Implementation of Genetic Algorithms to Optimize Metal–Organic Frameworks for CO 2 Capture

Metal-organic frameworks (MOFs) are promising materials for CO capture with the potential to use less energy than current industrial CO capture methods. MOFs are highly versatile sorbents, and there is an almost unlimited number of MOFs that could be synthesized. In this work, we used a genetic algo...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 41; no. 7; pp. 4585 - 4593
Main Authors Pham, Thang D., Snurr, Randall Q.
Format Journal Article
LanguageEnglish
Published United States 25.02.2025
Online AccessGet full text
ISSN0743-7463
1520-5827
DOI10.1021/acs.langmuir.4c04386

Cover

Abstract Metal-organic frameworks (MOFs) are promising materials for CO capture with the potential to use less energy than current industrial CO capture methods. MOFs are highly versatile sorbents, and there is an almost unlimited number of MOFs that could be synthesized. In this work, we used a genetic algorithm (GA) and grand canonical Monte Carlo (GCMC) simulations to efficiently search for high-performing MOFs for CO capture. We analyzed the effects of important GA parameters, including the mutation probability, the number of MOFs per generation, and the number of GA generations, on the GA performance. We performed GCMC simulations on-the-fly during the GA procedure to determine the performance of proposed MOFs and optimized their structures using multiple objective functions across different topologies. The GA was able to determine top-performing MOFs balancing CO selectivity versus working capacity and reduced the cost of molecular simulations by a factor of 25 versus brute-force screening of an entire database of structures.
AbstractList Metal-organic frameworks (MOFs) are promising materials for CO capture with the potential to use less energy than current industrial CO capture methods. MOFs are highly versatile sorbents, and there is an almost unlimited number of MOFs that could be synthesized. In this work, we used a genetic algorithm (GA) and grand canonical Monte Carlo (GCMC) simulations to efficiently search for high-performing MOFs for CO capture. We analyzed the effects of important GA parameters, including the mutation probability, the number of MOFs per generation, and the number of GA generations, on the GA performance. We performed GCMC simulations on-the-fly during the GA procedure to determine the performance of proposed MOFs and optimized their structures using multiple objective functions across different topologies. The GA was able to determine top-performing MOFs balancing CO selectivity versus working capacity and reduced the cost of molecular simulations by a factor of 25 versus brute-force screening of an entire database of structures.
Author Pham, Thang D.
Snurr, Randall Q.
Author_xml – sequence: 1
  givenname: Thang D.
  orcidid: 0000-0002-5232-4619
  surname: Pham
  fullname: Pham, Thang D.
– sequence: 2
  givenname: Randall Q.
  orcidid: 0000-0003-2925-9246
  surname: Snurr
