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn
– sequence: 4
  givenname: Kerstin
  surname: Hallmann
  fullname: Hallmann, Kerstin
  organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn
– sequence: 5
  givenname: Christian E
  surname: Elger
  fullname: Elger, Christian E
  organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn
– sequence: 6
  givenname: Konstantin
  surname: Khrapko
  fullname: Khrapko, Konstantin
  organization: Harvard Medical School, Beth Israel Deaconess Medical Center
– sequence: 7
  givenname: Wolfram S
  surname: Kunz
  fullname: Kunz, Wolfram S
  email: wolfram.kunz@ukb.uni-bonn.de
  organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20813043$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFAR_YA7JxTBATik-COJ7QtSVb4qVYIDSNysZ8fJepXYW9up1H-Pw5alW1Hkg63nmXnP4zkuDpx3piieY3SKMW_f4ZrhiuCaVxhVhKFHxdGudHDnfFgcx7hGCDNO8JPikCCOKarpUfHzg43JOp3KDaRkgoul78vJJq9X3nXBwlgOxvnJlJ29NiHadFNaVyrvvPKxfPMNXKY6G_Uc35bgunI1T-Di0-JxD2M0z273k-LHp4_fz79Ul18_X5yfXVa6FThVROEGBFINRUIJ3EKv-5YAEXW-pkYYZUzPNRjdQ9PmB_QNhVq1LeswBYLpSXGx1e08rOUm2AnCjfRg5e-CD4OEkKwejcSgmGYME8N4rYFwrBphBCOtUip3zlrvt1qbWU2m08alAOOe6P6Nsys5-GuZxyW85lng9a1A8FeziUlO2RgzjuCMn6NkTYNbWguUkS_vIdd-Di47JQXCggrBWQa9eghERJbi7fKPO9QA-ZHW9T7PppfG8oxQVjNO-TLa6T9QeXVmsjrHqre5vkd4cdeMnQt_spMBaAvQwccYTL-DYCSXeMolf3LJ31LJ8cyU9h5F2wTJ-sVOO_6PiLfEmHu4wYS_TjzI-QWS_fWS
CitedBy_id crossref_primary_10_1093_hmg_ddr350
crossref_primary_10_1002_evan_21456
crossref_primary_10_1186_s12864_018_4650_9
crossref_primary_10_1371_journal_pone_0017729
crossref_primary_10_1186_s12862_018_1280_4
crossref_primary_10_1007_s10329_013_0373_3
crossref_primary_10_1080_24701394_2018_1431228
crossref_primary_10_3390_ani13010096
crossref_primary_10_3897_zookeys_835_32470
crossref_primary_10_1007_s00251_017_1010_x
crossref_primary_10_1111_evo_13361
crossref_primary_10_1371_journal_pone_0174851
crossref_primary_10_1093_gbe_evw124
crossref_primary_10_1371_journal_pone_0059660
crossref_primary_10_2354_psj_34_016
crossref_primary_10_1093_gbe_evu059
crossref_primary_10_1093_molbev_mst005
crossref_primary_10_1038_nature12788
crossref_primary_10_1163_1568539X_00003335
crossref_primary_10_1111_iji_12490
crossref_primary_10_1128_JVI_01960_19
crossref_primary_10_1016_j_mito_2012_06_009
Cites_doi 10.1086/320591
10.1016/j.cell.2008.06.021
10.1007/s00439-002-0740-4
10.1093/oxfordjournals.molbev.a003836
10.1093/bioinformatics/btg359
10.1073/pnas.92.2.532
10.1186/1471-2164-8-339
10.1093/hmg/ddm180
10.1042/BJ20061609
10.1073/pnas.012364999
10.1111/j.1365-294X.2004.02332.x
10.1016/0047-2484(91)90002-D
10.1016/0092-8674(90)90059-N
10.1017/S0140525X00078973
10.1093/jhered/92.6.490
10.1073/pnas.91.19.8900
10.1126/science.1088434
10.1126/science.7915048
10.1093/oxfordjournals.molbev.a025630
10.1093/oxfordjournals.molbev.a025810
10.1038/13779
10.1126/science.1174462
10.1074/jbc.275.15.11355
10.1086/303092
10.1086/511282
10.1038/nature00879
10.1126/science.1098807
10.1073/pnas.0708015105
10.1073/pnas.0136972100
10.1002/ajp.20585
10.1093/bioinformatics/btm404
10.1038/ng1606
10.1086/316938
10.1002/ajpa.20674
10.1093/molbev/msj024
10.1006/mpev.1996.0056
10.1146/annurev.biochem.76.081205.150955
10.1101/gr.4305906
10.1093/molbev/msm092
ContentType Journal Article
Copyright Zsurka et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2010 BioMed Central Ltd.
