Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus) and humans
Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens . Results We identified three major clades among bonobos that separated approxima...
Saved in:
Published in | BMC evolutionary biology Vol. 10; no. 1; p. 270 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
02.09.2010
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2148 1471-2148 |
DOI | 10.1186/1471-2148-10-270 |
Cover
Abstract | Background
We have analyzed the complete mitochondrial genomes of 22
Pan paniscus
(bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of
Homo sapiens
.
Results
We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (
d
N
/d
S
) among polymorphic positions in bonobos and in 4902
Homo sapiens
mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F
0
F
1
-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased
d
N
/d
S
ratios when compared to bonobos.
Conclusions
Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans. |
---|---|
AbstractList | We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (d.sub.N /d.sub.S ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F.sub.0 F.sub.1 -ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased d.sub.N /d.sub.S ratios when compared to bonobos. Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans. We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans. Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens . Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes ( d N /d S ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F 0 F 1 -ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased d N /d S ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans. Abstract Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans. Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (d N /d S ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased d N /d S ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans. We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens.BACKGROUNDWe have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens.We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos.RESULTSWe identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos.Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.CONCLUSIONSSome variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans. Abstract Background: We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens . Results: We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0 F1 -ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Conclusions: Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans. Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (d.sub.N /d.sub.S ) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F.sub.0 F.sub.1 -ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased d.sub.N /d.sub.S ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans. |
ArticleNumber | 270 |
Audience | Academic |
Author | Hallmann, Kerstin Elger, Christian E Zsurka, Gábor Kunz, Wolfram S Kudina, Tatiana Peeva, Viktoriya Khrapko, Konstantin |
AuthorAffiliation | 1 Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany 2 Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA |
AuthorAffiliation_xml | – name: 1 Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany – name: 2 Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA |
Author_xml | – sequence: 1 givenname: Gábor surname: Zsurka fullname: Zsurka, Gábor organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn – sequence: 2 givenname: Tatiana surname: Kudina fullname: Kudina, Tatiana organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn – sequence: 3 givenname: Viktoriya surname: Peeva fullname: Peeva, Viktoriya organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn – sequence: 4 givenname: Kerstin surname: Hallmann fullname: Hallmann, Kerstin organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn – sequence: 5 givenname: Christian E surname: Elger fullname: Elger, Christian E organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn – sequence: 6 givenname: Konstantin surname: Khrapko fullname: Khrapko, Konstantin organization: Harvard Medical School, Beth Israel Deaconess Medical Center – sequence: 7 givenname: Wolfram S surname: Kunz fullname: Kunz, Wolfram S email: wolfram.kunz@ukb.uni-bonn.de organization: Division of Neurochemistry, Department of Epileptology and Life&Brain Center, University Bonn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20813043$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFAR_YA7JxTBATik-COJ7QtSVb4qVYIDSNysZ8fJepXYW9up1H-Pw5alW1Hkg63nmXnP4zkuDpx3piieY3SKMW_f4ZrhiuCaVxhVhKFHxdGudHDnfFgcx7hGCDNO8JPikCCOKarpUfHzg43JOp3KDaRkgoul78vJJq9X3nXBwlgOxvnJlJ29NiHadFNaVyrvvPKxfPMNXKY6G_Uc35bgunI1T-Di0-JxD2M0z273k-LHp4_fz79Ul18_X5yfXVa6FThVROEGBFINRUIJ3EKv-5YAEXW-pkYYZUzPNRjdQ9PmB_QNhVq1LeswBYLpSXGx1e08rOUm2AnCjfRg5e-CD4OEkKwejcSgmGYME8N4rYFwrBphBCOtUip3zlrvt1qbWU2m08alAOOe6P6Nsys5-GuZxyW85lng9a1A8FeziUlO2RgzjuCMn6NkTYNbWguUkS_vIdd-Di47JQXCggrBWQa9eghERJbi7fKPO9QA-ZHW9T7PppfG8oxQVjNO-TLa6T9QeXVmsjrHqre5vkd4cdeMnQt_spMBaAvQwccYTL-DYCSXeMolf3LJ31LJ8cyU9h5F2wTJ-sVOO_6PiLfEmHu4wYS_TjzI-QWS_fWS |
CitedBy_id | crossref_primary_10_1093_hmg_ddr350 crossref_primary_10_1002_evan_21456 crossref_primary_10_1186_s12864_018_4650_9 crossref_primary_10_1371_journal_pone_0017729 crossref_primary_10_1186_s12862_018_1280_4 crossref_primary_10_1007_s10329_013_0373_3 crossref_primary_10_1080_24701394_2018_1431228 crossref_primary_10_3390_ani13010096 crossref_primary_10_3897_zookeys_835_32470 crossref_primary_10_1007_s00251_017_1010_x crossref_primary_10_1111_evo_13361 crossref_primary_10_1371_journal_pone_0174851 crossref_primary_10_1093_gbe_evw124 crossref_primary_10_1371_journal_pone_0059660 crossref_primary_10_2354_psj_34_016 crossref_primary_10_1093_gbe_evu059 crossref_primary_10_1093_molbev_mst005 crossref_primary_10_1038_nature12788 crossref_primary_10_1163_1568539X_00003335 crossref_primary_10_1111_iji_12490 crossref_primary_10_1128_JVI_01960_19 crossref_primary_10_1016_j_mito_2012_06_009 |
Cites_doi | 10.1086/320591 10.1016/j.cell.2008.06.021 10.1007/s00439-002-0740-4 10.1093/oxfordjournals.molbev.a003836 10.1093/bioinformatics/btg359 10.1073/pnas.92.2.532 10.1186/1471-2164-8-339 10.1093/hmg/ddm180 10.1042/BJ20061609 10.1073/pnas.012364999 10.1111/j.1365-294X.2004.02332.x 10.1016/0047-2484(91)90002-D 10.1016/0092-8674(90)90059-N 10.1017/S0140525X00078973 10.1093/jhered/92.6.490 10.1073/pnas.91.19.8900 10.1126/science.1088434 10.1126/science.7915048 10.1093/oxfordjournals.molbev.a025630 10.1093/oxfordjournals.molbev.a025810 10.1038/13779 10.1126/science.1174462 10.1074/jbc.275.15.11355 10.1086/303092 10.1086/511282 10.1038/nature00879 10.1126/science.1098807 10.1073/pnas.0708015105 10.1073/pnas.0136972100 10.1002/ajp.20585 10.1093/bioinformatics/btm404 10.1038/ng1606 10.1086/316938 10.1002/ajpa.20674 10.1093/molbev/msj024 10.1006/mpev.1996.0056 10.1146/annurev.biochem.76.081205.150955 10.1101/gr.4305906 10.1093/molbev/msm092 |
ContentType | Journal Article |