  fullname: Snurr, Randall Q.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39950599$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtOwzAYhC1URB9wA4R8gRS_EsfLqoJSqSibLpEi1_ldAnEc2akQrLgDN-QktGrLambxaaT5xmjQ-hYQuqVkSgmj99rEaaPbrdvVYSoMETzPLtCIpowkac7kAI2IFDyRIuNDNI7xjRCiuFBXaMiVSkmq1Ai9LF3XgIO2133tW-wtXkALfW3wrNn6UPevLuLe46Lra1d_AX6GXje_3z9F2Op2jz0G7eDDh_eIrQ94XmCG57rrdwGu0aXVTYSbU07Q-vFhPX9KVsViOZ-tEpPlKqmIzhSTFa02hpuMVYqKVHEJzAA9VJUqsFJZm0OlQFgJmqUbMNySTIHkE3R3nO12GwdV2YXa6fBZnl_uAXEETPAxBrD_CCXlQWa5l1meZZYnmfwPCdNs-A
Cites_doi 10.1016/j.cej.2020.126392
10.1021/ja00051a040
10.1021/acs.jctc.0c01229
10.1126/sciadv.1600909
10.1021/acsmaterialsau.2c00027
10.1080/08927022.2019.1597271
10.1039/C8CS00829A
10.1002/cphc.202200257
10.1002/adfm.202307478
10.1039/C7EE02342A
10.1039/C8CE01637B
10.1021/acs.chemrev.6b00626
10.1038/nchem.1192
10.1016/j.ccr.2017.10.002
10.1021/cr200324t
10.1021/acsami.8b12746
10.1080/08927022.2015.1010082
10.1016/j.chempr.2022.01.012
10.1038/s41524-023-01125-1
10.1016/j.micromeso.2011.08.020
10.1016/j.cpc.2021.108171
10.1021/acs.jctc.6b00664
10.1016/j.apenergy.2012.09.009
10.1038/s41565-020-0673-x
10.1039/D4CC02002B
10.1021/acs.chemrev.9b00223
10.5194/essd-15-5301-2023
10.1016/j.supflu.2017.07.029
10.1021/acsami.1c02471
10.1002/adma.202301730
10.1021/acs.langmuir.2c03458
10.1021/am507465f
10.1038/s41524-022-00796-6
10.1016/j.rser.2019.109299
10.1002/aic.690470719
10.1039/C9QI01120J
10.1021/acs.est.6b00627
10.1021/acsami.9b17867
10.1002/anie.201101891
10.1021/cr400392k
10.1021/acsami.1c00152
ContentType Journal Article
DBID AAYXX
CITATION
NPM
DOI 10.1021/acs.langmuir.4c04386
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 4593
ExternalDocumentID 39950599
10_1021_acs_langmuir_4c04386
Genre Journal Article
GroupedDBID ---
-~X
.K2
4.4
55A
5GY
5VS
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
YQT
~02
NPM
ID FETCH-LOGICAL-c689-d0a6927d1dbc3c62d9145937e2ce11459959ef79ff8ed9e4f7ea25bec3f069e73
IEDL.DBID ACS
ISSN 0743-7463
IngestDate Wed Feb 26 08:31:34 EST 2025
Wed Oct 01 06:50:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c689-d0a6927d1dbc3c62d9145937e2ce11459959ef79ff8ed9e4f7ea25bec3f069e73
ORCID 0000-0002-5232-4619
0000-0003-2925-9246
PMID 39950599
PageCount 9
ParticipantIDs pubmed_primary_39950599
crossref_primary_10_1021_acs_langmuir_4c04386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-25
2025-Feb-25
PublicationDateYYYYMMDD 2025-02-25
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2025
References ref9/cit9
IEA (ref3/cit3) 2022
ref6/cit6
ref36/cit36
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – volume-title: World energy outlook 2022
  year: 2022
  ident: ref3/cit3
– ident: ref24/cit24
  doi: 10.1016/j.cej.2020.126392
– ident: ref37/cit37
  doi: 10.1021/ja00051a040
– ident: ref38/cit38
  doi: 10.1021/acs.jctc.0c01229
– ident: ref27/cit27
  doi: 10.1126/sciadv.1600909
– ident: ref16/cit16
  doi: 10.1021/acsmaterialsau.2c00027
– ident: ref23/cit23
  doi: 10.1080/08927022.2019.1597271
– ident: ref13/cit13
  doi: 10.1039/C8CS00829A
– ident: ref21/cit21
  doi: 10.1002/cphc.202200257
– ident: ref14/cit14
  doi: 10.1002/adfm.202307478
– ident: ref7/cit7
  doi: 10.1039/C7EE02342A
– ident: ref32/cit32
  doi: 10.1039/C8CE01637B
– ident: ref9/cit9
  doi: 10.1021/acs.chemrev.6b00626
