Elucidating a Magnetic Resonance Imaging-Based Neuroanatomic Biomarker for Psychosis: Classification Analysis Using Probabilistic Brain Atlas and Machine Learning Algorithms
No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities...
Saved in:
Published in | Biological psychiatry (1969) Vol. 66; no. 11; pp. 1055 - 1060 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
01.12.2009
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3223 1873-2402 1873-2402 |
DOI | 10.1016/j.biopsych.2009.07.019 |
Cover
Abstract | No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data.
Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects.
Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation.
These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia. |
---|---|
AbstractList | Background - No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data. Methods - Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects. Results - Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation. Conclusions - These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia. No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data. Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects. Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation. These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia. No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data.BACKGROUNDNo objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently find significant abnormalities in multiple brain structures in psychotic patients relative to healthy control subjects, but these abnormalities show substantial overlap with anatomic variation that is in the normal range and therefore nondiagnostic. Recently, efforts have been made to discriminate psychotic patients from healthy individuals using machine-learning-based pattern classification methods on MRI data.Three-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects.METHODSThree-dimensional cortical gray matter density (GMD) maps were generated for 36 patients with recent-onset psychosis and 36 sex- and age-matched control subjects using a cortical pattern matching method. Between-group differences in GMD were evaluated. Second, the sparse multinomial logistic regression classifier included in the Multivariate Pattern Analysis in Python machine-learning package was applied to the cortical GMD maps to discriminate psychotic patients from control subjects.Patients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation.RESULTSPatients showed significantly lower GMD, particularly in prefrontal, cingulate, and lateral temporal brain regions. Pattern classification analysis achieved 86.1% accuracy in discriminating patients from controls using leave-one-out cross-validation.These results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia.CONCLUSIONSThese results suggest that even at the early stage of illness, psychotic patients present distinct patterns of regional cortical gray matter changes that can be discriminated from the normal pattern. These findings indicate that we can detect complex patterns of brain abnormality in early stages of psychotic illness, which has critical implications for early identification and intervention in individuals at ultra-high risk for developing psychosis/schizophrenia. |
Author | Hardt, Molly E. Nuechterlein, Keith H. Bearden, Carrie E. Daley, Melita Kushan, Leila Sun, Daqiang van Erp, Theo G.M. Thompson, Paul M. Toga, Arthur W. Cannon, Tyrone D. |
Author_xml | – sequence: 1 givenname: Daqiang surname: Sun fullname: Sun, Daqiang organization: Department of Psychology, University of California at Los Angeles – sequence: 2 givenname: Theo G.M. surname: van Erp fullname: van Erp, Theo G.M. organization: Department of Psychology, University of California at Los Angeles – sequence: 3 givenname: Paul M. surname: Thompson fullname: Thompson, Paul M. organization: Laboratory of Neuro Imaging, Department of Neurology, University of California at Los Angeles School of Medicine – sequence: 4 givenname: Carrie E. surname: Bearden fullname: Bearden, Carrie E. organization: Department of Psychology, University of California at Los Angeles – sequence: 5 givenname: Melita surname: Daley fullname: Daley, Melita organization: Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles – sequence: 6 givenname: Leila surname: Kushan fullname: Kushan, Leila organization: Department of Psychology, University of California at Los Angeles – sequence: 7 givenname: Molly E. surname: Hardt fullname: Hardt, Molly E. organization: Department of Psychology, University of California at Los Angeles – sequence: 8 givenname: Keith H. surname: Nuechterlein fullname: Nuechterlein, Keith H. organization: Department of Psychology, University of California at Los Angeles – sequence: 9 givenname: Arthur W. surname: Toga fullname: Toga, Arthur W. organization: Laboratory of Neuro Imaging, Department of Neurology, University of California at Los Angeles School of Medicine – sequence: 10 givenname: Tyrone D. surname: Cannon fullname: Cannon, Tyrone D. email: cannon@psych.ucla.edu organization: Department of Psychology, University of California at Los Angeles |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22157752$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19729150$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk91uEzEQhVeoiLaBV6j2BrhKGHuzP0aoIqkKVCpQAb22HHs2mdSxg72plIfiHfHSH6AXba8sa745c3bneD_bcd5hlh0wGDFg1ZvlaEZ-Hbd6MeIAYgT1CJh4ku2xpi6GfAx8J9sDgGpYcF7sZvsxLtO15pw9y3aZqLlgJexlv47tRpNRHbl5rvLPau6wI51_w-idchrzk5Wap-JwqiKa_AtugldOdX6VqCn5lQoXGPLWh_yst-Mjxbf5kVUxUks6CXuXT5yy21TIz2M_5yz4mZqRpdiPmgZFCelSS66cSR70ghzmp6iC6_GJnftA3WIVn2dPW2Ujvrg-B9n5h-MfR5-Gp18_nhxNToe6EtANDS8rja1oTGVqGBdmBqJALSqsOJasKhkgU6VpFIA2TcWFBgNijHxczppxWwyywyvd9Wa2QqPRdUFZuQ6UPncrvSL5f8XRQs79pSyY4E0aNsheXwsE_3ODsZMrihqtVQ79Jsq6GLOCMVEm8tW9JE8Uq3j9GBBKAb3iwb_mb13fLD0BL68BFbWybUh7pnjLpYiUdV3yxFVXnA4-xoDtXymQfQrlUt6kUPYplFDLlMLU-O5Oo6buTxLSzyL7cPv7q3ZMK74kDDJqwpRFQwF1J42nhyUO70hoSy7F0V7gFuPSb0KKZJRMRi5Bfu9fSv9QQAA0ouD3CzzGwW_msSr8 |
CODEN | BIPCBF |
CitedBy_id | crossref_primary_10_1016_j_schres_2016_08_027 crossref_primary_10_1016_j_neurobiolaging_2010_04_022 crossref_primary_10_1002_mpr_1818 crossref_primary_10_1016_S0013_7006_13_70102_7 crossref_primary_10_1371_journal_pone_0265300 crossref_primary_10_1093_schbul_sbr037 crossref_primary_10_1002_ima_20225 crossref_primary_10_1016_j_neubiorev_2012_01_004 crossref_primary_10_1371_journal_pone_0119089 crossref_primary_10_1016_j_neuroimage_2013_02_011 crossref_primary_10_1038_s41537_024_00464_2 crossref_primary_10_1002_brb3_733 crossref_primary_10_1016_j_neuroimage_2011_02_007 crossref_primary_10_1214_15_AOAS829 crossref_primary_10_1016_j_neuroimage_2015_12_013 crossref_primary_10_1002_hbm_21342 crossref_primary_10_1111_bdi_12096 crossref_primary_10_3233_JAD_190973 crossref_primary_10_1111_cts_13035 crossref_primary_10_3389_fnins_2016_00392 crossref_primary_10_1016_j_jpsychires_2015_01_015 crossref_primary_10_1016_j_neuroimage_2010_03_057 crossref_primary_10_3389_fnins_2021_669595 crossref_primary_10_1111_acps_12964 crossref_primary_10_3389_fpsyt_2016_00052 crossref_primary_10_1093_ijnp_pyx059 crossref_primary_10_1002_jnr_24951 crossref_primary_10_1038_mp_2013_25 crossref_primary_10_1007_s00115_014_4022_x crossref_primary_10_1016_j_neuroimage_2016_02_079 crossref_primary_10_1007_s10548_014_0360_z crossref_primary_10_1016_j_neuroimage_2016_07_027 crossref_primary_10_1016_j_nicl_2015_09_015 crossref_primary_10_1093_schbul_sbr145 crossref_primary_10_1016_j_amp_2015_03_002 crossref_primary_10_1016_j_neuroimage_2010_02_032 crossref_primary_10_1007_s11682_017_9767_y crossref_primary_10_3758_s13428_022_01795_7 crossref_primary_10_1016_j_neuroimage_2011_10_048 crossref_primary_10_1016_j_schres_2017_11_038 crossref_primary_10_1016_j_neuroimage_2013_04_018 crossref_primary_10_3758_s13415_019_00733_z crossref_primary_10_1016_j_media_2021_102009 crossref_primary_10_1016_j_schres_2019_10_034 crossref_primary_10_1016_j_nicl_2020_102238 crossref_primary_10_1016_j_schres_2015_03_017 crossref_primary_10_3389_fncom_2018_00093 crossref_primary_10_1016_j_cpet_2010_03_004 crossref_primary_10_1093_schbul_sbr153 crossref_primary_10_1016_j_neuroimage_2011_11_002 crossref_primary_10_32604_iasc_2021_015049 crossref_primary_10_1017_S0033291716002609 crossref_primary_10_1371_journal_pone_0171749 crossref_primary_10_1007_s13311_010_0006_0 crossref_primary_10_1177_0963721410377601 crossref_primary_10_3390_ijerph18116099 crossref_primary_10_1371_journal_pone_0239615 crossref_primary_10_4045_tidsskr_12_1084 crossref_primary_10_1089_cap_2013_0139 crossref_primary_10_1016_j_schres_2023_06_001 crossref_primary_10_1515_ijb_2015_0030 crossref_primary_10_3389_fpsyt_2015_00021 crossref_primary_10_1016_j_pscychresns_2010_09_016 crossref_primary_10_1016_j_nicl_2018_02_007 crossref_primary_10_1038_s41380_018_0106_5 crossref_primary_10_1016_j_pnpbp_2020_109989 crossref_primary_10_1186_s13036_019_0145_8 crossref_primary_10_1016_j_tics_2015_09_009 crossref_primary_10_1017_S0033291711002005 crossref_primary_10_1556_mpszle_68_2013_1_9 crossref_primary_10_31887_DCNS_2014_16_4_pdazzan crossref_primary_10_1371_journal_pone_0110243 crossref_primary_10_1093_schbul_sby091 crossref_primary_10_1002_hbm_25013 crossref_primary_10_1016_j_neuroimage_2011_03_040 crossref_primary_10_1007_s00103_013_1840_0 crossref_primary_10_1111_pcn_13625 crossref_primary_10_1007_s12264_012_1253_3 crossref_primary_10_1038_mp_2011_173 crossref_primary_10_1016_j_nicl_2013_07_004 crossref_primary_10_1371_journal_pone_0040968 crossref_primary_10_1016_j_pscychresns_2015_03_004 crossref_primary_10_1073_pnas_1210126110 crossref_primary_10_1111_bdi_12222 crossref_primary_10_1016_j_neuroimage_2015_12_007 crossref_primary_10_1093_schbul_sbz062 crossref_primary_10_1038_srep43089 crossref_primary_10_1016_j_chc_2011_03_012 crossref_primary_10_1016_j_schres_2012_01_001 crossref_primary_10_1017_S003329171300024X crossref_primary_10_1016_j_neuroimage_2011_12_079 crossref_primary_10_1089_neu_2020_7259 crossref_primary_10_1371_journal_pone_0021047 crossref_primary_10_1016_j_eswa_2022_117464 crossref_primary_10_1016_j_nicl_2013_09_003 crossref_primary_10_1016_j_neubiorev_2015_08_001 crossref_primary_10_1016_j_neuroimage_2012_03_079 crossref_primary_10_1016_j_pnpbp_2012_12_005 crossref_primary_10_2217_fnl_11_35 crossref_primary_10_1016_j_bspc_2018_02_018 crossref_primary_10_3917_inpsy_8910_0781 |