Copyright | Zsurka et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2010 BioMed Central Ltd. 2010. This work is licensed under https://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2010 Zsurka et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2010 Zsurka et al; licensee BioMed Central Ltd. 2010 Zsurka et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Zsurka et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2010 BioMed Central Ltd. – notice: 2010. This work is licensed under https://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2010 Zsurka et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2010 Zsurka et al; licensee BioMed Central Ltd. 2010 Zsurka et al; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SN 7SS 7TK 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PYCSY RC3 PRINS 7X8 5PM DOA |
DOI | 10.1186/1471-2148-10-270 |
DatabaseName | Springer Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection ProQuest Medical Database Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts Environmental Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Genetics Abstracts ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) ProQuest Central China MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2148 |
EndPage | 270 |
ExternalDocumentID | oai_doaj_org_article_1ab7c7712e784ca281b59e9726bbb6af PMC2942848 2501861261 A237478388 20813043 10_1186_1471_2148_10_270 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States Germany |
GeographicLocations_xml | – name: Germany – name: United States |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: AG019787 – fundername: NIA NIH HHS grantid: R01 AG019787 |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 7XC 88E 8CJ 8FE 8FH 8FI 8FJ AAHBH ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ATCPS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BPHCQ BVXVI C1A C6C CCPQU CS3 D1J DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OVT P2P PATMY PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PYCSY RBZ RIG RNS ROL RPM SBL SV3 TR2 TUS U2A UKHRP WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7QP 7QR 7SN 7SS 7TK 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI RC3 PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c691t-2b15a90b5309b916afcf62a2946913e9ebeef8caecfa56017f53a4b667d13a213 |
IEDL.DBID | M48 |
ISSN | 1471-2148 |
IngestDate | Wed Aug 27 01:28:45 EDT 2025 Thu Aug 21 14:30:14 EDT 2025 Fri Sep 05 05:58:47 EDT 2025 Fri Jul 25 10:41:04 EDT 2025 Fri Jul 25 18:57:50 EDT 2025 Tue Jun 17 21:10:10 EDT 2025 Tue Jun 10 20:38:55 EDT 2025 Thu Apr 03 07:00:18 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Tue Jul 01 04:27:26 EDT 2025 Sat Sep 06 07:27:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Evolutionary Constraint Modern Human Complete Mitochondrial Genome Mitochondrial Genome ATPase Gene |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c691t-2b15a90b5309b916afcf62a2946913e9ebeef8caecfa56017f53a4b667d13a213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2148-10-270 |
PMID | 20813043 |
PQID | 2955186081 |
PQPubID | 44659 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1ab7c7712e784ca281b59e9726bbb6af pubmedcentral_primary_oai_pubmedcentral_nih_gov_2942848 proquest_miscellaneous_755163490 proquest_journals_901939987 proquest_journals_2955186081 gale_infotracmisc_A237478388 gale_infotracacademiconefile_A237478388 pubmed_primary_20813043 crossref_primary_10_1186_1471_2148_10_270 crossref_citationtrail_10_1186_1471_2148_10_270 springer_journals_10_1186_1471_2148_10_270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-09-02 |
PublicationDateYYYYMMDD | 2010-09-02 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC evolutionary biology |
PublicationTitleAbbrev | BMC Evol Biol |
PublicationTitleAlternate | BMC Evol Biol |
PublicationYear | 2010 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | R Noda (1486_CR12) 2001; 92 M Ingman (1486_CR16) 2007; 16 M Stoneking (1486_CR22) 2000; 67 AC Stone (1486_CR11) 2002; 99 SJ Carnahan (1486_CR38) 2008; 70 J Rozas (1486_CR42) 2003; 19 PA Morin (1486_CR6) 1994; 265 DC Wallace (1486_CR15) 2007; 76 MJ Betts (1486_CR44) 2003 AW Briggs (1486_CR5) 2009; 325 J Eriksson (1486_CR9) 2004; 13 AE Lebatard (1486_CR21) 2008; 105 TG Schurr (1486_CR29) 1990; 46 RE Green (1486_CR4) 2008; 134 PE Wheeler (1486_CR36) 1991; 21 K Galik (1486_CR20) 2004; 305 CA Wise (1486_CR8) 1997; 14 M Ruvolo (1486_CR10) 1994; 91 RM Andrews (1486_CR18) 1999; 23 M Nei (1486_CR27) 1986; 3 A Torroni (1486_CR30) 1993; 53 Z Yang (1486_CR43) 2006; 23 N Galtier (1486_CR23) 2006; 16 S Finnilä (1486_CR25) 2001; 68 S Horai (1486_CR1) 1995; 92 MJ Anderson (1486_CR37) 2007; 134 TR Schmidt (1486_CR28) 2001; 18 G Zsurka (1486_CR31) 2005; 37 K Tamura (1486_CR40) 2007; 24 PC Jones (1486_CR34) 2000; 275 D Falk (1486_CR35) 1990; 13 M Brunet (1486_CR19) 2002; 418 X Xu (1486_CR2) 1996; 13 BA Malyarchuk (1486_CR24) 2002; 111 JL Elson (1486_CR26) 2001; 68 G Zsurka (1486_CR32) 2007; 80 JM Shoffner (1486_CR33) 1990; 61 T Amo (1486_CR17) 2007; 404 D Mishmar (1486_CR13) 2003; 100 1486_CR41 SM Flynn (1486_CR3) 2007; 8 KJ Garner (1486_CR7) 1996; 6 E Ruiz-Pesini (1486_CR14) 2004; 303 MA Larkin (1486_CR39) 2007; 23 1968708 - Am J Hum Genet. 1990 Mar;46(3):613-23 17506638 - Annu Rev Biochem. 2007;76:781-821 12110880 - Nature. 2002 Jul 11;418(6894):145-51 15353798 - Science. 2004 Sep 3;305(5689):1450-3 11115380 - Am J Hum Genet. 2001 Jan;68(1):145-153 17632799 - Am J Phys Anthropol. 2007 Oct;134(2):274-80 11349229 - Am J Hum Genet. 2001 Jun;68(6):1475-84 8090741 - Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8900-4 10508508 - Nat Genet. 1999 Oct;23(2):147 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 17617636 - Hum Mol Genet. 2007 Oct 1;16(19):2281-7 19608918 - Science. 2009 Jul 17;325(5938):318-21 7688933 - Am J Hum Genet. 1993 Sep;53(3):591-608 8676744 - Mol Biol Evol. 1996 May;13(5):691-8 8812304 - Mol Phylogenet Evol. 1996 Aug;6(1):39-48 14668244 - Bioinformatics. 2003 Dec 12;19(18):2496-7 9214743 - Mol Biol Evol. 1997 Jul;14(7):707-16 15488001 - Mol Ecol. 2004 Nov;13(11):3425-35 12136235 - Hum Genet. 2002 Jul;111(1):46-53 10968778 - Am J Hum Genet. 2000 Oct;67(4):1029-32 11264408 - Mol Biol Evol. 2001 Apr;18(4):563-9 12509511 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):171-6 18561295 - Am J Primatol. 2008 Oct;70(10):939-48 17236134 - Am J Hum Genet. 2007 Feb;80(2):298-305 18305174 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3226-31 18692465 - Cell. 2008 Aug 8;134(3):416-26 11948216 - J Hered. 2001 Nov-Dec;92(6):490-6 11756656 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):43-8 17894875 - BMC Genomics. 2007;8:339 7530363 - Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):532-6 10753949 - J Biol Chem. 2000 Apr 14;275(15):11355-60 17355224 - Biochem J. 2007 Jun 1;404(2):345-51 7915048 - Science. 1994 Aug 26;265(5176):1193-201 3444411 - Mol Biol Evol. 1986 Sep;3(5):418-26 2112427 - Cell. 1990 Jun 15;61(6):931-7 16354751 - Genome Res. 2006 Feb;16(2):215-22 16177230 - Mol Biol Evol. 2006 Jan;23(1):212-26 16025113 - Nat Genet. 2005 Aug;37(8):873-7 14716012 - Science. 2004 Jan 9;303(5655):223-6 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
References_xml | – volume: 68 start-page: 1475 year: 2001 ident: 1486_CR25 publication-title: Am J Hum Genet doi: 10.1086/320591 – volume: 134 start-page: 416 year: 2008 ident: 1486_CR4 publication-title: Cell doi: 10.1016/j.cell.2008.06.021 – volume: 111 start-page: 46 year: 2002 ident: 1486_CR24 publication-title: Hum Genet doi: 10.1007/s00439-002-0740-4 – ident: 1486_CR41 – volume: 18 start-page: 563 year: 2001 ident: 1486_CR28 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003836 – volume: 19 start-page: 2496 year: 2003 ident: 1486_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg359 – volume: 92 start-page: 532 year: 1995 ident: 1486_CR1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.2.532 – volume: 8 start-page: 339 year: 2007 ident: 1486_CR3 publication-title: BMC Genomics doi: 10.1186/1471-2164-8-339 – volume: 16 start-page: 2281 year: 2007 ident: 1486_CR16 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddm180 – volume: 404 start-page: 345 year: 2007 ident: 1486_CR17 publication-title: Biochem J doi: 10.1042/BJ20061609 – volume: 53 start-page: 591 year: 1993 ident: 1486_CR30 publication-title: Am J Hum Genet – volume: 99 start-page: 43 year: 2002 ident: 1486_CR11 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.012364999 – volume: 13 start-page: 3425 year: 2004 ident: 1486_CR9 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2004.02332.x – volume: 21 start-page: 107 year: 1991 ident: 1486_CR36 publication-title: J Hum Evol doi: 10.1016/0047-2484(91)90002-D – volume: 61 start-page: 931 year: 1990 ident: 1486_CR33 publication-title: Cell doi: 10.1016/0092-8674(90)90059-N – volume: 13 start-page: 333 year: 1990 ident: 1486_CR35 publication-title: Behav Brain Sci doi: 10.1017/S0140525X00078973 – volume: 92 start-page: 490 year: 2001 ident: 1486_CR12 publication-title: J Hered doi: 10.1093/jhered/92.6.490 – volume: 91 start-page: 8900 year: 1994 ident: 1486_CR10 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.91.19.8900 – volume: 303 start-page: 223 year: 2004 ident: 1486_CR14 publication-title: Science doi: 10.1126/science.1088434 – volume: 265 start-page: 1193 year: 1994 ident: 1486_CR6 publication-title: Science doi: 10.1126/science.7915048 – volume: 13 start-page: 691 year: 1996 ident: 1486_CR2 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025630 – volume: 14 start-page: 707 year: 1997 ident: 1486_CR8 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025810 – volume: 23 start-page: 147 year: 1999 ident: 1486_CR18 publication-title: Nat Genet doi: 10.1038/13779 – volume: 325 start-page: 318 year: 2009 ident: 1486_CR5 publication-title: Science doi: 10.1126/science.1174462 – volume: 275 start-page: 11355 year: 2000 ident: 1486_CR34 publication-title: J Biol Chem doi: 10.1074/jbc.275.15.11355 – volume: 67 start-page: 1029 year: 2000 ident: 1486_CR22 publication-title: Am J Hum Genet doi: 10.1086/303092 – start-page: 311 volume-title: Bioinformatics for Geneticists year: 2003 ident: 1486_CR44 – volume: 80 start-page: 298 year: 2007 ident: 1486_CR32 publication-title: Am J Hum Genet doi: 10.1086/511282 – volume: 418 start-page: 145 year: 2002 ident: 1486_CR19 publication-title: Nature doi: 10.1038/nature00879 – volume: 305 start-page: 1450 year: 2004 ident: 1486_CR20 publication-title: Science doi: 10.1126/science.1098807 – volume: 105 start-page: 3226 year: 2008 ident: 1486_CR21 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0708015105 – volume: 3 start-page: 418 year: 1986 ident: 1486_CR27 publication-title: Mol Biol Evol – volume: 100 start-page: 171 year: 2003 ident: 1486_CR13 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0136972100 – volume: 70 start-page: 939 year: 2008 ident: 1486_CR38 publication-title: Am J Primatol doi: 10.1002/ajp.20585 – volume: 23 start-page: 2947 year: 2007 ident: 1486_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 37 start-page: 873 year: 2005 ident: 1486_CR31 publication-title: Nat Genet doi: 10.1038/ng1606 – volume: 68 start-page: 145 year: 2001 ident: 1486_CR26 publication-title: Am J Hum Genet doi: 10.1086/316938 – volume: 134 start-page: 274 year: 2007 ident: 1486_CR37 publication-title: Am J Phys Anthropol doi: 10.1002/ajpa.20674 – volume: 46 start-page: 613 year: 1990 ident: 1486_CR29 publication-title: Am J Hum Genet – volume: 23 start-page: 212 year: 2006 ident: 1486_CR43 publication-title: Mol Biol Evol doi: 10.1093/molbev/msj024 – volume: 6 start-page: 39 year: 1996 ident: 1486_CR7 publication-title: Mol Phylogenet Evol doi: 10.1006/mpev.1996.0056 – volume: 76 start-page: 781 year: 2007 ident: 1486_CR15 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.76.081205.150955 – volume: 16 start-page: 215 year: 2006 ident: 1486_CR23 publication-title: Genome Res doi: 10.1101/gr.4305906 – volume: 24 start-page: 1596 year: 2007 ident: 1486_CR40 publication-title: Mol Biol Evol doi: 10.1093/molbev/msm092 – reference: 11264408 - Mol Biol Evol. 2001 Apr;18(4):563-9 – reference: 10753949 - J Biol Chem. 2000 Apr 14;275(15):11355-60 – reference: 10968778 - Am J Hum Genet. 2000 Oct;67(4):1029-32 – reference: 12509511 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):171-6 – reference: 11349229 - Am J Hum Genet. 2001 Jun;68(6):1475-84 – reference: 17632799 - Am J Phys Anthropol. 2007 Oct;134(2):274-80 – reference: 15488001 - Mol Ecol. 2004 Nov;13(11):3425-35 – reference: 16025113 - Nat Genet. 2005 Aug;37(8):873-7 – reference: 16354751 - Genome Res. 2006 Feb;16(2):215-22 – reference: 17355224 - Biochem J. 2007 Jun 1;404(2):345-51 – reference: 8090741 - Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8900-4 – reference: 8812304 - Mol Phylogenet Evol. 1996 Aug;6(1):39-48 – reference: 18305174 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3226-31 – reference: 7530363 - Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):532-6 – reference: 17894875 - BMC Genomics. 2007;8:339 – reference: 8676744 - Mol Biol Evol. 1996 May;13(5):691-8 – reference: 11756656 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):43-8 – reference: 12110880 - Nature. 2002 Jul 11;418(6894):145-51 – reference: 17506638 - Annu Rev Biochem. 2007;76:781-821 – reference: 14716012 - Science. 2004 Jan 9;303(5655):223-6 – reference: 11948216 - J Hered. 2001 Nov-Dec;92(6):490-6 – reference: 1968708 - Am J Hum Genet. 1990 Mar;46(3):613-23 – reference: 18561295 - Am J Primatol. 2008 Oct;70(10):939-48 – reference: 16177230 - Mol Biol Evol. 2006 Jan;23(1):212-26 – reference: 7915048 - Science. 1994 Aug 26;265(5176):1193-201 – reference: 11115380 - Am J Hum Genet. 2001 Jan;68(1):145-153 – reference: 7688933 - Am J Hum Genet. 1993 Sep;53(3):591-608 – reference: 17617636 - Hum Mol Genet. 2007 Oct 1;16(19):2281-7 – reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 – reference: 18692465 - Cell. 2008 Aug 8;134(3):416-26 – reference: 9214743 - Mol Biol Evol. 1997 Jul;14(7):707-16 – reference: 3444411 - Mol Biol Evol. 1986 Sep;3(5):418-26 – reference: 10508508 - Nat Genet. 1999 Oct;23(2):147 – reference: 17236134 - Am J Hum Genet. 2007 Feb;80(2):298-305 – reference: 15353798 - Science. 2004 Sep 3;305(5689):1450-3 – reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 – reference: 12136235 - Hum Genet. 2002 Jul;111(1):46-53 – reference: 14668244 - Bioinformatics. 2003 Dec 12;19(18):2496-7 – reference: 19608918 - Science. 2009 Jul 17;325(5938):318-21 – reference: 2112427 - Cell. 1990 Jun 15;61(6):931-7 |
SSID | ssj0017821 |
Score | 2.064235 |
Snippet | Background
We have analyzed the complete mitochondrial genomes of 22
Pan paniscus
(bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial... We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA)... Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial... Abstract Background: We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed... Abstract Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 270 |
SubjectTerms | Adenosine triphosphatase Animal Systematics/Taxonomy/Biogeography Animals Bayesian analysis Biological diversity Biomedical and Life Sciences Deoxyribonucleic acid DNA DNA, Mitochondrial - genetics Energy conversion Energy conversion efficiency Entomology Evolutionary Biology F0F1-ATPase Gene banks Genes Genetic diversity Genetic testing Genetics and Population Dynamics Genome, Mitochondrial - genetics Genomes Homeostasis Hominids Homo sapiens Humans Life Sciences Mitochondrial DNA Mutation Mutation hot spots Nucleotides Pan paniscus Pan paniscus - classification Pan paniscus - genetics Phosphorylation Phylogeny Population Proton-Translocating ATPases - genetics Research Article |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyIb8e2koWgFYY7k8zksayPUgTFhYW7C0kmwQs2U5x7F_77njMv77SoG7d5DMl5H3LmO4S8shB2R8dcjuBweVVHnytwtHmUpfda8SD7Xoefv4jzi-rTul7vtfrCmrABHngg3Kq0TnopSxakqrxlEGbVOmjJhHNO2IjWt9DFlEyN7wfg9_pUC0xvziDinx4olVjNY2iBGDYp3nNIPW7_beu8555ulk7eeD_t3dLZA3J_jCfp6XCPh-ROSI_I3aHD5K_HZP0BdTj5Lb3qgTRTR9tIL0GNweylBqWPIkzrZaDNVKFBN4m6NrWu7eibrzbB1rTp_K47oTY1tO_q1z0hF2cfv70_z8dmCrkXutzmzJW11YWreaEdxIQ2-iiYZRry45IHDcwMUXkbfLSYpclYc1s5IWRTcstK_pQcpDaF54SWXLjaFTpEyC6bmlnRqCAFrAbmVMxlZDVR1PgRaRwbXvwwfcahhEEeGOQBjgAPMnIy77gaUDb-svYdMmleh_jY_QBIjRmlxvxLajLyGllsUIvhaN6OPyPABREPy5wyjo0FuFIZOVqsBO3zy-lJSMyo_Z1hGnHuBERbGTm8PQ0hmIa4UMmM0HkWv4v1bim0u85IfL_klYbbPhsEbr4vg8_youIZkQtRXBBkOZM233vgcGA2RCNw5reT0P4-1J_I_eJ_kPuQ3BuqLnResCNysP25C8cQzG3dy15vrwHZYEG6 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQT4gQZGiXduJHZ9QeVQVEogDlfZm2Y4DK1FnaXYP_HtmnEebVvQaO5HH87Yn3xDy2kLY3TjucgSHy4uy8XkFjjZvFPNeVyKo1Ovw6zd5clp8WZWr4cCtG8oqR5uYDHXdejwjX3CN2GESPNj7zZ8cu0bh7erQQuM2ucMgEsHWDWo1JVwMvB8bryYruWBgiHOOJ2hgezi2J77kihJi_3W7fMkxXS2avHJzmhzS8QNyf4gk6VHP-ofkVoiPyN2-t-Tfx2T1CbU3-i3dJAjN2NG2oWegwGDwYo1yRxGg9SzQeqzNoOtIXRtb13b07Xcb4dW47vyuO6Q21jT18-uekNPjzz8-nuRDG4XcS822OXestHrpSrHUDqJB2_hGcss1ZMZMBA1sDE3lbfCNxfxMNaWwhZNS1UxYzsRTshfbGJ4TyoR0pVvq0EBeWZfcyroKSsJsiH4L7jKyGHfU-AFjHFtd_DYp16ikQR4Y5AE-AR5k5HB6Y9Pja9ww9wMyaZqHyNjpQXv-0wyKZph1yivFeFBV4S2HhZU6aMWlcw5oz8gbZLFB_YWleTv8hgAEIhKWOeICWwqIqsrIwWwm6J2fD49CYga978yFlGZk__owBF8aIsJKZYROo_hdrHSLod11RuHNpSg0UPusF7iJXg6fFctCZETNRHG2IfORuP6VIMOB2RCHwJrfjUJ7saj_bfeLmwncJ_f6SgqdL_kB2due78JLCNC27lXSwn9k6zbi priority: 102 providerName: ProQuest – databaseName: Springer Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA8yEXwR52fdlDwIOqGsSdqkeZxXxxAUHxzct5CkCV5w6bD3Pvjf75x-uW4q-NqclCTnuyf9HUJeWwi7o-MuR3C4vKyiz2twtHlUzHtdi6D6Xoefv8iz8_LTulqP3zvwX5jr9XtWy2MGxjPn-NUL7AVXkJzfrcDsoiyv5GquF4CfY1MR8g-zFk6nx-a_bYGvuaCb1yNv1Eh713P6kDwYY0Z6MjB5n9wJ6RG5N3SR_PWYrD-gnia_pZc9WGbqaBvpBagqmLbUoIRRhGK9CLSZbmHQTaKuTa1rO_r2q00wNW06v-uOqE0N7Tv3dU_I-enHb6uzfGyYkHup2TbnjlVWF64ShXYQ99noo-SWa8iBmQgaGBZi7W3w0WImpmIlbOmkVA0TljPxlOylNoXnhDIhXeUKHSJkkE3FrWzqoCRQQ5xbcpeR4-lEjR_RxLGpxQ_TZxW1NMgDgzzAJ8CDjBzNMy4HJI1_0L5HJs10iIHdPwDRMKNKGWad8koxHlRdesthYZUOWnHpnIO9Z-QNstigpsLSvB1_OIANIuaVOeECmweIus7I4YISNMwvhychMaOGd4ZrxLKTEFFl5OD2MIRZGmK_WmWEzqP4XrzTlkK764zCGqUoNez22SBw8345vFYUpciIWoji4kCWI2nzvQcHB2ZDxAFrfjcJ7e9F_e24X_wP8QG5P9yg0HnBD8ne9ucuvITAbOte9Tp5BR8LLmE priority: 102 providerName: Springer Nature |
Title | Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus) and humans |
URI | https://link.springer.com/article/10.1186/1471-2148-10-270 https://www.ncbi.nlm.nih.gov/pubmed/20813043 https://www.proquest.com/docview/2955186081 https://www.proquest.com/docview/901939987 https://www.proquest.com/docview/755163490 https://pubmed.ncbi.nlm.nih.gov/PMC2942848 https://doaj.org/article/1ab7c7712e784ca281b59e9726bbb6af |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgExIviG_CRuUHJBhSWGMndvyAUFs2TUhM00SlipfIdhyotDmjaSX233PnJh3ZBg-8RGpsN_Z9-O7iy-8Iea3B7a4MMzGCw8VpVtk4B0MbVzKxVuXcyVDr8MuxOJqmn2fZ7Orz6JaAza2hHdaTmi7O3v_6efkRFP5DUPhc7CewwcYM34zBnsIkBPDb4bQIE_nSqzMFsIVJd1B5yyiEBQb7COE979moAOV_c8P-w2Jdz6a8dqQaLNXhQ_KgdTHpaC0Tj8gd5x-Te-uik5dPyOwTqrW3S3oRsDV9Q-uKnoNmAzF8iQJJEbn13NGyS9qgc09N7WtTN_TtifYw1M8bu2r2qPYlDYX-mqdkenjwdXIUt_UVYitUsoyZSTKthibjQ2XATdSVrQTTTEHInHCngL-uyq12ttIYuMkq4zo1Qsgy4Zol_BnZ8rV3LwhNuDCZGSpXQcBZZkyLMndSQG9wi1NmIrLfUbSwLfg41sA4K0IQkosC2VEgO_AOsCMie5sRF2vgjX_0HSOTNv0QMjvcqBffi1YDi0QbaaVMmJN5ajWDiWXKKcmEMQbWHpE3yOICRQ2mZnX7fQIsECGyihHjWGuA53lEdns9QSFtv7kTkqKT54IphL4TIGAR2bnZDF6ZAlcxlxGhm1b8X0yB865eNYXEI02eKljt87XAbdbbyW1EZE8UewTpt_j5j4AlDswGBwXm_K4T2qtJ_Y3cL__7MTvk_jr7AnP0dsnWcrFyr8CpW5oBuStnckC2xwfHJ6fwayImg_CCZBC0GK6n429wnbLRbwqmTPI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEG_wiNEX47crqH3QKCabu2132-0DMSCQQz5CDCS8lbbb1Uuke7JHDP-cf5sze7sHB5E3XrfdptOZzkw70_kR8t6A211aZmMsDhenWeniHAxtXMrEOZVzLxusw719MTxKvx1nxwvkb_cWBtMqO53YKOqicnhH3mcKa4cJsGBfxr9jRI3C6GoHoWFaaIVitSkx1j7s2PEXf-AIV69ubwC_PzC2tXn4dRi3KAOxEyqZxMwmmVEDm_GBsuAsmdKVghmm4OCYcK-ASl_mznhXGjy-yDLjJrVCyCLhhiUcxr1HFlO8QOmRxfXN_YPvszgG2N-kC47mop-AKYgZ3uGB9mMIkHzFGDaYATctwxXTeD1t81rstjGJW4_Jo9aXpWtT4XtCFnx4Su5P0S0vnpHjDdQfwU3ouCniGWpalfQUVAio3FCg5FMsEXvqadFlh9BRoLYKla1q-unABPg1jGp3Xq9QEwraIArWz8nRnSzxC9ILVfCvCE24sJkdKF_CybbImBFF7qWA3uB_p8xGpN-tqHZtlXME2_ilm9NOLjTyQCMP8AvwICIrsz_G0woft_RdRybN-mFt7uZDdfZDt1tdJ8ZKJ2XCvMxTZxhMLFNeSSastUB7RD4iizVqEJiaM-1DCCAQa3HpNcYR1IDneUSW53rCznfzzZ2Q6Fbz1Ppyn0Rk6WYzuH8KfNJcRoTOWnFczLULvjqvtcTYKU8VUPtyKnAzehkMywcpj4icE8W5BZlvCaOfTdFyYDZ4QjDnz53QXk7qf8v9-nYC35EHw8O9Xb27vb-zRB5O8zpUPGDLpDc5O_dvwF2c2LftnqTk5K7VwD-wb3rY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYgL4k3aAj4gQZGiXduJHR_LllV5VT1QaW-W7ThlJeqsmt1D_z0zeSykBSSu8TiyPTOemczkG0JeW3C7K8ddiuBwaZZXPi3A0KaVYt7rQgTV9jr8eiKPz7JPi3zRf3Brhmr3ISXZ_dOAKE1xPVmVVafihZwwuFJTjt_C4BbhCkL224jUhSV9MznbZhHA-rEhNfmHWSNT1CL237yXfzNM14smr2VOW4M0f0Du954kPexY_5DcCvERudP1lrx6TBZHqL3Rr-mqhdCMDa0regEKDBdeLFHuKAK0XgRaDrUZdBmpq2Pt6oa-PbURpsZl4zfNAbWxpG0_v-YJOZt_-DY7Tvs2CqmXmq1T7lhu9dTlYqodeIO28pXklmuIjJkIGtgYqsLb4CuL8ZmqcmEzJ6UqmbCciadkJ9YxPCeUCelyN9WhgriyzLmVZRGUBGrwfjPuEjIZTtT4HmMcW138MG2sUUiDPDDIA3wCPEjIwXbGqsPX-Afte2TSlg6RsdsH9eW56RXNMOuUV4rxoIrMWw4Ly3XQikvnHOw9IW-QxQb1F5bmbf8bAmwQkbDMIRfYUkAURUL2R5Sgd348PAiJ6fW-MVwjwp0EPyshezeHwfnS4BEWKiF0O4rvxUq3GOpNYxRmLkWmYbfPOoHb7pfDa8U0EwlRI1EcHch4JC6_t5DhwGzwQ2DN7wah_bWovx337v8QvyJ3T4_m5svHk8975F5XYqHTKd8nO-vLTXgBntvavWzV8yfynjmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+patterns+of+mitochondrial+genome+diversity+in+bonobos+%28Pan+paniscus%29+and+humans&rft.jtitle=BMC+evolutionary+biology&rft.au=Zsurka%2C+G%C3%A1bor&rft.au=Kudina%2C+Tatiana&rft.au=Peeva%2C+Viktoriya&rft.au=Hallmann%2C+Kerstin&rft.date=2010-09-02&rft.pub=BioMed+Central&rft.eissn=1471-2148&rft.volume=10&rft.spage=270&rft.epage=270&rft_id=info:doi/10.1186%2F1471-2148-10-270&rft_id=info%3Apmid%2F20813043&rft.externalDocID=PMC2942848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2148&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2148&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2148&client=summon |