2010. This work is licensed under https://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2010 Zsurka et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Zsurka et al; licensee BioMed Central Ltd. 2010 Zsurka et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Zsurka et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010. This work is licensed under https://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2010 Zsurka et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Zsurka et al; licensee BioMed Central Ltd. 2010 Zsurka et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
RC3
PRINS
7X8
5PM
DOA
DOI 10.1186/1471-2148-10-270
DatabaseName Springer Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
ProQuest Medical Database
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
Environmental Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Genetics Abstracts
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
ProQuest Central China
MEDLINE - Academic
DatabaseTitleList
MEDLINE


Publicly Available Content Database
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2148
EndPage 270
ExternalDocumentID oai_doaj_org_article_1ab7c7712e784ca281b59e9726bbb6af
PMC2942848
2501861261
A237478388
20813043
10_1186_1471_2148_10_270
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
Germany
GeographicLocations_xml – name: Germany
– name: United States
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: AG019787
– fundername: NIA NIH HHS
  grantid: R01 AG019787
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
7XC
88E
8CJ
8FE
8FH
8FI
8FJ
AAHBH
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
D1J
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OVT
P2P
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PYCSY
RBZ
RIG
RNS
ROL
RPM
SBL
SV3
TR2
TUS
U2A
UKHRP
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
RC3
PRINS
7X8
5PM
ID FETCH-LOGICAL-c691t-2b15a90b5309b916afcf62a2946913e9ebeef8caecfa56017f53a4b667d13a213
IEDL.DBID M48
ISSN 1471-2148
IngestDate Wed Aug 27 01:28:45 EDT 2025
Thu Aug 21 14:30:14 EDT 2025
Fri Sep 05 05:58:47 EDT 2025
Fri Jul 25 10:41:04 EDT 2025
Fri Jul 25 18:57:50 EDT 2025
Tue Jun 17 21:10:10 EDT 2025
Tue Jun 10 20:38:55 EDT 2025
Thu Apr 03 07:00:18 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Tue Jul 01 04:27:26 EDT 2025
Sat Sep 06 07:27:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Evolutionary Constraint
Modern Human
Complete Mitochondrial Genome
Mitochondrial Genome
ATPase Gene
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c691t-2b15a90b5309b916afcf62a2946913e9ebeef8caecfa56017f53a4b667d13a213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2148-10-270
PMID 20813043
PQID 2955186081
PQPubID 44659
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_1ab7c7712e784ca281b59e9726bbb6af
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2942848
proquest_miscellaneous_755163490
proquest_journals_901939987
proquest_journals_2955186081
gale_infotracmisc_A237478388
gale_infotracacademiconefile_A237478388
pubmed_primary_20813043
crossref_primary_10_1186_1471_2148_10_270
crossref_citationtrail_10_1186_1471_2148_10_270
springer_journals_10_1186_1471_2148_10_270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-02
PublicationDateYYYYMMDD 2010-09-02
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC evolutionary biology
PublicationTitleAbbrev BMC Evol Biol
PublicationTitleAlternate BMC Evol Biol
PublicationYear 2010
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References R Noda (1486_CR12) 2001; 92
M Ingman (1486_CR16) 2007; 16
M Stoneking (1486_CR22) 2000; 67
AC Stone (1486_CR11) 2002; 99
SJ Carnahan (1486_CR38) 2008; 70
J Rozas (1486_CR42) 2003; 19
PA Morin (1486_CR6) 1994; 265
DC Wallace (1486_CR15) 2007; 76
MJ Betts (1486_CR44) 2003
AW Briggs (1486_CR5) 2009; 325
J Eriksson (1486_CR9) 2004; 13
AE Lebatard (1486_CR21) 2008; 105
TG Schurr (1486_CR29) 1990; 46
RE Green (1486_CR4) 2008; 134
PE Wheeler (1486_CR36) 1991; 21
K Galik (1486_CR20) 2004; 305
CA Wise (1486_CR8) 1997; 14
M Ruvolo (1486_CR10) 1994; 91
RM Andrews (1486_CR18) 1999; 23
M Nei (1486_CR27) 1986; 3
A Torroni (1486_CR30) 1993; 53
Z Yang (1486_CR43) 2006; 23
N Galtier (1486_CR23) 2006; 16
S Finnilä (1486_CR25) 2001; 68
S Horai (1486_CR1) 1995; 92
MJ Anderson (1486_CR37) 2007; 134
TR Schmidt (1486_CR28) 2001; 18
G Zsurka (1486_CR31) 2005; 37
K Tamura (1486_CR40) 2007; 24
PC Jones (1486_CR34) 2000; 275
D Falk (1486_CR35) 1990; 13
M Brunet (1486_CR19) 2002; 418
X Xu (1486_CR2) 1996; 13
BA Malyarchuk (1486_CR24) 2002; 111
JL Elson (1486_CR26) 2001; 68
G Zsurka (1486_CR32) 2007; 80
JM Shoffner (1486_CR33) 1990; 61
T Amo (1486_CR17) 2007; 404
D Mishmar (1486_CR13) 2003; 100
1486_CR41
SM Flynn (1486_CR3) 2007; 8
KJ Garner (1486_CR7) 1996; 6
E Ruiz-Pesini (1486_CR14) 2004; 303
MA Larkin (1486_CR39) 2007; 23
1968708 - Am J Hum Genet. 1990 Mar;46(3):613-23
17506638 - Annu Rev Biochem. 2007;76:781-821
12110880 - Nature. 2002 Jul 11;418(6894):145-51
15353798 - Science. 2004 Sep 3;305(5689):1450-3
11115380 - Am J Hum Genet. 2001 Jan;68(1):145-153
17632799 - Am J Phys Anthropol. 2007 Oct;134(2):274-80
11349229 - Am J Hum Genet. 2001 Jun;68(6):1475-84
8090741 - Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8900-4
10508508 - Nat Genet. 1999 Oct;23(2):147
17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
17617636 - Hum Mol Genet. 2007 Oct 1;16(19):2281-7
19608918 - Science. 2009 Jul 17;325(5938):318-21
7688933 - Am J Hum Genet. 1993 Sep;53(3):591-608
8676744 - Mol Biol Evol. 1996 May;13(5):691-8
8812304 - Mol Phylogenet Evol. 1996 Aug;6(1):39-48
14668244 - Bioinformatics. 2003 Dec 12;19(18):2496-7
9214743 - Mol Biol Evol. 1997 Jul;14(7):707-16
15488001 - Mol Ecol. 2004 Nov;13(11):3425-35
12136235 - Hum Genet. 2002 Jul;111(1):46-53
10968778 - Am J Hum Genet. 2000 Oct;67(4):1029-32
11264408 - Mol Biol Evol. 2001 Apr;18(4):563-9
12509511 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):171-6
18561295 - Am J Primatol. 2008 Oct;70(10):939-48
17236134 - Am J Hum Genet. 2007 Feb;80(2):298-305
18305174 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3226-31
18692465 - Cell. 2008 Aug 8;134(3):416-26
11948216 - J Hered. 2001 Nov-Dec;92(6):490-6
11756656 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):43-8
17894875 - BMC Genomics. 2007;8:339
7530363 - Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):532-6
10753949 - J Biol Chem. 2000 Apr 14;275(15):11355-60
17355224 - Biochem J. 2007 Jun 1;404(2):345-51
7915048 - Science. 1994 Aug 26;265(5176):1193-201
3444411 - Mol Biol Evol. 1986 Sep;3(5):418-26
2112427 - Cell. 1990 Jun 15;61(6):931-7
16354751 - Genome Res. 2006 Feb;16(2):215-22
16177230 - Mol Biol Evol. 2006 Jan;23(1):212-26
16025113 - Nat Genet. 2005 Aug;37(8):873-7
14716012 - Science. 2004 Jan 9;303(5655):223-6
17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
References_xml – volume: 68
  start-page: 1475
  year: 2001
  ident: 1486_CR25
  publication-title: Am J Hum Genet
  doi: 10.1086/320591
– volume: 134
  start-page: 416
  year: 2008
  ident: 1486_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.021
– volume: 111
  start-page: 46
  year: 2002
  ident: 1486_CR24
  publication-title: Hum Genet
  doi: 10.1007/s00439-002-0740-4
– ident: 1486_CR41
– volume: 18
  start-page: 563
  year: 2001
  ident: 1486_CR28
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a003836
– volume: 19
  start-page: 2496
  year: 2003
  ident: 1486_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg359
– volume: 92
  start-page: 532
  year: 1995
  ident: 1486_CR1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.92.2.532
– volume: 8
  start-page: 339
  year: 2007
  ident: 1486_CR3
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-339
– volume: 16
  start-page: 2281
  year: 2007
  ident: 1486_CR16
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddm180
– volume: 404
  start-page: 345
  year: 2007
  ident: 1486_CR17
  publication-title: Biochem J
  doi: 10.1042/BJ20061609
– volume: 53
  start-page: 591
  year: 1993
  ident: 1486_CR30
  publication-title: Am J Hum Genet
– volume: 99
  start-page: 43
  year: 2002
  ident: 1486_CR11
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.012364999
– volume: 13
  start-page: 3425
  year: 2004
  ident: 1486_CR9
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2004.02332.x
– volume: 21
  start-page: 107
  year: 1991
  ident: 1486_CR36
  publication-title: J Hum Evol
  doi: 10.1016/0047-2484(91)90002-D
– volume: 61
  start-page: 931
  year: 1990
  ident: 1486_CR33
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90059-N
– volume: 13
  start-page: 333
  year: 1990
  ident: 1486_CR35
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X00078973
– volume: 92
  start-page: 490
  year: 2001
  ident: 1486_CR12
  publication-title: J Hered
  doi: 10.1093/jhered/92.6.490
– volume: 91
  start-page: 8900
  year: 1994
  ident: 1486_CR10
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.91.19.8900
– volume: 303
  start-page: 223
  year: 2004
  ident: 1486_CR14
  publication-title: Science
  doi: 10.1126/science.1088434
– volume: 265
  start-page: 1193
  year: 1994
  ident: 1486_CR6
  publication-title: Science
  doi: 10.1126/science.7915048
– volume: 13
  start-page: 691
  year: 1996
  ident: 1486_CR2
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025630
– volume: 14
  start-page: 707
  year: 1997
  ident: 1486_CR8
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a025810
– volume: 23
  start-page: 147
  year: 1999
  ident: 1486_CR18
  publication-title: Nat Genet
  doi: 10.1038/13779
– volume: 325
  start-page: 318
  year: 2009
  ident: 1486_CR5
  publication-title: Science
  doi: 10.1126/science.1174462
– volume: 275
  start-page: 11355
  year: 2000
  ident: 1486_CR34
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.15.11355
– volume: 67
  start-page: 1029
  year: 2000
  ident: 1486_CR22
  publication-title: Am J Hum Genet
  doi: 10.1086/303092
– start-page: 311
  volume-title: Bioinformatics for Geneticists
  year: 2003
  ident: 1486_CR44
– volume: 80
  start-page: 298
  year: 2007
  ident: 1486_CR32
  publication-title: Am J Hum Genet
  doi: 10.1086/511282
– volume: 418
  start-page: 145
  year: 2002
  ident: 1486_CR19
  publication-title: Nature
  doi: 10.1038/nature00879
– volume: 305
  start-page: 1450
  year: 2004
  ident: 1486_CR20
  publication-title: Science
  doi: 10.1126/science.1098807
– volume: 105
  start-page: 3226
  year: 2008
  ident: 1486_CR21
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0708015105
– volume: 3
  start-page: 418
  year: 1986
  ident: 1486_CR27
  publication-title: Mol Biol Evol
– volume: 100
  start-page: 171
  year: 2003
  ident: 1486_CR13
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0136972100
– volume: 70
  start-page: 939
  year: 2008
  ident: 1486_CR38
  publication-title: Am J Primatol
  doi: 10.1002/ajp.20585
– volume: 23
  start-page: 2947
  year: 2007
  ident: 1486_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 37
  start-page: 873
  year: 2005
  ident: 1486_CR31
  publication-title: Nat Genet
  doi: 10.1038/ng1606
– volume: 68
  start-page: 145
  year: 2001
  ident: 1486_CR26
  publication-title: Am J Hum Genet
  doi: 10.1086/316938
– volume: 134
  start-page: 274
  year: 2007
  ident: 1486_CR37
  publication-title: Am J Phys Anthropol
  doi: 10.1002/ajpa.20674
– volume: 46
  start-page: 613
  year: 1990
  ident: 1486_CR29
  publication-title: Am J Hum Genet
– volume: 23
  start-page: 212
  year: 2006
  ident: 1486_CR43
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msj024
– volume: 6
  start-page: 39
  year: 1996
  ident: 1486_CR7
  publication-title: Mol Phylogenet Evol
  doi: 10.1006/mpev.1996.0056
– volume: 76
  start-page: 781
  year: 2007
  ident: 1486_CR15
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.76.081205.150955
– volume: 16
  start-page: 215
  year: 2006
  ident: 1486_CR23
  publication-title: Genome Res
  doi: 10.1101/gr.4305906
– volume: 24
  start-page: 1596
  year: 2007
  ident: 1486_CR40
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm092
– reference: 11264408 - Mol Biol Evol. 2001 Apr;18(4):563-9
– reference: 10753949 - J Biol Chem. 2000 Apr 14;275(15):11355-60
– reference: 10968778 - Am J Hum Genet. 2000 Oct;67(4):1029-32
– reference: 12509511 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):171-6
– reference: 11349229 - Am J Hum Genet. 2001 Jun;68(6):1475-84
– reference: 17632799 - Am J Phys Anthropol. 2007 Oct;134(2):274-80
– reference: 15488001 - Mol Ecol. 2004 Nov;13(11):3425-35
– reference: 16025113 - Nat Genet. 2005 Aug;37(8):873-7
– reference: 16354751 - Genome Res. 2006 Feb;16(2):215-22
– reference: 17355224 - Biochem J. 2007 Jun 1;404(2):345-51
– reference: 8090741 - Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8900-4
– reference: 8812304 - Mol Phylogenet Evol. 1996 Aug;6(1):39-48
– reference: 18305174 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3226-31
– reference: 7530363 - Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):532-6
– reference: 17894875 - BMC Genomics. 2007;8:339
– reference: 8676744 - Mol Biol Evol. 1996 May;13(5):691-8
– reference: 11756656 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):43-8
– reference: 12110880 - Nature. 2002 Jul 11;418(6894):145-51
– reference: 17506638 - Annu Rev Biochem. 2007;76:781-821
– reference: 14716012 - Science. 2004 Jan 9;303(5655):223-6
– reference: 11948216 - J Hered. 2001 Nov-Dec;92(6):490-6
– reference: 1968708 - Am J Hum Genet. 1990 Mar;46(3):613-23
– reference: 18561295 - Am J Primatol. 2008 Oct;70(10):939-48
– reference: 16177230 - Mol Biol Evol. 2006 Jan;23(1):212-26
– reference: 7915048 - Science. 1994 Aug 26;265(5176):1193-201
– reference: 11115380 - Am J Hum Genet. 2001 Jan;68(1):145-153
– reference: 7688933 - Am J Hum Genet. 1993 Sep;53(3):591-608
– reference: 17617636 - Hum Mol Genet. 2007 Oct 1;16(19):2281-7
– reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
– reference: 18692465 - Cell. 2008 Aug 8;134(3):416-26
– reference: 9214743 - Mol Biol Evol. 1997 Jul;14(7):707-16
– reference: 3444411 - Mol Biol Evol. 1986 Sep;3(5):418-26
– reference: 10508508 - Nat Genet. 1999 Oct;23(2):147
– reference: 17236134 - Am J Hum Genet. 2007 Feb;80(2):298-305
– reference: 15353798 - Science. 2004 Sep 3;305(5689):1450-3
– reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
– reference: 12136235 - Hum Genet. 2002 Jul;111(1):46-53
– reference: 14668244 - Bioinformatics. 2003 Dec 12;19(18):2496-7
– reference: 19608918 - Science. 2009 Jul 17;325(5938):318-21
– reference: 2112427 - Cell. 1990 Jun 15;61(6):931-7
SSID ssj0017821
Score 2.064235
Snippet Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial...
We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA)...
Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial...
Abstract Background: We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed...
Abstract Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 270
SubjectTerms Adenosine triphosphatase
Animal Systematics/Taxonomy/Biogeography
Animals
Bayesian analysis
Biological diversity
Biomedical and Life Sciences
Deoxyribonucleic acid
DNA
DNA, Mitochondrial - genetics
Energy conversion
Energy conversion efficiency
Entomology
Evolutionary Biology
F0F1-ATPase
Gene banks
Genes
Genetic diversity
Genetic testing
Genetics and Population Dynamics
Genome, Mitochondrial - genetics
Genomes
Homeostasis
Hominids
Homo sapiens
Humans
Life Sciences
Mitochondrial DNA
Mutation
Mutation hot spots
Nucleotides
Pan paniscus
Pan paniscus - classification
Pan paniscus - genetics
Phosphorylation
Phylogeny
Population
Proton-Translocating ATPases - genetics
Research Article
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyIb8e2koWgFYY7k8zksayPUgTFhYW7C0kmwQs2U5x7F_77njMv77SoG7d5DMl5H3LmO4S8shB2R8dcjuBweVVHnytwtHmUpfda8SD7Xoefv4jzi-rTul7vtfrCmrABHngg3Kq0TnopSxakqrxlEGbVOmjJhHNO2IjWt9DFlEyN7wfg9_pUC0xvziDinx4olVjNY2iBGDYp3nNIPW7_beu8555ulk7eeD_t3dLZA3J_jCfp6XCPh-ROSI_I3aHD5K_HZP0BdTj5Lb3qgTRTR9tIL0GNweylBqWPIkzrZaDNVKFBN4m6NrWu7eibrzbB1rTp_K47oTY1tO_q1z0hF2cfv70_z8dmCrkXutzmzJW11YWreaEdxIQ2-iiYZRry45IHDcwMUXkbfLSYpclYc1s5IWRTcstK_pQcpDaF54SWXLjaFTpEyC6bmlnRqCAFrAbmVMxlZDVR1PgRaRwbXvwwfcahhEEeGOQBjgAPMnIy77gaUDb-svYdMmleh_jY_QBIjRmlxvxLajLyGllsUIvhaN6OPyPABREPy5wyjo0FuFIZOVqsBO3zy-lJSMyo_Z1hGnHuBERbGTm8PQ0hmIa4UMmM0HkWv4v1bim0u85IfL_klYbbPhsEbr4vg8_youIZkQtRXBBkOZM233vgcGA2RCNw5reT0P4-1J_I_eJ_kPuQ3BuqLnResCNysP25C8cQzG3dy15vrwHZYEG6
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQT4gQZGiXduJHZ9QeVQVEogDlfZm2Y4DK1FnaXYP_HtmnEebVvQaO5HH87Yn3xDy2kLY3TjucgSHy4uy8XkFjjZvFPNeVyKo1Ovw6zd5clp8WZWr4cCtG8oqR5uYDHXdejwjX3CN2GESPNj7zZ8cu0bh7erQQuM2ucMgEsHWDWo1JVwMvB8bryYruWBgiHOOJ2hgezi2J77kihJi_3W7fMkxXS2avHJzmhzS8QNyf4gk6VHP-ofkVoiPyN2-t-Tfx2T1CbU3-i3dJAjN2NG2oWegwGDwYo1yRxGg9SzQeqzNoOtIXRtb13b07Xcb4dW47vyuO6Q21jT18-uekNPjzz8-nuRDG4XcS822OXestHrpSrHUDqJB2_hGcss1ZMZMBA1sDE3lbfCNxfxMNaWwhZNS1UxYzsRTshfbGJ4TyoR0pVvq0EBeWZfcyroKSsJsiH4L7jKyGHfU-AFjHFtd_DYp16ikQR4Y5AE-AR5k5HB6Y9Pja9ww9wMyaZqHyNjpQXv-0wyKZph1yivFeFBV4S2HhZU6aMWlcw5oz8gbZLFB_YWleTv8hgAEIhKWOeICWwqIqsrIwWwm6J2fD49CYga978yFlGZk__owBF8aIsJKZYROo_hdrHSLod11RuHNpSg0UPusF7iJXg6fFctCZETNRHG2IfORuP6VIMOB2RCHwJrfjUJ7saj_bfeLmwncJ_f6SgqdL_kB2due78JLCNC27lXSwn9k6zbi
  priority: 102
  providerName: ProQuest
– databaseName: Springer Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA8yEXwR52fdlDwIOqGsSdqkeZxXxxAUHxzct5CkCV5w6bD3Pvjf75x-uW4q-NqclCTnuyf9HUJeWwi7o-MuR3C4vKyiz2twtHlUzHtdi6D6Xoefv8iz8_LTulqP3zvwX5jr9XtWy2MGxjPn-NUL7AVXkJzfrcDsoiyv5GquF4CfY1MR8g-zFk6nx-a_bYGvuaCb1yNv1Eh713P6kDwYY0Z6MjB5n9wJ6RG5N3SR_PWYrD-gnia_pZc9WGbqaBvpBagqmLbUoIRRhGK9CLSZbmHQTaKuTa1rO_r2q00wNW06v-uOqE0N7Tv3dU_I-enHb6uzfGyYkHup2TbnjlVWF64ShXYQ99noo-SWa8iBmQgaGBZi7W3w0WImpmIlbOmkVA0TljPxlOylNoXnhDIhXeUKHSJkkE3FrWzqoCRQQ5xbcpeR4-lEjR_RxLGpxQ_TZxW1NMgDgzzAJ8CDjBzNMy4HJI1_0L5HJs10iIHdPwDRMKNKGWad8koxHlRdesthYZUOWnHpnIO9Z-QNstigpsLSvB1_OIANIuaVOeECmweIus7I4YISNMwvhychMaOGd4ZrxLKTEFFl5OD2MIRZGmK_WmWEzqP4XrzTlkK764zCGqUoNez22SBw8345vFYUpciIWoji4kCWI2nzvQcHB2ZDxAFrfjcJ7e9F_e24X_wP8QG5P9yg0HnBD8ne9ucuvITAbOte9Tp5BR8LLmE
  priority: 102
  providerName: Springer Nature
Title Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus) and humans
URI https://link.springer.com/article/10.1186/1471-2148-10-270
https://www.ncbi.nlm.nih.gov/pubmed/20813043
https://www.proquest.com/docview/2955186081
https://www.proquest.com/docview/901939987
https://www.proquest.com/docview/755163490
https://pubmed.ncbi.nlm.nih.gov/PMC2942848
https://doaj.org/article/1ab7c7712e784ca281b59e9726bbb6af
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgExIviG_CRuUHJBhSWGMndvyAUFs2TUhM00SlipfIdhyotDmjaSX233PnJh3ZBg-8RGpsN_Z9-O7iy-8Iea3B7a4MMzGCw8VpVtk4B0MbVzKxVuXcyVDr8MuxOJqmn2fZ7Orz6JaAza2hHdaTmi7O3v_6efkRFP5DUPhc7CewwcYM34zBnsIkBPDb4bQIE_nSqzMFsIVJd1B5yyiEBQb7COE979moAOV_c8P-w2Jdz6a8dqQaLNXhQ_KgdTHpaC0Tj8gd5x-Te-uik5dPyOwTqrW3S3oRsDV9Q-uKnoNmAzF8iQJJEbn13NGyS9qgc09N7WtTN_TtifYw1M8bu2r2qPYlDYX-mqdkenjwdXIUt_UVYitUsoyZSTKthibjQ2XATdSVrQTTTEHInHCngL-uyq12ttIYuMkq4zo1Qsgy4Zol_BnZ8rV3LwhNuDCZGSpXQcBZZkyLMndSQG9wi1NmIrLfUbSwLfg41sA4K0IQkosC2VEgO_AOsCMie5sRF2vgjX_0HSOTNv0QMjvcqBffi1YDi0QbaaVMmJN5ajWDiWXKKcmEMQbWHpE3yOICRQ2mZnX7fQIsECGyihHjWGuA53lEdns9QSFtv7kTkqKT54IphL4TIGAR2bnZDF6ZAlcxlxGhm1b8X0yB865eNYXEI02eKljt87XAbdbbyW1EZE8UewTpt_j5j4AlDswGBwXm_K4T2qtJ_Y3cL__7MTvk_jr7AnP0dsnWcrFyr8CpW5oBuStnckC2xwfHJ6fwayImg_CCZBC0GK6n429wnbLRbwqmTPI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEG_wiNEX47crqH3QKCabu2132-0DMSCQQz5CDCS8lbbb1Uuke7JHDP-cf5sze7sHB5E3XrfdptOZzkw70_kR8t6A211aZmMsDhenWeniHAxtXMrEOZVzLxusw719MTxKvx1nxwvkb_cWBtMqO53YKOqicnhH3mcKa4cJsGBfxr9jRI3C6GoHoWFaaIVitSkx1j7s2PEXf-AIV69ubwC_PzC2tXn4dRi3KAOxEyqZxMwmmVEDm_GBsuAsmdKVghmm4OCYcK-ASl_mznhXGjy-yDLjJrVCyCLhhiUcxr1HFlO8QOmRxfXN_YPvszgG2N-kC47mop-AKYgZ3uGB9mMIkHzFGDaYATctwxXTeD1t81rstjGJW4_Jo9aXpWtT4XtCFnx4Su5P0S0vnpHjDdQfwU3ouCniGWpalfQUVAio3FCg5FMsEXvqadFlh9BRoLYKla1q-unABPg1jGp3Xq9QEwraIArWz8nRnSzxC9ILVfCvCE24sJkdKF_CybbImBFF7qWA3uB_p8xGpN-tqHZtlXME2_ilm9NOLjTyQCMP8AvwICIrsz_G0woft_RdRybN-mFt7uZDdfZDt1tdJ8ZKJ2XCvMxTZxhMLFNeSSastUB7RD4iizVqEJiaM-1DCCAQa3HpNcYR1IDneUSW53rCznfzzZ2Q6Fbz1Ppyn0Rk6WYzuH8KfNJcRoTOWnFczLULvjqvtcTYKU8VUPtyKnAzehkMywcpj4icE8W5BZlvCaOfTdFyYDZ4QjDnz53QXk7qf8v9-nYC35EHw8O9Xb27vb-zRB5O8zpUPGDLpDc5O_dvwF2c2LftnqTk5K7VwD-wb3rY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYgL4k3aAj4gQZGiXduJHR_LllV5VT1QaW-W7ThlJeqsmt1D_z0zeSykBSSu8TiyPTOemczkG0JeW3C7K8ddiuBwaZZXPi3A0KaVYt7rQgTV9jr8eiKPz7JPi3zRf3Brhmr3ISXZ_dOAKE1xPVmVVafihZwwuFJTjt_C4BbhCkL224jUhSV9MznbZhHA-rEhNfmHWSNT1CL237yXfzNM14smr2VOW4M0f0Du954kPexY_5DcCvERudP1lrx6TBZHqL3Rr-mqhdCMDa0regEKDBdeLFHuKAK0XgRaDrUZdBmpq2Pt6oa-PbURpsZl4zfNAbWxpG0_v-YJOZt_-DY7Tvs2CqmXmq1T7lhu9dTlYqodeIO28pXklmuIjJkIGtgYqsLb4CuL8ZmqcmEzJ6UqmbCciadkJ9YxPCeUCelyN9WhgriyzLmVZRGUBGrwfjPuEjIZTtT4HmMcW138MG2sUUiDPDDIA3wCPEjIwXbGqsPX-Afte2TSlg6RsdsH9eW56RXNMOuUV4rxoIrMWw4Ly3XQikvnHOw9IW-QxQb1F5bmbf8bAmwQkbDMIRfYUkAURUL2R5Sgd348PAiJ6fW-MVwjwp0EPyshezeHwfnS4BEWKiF0O4rvxUq3GOpNYxRmLkWmYbfPOoHb7pfDa8U0EwlRI1EcHch4JC6_t5DhwGzwQ2DN7wah_bWovx337v8QvyJ3T4_m5svHk8975F5XYqHTKd8nO-vLTXgBntvavWzV8yfynjmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+patterns+of+mitochondrial+genome+diversity+in+bonobos+%28Pan+paniscus%29+and+humans&rft.jtitle=BMC+evolutionary+biology&rft.au=Zsurka%2C+G%C3%A1bor&rft.au=Kudina%2C+Tatiana&rft.au=Peeva%2C+Viktoriya&rft.au=Hallmann%2C+Kerstin&rft.date=2010-09-02&rft.pub=BioMed+Central&rft.eissn=1471-2148&rft.volume=10&rft.spage=270&rft.epage=270&rft_id=info:doi/10.1186%2F1471-2148-10-270&rft_id=info%3Apmid%2F20813043&rft.externalDocID=PMC2942848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2148&client=summon