Cites_doi | 10.1176/appi.ajp.158.2.244 10.1016/j.neuroimage.2006.08.018 10.1089/cap.2005.15.434 10.1109/TPAMI.2005.127 10.1016/j.neuroimage.2008.04.255 10.1016/j.neuroimage.2004.07.071 10.1016/j.neuroimage.2006.11.021 10.1006/nimg.1996.0074 10.1093/cercor/8.6.492 10.1093/oxfordjournals.schbul.a006896 10.1016/S0920-9964(01)00163-3 10.1126/science.1063736 10.1016/j.neuroimage.2008.02.043 10.1006/nimg.1995.1012 10.1002/mrm.21471 10.1109/42.906424 10.1006/nimg.1999.0534 10.1007/s12021-008-9041-y 10.1001/archpsyc.62.11.1218 10.1093/schbul/sbi034 10.1038/nature06713 10.1016/S0165-1781(98)00038-9 10.1016/j.neuroimage.2004.04.021 10.1109/42.668698 10.1176/appi.ajp.159.5.863 10.1006/nimg.2002.1076 10.1016/j.biopsych.2007.03.015 10.1016/j.neuroimage.2006.01.022 10.1097/00004728-199403000-00005 10.1016/j.neuroimage.2008.12.037 |
ContentType | Journal Article |
Copyright | 2009 Society of Biological Psychiatry Society of Biological Psychiatry 2015 INIST-CNRS 2009 Society of Biological Psychiatry 2009 |
Copyright_xml | – notice: 2009 Society of Biological Psychiatry – notice: Society of Biological Psychiatry – notice: 2015 INIST-CNRS – notice: 2009 Society of Biological Psychiatry 2009 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K 7X8 5PM |
DOI | 10.1016/j.biopsych.2009.07.019 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Toxicology Abstracts MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1873-2402 |
EndPage | 1060 |
ExternalDocumentID | PMC3192809 19729150 22157752 10_1016_j_biopsych_2009_07_019 S0006322309008932 1_s2_0_S0006322309008932 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R56 AG020098 – fundername: NICHD NIH HHS grantid: HD050735 – fundername: PHS HHS grantid: P-41 – fundername: NIMH NIH HHS grantid: MH037705 – fundername: NIA NIH HHS grantid: AG020098 – fundername: NCRR NIH HHS grantid: U54 RR021813 – fundername: NIMH NIH HHS grantid: R01 MH065079 – fundername: NIMH NIH HHS grantid: K23MH079028 – fundername: NIA NIH HHS grantid: R01 AG020098 – fundername: NIMH NIH HHS grantid: K23 MH079028 – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB007813-04 || EB – fundername: National Center for Research Resources : NCRR grantid: U54 RR021813-05 || RR – fundername: National Institute of Child Health & Human Development : NICHD grantid: R01 HD050735-05 || HD – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB008281-14 || EB – fundername: National Institute on Aging : NIA grantid: R01 AG020098-09 || AG – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB008432-04 || EB – fundername: National Institute of Mental Health : NIMH grantid: P50 MH066286-08 || MH – fundername: National Institute of Mental Health : NIMH grantid: R01 MH065079-05 || MH – fundername: National Institute of Mental Health : NIMH grantid: K23 MH079028-05 || MH |
GroupedDBID | --- --K --M -DZ .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABCQX ABDPE ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEG HMK HMO HMQ HVGLF HZ~ H~9 IHE J1W KOM L7B M29 M2V M39 M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OU- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SNS SPCBC SSH SSN SSZ T5K UAP UNMZH UPT UV1 WH7 WUQ XJT XOL Z5R ZCA ZGI ZKB ZXP ~G- AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG AADPK AAIAV ABLVK ABYKQ AJBFU EFLBG G8K LCYCR ZA5 AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K ACLOT ~HD 7X8 5PM |
ID | FETCH-LOGICAL-c690t-d256cef98d6d7043db093ec96e62e516510e1a5d8a00cd8629c0d094e245b84f3 |
IEDL.DBID | .~1 |
ISSN | 0006-3223 1873-2402 |
IngestDate | Thu Aug 21 14:39:01 EDT 2025 Fri Sep 05 14:19:42 EDT 2025 Sun Sep 28 00:07:00 EDT 2025 Fri Sep 05 08:54:25 EDT 2025 Thu Apr 03 06:58:10 EDT 2025 Wed Apr 02 07:16:20 EDT 2025 Tue Jul 01 03:21:16 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Fri Feb 23 02:26:56 EST 2024 Sun Feb 23 10:19:25 EST 2025 Tue Aug 26 16:31:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | PyMVPA cortical pattern matching schizophrenia MRI psychosis Classification Central nervous system Biological marker Schizophrenia Algorithm Nuclear magnetic resonance imaging Encephalon Learning Psychosis Acquisition process Medical imagery |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c690t-d256cef98d6d7043db093ec96e62e516510e1a5d8a00cd8629c0d094e245b84f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 19729150 |
PQID | 21105905 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3192809 proquest_miscellaneous_734131195 proquest_miscellaneous_21191627 proquest_miscellaneous_21105905 pubmed_primary_19729150 pascalfrancis_primary_22157752 crossref_primary_10_1016_j_biopsych_2009_07_019 crossref_citationtrail_10_1016_j_biopsych_2009_07_019 elsevier_sciencedirect_doi_10_1016_j_biopsych_2009_07_019 elsevier_clinicalkeyesjournals_1_s2_0_S0006322309008932 elsevier_clinicalkey_doi_10_1016_j_biopsych_2009_07_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-12-01 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | Biological psychiatry (1969) |
PublicationTitleAlternate | Biol Psychiatry |