– ident: ref28/cit28
  doi: 10.1038/nchem.1192
– ident: ref11/cit11
  doi: 10.1016/j.ccr.2017.10.002
– ident: ref20/cit20
  doi: 10.1021/cr200324t
– ident: ref26/cit26
  doi: 10.1021/acsami.8b12746
– ident: ref36/cit36
  doi: 10.1080/08927022.2015.1010082
– ident: ref10/cit10
  doi: 10.1016/j.chempr.2022.01.012
– ident: ref31/cit31
  doi: 10.1038/s41524-023-01125-1
– ident: ref35/cit35
  doi: 10.1016/j.micromeso.2011.08.020
– ident: ref33/cit33
  doi: 10.1016/j.cpc.2021.108171
– ident: ref34/cit34
  doi: 10.1021/acs.jctc.6b00664
– ident: ref5/cit5
  doi: 10.1016/j.apenergy.2012.09.009
– ident: ref17/cit17
  doi: 10.1038/s41565-020-0673-x
– ident: ref12/cit12
  doi: 10.1039/D4CC02002B
– ident: ref18/cit18
  doi: 10.1021/acs.chemrev.9b00223
– ident: ref1/cit1
  doi: 10.5194/essd-15-5301-2023
– ident: ref4/cit4
  doi: 10.1016/j.supflu.2017.07.029
– ident: ref29/cit29
  doi: 10.1021/acsami.1c02471
– ident: ref43/cit43
  doi: 10.1002/adma.202301730
– ident: ref15/cit15
  doi: 10.1021/acs.langmuir.2c03458
– ident: ref6/cit6
  doi: 10.1021/am507465f
– ident: ref22/cit22
  doi: 10.1038/s41524-022-00796-6
– ident: ref2/cit2
  doi: 10.1016/j.rser.2019.109299
– ident: ref39/cit39
  doi: 10.1002/aic.690470719
– ident: ref19/cit19
  doi: 10.1039/C9QI01120J
– ident: ref41/cit41
– ident: ref8/cit8
  doi: 10.1021/acs.est.6b00627
– ident: ref30/cit30
  doi: 10.1021/acsami.9b17867
– ident: ref40/cit40
  doi: 10.1002/anie.201101891
– ident: ref42/cit42
  doi: 10.1021/cr400392k
– ident: ref25/cit25
  doi: 10.1021/acsami.1c00152
SSID ssj0009349
Score 2.4758644
Snippet Metal-organic frameworks (MOFs) are promising materials for CO capture with the potential to use less energy than current industrial CO capture methods. MOFs...
SourceID pubmed
crossref
SourceType Index Database
StartPage 4585
Title Implementation of Genetic Algorithms to Optimize Metal–Organic Frameworks for CO 2 Capture
URI https://www.ncbi.nlm.nih.gov/pubmed/39950599
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5827
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009349
  issn: 0743-7463
  databaseCode: ACS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQL3BhX8omH7gmNLbjxMcqoqqQSg8UqQekyPECFSSp2vTSE__AH_Il2FmoCkKCmw-WZc1YnmfPvDcAXCXUeFWE1MEi4A5RnDlJgq3kfidknFHulZ3nBne0_0Bux_549VD8nsFH3jUXc9f-3aWLycwlwmauSoVtEwotEoruVxq7uEK7VnUzIBQ3TLlfFlmLRGuYsowtvR0wbBg6VUnJi7soElcsfwo2_nHbu2C7hpmwW52LPbChsn2wGTXd3Q7AYykLnNbMowzmGloFajMddl-f8tmkeE7nsMjh0Nwp6WSp4EAZnP7x9l6xNwXsNWVdc2iAL4yGEMGIT21G4hCMejejqO_UnRYcQUPmyA6nDAXSk4nAgiLJPOIb3KKQUJ4dMp8pHTCtQyWZIjpQHPnG-1h3KFMBPgKtLM_UCYDSltlwGXKWMMIZ55JogjX3pMFNBg20gdMYPZ5WehpxmQdHXmxMFjcmi2uTtcFx5Zmv2ZaLa0VlTv-50hnYQrZ3r6Wj--egVcwW6sIAiiK5LI_RJ-FPykc
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+Genetic+Algorithms+to+Optimize+Metal%E2%80%93Organic+Frameworks+for+CO+2+Capture&rft.jtitle=Langmuir&rft.au=Pham%2C+Thang+D.&rft.au=Snurr%2C+Randall+Q.&rft.date=2025-02-25&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=41&rft.issue=7&rft.spage=4585&rft.epage=4593&rft_id=info:doi/10.1021%2Facs.langmuir.4c04386&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_4c04386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon