Elucidating a Magnetic Resonance Imaging-Based Neuroanatomic Biomarker for Psychosis: Classification Analysis Using Probabilistic Brain Atlas and Machine Learning Algorithms

No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities...

Full description

Saved in:
Bibliographic Details
Published inBiological psychiatry (1969) Vol. 66; no. 11; pp. 1055 - 1060
Main Authors Sun, Daqiang, van Erp, Theo G.M., Thompson, Paul M., Bearden, Carrie E., Daley, Melita, Kushan, Leila, Hardt, Molly E., Nuechterlein, Keith H., Toga, Arthur W., Cannon, Tyrone D.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.12.2009
Elsevier
Subjects
Online AccessGet full text
ISSN0006-3223
1873-2402
1873-2402
DOI10.1016/j.biopsych.2009.07.019

Cover

Abstract No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data. Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects. Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation. These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia.
AbstractList Background - No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data. Methods - Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects. Results - Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation. Conclusions - These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia.
No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data. Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects. Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation. These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia.
No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data.BACKGROUNDNo objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data.Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects.METHODSThree-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects.Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation.RESULTSPatients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation.These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia.CONCLUSIONSThese results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia.
Author Hardt, Molly E.
Nuechterlein, Keith H.
Bearden, Carrie E.
Daley, Melita
Kushan, Leila
Sun, Daqiang
van Erp, Theo G.M.
Thompson, Paul M.
Toga, Arthur W.
Cannon, Tyrone D.
Author_xml – sequence: 1
  givenname: Daqiang
  surname: Sun
  fullname: Sun, Daqiang
  organization: Department of Psychology, University of California at Los Angeles
– sequence: 2
  givenname: Theo G.M.
  surname: van Erp
  fullname: van Erp, Theo G.M.
  organization: Department of Psychology, University of California at Los Angeles
– sequence: 3
  givenname: Paul M.
  surname: Thompson
  fullname: Thompson, Paul M.
  organization: Laboratory of Neuro Imaging, Department of Neurology, University of California at Los Angeles School of Medicine
– sequence: 4
  givenname: Carrie E.
  surname: Bearden
  fullname: Bearden, Carrie E.
  organization: Department of Psychology, University of California at Los Angeles
– sequence: 5
  givenname: Melita
  surname: Daley
  fullname: Daley, Melita
  organization: Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles
– sequence: 6
  givenname: Leila
  surname: Kushan
  fullname: Kushan, Leila
  organization: Department of Psychology, University of California at Los Angeles
– sequence: 7
  givenname: Molly E.
  surname: Hardt
  fullname: Hardt, Molly E.
  organization: Department of Psychology, University of California at Los Angeles
– sequence: 8
  givenname: Keith H.
  surname: Nuechterlein
  fullname: Nuechterlein, Keith H.
  organization: Department of Psychology, University of California at Los Angeles
– sequence: 9
  givenname: Arthur W.
  surname: Toga
  fullname: Toga, Arthur W.
  organization: Laboratory of Neuro Imaging, Department of Neurology, University of California at Los Angeles School of Medicine
– sequence: 10
  givenname: Tyrone D.
  surname: Cannon
  fullname: Cannon, Tyrone D.
  email: cannon@psych.ucla.edu
  organization: Department of Psychology, University of California at Los Angeles
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22157752$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19729150$$D View this record in MEDLINE/PubMed
BookMark eNqNk91uEzEQhVeoiLaBV6j2BrhKGHuzP0aoIqkKVCpQAb22HHs2mdSxg72plIfiHfHSH6AXba8sa745c3bneD_bcd5hlh0wGDFg1ZvlaEZ-Hbd6MeIAYgT1CJh4ku2xpi6GfAx8J9sDgGpYcF7sZvsxLtO15pw9y3aZqLlgJexlv47tRpNRHbl5rvLPau6wI51_w-idchrzk5Wap-JwqiKa_AtugldOdX6VqCn5lQoXGPLWh_yst-Mjxbf5kVUxUks6CXuXT5yy21TIz2M_5yz4mZqRpdiPmgZFCelSS66cSR70ghzmp6iC6_GJnftA3WIVn2dPW2Ujvrg-B9n5h-MfR5-Gp18_nhxNToe6EtANDS8rja1oTGVqGBdmBqJALSqsOJasKhkgU6VpFIA2TcWFBgNijHxczppxWwyywyvd9Wa2QqPRdUFZuQ6UPncrvSL5f8XRQs79pSyY4E0aNsheXwsE_3ODsZMrihqtVQ79Jsq6GLOCMVEm8tW9JE8Uq3j9GBBKAb3iwb_mb13fLD0BL68BFbWybUh7pnjLpYiUdV3yxFVXnA4-xoDtXymQfQrlUt6kUPYplFDLlMLU-O5Oo6buTxLSzyL7cPv7q3ZMK74kDDJqwpRFQwF1J42nhyUO70hoSy7F0V7gFuPSb0KKZJRMRi5Bfu9fSv9QQAA0ouD3CzzGwW_msSr8
CODEN BIPCBF
CitedBy_id crossref_primary_10_1016_j_schres_2016_08_027
crossref_primary_10_1016_j_neurobiolaging_2010_04_022
crossref_primary_10_1002_mpr_1818
crossref_primary_10_1016_S0013_7006_13_70102_7
crossref_primary_10_1371_journal_pone_0265300
crossref_primary_10_1093_schbul_sbr037
crossref_primary_10_1002_ima_20225
crossref_primary_10_1016_j_neubiorev_2012_01_004
crossref_primary_10_1371_journal_pone_0119089
crossref_primary_10_1016_j_neuroimage_2013_02_011
crossref_primary_10_1038_s41537_024_00464_2
crossref_primary_10_1002_brb3_733
crossref_primary_10_1016_j_neuroimage_2011_02_007
crossref_primary_10_1214_15_AOAS829
crossref_primary_10_1016_j_neuroimage_2015_12_013
crossref_primary_10_1002_hbm_21342
crossref_primary_10_1111_bdi_12096
crossref_primary_10_3233_JAD_190973
crossref_primary_10_1111_cts_13035
crossref_primary_10_3389_fnins_2016_00392
crossref_primary_10_1016_j_jpsychires_2015_01_015
crossref_primary_10_1016_j_neuroimage_2010_03_057
crossref_primary_10_3389_fnins_2021_669595
crossref_primary_10_1111_acps_12964
crossref_primary_10_3389_fpsyt_2016_00052
crossref_primary_10_1093_ijnp_pyx059
crossref_primary_10_1002_jnr_24951
crossref_primary_10_1038_mp_2013_25
crossref_primary_10_1007_s00115_014_4022_x
crossref_primary_10_1016_j_neuroimage_2016_02_079
crossref_primary_10_1007_s10548_014_0360_z
crossref_primary_10_1016_j_neuroimage_2016_07_027
crossref_primary_10_1016_j_nicl_2015_09_015
crossref_primary_10_1093_schbul_sbr145
crossref_primary_10_1016_j_amp_2015_03_002
crossref_primary_10_1016_j_neuroimage_2010_02_032
crossref_primary_10_1007_s11682_017_9767_y
crossref_primary_10_3758_s13428_022_01795_7
crossref_primary_10_1016_j_neuroimage_2011_10_048
crossref_primary_10_1016_j_schres_2017_11_038
crossref_primary_10_1016_j_neuroimage_2013_04_018
crossref_primary_10_3758_s13415_019_00733_z
crossref_primary_10_1016_j_media_2021_102009
crossref_primary_10_1016_j_schres_2019_10_034
crossref_primary_10_1016_j_nicl_2020_102238
crossref_primary_10_1016_j_schres_2015_03_017
crossref_primary_10_3389_fncom_2018_00093
crossref_primary_10_1016_j_cpet_2010_03_004
crossref_primary_10_1093_schbul_sbr153
crossref_primary_10_1016_j_neuroimage_2011_11_002
crossref_primary_10_32604_iasc_2021_015049
crossref_primary_10_1017_S0033291716002609
crossref_primary_10_1371_journal_pone_0171749
crossref_primary_10_1007_s13311_010_0006_0
crossref_primary_10_1177_0963721410377601
crossref_primary_10_3390_ijerph18116099
crossref_primary_10_1371_journal_pone_0239615
crossref_primary_10_4045_tidsskr_12_1084
crossref_primary_10_1089_cap_2013_0139
crossref_primary_10_1016_j_schres_2023_06_001
crossref_primary_10_1515_ijb_2015_0030
crossref_primary_10_3389_fpsyt_2015_00021
crossref_primary_10_1016_j_pscychresns_2010_09_016
crossref_primary_10_1016_j_nicl_2018_02_007
crossref_primary_10_1038_s41380_018_0106_5
crossref_primary_10_1016_j_pnpbp_2020_109989
crossref_primary_10_1186_s13036_019_0145_8
crossref_primary_10_1016_j_tics_2015_09_009
crossref_primary_10_1017_S0033291711002005
crossref_primary_10_1556_mpszle_68_2013_1_9
crossref_primary_10_31887_DCNS_2014_16_4_pdazzan
crossref_primary_10_1371_journal_pone_0110243
crossref_primary_10_1093_schbul_sby091
crossref_primary_10_1002_hbm_25013
crossref_primary_10_1016_j_neuroimage_2011_03_040
crossref_primary_10_1007_s00103_013_1840_0
crossref_primary_10_1111_pcn_13625
crossref_primary_10_1007_s12264_012_1253_3
crossref_primary_10_1038_mp_2011_173
crossref_primary_10_1016_j_nicl_2013_07_004
crossref_primary_10_1371_journal_pone_0040968
crossref_primary_10_1016_j_pscychresns_2015_03_004
crossref_primary_10_1073_pnas_1210126110
crossref_primary_10_1111_bdi_12222
crossref_primary_10_1016_j_neuroimage_2015_12_007
crossref_primary_10_1093_schbul_sbz062
crossref_primary_10_1038_srep43089
crossref_primary_10_1016_j_chc_2011_03_012
crossref_primary_10_1016_j_schres_2012_01_001
crossref_primary_10_1017_S003329171300024X
crossref_primary_10_1016_j_neuroimage_2011_12_079
crossref_primary_10_1089_neu_2020_7259
crossref_primary_10_1371_journal_pone_0021047
crossref_primary_10_1016_j_eswa_2022_117464
crossref_primary_10_1016_j_nicl_2013_09_003
crossref_primary_10_1016_j_neubiorev_2015_08_001
crossref_primary_10_1016_j_neuroimage_2012_03_079
crossref_primary_10_1016_j_pnpbp_2012_12_005
crossref_primary_10_2217_fnl_11_35
crossref_primary_10_1016_j_bspc_2018_02_018
crossref_primary_10_3917_inpsy_8910_0781
Cites_doi 10.1176/appi.ajp.158.2.244
10.1016/j.neuroimage.2006.08.018
10.1089/cap.2005.15.434
10.1109/TPAMI.2005.127
10.1016/j.neuroimage.2008.04.255
10.1016/j.neuroimage.2004.07.071
10.1016/j.neuroimage.2006.11.021
10.1006/nimg.1996.0074
10.1093/cercor/8.6.492
10.1093/oxfordjournals.schbul.a006896
10.1016/S0920-9964(01)00163-3
10.1126/science.1063736
10.1016/j.neuroimage.2008.02.043
10.1006/nimg.1995.1012
10.1002/mrm.21471
10.1109/42.906424
10.1006/nimg.1999.0534
10.1007/s12021-008-9041-y
10.1001/archpsyc.62.11.1218
10.1093/schbul/sbi034
10.1038/nature06713
10.1016/S0165-1781(98)00038-9
10.1016/j.neuroimage.2004.04.021
10.1109/42.668698
10.1176/appi.ajp.159.5.863
10.1006/nimg.2002.1076
10.1016/j.biopsych.2007.03.015
10.1016/j.neuroimage.2006.01.022
10.1097/00004728-199403000-00005
10.1016/j.neuroimage.2008.12.037
ContentType Journal Article
Copyright 2009 Society of Biological Psychiatry
Society of Biological Psychiatry
2015 INIST-CNRS
2009 Society of Biological Psychiatry 2009
Copyright_xml – notice: 2009 Society of Biological Psychiatry
– notice: Society of Biological Psychiatry
– notice: 2015 INIST-CNRS
– notice: 2009 Society of Biological Psychiatry 2009
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
7X8
5PM
DOI 10.1016/j.biopsych.2009.07.019
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Toxicology Abstracts

MEDLINE - Academic
Neurosciences Abstracts


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1873-2402
EndPage 1060
ExternalDocumentID PMC3192809
19729150
22157752
10_1016_j_biopsych_2009_07_019
S0006322309008932
1_s2_0_S0006322309008932
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R56 AG020098
– fundername: NICHD NIH HHS
  grantid: HD050735
– fundername: PHS HHS
  grantid: P-41
– fundername: NIMH NIH HHS
  grantid: MH037705
– fundername: NIA NIH HHS
  grantid: AG020098
– fundername: NCRR NIH HHS
  grantid: U54 RR021813
– fundername: NIMH NIH HHS
  grantid: R01 MH065079
– fundername: NIMH NIH HHS
  grantid: K23MH079028
– fundername: NIA NIH HHS
  grantid: R01 AG020098
– fundername: NIMH NIH HHS
  grantid: K23 MH079028
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB007813-04 || EB
– fundername: National Center for Research Resources : NCRR
  grantid: U54 RR021813-05 || RR
– fundername: National Institute of Child Health & Human Development : NICHD
  grantid: R01 HD050735-05 || HD
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB008281-14 || EB
– fundername: National Institute on Aging : NIA
  grantid: R01 AG020098-09 || AG
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB008432-04 || EB
– fundername: National Institute of Mental Health : NIMH
  grantid: P50 MH066286-08 || MH
– fundername: National Institute of Mental Health : NIMH
  grantid: R01 MH065079-05 || MH
– fundername: National Institute of Mental Health : NIMH
  grantid: K23 MH079028-05 || MH
GroupedDBID ---
--K
--M
-DZ
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABCQX
ABDPE
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEG
HMK
HMO
HMQ
HVGLF
HZ~
H~9
IHE
J1W
KOM
L7B
M29
M2V
M39
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OU-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SNS
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UPT
UV1
WH7
WUQ
XJT
XOL
Z5R
ZCA
ZGI
ZKB
ZXP
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
G8K
LCYCR
ZA5
AAYXX
AGRNS
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
ACLOT
~HD
7X8
5PM
ID FETCH-LOGICAL-c690t-d256cef98d6d7043db093ec96e62e516510e1a5d8a00cd8629c0d094e245b84f3
IEDL.DBID .~1
ISSN 0006-3223
1873-2402
IngestDate Thu Aug 21 14:39:01 EDT 2025
Fri Sep 05 14:19:42 EDT 2025
Sun Sep 28 00:07:00 EDT 2025
Fri Sep 05 08:54:25 EDT 2025
Thu Apr 03 06:58:10 EDT 2025
Wed Apr 02 07:16:20 EDT 2025
Tue Jul 01 03:21:16 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Fri Feb 23 02:26:56 EST 2024
Sun Feb 23 10:19:25 EST 2025
Tue Aug 26 16:31:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords PyMVPA
cortical pattern matching
schizophrenia
MRI
psychosis
Classification
Central nervous system
Biological marker
Schizophrenia
Algorithm
Nuclear magnetic resonance imaging
Encephalon
Learning
Psychosis
Acquisition process
Medical imagery
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c690t-d256cef98d6d7043db093ec96e62e516510e1a5d8a00cd8629c0d094e245b84f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 19729150
PQID 21105905
PQPubID 23462
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3192809
proquest_miscellaneous_734131195
proquest_miscellaneous_21191627
proquest_miscellaneous_21105905
pubmed_primary_19729150
pascalfrancis_primary_22157752
crossref_primary_10_1016_j_biopsych_2009_07_019
crossref_citationtrail_10_1016_j_biopsych_2009_07_019
elsevier_sciencedirect_doi_10_1016_j_biopsych_2009_07_019
elsevier_clinicalkeyesjournals_1_s2_0_S0006322309008932
elsevier_clinicalkey_doi_10_1016_j_biopsych_2009_07_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle Biological psychiatry (1969)
PublicationTitleAlternate Biol Psychiatry
PublicationYear 2009
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Klein, Andersson, Ardekani, Ashburner, Avants, Chiang (bib33) 2009; 46
Kay, Naselaris, Prenger, Gallant (bib8) 2008; 452
Fan, Resnick, Wu, Davatzikos (bib10) 2008; 41
Ferrarini, Palm, Olofsen, van der Landen, van Buchem, Reiber (bib30) 2008; 59
Yoon, Lee, Im, Shin, Cho, Kim (bib13) 2007; 34
Krishnapuram, Carin, Figueiredo, Hartemink (bib17) 2005; 27
McGlashan, Miller, Woods (bib21) 2001; 27
Michael, Calhoun, Andreasen, Baum (bib3) 2008; 2008
Sled, Zijdenbos, Evans (bib23) 1998; 17
Martinez-Ramon, Koltchinskii, Heileman, Posse (bib35) 2006; 31
Shenton, Dickey, Frumin, McCarley (bib4) 2001; 49
Fan, Gur, Gur, Wu, Shen, Calkins (bib11) 2008; 63
Haxby, Gobbini, Furey, Ishai, Schouten, Pietrini (bib7) 2001; 293
First, Spitzer, Gibbon, Williams (bib18) 1997
Collins, Neelin, Peters, Evans (bib26) 1994; 18
Chatterjee, Hadi (bib29) 2006
Friston, Ashburner (bib6) 2004; 23
Narr, Thompson, Sharma, Moussai, Zoumalan, Rayman (bib31) 2001; 158
Caprihan, Pearlson, Calhoun (bib1) 2008; 42
Pantelis, Yucel, Wood, Velakoulis, Sun, Berger (bib5) 2005; 31
Meyer, Bearden, Lux, Gordon, Johnson, O'Brien (bib19) 2005; 15
Friston, Holmes, Poline, Price, Frith (bib28) 1996; 4
Miller, McGlashan, Rosen, Somjee, Markovich, Stein (bib22) 2002; 159
Kawasaki, Suzuki, Kherif, Takahashi, Zhou, Nakamura (bib12) 2007; 34
Hanke, Halchenko, Sederberg, Olivetti, Frund, Rieger (bib15) 2009; 3
Zhang, Brady, Smith (bib24) 2001; 20
Mazziotta, Toga, Evans, Fox, Lancaster (bib25) 1995; 2
MacDonald, Kabani, Avis, Evans (bib27) 2000; 12
Thompson, Moussai, Zohoori, Goldkorn, Khan, Mega (bib32) 1998; 8
Morra, Tu, Apostolova, Green, Toga, Thompson (bib9) 2008; 11
Ventura, Liberman, Green, Shaner, Mintz (bib20) 1998; 79
Davatzikos, Shen, Gur, Wu, Liu, Fan (bib2) 2005; 62
Thompson, Hayashi, Sowell, Gogtay, Giedd, Rapoport (bib14) 2004; 23
Blumenthal, Zijdenbos, Molloy, Giedd (bib34) 2002; 16
Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (bib16) 2009; 7
Fan (10.1016/j.biopsych.2009.07.019_bib11) 2008; 63
Krishnapuram (10.1016/j.biopsych.2009.07.019_bib17) 2005; 27
Pantelis (10.1016/j.biopsych.2009.07.019_bib5) 2005; 31
Ventura (10.1016/j.biopsych.2009.07.019_bib20) 1998; 79
Thompson (10.1016/j.biopsych.2009.07.019_bib32) 1998; 8
Haxby (10.1016/j.biopsych.2009.07.019_bib7) 2001; 293
Collins (10.1016/j.biopsych.2009.07.019_bib26) 1994; 18
Kawasaki (10.1016/j.biopsych.2009.07.019_bib12) 2007; 34
Klein (10.1016/j.biopsych.2009.07.019_bib33) 2009; 46
Mazziotta (10.1016/j.biopsych.2009.07.019_bib25) 1995; 2
Shenton (10.1016/j.biopsych.2009.07.019_bib4) 2001; 49
Hanke (10.1016/j.biopsych.2009.07.019_bib16) 2009; 7
Sled (10.1016/j.biopsych.2009.07.019_bib23) 1998; 17
Davatzikos (10.1016/j.biopsych.2009.07.019_bib2) 2005; 62
Friston (10.1016/j.biopsych.2009.07.019_bib6) 2004; 23
Narr (10.1016/j.biopsych.2009.07.019_bib31) 2001; 158
Miller (10.1016/j.biopsych.2009.07.019_bib22) 2002; 159
Chatterjee (10.1016/j.biopsych.2009.07.019_bib29) 2006
Meyer (10.1016/j.biopsych.2009.07.019_bib19) 2005; 15
Michael (10.1016/j.biopsych.2009.07.019_bib3) 2008; 2008
Caprihan (10.1016/j.biopsych.2009.07.019_bib1) 2008; 42
Martinez-Ramon (10.1016/j.biopsych.2009.07.019_bib35) 2006; 31
McGlashan (10.1016/j.biopsych.2009.07.019_bib21) 2001; 27
Thompson (10.1016/j.biopsych.2009.07.019_bib14) 2004; 23
Zhang (10.1016/j.biopsych.2009.07.019_bib24) 2001; 20
Yoon (10.1016/j.biopsych.2009.07.019_bib13) 2007; 34
Kay (10.1016/j.biopsych.2009.07.019_bib8) 2008; 452
Morra (10.1016/j.biopsych.2009.07.019_bib9) 2008; 11
Blumenthal (10.1016/j.biopsych.2009.07.019_bib34) 2002; 16
Friston (10.1016/j.biopsych.2009.07.019_bib28) 1996; 4
Ferrarini (10.1016/j.biopsych.2009.07.019_bib30) 2008; 59
First (10.1016/j.biopsych.2009.07.019_bib18) 1997
MacDonald (10.1016/j.biopsych.2009.07.019_bib27) 2000; 12
Hanke (10.1016/j.biopsych.2009.07.019_bib15) 2009; 3
Fan (10.1016/j.biopsych.2009.07.019_bib10) 2008; 41
19212459 - Front Neuroinform. 2009 Feb 04;3:3
10944416 - Neuroimage. 2000 Sep;12(3):340-56
18571937 - Neuroimage. 2008 Aug 15;42(2):675-82
19195496 - Neuroimage. 2009 Jul 1;46(3):786-802
16275809 - Arch Gen Psychiatry. 2005 Nov;62(11):1218-27
17555720 - Biol Psychiatry. 2008 Jan 1;63(1):118-24
18228600 - Magn Reson Med. 2008 Feb;59(2):260-7
11824483 - Schizophr Bull. 2001;27(4):563-70
11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
16529955 - Neuroimage. 2006 Jul 1;31(3):1129-41
18400519 - Neuroimage. 2008 Jun;41(2):277-85
15501091 - Neuroimage. 2004;23 Suppl 1:S2-18
9705054 - Psychiatry Res. 1998 Jun 15;79(2):163-73
8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205
11969320 - Neuroimage. 2002 May;16(1):89-92
17045492 - Neuroimage. 2007 Jan 1;34(1):235-42
18979748 - Med Image Comput Comput Assist Interv. 2008;11(Pt 1):194-201
9758213 - Cereb Cortex. 1998 Sep;8(6):492-509
15943426 - IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):957-68
11343862 - Schizophr Res. 2001 Apr 15;49(1-2):1-52
16020551 - Schizophr Bull. 2005 Jul;31(3):672-96
11986145 - Am J Psychiatry. 2002 May;159(5):863-5
11156807 - Am J Psychiatry. 2001 Feb;158(2):244-55
19163965 - Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5510-3
15325348 - Neuroimage. 2004 Sep;23(1):21-4
9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97
17188902 - Neuroimage. 2007 Feb 15;34(4):1405-15
9343592 - Neuroimage. 1995 Jun;2(2):89-101
19184561 - Neuroinformatics. 2009 Spring;7(1):37-53
18322462 - Nature. 2008 Mar 20;452(7185):352-5
9345513 - Neuroimage. 1996 Dec;4(3 Pt 1):223-35
11577229 - Science. 2001 Sep 28;293(5539):2425-30
16092909 - J Child Adolesc Psychopharmacol. 2005 Jun;15(3):434-51
References_xml – volume: 12
  start-page: 340
  year: 2000
  end-page: 356
  ident: bib27
  article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI
  publication-title: Neuroimage
– volume: 452
  start-page: 352
  year: 2008
  end-page: 355
  ident: bib8
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
– volume: 63
  start-page: 118
  year: 2008
  end-page: 124
  ident: bib11
  article-title: Unaffected family members and schizophrenia patients share brain structure patterns: A high-dimensional pattern classification study
  publication-title: Biol Psychiatry
– volume: 27
  start-page: 957
  year: 2005
  end-page: 968
  ident: bib17
  article-title: Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds
  publication-title: Trans IEEE Pattern Anal Mach Intell
– volume: 2008
  start-page: 5510
  year: 2008
  end-page: 5513
  ident: bib3
  article-title: A method to classify schizophrenia using inter-task spatial correlations of functional brain images
  publication-title: Conf Prog IEEE Engl Med Biol Soc
– volume: 3
  start-page: 3
  year: 2009
  ident: bib15
  article-title: PyMVPA: A unifying approach to the analysis of neuroscientific data
  publication-title: Neuroinformatics
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  ident: bib23
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
– volume: 8
  start-page: 492
  year: 1998
  end-page: 509
  ident: bib32
  article-title: Cortical variability and asymmetry in normal aging and Alzheimer's disease
  publication-title: Cereb Cortex
– volume: 41
  start-page: 277
  year: 2008
  end-page: 285
  ident: bib10
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: A high-dimensional pattern classification study
  publication-title: Neuroimage
– volume: 4
  start-page: 223
  year: 1996
  end-page: 235
  ident: bib28
  article-title: Detecting activations in PET and fMRI: Levels of inference and power
  publication-title: Neuroimage
– volume: 59
  start-page: 260
  year: 2008
  end-page: 267
  ident: bib30
  article-title: Ventricular shape biomarkers for Alzheimer's disease in clinical MR images
  publication-title: Magn Reson Med
– volume: 49
  start-page: 1
  year: 2001
  end-page: 52
  ident: bib4
  article-title: A review of MRI findings in schizophrenia
  publication-title: Schizophr Res
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib24
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 16
  start-page: 89
  year: 2002
  end-page: 92
  ident: bib34
  article-title: Motion artifact in magnetic resonance imaging: Implications for automated analysis
  publication-title: Neuroimage
– start-page: 317
  year: 2006
  end-page: 340
  ident: bib29
  article-title: Regression Analysis by Example
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  ident: bib26
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J Comput Assist Tomogr
– volume: 23
  start-page: 21
  year: 2004
  end-page: 24
  ident: bib6
  article-title: Generative and recognition models for neuroanatomy
  publication-title: Neuroimage
– volume: 34
  start-page: 235
  year: 2007
  end-page: 242
  ident: bib12
  article-title: Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls
  publication-title: Neuroimage
– volume: 2
  start-page: 89
  year: 1995
  end-page: 101
  ident: bib25
  article-title: A probabilistic atlas of the human brain: Theory and rationale for its development
  publication-title: Neuroimage
– year: 1997
  ident: bib18
  article-title: Structured Clinical Interview for DSM-IV Axis I Disorders
– volume: 27
  start-page: 563
  year: 2001
  end-page: 570
  ident: bib21
  article-title: Pre-onset detection and intervention research in schizophrenia psychoses: Current estimates of benefit and risk
  publication-title: Schizophr Bull
– volume: 11
  start-page: 194
  year: 2008
  end-page: 201
  ident: bib9
  article-title: Automatic subcortical segmentation using a contextual model
  publication-title: Med Image Comput Comput Assist Interv Int Conference
– volume: 62
  start-page: 1218
  year: 2005
  end-page: 1227
  ident: bib2
  article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities
  publication-title: Arch Gen Psychiatry
– volume: 159
  start-page: 863
  year: 2002
  end-page: 865
  ident: bib22
  article-title: Prospective diagnosis of the initial prodrome for schizophrenia based on the structured interview for prodromal syndromes: Preliminary evidence of interrater reliability and predictive validity
  publication-title: Am J Psychiatry
– volume: 31
  start-page: 1129
  year: 2006
  end-page: 1141
  ident: bib35
  article-title: fMRI pattern classification using neuroanatomically constrained boosting
  publication-title: Neuroimage
– volume: 42
  start-page: 675
  year: 2008
  end-page: 682
  ident: bib1
  article-title: Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements
  publication-title: Neuroimage
– volume: 293
  start-page: 2425
  year: 2001
  end-page: 2430
  ident: bib7
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
– volume: 79
  start-page: 163
  year: 1998
  end-page: 173
  ident: bib20
  article-title: Training and quality assurance with the structured clinical interview for DSM-IV (SCID-I/P)
  publication-title: Psychiatry Res
– volume: 46
  start-page: 786
  year: 2009
  end-page: 802
  ident: bib33
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: Neuroimage
– volume: 15
  start-page: 434
  year: 2005
  end-page: 451
  ident: bib19
  article-title: The psychosis prodrome in adolescent patients viewed through the lens of DSM-IV
  publication-title: J Child Adolesc Psychopharmacol
– volume: 7
  start-page: 37
  year: 2009
  end-page: 53
  ident: bib16
  article-title: PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
– volume: 23
  start-page: S2
  year: 2004
  end-page: S18
  ident: bib14
  article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia
  publication-title: Neuroimage
– volume: 158
  start-page: 244
  year: 2001
  end-page: 255
  ident: bib31
  article-title: Three-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: Gender effects
  publication-title: Am J Psychiatry
– volume: 31
  start-page: 672
  year: 2005
  end-page: 696
  ident: bib5
  article-title: Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia
  publication-title: Schizophr Bull
– volume: 34
  start-page: 1405
  year: 2007
  end-page: 1415
  ident: bib13
  article-title: Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia
  publication-title: Neuroimage
– volume: 158
  start-page: 244
  year: 2001
  ident: 10.1016/j.biopsych.2009.07.019_bib31
  article-title: Three-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: Gender effects
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.158.2.244
– volume: 34
  start-page: 235
  year: 2007
  ident: 10.1016/j.biopsych.2009.07.019_bib12
  article-title: Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.08.018
– volume: 15
  start-page: 434
  year: 2005
  ident: 10.1016/j.biopsych.2009.07.019_bib19
  article-title: The psychosis prodrome in adolescent patients viewed through the lens of DSM-IV
  publication-title: J Child Adolesc Psychopharmacol
  doi: 10.1089/cap.2005.15.434
– volume: 27
  start-page: 957
  year: 2005
  ident: 10.1016/j.biopsych.2009.07.019_bib17
  article-title: Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds
  publication-title: Trans IEEE Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.127
– volume: 42
  start-page: 675
  year: 2008
  ident: 10.1016/j.biopsych.2009.07.019_bib1
  article-title: Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.04.255
– volume: 2008
  start-page: 5510
  year: 2008
  ident: 10.1016/j.biopsych.2009.07.019_bib3
  article-title: A method to classify schizophrenia using inter-task spatial correlations of functional brain images
  publication-title: Conf Prog IEEE Engl Med Biol Soc
– volume: 23
  start-page: S2
  issue: suppl 1
  year: 2004
  ident: 10.1016/j.biopsych.2009.07.019_bib14
  article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.071
– volume: 34
  start-page: 1405
  year: 2007
  ident: 10.1016/j.biopsych.2009.07.019_bib13
  article-title: Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.021
– volume: 4
  start-page: 223
  year: 1996
  ident: 10.1016/j.biopsych.2009.07.019_bib28
  article-title: Detecting activations in PET and fMRI: Levels of inference and power
  publication-title: Neuroimage
  doi: 10.1006/nimg.1996.0074
– volume: 3
  start-page: 3
  year: 2009
  ident: 10.1016/j.biopsych.2009.07.019_bib15
  article-title: PyMVPA: A unifying approach to the analysis of neuroscientific data
  publication-title: Neuroinformatics
– year: 1997
  ident: 10.1016/j.biopsych.2009.07.019_bib18
– volume: 8
  start-page: 492
  year: 1998
  ident: 10.1016/j.biopsych.2009.07.019_bib32
  article-title: Cortical variability and asymmetry in normal aging and Alzheimer's disease
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/8.6.492
– volume: 27
  start-page: 563
  year: 2001
  ident: 10.1016/j.biopsych.2009.07.019_bib21
  article-title: Pre-onset detection and intervention research in schizophrenia psychoses: Current estimates of benefit and risk
  publication-title: Schizophr Bull
  doi: 10.1093/oxfordjournals.schbul.a006896
– volume: 49
  start-page: 1
  year: 2001
  ident: 10.1016/j.biopsych.2009.07.019_bib4
  article-title: A review of MRI findings in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/S0920-9964(01)00163-3
– volume: 293
  start-page: 2425
  year: 2001
  ident: 10.1016/j.biopsych.2009.07.019_bib7
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
  doi: 10.1126/science.1063736
– volume: 41
  start-page: 277
  year: 2008
  ident: 10.1016/j.biopsych.2009.07.019_bib10
  article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: A high-dimensional pattern classification study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.043
– volume: 2
  start-page: 89
  year: 1995
  ident: 10.1016/j.biopsych.2009.07.019_bib25
  article-title: A probabilistic atlas of the human brain: Theory and rationale for its development
  publication-title: Neuroimage
  doi: 10.1006/nimg.1995.1012
– volume: 59
  start-page: 260
  year: 2008
  ident: 10.1016/j.biopsych.2009.07.019_bib30
  article-title: Ventricular shape biomarkers for Alzheimer's disease in clinical MR images
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21471
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.biopsych.2009.07.019_bib24
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.906424
– volume: 12
  start-page: 340
  year: 2000
  ident: 10.1016/j.biopsych.2009.07.019_bib27
  article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0534
– volume: 7
  start-page: 37
  year: 2009
  ident: 10.1016/j.biopsych.2009.07.019_bib16
  article-title: PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9041-y
– start-page: 317
  year: 2006
  ident: 10.1016/j.biopsych.2009.07.019_bib29
  article-title: Regression Analysis by Example
– volume: 62
  start-page: 1218
  year: 2005
  ident: 10.1016/j.biopsych.2009.07.019_bib2
  article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.62.11.1218
– volume: 31
  start-page: 672
  year: 2005
  ident: 10.1016/j.biopsych.2009.07.019_bib5
  article-title: Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbi034
– volume: 452
  start-page: 352
  year: 2008
  ident: 10.1016/j.biopsych.2009.07.019_bib8
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
  doi: 10.1038/nature06713
– volume: 79
  start-page: 163
  year: 1998
  ident: 10.1016/j.biopsych.2009.07.019_bib20
  article-title: Training and quality assurance with the structured clinical interview for DSM-IV (SCID-I/P)
  publication-title: Psychiatry Res
  doi: 10.1016/S0165-1781(98)00038-9
– volume: 23
  start-page: 21
  year: 2004
  ident: 10.1016/j.biopsych.2009.07.019_bib6
  article-title: Generative and recognition models for neuroanatomy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.04.021
– volume: 11
  start-page: 194
  year: 2008
  ident: 10.1016/j.biopsych.2009.07.019_bib9
  article-title: Automatic subcortical segmentation using a contextual model
  publication-title: Med Image Comput Comput Assist Interv Int Conference
– volume: 17
  start-page: 87
  year: 1998
  ident: 10.1016/j.biopsych.2009.07.019_bib23
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.668698
– volume: 159
  start-page: 863
  year: 2002
  ident: 10.1016/j.biopsych.2009.07.019_bib22
  article-title: Prospective diagnosis of the initial prodrome for schizophrenia based on the structured interview for prodromal syndromes: Preliminary evidence of interrater reliability and predictive validity
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.159.5.863
– volume: 16
  start-page: 89
  year: 2002
  ident: 10.1016/j.biopsych.2009.07.019_bib34
  article-title: Motion artifact in magnetic resonance imaging: Implications for automated analysis
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1076
– volume: 63
  start-page: 118
  year: 2008
  ident: 10.1016/j.biopsych.2009.07.019_bib11
  article-title: Unaffected family members and schizophrenia patients share brain structure patterns: A high-dimensional pattern classification study
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2007.03.015
– volume: 31
  start-page: 1129
  year: 2006
  ident: 10.1016/j.biopsych.2009.07.019_bib35
  article-title: fMRI pattern classification using neuroanatomically constrained boosting
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.022
– volume: 18
  start-page: 192
  year: 1994
  ident: 10.1016/j.biopsych.2009.07.019_bib26
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-199403000-00005
– volume: 46
  start-page: 786
  year: 2009
  ident: 10.1016/j.biopsych.2009.07.019_bib33
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.037
– reference: 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
– reference: 9345513 - Neuroimage. 1996 Dec;4(3 Pt 1):223-35
– reference: 11969320 - Neuroimage. 2002 May;16(1):89-92
– reference: 16275809 - Arch Gen Psychiatry. 2005 Nov;62(11):1218-27
– reference: 18228600 - Magn Reson Med. 2008 Feb;59(2):260-7
– reference: 16020551 - Schizophr Bull. 2005 Jul;31(3):672-96
– reference: 18322462 - Nature. 2008 Mar 20;452(7185):352-5
– reference: 17045492 - Neuroimage. 2007 Jan 1;34(1):235-42
– reference: 18400519 - Neuroimage. 2008 Jun;41(2):277-85
– reference: 17555720 - Biol Psychiatry. 2008 Jan 1;63(1):118-24
– reference: 17188902 - Neuroimage. 2007 Feb 15;34(4):1405-15
– reference: 19184561 - Neuroinformatics. 2009 Spring;7(1):37-53
– reference: 16092909 - J Child Adolesc Psychopharmacol. 2005 Jun;15(3):434-51
– reference: 19163965 - Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5510-3
– reference: 9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97
– reference: 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205
– reference: 15501091 - Neuroimage. 2004;23 Suppl 1:S2-18
– reference: 19212459 - Front Neuroinform. 2009 Feb 04;3:3
– reference: 11824483 - Schizophr Bull. 2001;27(4):563-70
– reference: 11343862 - Schizophr Res. 2001 Apr 15;49(1-2):1-52
– reference: 9705054 - Psychiatry Res. 1998 Jun 15;79(2):163-73
– reference: 15325348 - Neuroimage. 2004 Sep;23(1):21-4
– reference: 15943426 - IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):957-68
– reference: 11577229 - Science. 2001 Sep 28;293(5539):2425-30
– reference: 18571937 - Neuroimage. 2008 Aug 15;42(2):675-82
– reference: 18979748 - Med Image Comput Comput Assist Interv. 2008;11(Pt 1):194-201
– reference: 11986145 - Am J Psychiatry. 2002 May;159(5):863-5
– reference: 11156807 - Am J Psychiatry. 2001 Feb;158(2):244-55
– reference: 9343592 - Neuroimage. 1995 Jun;2(2):89-101
– reference: 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802
– reference: 16529955 - Neuroimage. 2006 Jul 1;31(3):1129-41
– reference: 10944416 - Neuroimage. 2000 Sep;12(3):340-56
– reference: 9758213 - Cereb Cortex. 1998 Sep;8(6):492-509
SSID ssj0007221
Score 2.3657994
Snippet No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently...
Background No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies...
Background - No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1055
SubjectTerms Adult
Adult and adolescent clinical studies
Algorithms
Atlases as Topic
Biological and medical sciences
Biomarkers
Brain Mapping
Cerebral Cortex - pathology
Classification
cortical pattern matching
Female
Humans
Image Interpretation, Computer-Assisted
Image Processing, Computer-Assisted
Magnetic Resonance Imaging - methods
Male
Medical sciences
MRI
Predictive Value of Tests
Psychiatry
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Psychoses
psychosis
Psychotic Disorders - classification
Psychotic Disorders - pathology
PyMVPA
Schizophrenia
Statistics as Topic - methods
Title Elucidating a Magnetic Resonance Imaging-Based Neuroanatomic Biomarker for Psychosis: Classification Analysis Using Probabilistic Brain Atlas and Machine Learning Algorithms
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006322309008932
https://www.clinicalkey.es/playcontent/1-s2.0-S0006322309008932
https://dx.doi.org/10.1016/j.biopsych.2009.07.019
https://www.ncbi.nlm.nih.gov/pubmed/19729150
https://www.proquest.com/docview/21105905
https://www.proquest.com/docview/21191627
https://www.proquest.com/docview/734131195
https://pubmed.ncbi.nlm.nih.gov/PMC3192809
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007221
  issn: 0006-3223
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007221
  issn: 0006-3223
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-2402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007221
  issn: 0006-3223
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007221
  issn: 0006-3223
  databaseCode: AKRWK
  dateStart: 19850101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5VRTwkhCBQGh5hD1ydrF-7Xm5p1CoFpeJApd5Wa3uTukqcKHYOvfCP-I_MrNdpA-UhuCa7Tjw7T_ubbwh5L3kSMz_jXqoFFCh-GoLNidiTQZ7k3IBKMWxwnpzx8Xn08SK-2COjthcGYZXO9zc-3Xpr98nASXOwKgrs8YXwCtGNSYhjkIZgB3vEEdbX_3oD8xBB4KbmcQ9X3-oSvuqnxdKCih1vpehbxp27A9Tjla5AbNNm3sVdCemPuMpbgerkKXniMkw6bG7iGdkzZYfcb2ZOXnfIw1E74q1DHkzcm_Xn5NvxfJMV2OtQzqimEz0rsb2R4uN95OQw9HRhBxp5RxD3cmpJPXQJJfsCVsHVF4jzWVPIgWnjVKui-kDtzE1EI1kFoC0FCrVIBfp5Dd4E0blIFk2PcFoFHdawheoyh_-AOE9DHQXsjA7ns-W6qC8X1QtyfnL8ZTT23CgHL4Pyu_ZyyKwyM5Vw_rlgUZinTIYmk9zwwMQ-B89gfB3niWYsy6HKkhnLofI0QRSnSTQND8h-uSzNIaFGGiOnUDZyoSMdCi01ZK2pTAOstrjokrg9P5U5nnMctzFXLaDtSrXnjkM4pWJCwbl3yWC7b9Uwffxxh2jVQ7V9rOB5FQSjf9tpKudAKuWrKlBM_aTkXSK3O3fs5K9-tbejw9vbBBOJwUDh4u9apVagifjqSJdmuakUPiaIJYt_uwIqjQDET3-xQmDChAyDXfKysZMbOUuo8aA0AbnsWNB2AZKg735TFpeWDB1CSJAw-eo_5PKaPArcVBDmvyH79Xpj3kKqWac960t65N7w9NP47DvHjYKa
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVFAkhCAUCI92D1zdrh2vN8stjVoltIk4tFJvq7W9SV0lThQnB34U_5EZex0aKA_BNdlx4tnZedgz3wfwQUUdwf0k8mIjsUDx4zaeOSk8FaSdNLJoUpwGnIejqH8VfroW1zvQq2dhqK3S-f7Kp5fe2n1y7LR5vMgymvHF8IrRjSuMY5iGPIDdUKBPbsBud3DeH20csgwCR5wXeSRwZ1D49ijO5mVfsYOulEcl6M79MerJwhSouXFFeXFfTvpja-WdWHX2DJ66JJN1q_t4Djs2b8LDinbySxP2ejXLWxMeDd3L9Rfw9XS6TjIad8gnzLChmeQ04cjoCT_Bclg2mJWcRt4Jhr6UlbgeJseqfYar8OozavVZMkyDWeVXi6z4yEraTWpIKm2A1SgorGxWYJ-X6FCoQZfwotkJEVaw7gpFmMlT_A_U6mmZQ4GdsO50Ml9mq5tZsQ9XZ6eXvb7n2By8BCvwlZdicpXYsUITSCUP22nMVdsmKrJRYIUfoXOwvhFpx3CepFhoqYSnWHzaIBRxJxy3X0Ijn-f2NTCrrFVjrBwjaULTlkYZTFxjFQdUcEWyBaLeP504qHNi3JjquqftVtf7TjycSnOpcd9bcLyRW1RgH3-UkLV56HqUFZ2vxnj0b5K2cD6k0L4uAs31T3beArWR3Doqf_WrB1s2vLlNPCICzyhe_LA2ao2WSG-PTG7n60LTkwKhuPjtCiw2AlQ_-8UKSTkTgQy24FV1Tr7rWWGZh9UJ6mXrBG0WEA769jd5dlPioWMUCTpcvfkPvRzCXv9yeKEvBqPzt_A4cCQh3H8HjdVybd9j5rmKD5xn-QadcYVF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+a+Magnetic+Resonance+Imaging-Based+Neuroanatomic+Biomarker+for+Psychosis%3A+Classification+Analysis+Using+Probabilistic+Brain+Atlas+and+Machine+Learning+Algorithms&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Sun%2C+Daqiang&rft.au=van+Erp%2C+Theo+G.M.&rft.au=Thompson%2C+Paul+M.&rft.au=Bearden%2C+Carrie+E.&rft.date=2009-12-01&rft.issn=0006-3223&rft.eissn=1873-2402&rft.volume=66&rft.issue=11&rft.spage=1055&rft.epage=1060&rft_id=info:doi/10.1016%2Fj.biopsych.2009.07.019&rft_id=info%3Apmid%2F19729150&rft.externalDocID=PMC3192809
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322309X00211%2Fcov150h.gif