PublicationYear | 2009 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Klein, Andersson, Ardekani, Ashburner, Avants, Chiang (bib33) 2009; 46 Kay, Naselaris, Prenger, Gallant (bib8) 2008; 452 Fan, Resnick, Wu, Davatzikos (bib10) 2008; 41 Ferrarini, Palm, Olofsen, van der Landen, van Buchem, Reiber (bib30) 2008; 59 Yoon, Lee, Im, Shin, Cho, Kim (bib13) 2007; 34 Krishnapuram, Carin, Figueiredo, Hartemink (bib17) 2005; 27 McGlashan, Miller, Woods (bib21) 2001; 27 Michael, Calhoun, Andreasen, Baum (bib3) 2008; 2008 Sled, Zijdenbos, Evans (bib23) 1998; 17 Martinez-Ramon, Koltchinskii, Heileman, Posse (bib35) 2006; 31 Shenton, Dickey, Frumin, McCarley (bib4) 2001; 49 Fan, Gur, Gur, Wu, Shen, Calkins (bib11) 2008; 63 Haxby, Gobbini, Furey, Ishai, Schouten, Pietrini (bib7) 2001; 293 First, Spitzer, Gibbon, Williams (bib18) 1997 Collins, Neelin, Peters, Evans (bib26) 1994; 18 Chatterjee, Hadi (bib29) 2006 Friston, Ashburner (bib6) 2004; 23 Narr, Thompson, Sharma, Moussai, Zoumalan, Rayman (bib31) 2001; 158 Caprihan, Pearlson, Calhoun (bib1) 2008; 42 Pantelis, Yucel, Wood, Velakoulis, Sun, Berger (bib5) 2005; 31 Meyer, Bearden, Lux, Gordon, Johnson, O'Brien (bib19) 2005; 15 Friston, Holmes, Poline, Price, Frith (bib28) 1996; 4 Miller, McGlashan, Rosen, Somjee, Markovich, Stein (bib22) 2002; 159 Kawasaki, Suzuki, Kherif, Takahashi, Zhou, Nakamura (bib12) 2007; 34 Hanke, Halchenko, Sederberg, Olivetti, Frund, Rieger (bib15) 2009; 3 Zhang, Brady, Smith (bib24) 2001; 20 Mazziotta, Toga, Evans, Fox, Lancaster (bib25) 1995; 2 MacDonald, Kabani, Avis, Evans (bib27) 2000; 12 Thompson, Moussai, Zohoori, Goldkorn, Khan, Mega (bib32) 1998; 8 Morra, Tu, Apostolova, Green, Toga, Thompson (bib9) 2008; 11 Ventura, Liberman, Green, Shaner, Mintz (bib20) 1998; 79 Davatzikos, Shen, Gur, Wu, Liu, Fan (bib2) 2005; 62 Thompson, Hayashi, Sowell, Gogtay, Giedd, Rapoport (bib14) 2004; 23 Blumenthal, Zijdenbos, Molloy, Giedd (bib34) 2002; 16 Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (bib16) 2009; 7 Fan (10.1016/j.biopsych.2009.07.019_bib11) 2008; 63 Krishnapuram (10.1016/j.biopsych.2009.07.019_bib17) 2005; 27 Pantelis (10.1016/j.biopsych.2009.07.019_bib5) 2005; 31 Ventura (10.1016/j.biopsych.2009.07.019_bib20) 1998; 79 Thompson (10.1016/j.biopsych.2009.07.019_bib32) 1998; 8 Haxby (10.1016/j.biopsych.2009.07.019_bib7) 2001; 293 Collins (10.1016/j.biopsych.2009.07.019_bib26) 1994; 18 Kawasaki (10.1016/j.biopsych.2009.07.019_bib12) 2007; 34 Klein (10.1016/j.biopsych.2009.07.019_bib33) 2009; 46 Mazziotta (10.1016/j.biopsych.2009.07.019_bib25) 1995; 2 Shenton (10.1016/j.biopsych.2009.07.019_bib4) 2001; 49 Hanke (10.1016/j.biopsych.2009.07.019_bib16) 2009; 7 Sled (10.1016/j.biopsych.2009.07.019_bib23) 1998; 17 Davatzikos (10.1016/j.biopsych.2009.07.019_bib2) 2005; 62 Friston (10.1016/j.biopsych.2009.07.019_bib6) 2004; 23 Narr (10.1016/j.biopsych.2009.07.019_bib31) 2001; 158 Miller (10.1016/j.biopsych.2009.07.019_bib22) 2002; 159 Chatterjee (10.1016/j.biopsych.2009.07.019_bib29) 2006 Meyer (10.1016/j.biopsych.2009.07.019_bib19) 2005; 15 Michael (10.1016/j.biopsych.2009.07.019_bib3) 2008; 2008 Caprihan (10.1016/j.biopsych.2009.07.019_bib1) 2008; 42 Martinez-Ramon (10.1016/j.biopsych.2009.07.019_bib35) 2006; 31 McGlashan (10.1016/j.biopsych.2009.07.019_bib21) 2001; 27 Thompson (10.1016/j.biopsych.2009.07.019_bib14) 2004; 23 Zhang (10.1016/j.biopsych.2009.07.019_bib24) 2001; 20 Yoon (10.1016/j.biopsych.2009.07.019_bib13) 2007; 34 Kay (10.1016/j.biopsych.2009.07.019_bib8) 2008; 452 Morra (10.1016/j.biopsych.2009.07.019_bib9) 2008; 11 Blumenthal (10.1016/j.biopsych.2009.07.019_bib34) 2002; 16 Friston (10.1016/j.biopsych.2009.07.019_bib28) 1996; 4 Ferrarini (10.1016/j.biopsych.2009.07.019_bib30) 2008; 59 First (10.1016/j.biopsych.2009.07.019_bib18) 1997 MacDonald (10.1016/j.biopsych.2009.07.019_bib27) 2000; 12 Hanke (10.1016/j.biopsych.2009.07.019_bib15) 2009; 3 Fan (10.1016/j.biopsych.2009.07.019_bib10) 2008; 41 19212459 - Front Neuroinform. 2009 Feb 04;3:3 10944416 - Neuroimage. 2000 Sep;12(3):340-56 18571937 - Neuroimage. 2008 Aug 15;42(2):675-82 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802 16275809 - Arch Gen Psychiatry. 2005 Nov;62(11):1218-27 17555720 - Biol Psychiatry. 2008 Jan 1;63(1):118-24 18228600 - Magn Reson Med. 2008 Feb;59(2):260-7 11824483 - Schizophr Bull. 2001;27(4):563-70 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 16529955 - Neuroimage. 2006 Jul 1;31(3):1129-41 18400519 - Neuroimage. 2008 Jun;41(2):277-85 15501091 - Neuroimage. 2004;23 Suppl 1:S2-18 9705054 - Psychiatry Res. 1998 Jun 15;79(2):163-73 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205 11969320 - Neuroimage. 2002 May;16(1):89-92 17045492 - Neuroimage. 2007 Jan 1;34(1):235-42 18979748 - Med Image Comput Comput Assist Interv. 2008;11(Pt 1):194-201 9758213 - Cereb Cortex. 1998 Sep;8(6):492-509 15943426 - IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):957-68 11343862 - Schizophr Res. 2001 Apr 15;49(1-2):1-52 16020551 - Schizophr Bull. 2005 Jul;31(3):672-96 11986145 - Am J Psychiatry. 2002 May;159(5):863-5 11156807 - Am J Psychiatry. 2001 Feb;158(2):244-55 19163965 - Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5510-3 15325348 - Neuroimage. 2004 Sep;23(1):21-4 9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 17188902 - Neuroimage. 2007 Feb 15;34(4):1405-15 9343592 - Neuroimage. 1995 Jun;2(2):89-101 19184561 - Neuroinformatics. 2009 Spring;7(1):37-53 18322462 - Nature. 2008 Mar 20;452(7185):352-5 9345513 - Neuroimage. 1996 Dec;4(3 Pt 1):223-35 11577229 - Science. 2001 Sep 28;293(5539):2425-30 16092909 - J Child Adolesc Psychopharmacol. 2005 Jun;15(3):434-51 |
References_xml | – volume: 12 start-page: 340 year: 2000 end-page: 356 ident: bib27 article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI publication-title: Neuroimage – volume: 452 start-page: 352 year: 2008 end-page: 355 ident: bib8 article-title: Identifying natural images from human brain activity publication-title: Nature – volume: 63 start-page: 118 year: 2008 end-page: 124 ident: bib11 article-title: Unaffected family members and schizophrenia patients share brain structure patterns: A high-dimensional pattern classification study publication-title: Biol Psychiatry – volume: 27 start-page: 957 year: 2005 end-page: 968 ident: bib17 article-title: Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds publication-title: Trans IEEE Pattern Anal Mach Intell – volume: 2008 start-page: 5510 year: 2008 end-page: 5513 ident: bib3 article-title: A method to classify schizophrenia using inter-task spatial correlations of functional brain images publication-title: Conf Prog IEEE Engl Med Biol Soc – volume: 3 start-page: 3 year: 2009 ident: bib15 article-title: PyMVPA: A unifying approach to the analysis of neuroscientific data publication-title: Neuroinformatics – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: bib23 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging – volume: 8 start-page: 492 year: 1998 end-page: 509 ident: bib32 article-title: Cortical variability and asymmetry in normal aging and Alzheimer's disease publication-title: Cereb Cortex – volume: 41 start-page: 277 year: 2008 end-page: 285 ident: bib10 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: A high-dimensional pattern classification study publication-title: Neuroimage – volume: 4 start-page: 223 year: 1996 end-page: 235 ident: bib28 article-title: Detecting activations in PET and fMRI: Levels of inference and power publication-title: Neuroimage – volume: 59 start-page: 260 year: 2008 end-page: 267 ident: bib30 article-title: Ventricular shape biomarkers for Alzheimer's disease in clinical MR images publication-title: Magn Reson Med – volume: 49 start-page: 1 year: 2001 end-page: 52 ident: bib4 article-title: A review of MRI findings in schizophrenia publication-title: Schizophr Res – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: bib24 article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm publication-title: IEEE Trans Med Imaging – volume: 16 start-page: 89 year: 2002 end-page: 92 ident: bib34 article-title: Motion artifact in magnetic resonance imaging: Implications for automated analysis publication-title: Neuroimage – start-page: 317 year: 2006 end-page: 340 ident: bib29 article-title: Regression Analysis by Example – volume: 18 start-page: 192 year: 1994 end-page: 205 ident: bib26 article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space publication-title: J Comput Assist Tomogr – volume: 23 start-page: 21 year: 2004 end-page: 24 ident: bib6 article-title: Generative and recognition models for neuroanatomy publication-title: Neuroimage – volume: 34 start-page: 235 year: 2007 end-page: 242 ident: bib12 article-title: Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls publication-title: Neuroimage – volume: 2 start-page: 89 year: 1995 end-page: 101 ident: bib25 article-title: A probabilistic atlas of the human brain: Theory and rationale for its development publication-title: Neuroimage – year: 1997 ident: bib18 article-title: Structured Clinical Interview for DSM-IV Axis I Disorders – volume: 27 start-page: 563 year: 2001 end-page: 570 ident: bib21 article-title: Pre-onset detection and intervention research in schizophrenia psychoses: Current estimates of benefit and risk publication-title: Schizophr Bull – volume: 11 start-page: 194 year: 2008 end-page: 201 ident: bib9 article-title: Automatic subcortical segmentation using a contextual model publication-title: Med Image Comput Comput Assist Interv Int Conference – volume: 62 start-page: 1218 year: 2005 end-page: 1227 ident: bib2 article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities publication-title: Arch Gen Psychiatry – volume: 159 start-page: 863 year: 2002 end-page: 865 ident: bib22 article-title: Prospective diagnosis of the initial prodrome for schizophrenia based on the structured interview for prodromal syndromes: Preliminary evidence of interrater reliability and predictive validity publication-title: Am J Psychiatry – volume: 31 start-page: 1129 year: 2006 end-page: 1141 ident: bib35 article-title: fMRI pattern classification using neuroanatomically constrained boosting publication-title: Neuroimage – volume: 42 start-page: 675 year: 2008 end-page: 682 ident: bib1 article-title: Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements publication-title: Neuroimage – volume: 293 start-page: 2425 year: 2001 end-page: 2430 ident: bib7 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science – volume: 79 start-page: 163 year: 1998 end-page: 173 ident: bib20 article-title: Training and quality assurance with the structured clinical interview for DSM-IV (SCID-I/P) publication-title: Psychiatry Res – volume: 46 start-page: 786 year: 2009 end-page: 802 ident: bib33 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: Neuroimage – volume: 15 start-page: 434 year: 2005 end-page: 451 ident: bib19 article-title: The psychosis prodrome in adolescent patients viewed through the lens of DSM-IV publication-title: J Child Adolesc Psychopharmacol – volume: 7 start-page: 37 year: 2009 end-page: 53 ident: bib16 article-title: PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics – volume: 23 start-page: S2 year: 2004 end-page: S18 ident: bib14 article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia publication-title: Neuroimage – volume: 158 start-page: 244 year: 2001 end-page: 255 ident: bib31 article-title: Three-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: Gender effects publication-title: Am J Psychiatry – volume: 31 start-page: 672 year: 2005 end-page: 696 ident: bib5 article-title: Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia publication-title: Schizophr Bull – volume: 34 start-page: 1405 year: 2007 end-page: 1415 ident: bib13 article-title: Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia publication-title: Neuroimage – volume: 158 start-page: 244 year: 2001 ident: 10.1016/j.biopsych.2009.07.019_bib31 article-title: Three-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia: Gender effects publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.158.2.244 – volume: 34 start-page: 235 year: 2007 ident: 10.1016/j.biopsych.2009.07.019_bib12 article-title: Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.08.018 – volume: 15 start-page: 434 year: 2005 ident: 10.1016/j.biopsych.2009.07.019_bib19 article-title: The psychosis prodrome in adolescent patients viewed through the lens of DSM-IV publication-title: J Child Adolesc Psychopharmacol doi: 10.1089/cap.2005.15.434 – volume: 27 start-page: 957 year: 2005 ident: 10.1016/j.biopsych.2009.07.019_bib17 article-title: Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds publication-title: Trans IEEE Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.127 – volume: 42 start-page: 675 year: 2008 ident: 10.1016/j.biopsych.2009.07.019_bib1 article-title: Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.04.255 – volume: 2008 start-page: 5510 year: 2008 ident: 10.1016/j.biopsych.2009.07.019_bib3 article-title: A method to classify schizophrenia using inter-task spatial correlations of functional brain images publication-title: Conf Prog IEEE Engl Med Biol Soc – volume: 23 start-page: S2 issue: suppl 1 year: 2004 ident: 10.1016/j.biopsych.2009.07.019_bib14 article-title: Mapping cortical change in Alzheimer's disease, brain development, and schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.071 – volume: 34 start-page: 1405 year: 2007 ident: 10.1016/j.biopsych.2009.07.019_bib13 article-title: Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.021 – volume: 4 start-page: 223 year: 1996 ident: 10.1016/j.biopsych.2009.07.019_bib28 article-title: Detecting activations in PET and fMRI: Levels of inference and power publication-title: Neuroimage doi: 10.1006/nimg.1996.0074 – volume: 3 start-page: 3 year: 2009 ident: 10.1016/j.biopsych.2009.07.019_bib15 article-title: PyMVPA: A unifying approach to the analysis of neuroscientific data publication-title: Neuroinformatics – year: 1997 ident: 10.1016/j.biopsych.2009.07.019_bib18 – volume: 8 start-page: 492 year: 1998 ident: 10.1016/j.biopsych.2009.07.019_bib32 article-title: Cortical variability and asymmetry in normal aging and Alzheimer's disease publication-title: Cereb Cortex doi: 10.1093/cercor/8.6.492 – volume: 27 start-page: 563 year: 2001 ident: 10.1016/j.biopsych.2009.07.019_bib21 article-title: Pre-onset detection and intervention research in schizophrenia psychoses: Current estimates of benefit and risk publication-title: Schizophr Bull doi: 10.1093/oxfordjournals.schbul.a006896 – volume: 49 start-page: 1 year: 2001 ident: 10.1016/j.biopsych.2009.07.019_bib4 article-title: A review of MRI findings in schizophrenia publication-title: Schizophr Res doi: 10.1016/S0920-9964(01)00163-3 – volume: 293 start-page: 2425 year: 2001 ident: 10.1016/j.biopsych.2009.07.019_bib7 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science doi: 10.1126/science.1063736 – volume: 41 start-page: 277 year: 2008 ident: 10.1016/j.biopsych.2009.07.019_bib10 article-title: Structural and functional biomarkers of prodromal Alzheimer's disease: A high-dimensional pattern classification study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.043 – volume: 2 start-page: 89 year: 1995 ident: 10.1016/j.biopsych.2009.07.019_bib25 article-title: A probabilistic atlas of the human brain: Theory and rationale for its development publication-title: Neuroimage doi: 10.1006/nimg.1995.1012 – volume: 59 start-page: 260 year: 2008 ident: 10.1016/j.biopsych.2009.07.019_bib30 article-title: Ventricular shape biomarkers for Alzheimer's disease in clinical MR images publication-title: Magn Reson Med doi: 10.1002/mrm.21471 – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.biopsych.2009.07.019_bib24 article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906424 – volume: 12 start-page: 340 year: 2000 ident: 10.1016/j.biopsych.2009.07.019_bib27 article-title: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI publication-title: Neuroimage doi: 10.1006/nimg.1999.0534 – volume: 7 start-page: 37 year: 2009 ident: 10.1016/j.biopsych.2009.07.019_bib16 article-title: PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics doi: 10.1007/s12021-008-9041-y – start-page: 317 year: 2006 ident: 10.1016/j.biopsych.2009.07.019_bib29 article-title: Regression Analysis by Example – volume: 62 start-page: 1218 year: 2005 ident: 10.1016/j.biopsych.2009.07.019_bib2 article-title: Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.62.11.1218 – volume: 31 start-page: 672 year: 2005 ident: 10.1016/j.biopsych.2009.07.019_bib5 article-title: Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbi034 – volume: 452 start-page: 352 year: 2008 ident: 10.1016/j.biopsych.2009.07.019_bib8 article-title: Identifying natural images from human brain activity publication-title: Nature doi: 10.1038/nature06713 – volume: 79 start-page: 163 year: 1998 ident: 10.1016/j.biopsych.2009.07.019_bib20 article-title: Training and quality assurance with the structured clinical interview for DSM-IV (SCID-I/P) publication-title: Psychiatry Res doi: 10.1016/S0165-1781(98)00038-9 – volume: 23 start-page: 21 year: 2004 ident: 10.1016/j.biopsych.2009.07.019_bib6 article-title: Generative and recognition models for neuroanatomy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.04.021 – volume: 11 start-page: 194 year: 2008 ident: 10.1016/j.biopsych.2009.07.019_bib9 article-title: Automatic subcortical segmentation using a contextual model publication-title: Med Image Comput Comput Assist Interv Int Conference – volume: 17 start-page: 87 year: 1998 ident: 10.1016/j.biopsych.2009.07.019_bib23 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging doi: 10.1109/42.668698 – volume: 159 start-page: 863 year: 2002 ident: 10.1016/j.biopsych.2009.07.019_bib22 article-title: Prospective diagnosis of the initial prodrome for schizophrenia based on the structured interview for prodromal syndromes: Preliminary evidence of interrater reliability and predictive validity publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.159.5.863 – volume: 16 start-page: 89 year: 2002 ident: 10.1016/j.biopsych.2009.07.019_bib34 article-title: Motion artifact in magnetic resonance imaging: Implications for automated analysis publication-title: Neuroimage doi: 10.1006/nimg.2002.1076 – volume: 63 start-page: 118 year: 2008 ident: 10.1016/j.biopsych.2009.07.019_bib11 article-title: Unaffected family members and schizophrenia patients share brain structure patterns: A high-dimensional pattern classification study publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2007.03.015 – volume: 31 start-page: 1129 year: 2006 ident: 10.1016/j.biopsych.2009.07.019_bib35 article-title: fMRI pattern classification using neuroanatomically constrained boosting publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.022 – volume: 18 start-page: 192 year: 1994 ident: 10.1016/j.biopsych.2009.07.019_bib26 article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-199403000-00005 – volume: 46 start-page: 786 year: 2009 ident: 10.1016/j.biopsych.2009.07.019_bib33 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.037 – reference: 11293691 - IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 – reference: 9345513 - Neuroimage. 1996 Dec;4(3 Pt 1):223-35 – reference: 11969320 - Neuroimage. 2002 May;16(1):89-92 – reference: 16275809 - Arch Gen Psychiatry. 2005 Nov;62(11):1218-27 – reference: 18228600 - Magn Reson Med. 2008 Feb;59(2):260-7 – reference: 16020551 - Schizophr Bull. 2005 Jul;31(3):672-96 – reference: 18322462 - Nature. 2008 Mar 20;452(7185):352-5 – reference: 17045492 - Neuroimage. 2007 Jan 1;34(1):235-42 – reference: 18400519 - Neuroimage. 2008 Jun;41(2):277-85 – reference: 17555720 - Biol Psychiatry. 2008 Jan 1;63(1):118-24 – reference: 17188902 - Neuroimage. 2007 Feb 15;34(4):1405-15 – reference: 19184561 - Neuroinformatics. 2009 Spring;7(1):37-53 – reference: 16092909 - J Child Adolesc Psychopharmacol. 2005 Jun;15(3):434-51 – reference: 19163965 - Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5510-3 – reference: 9617910 - IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 – reference: 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205 – reference: 15501091 - Neuroimage. 2004;23 Suppl 1:S2-18 – reference: 19212459 - Front Neuroinform. 2009 Feb 04;3:3 – reference: 11824483 - Schizophr Bull. 2001;27(4):563-70 – reference: 11343862 - Schizophr Res. 2001 Apr 15;49(1-2):1-52 – reference: 9705054 - Psychiatry Res. 1998 Jun 15;79(2):163-73 – reference: 15325348 - Neuroimage. 2004 Sep;23(1):21-4 – reference: 15943426 - IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):957-68 – reference: 11577229 - Science. 2001 Sep 28;293(5539):2425-30 – reference: 18571937 - Neuroimage. 2008 Aug 15;42(2):675-82 – reference: 18979748 - Med Image Comput Comput Assist Interv. 2008;11(Pt 1):194-201 – reference: 11986145 - Am J Psychiatry. 2002 May;159(5):863-5 – reference: 11156807 - Am J Psychiatry. 2001 Feb;158(2):244-55 – reference: 9343592 - Neuroimage. 1995 Jun;2(2):89-101 – reference: 19195496 - Neuroimage. 2009 Jul 1;46(3):786-802 – reference: 16529955 - Neuroimage. 2006 Jul 1;31(3):1129-41 – reference: 10944416 - Neuroimage. 2000 Sep;12(3):340-56 – reference: 9758213 - Cereb Cortex. 1998 Sep;8(6):492-509 |
SSID | ssj0007221 |
Score | 2.3657994 |
Snippet | No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies consistently... Background No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies... Background - No objective diagnostic biomarkers or laboratory tests have yet been developed for psychotic illness. Magnetic resonance imaging (MRI) studies... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1055 |
SubjectTerms | Adult Adult and adolescent clinical studies Algorithms Atlases as Topic Biological and medical sciences Biomarkers Brain Mapping Cerebral Cortex - pathology Classification cortical pattern matching Female Humans Image Interpretation, Computer-Assisted Image Processing, Computer-Assisted Magnetic Resonance Imaging - methods Male Medical sciences MRI Predictive Value of Tests Psychiatry Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Psychoses psychosis Psychotic Disorders - classification Psychotic Disorders - pathology PyMVPA Schizophrenia Statistics as Topic - methods |
Title | Elucidating a Magnetic Resonance Imaging-Based Neuroanatomic Biomarker for Psychosis: Classification Analysis Using Probabilistic Brain Atlas and Machine Learning Algorithms |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006322309008932 https://www.clinicalkey.es/playcontent/1-s2.0-S0006322309008932 https://dx.doi.org/10.1016/j.biopsych.2009.07.019 https://www.ncbi.nlm.nih.gov/pubmed/19729150 https://www.proquest.com/docview/21105905 https://www.proquest.com/docview/21191627 https://www.proquest.com/docview/734131195 https://pubmed.ncbi.nlm.nih.gov/PMC3192809 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007221 issn: 0006-3223 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals customDbUrl: eissn: 1873-2402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007221 issn: 0006-3223 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-2402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007221 issn: 0006-3223 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007221 issn: 0006-3223 databaseCode: AKRWK dateStart: 19850101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5VRTwkhCBQGh5hD1ydrF-7Xm5p1CoFpeJApd5Wa3uTukqcKHYOvfCP-I_MrNdpA-UhuCa7Tjw7T_ubbwh5L3kSMz_jXqoFFCh-GoLNidiTQZ7k3IBKMWxwnpzx8Xn08SK-2COjthcGYZXO9zc-3Xpr98nASXOwKgrs8YXwCtGNSYhjkIZgB3vEEdbX_3oD8xBB4KbmcQ9X3-oSvuqnxdKCih1vpehbxp27A9Tjla5AbNNm3sVdCemPuMpbgerkKXniMkw6bG7iGdkzZYfcb2ZOXnfIw1E74q1DHkzcm_Xn5NvxfJMV2OtQzqimEz0rsb2R4uN95OQw9HRhBxp5RxD3cmpJPXQJJfsCVsHVF4jzWVPIgWnjVKui-kDtzE1EI1kFoC0FCrVIBfp5Dd4E0blIFk2PcFoFHdawheoyh_-AOE9DHQXsjA7ns-W6qC8X1QtyfnL8ZTT23CgHL4Pyu_ZyyKwyM5Vw_rlgUZinTIYmk9zwwMQ-B89gfB3niWYsy6HKkhnLofI0QRSnSTQND8h-uSzNIaFGGiOnUDZyoSMdCi01ZK2pTAOstrjokrg9P5U5nnMctzFXLaDtSrXnjkM4pWJCwbl3yWC7b9Uwffxxh2jVQ7V9rOB5FQSjf9tpKudAKuWrKlBM_aTkXSK3O3fs5K9-tbejw9vbBBOJwUDh4u9apVagifjqSJdmuakUPiaIJYt_uwIqjQDET3-xQmDChAyDXfKysZMbOUuo8aA0AbnsWNB2AZKg735TFpeWDB1CSJAw-eo_5PKaPArcVBDmvyH79Xpj3kKqWac960t65N7w9NP47DvHjYKa |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVFAkhCAUCI92D1zdrh2vN8stjVoltIk4tFJvq7W9SV0lThQnB34U_5EZex0aKA_BNdlx4tnZedgz3wfwQUUdwf0k8mIjsUDx4zaeOSk8FaSdNLJoUpwGnIejqH8VfroW1zvQq2dhqK3S-f7Kp5fe2n1y7LR5vMgymvHF8IrRjSuMY5iGPIDdUKBPbsBud3DeH20csgwCR5wXeSRwZ1D49ijO5mVfsYOulEcl6M79MerJwhSouXFFeXFfTvpja-WdWHX2DJ66JJN1q_t4Djs2b8LDinbySxP2ejXLWxMeDd3L9Rfw9XS6TjIad8gnzLChmeQ04cjoCT_Bclg2mJWcRt4Jhr6UlbgeJseqfYar8OozavVZMkyDWeVXi6z4yEraTWpIKm2A1SgorGxWYJ-X6FCoQZfwotkJEVaw7gpFmMlT_A_U6mmZQ4GdsO50Ml9mq5tZsQ9XZ6eXvb7n2By8BCvwlZdicpXYsUITSCUP22nMVdsmKrJRYIUfoXOwvhFpx3CepFhoqYSnWHzaIBRxJxy3X0Ijn-f2NTCrrFVjrBwjaULTlkYZTFxjFQdUcEWyBaLeP504qHNi3JjquqftVtf7TjycSnOpcd9bcLyRW1RgH3-UkLV56HqUFZ2vxnj0b5K2cD6k0L4uAs31T3beArWR3Doqf_WrB1s2vLlNPCICzyhe_LA2ao2WSG-PTG7n60LTkwKhuPjtCiw2AlQ_-8UKSTkTgQy24FV1Tr7rWWGZh9UJ6mXrBG0WEA769jd5dlPioWMUCTpcvfkPvRzCXv9yeKEvBqPzt_A4cCQh3H8HjdVybd9j5rmKD5xn-QadcYVF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+a+Magnetic+Resonance+Imaging-Based+Neuroanatomic+Biomarker+for+Psychosis%3A+Classification+Analysis+Using+Probabilistic+Brain+Atlas+and+Machine+Learning+Algorithms&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Sun%2C+Daqiang&rft.au=van+Erp%2C+Theo+G.M.&rft.au=Thompson%2C+Paul+M.&rft.au=Bearden%2C+Carrie+E.&rft.date=2009-12-01&rft.issn=0006-3223&rft.eissn=1873-2402&rft.volume=66&rft.issue=11&rft.spage=1055&rft.epage=1060&rft_id=info:doi/10.1016%2Fj.biopsych.2009.07.019&rft_id=info%3Apmid%2F19729150&rft.externalDocID=PMC3192809 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322309X00211%2Fcov150h.gif |