Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis

BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 16; no. 9; pp. 1145 - 1163
Main Authors Chourasia, Aparajita H, Tracy, Kristin, Frankenberger, Casey, Boland, Michelle L, Sharifi, Marina N, Drake, Lauren E, Sachleben, Joseph R, Asara, John M, Locasale, Jason W, Karczmar, Gregory S, Macleod, Kay F
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.09.2015
Nature Publishing Group UK
Springer Nature B.V
John Wiley & Sons, Ltd
Subjects
Online AccessGet full text
ISSN1469-221X
1469-3178
DOI10.15252/embr.201540759

Cover

Abstract BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif‐1α and Hif target genes, including those involved in glycolysis and angiogenesis—two processes that are also markedly increased in BNip3‐null tumors. Glycolysis inhibition attenuates the growth of BNip3‐null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple‐negative breast cancer (TNBC). These studies show that mitochondrial dysfunction—caused by defects in mitophagy—can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment. Synopsis This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer. Elevated ROS production by dysfunctional mitochondria in BNip3 null tumors results in increased Hif‐1α levels and increased tumor progression to invasiveness. This novel negative feedback loop between BNip3 and Hif‐1α limits the oncogenic activity of Hif‐1 in glycolysis and angiogenesis. Defective mitochondria and aerobic glycolysis arising from loss of BNip3 is associated with increased dependence on autophagy for survival. BNIP3 is focally deleted in triple negative breast cancer and, together with high HIF‐1α levels, strongly predicts progression to metastasis in TNBC patients. Graphical Abstract This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer.
AbstractList BNip3 is a hypoxia-inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif-1α and Hif target genes, including those involved in glycolysis and angiogenesis—two processes that are also markedly increased in BNip3-null tumors. Glycolysis inhibition attenuates the growth of BNip3-null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple-negative breast cancer (TNBC). These studies show that mitochondrial dysfunction—caused by defects in mitophagy—can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment.
BNip3 is a hypoxia-inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif-1[alpha] and Hif target genes, including those involved in glycolysis and angiogenesis--two processes that are also markedly increased in BNip3-null tumors. Glycolysis inhibition attenuates the growth of BNip3-null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple-negative breast cancer (TNBC). These studies show that mitochondrial dysfunction--caused by defects in mitophagy--can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment. Synopsis This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer. Elevated ROS production by dysfunctional mitochondria in BNip3 null tumors results in increased Hif-1[alpha] levels and increased tumor progression to invasiveness. This novel negative feedback loop between BNip3 and Hif-1[alpha] limits the oncogenic activity of Hif-1 in glycolysis and angiogenesis. Defective mitochondria and aerobic glycolysis arising from loss of BNip3 is associated with increased dependence on autophagy for survival. BNIP3 is focally deleted in triple negative breast cancer and, together with high HIF-1[alpha] levels, strongly predicts progression to metastasis in TNBC patients.
BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif‐1α and Hif target genes, including those involved in glycolysis and angiogenesis—two processes that are also markedly increased in BNip3‐null tumors. Glycolysis inhibition attenuates the growth of BNip3‐null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple‐negative breast cancer (TNBC). These studies show that mitochondrial dysfunction—caused by defects in mitophagy—can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment. Synopsis This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer. Elevated ROS production by dysfunctional mitochondria in BNip3 null tumors results in increased Hif‐1α levels and increased tumor progression to invasiveness. This novel negative feedback loop between BNip3 and Hif‐1α limits the oncogenic activity of Hif‐1 in glycolysis and angiogenesis. Defective mitochondria and aerobic glycolysis arising from loss of BNip3 is associated with increased dependence on autophagy for survival. BNIP3 is focally deleted in triple negative breast cancer and, together with high HIF‐1α levels, strongly predicts progression to metastasis in TNBC patients. Graphical Abstract This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer.
BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif‐1α and Hif target genes, including those involved in glycolysis and angiogenesis—two processes that are also markedly increased in BNip3‐null tumors. Glycolysis inhibition attenuates the growth of BNip3‐null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple‐negative breast cancer (TNBC). These studies show that mitochondrial dysfunction—caused by defects in mitophagy—can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment. Synopsis This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer. Elevated ROS production by dysfunctional mitochondria in BNip3 null tumors results in increased Hif‐1α levels and increased tumor progression to invasiveness. This novel negative feedback loop between BNip3 and Hif‐1α limits the oncogenic activity of Hif‐1 in glycolysis and angiogenesis. Defective mitochondria and aerobic glycolysis arising from loss of BNip3 is associated with increased dependence on autophagy for survival. BNIP3 is focally deleted in triple negative breast cancer and, together with high HIF‐1α levels, strongly predicts progression to metastasis in TNBC patients. This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer.
Author Sharifi, Marina N
Asara, John M
Sachleben, Joseph R
Tracy, Kristin
Locasale, Jason W
Boland, Michelle L
Frankenberger, Casey
Macleod, Kay F
Karczmar, Gregory S
Chourasia, Aparajita H
Drake, Lauren E
Author_xml – sequence: 1
  givenname: Aparajita H
  surname: Chourasia
  fullname: Chourasia, Aparajita H
  organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
– sequence: 2
  givenname: Kristin
  surname: Tracy
  fullname: Tracy, Kristin
  organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
– sequence: 3
  givenname: Casey
  surname: Frankenberger
  fullname: Frankenberger, Casey
  organization: The Ben May Department for Cancer Research, The University of Chicago, IL, Chicago, USA
– sequence: 4
  givenname: Michelle L
  surname: Boland
  fullname: Boland, Michelle L
  organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
– sequence: 5
  givenname: Marina N
  surname: Sharifi
  fullname: Sharifi, Marina N
  organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
– sequence: 6
  givenname: Lauren E
  surname: Drake
  fullname: Drake, Lauren E
  organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
– sequence: 7
  givenname: Joseph R
  surname: Sachleben
  fullname: Sachleben, Joseph R
  organization: Biomolecular NMR Facility, The University of Chicago, IL, Chicago, USA
– sequence: 8
  givenname: John M
  surname: Asara
  fullname: Asara, John M
  organization: Division of Signal Transduction, Beth Israel Deaconess Medical Center and Harvard Medical School, MA, Boston, USA
– sequence: 9
  givenname: Jason W
  surname: Locasale
  fullname: Locasale, Jason W
  organization: Division of Nutritional Sciences, Cornell University, NY, Ithaca, USA
– sequence: 10
  givenname: Gregory S
  surname: Karczmar
  fullname: Karczmar, Gregory S
  organization: Department of Radiology, The University of Chicago, IL, Chicago, USA
– sequence: 11
  givenname: Kay F
  surname: Macleod
  fullname: Macleod, Kay F
  email: kmacleod@uchicago.edu
  organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26232272$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB-wZocisWGT1o84TlggtaNSENNBQiBgZTnOTeqSxMF2gPn3eMgwGioBkiW_znfu6xgdDHYAhB4TfEo45fQM-sqdUkx4hgUv76EjkuVlyogoDrZnSsmnQ3Ts_S3GmJeieIAOaU4ZpYIeoc_XJtjxRrXrpIYGdPCJcsaboU0aZ_vkYmVGlnTW-2SMdxsg6VXfK7dOwtRbt3ltHXhv7JAEm_QQlI_L-IfofqM6D4-2-wn68PLy_eJVunx79Xpxvkx1XogyFVg1FS1FrZosz7TWIHCmhKa1qDEHiiuW4aZRHBPSiIzqEgDyWtV1kVeFaNgJejH7jlPVQ61hCE51cnRmk6W0ysg_fwZzI1v7TWZc5GXBosGzrYGzXyfwQfbGa-g6NYCdvCQCl4IwnOVR-vSO9NZObojlbVRFyVj0jKon-xntUvnd9Sg4mwXaxcY6aHYSguWvucrNXOVurpHgdwhtggqx6bEk0_2Dez5z300H6_-FkZfXF-_2YTzDPnJDC26v2r_GS2fE-AA_dvGU-yJzwQSXH1dXMqPL1RtGmVywnykr2W4
CODEN ERMEAX
CitedBy_id crossref_primary_10_1016_j_drup_2024_101170
crossref_primary_10_1002_adma_202007778
crossref_primary_10_3389_fonc_2020_00409
crossref_primary_10_4103_njms_NJMS_123_20
crossref_primary_10_1007_s00018_015_2087_8
crossref_primary_10_3390_cancers16244133
crossref_primary_10_1089_ars_2019_7950
crossref_primary_10_1016_j_ejps_2019_04_011
crossref_primary_10_1101_cshperspect_a041542
crossref_primary_10_3389_fcell_2022_974851
crossref_primary_10_1089_ars_2023_0380
crossref_primary_10_1515_hsz_2016_0137
crossref_primary_10_1016_j_lfs_2023_122098
crossref_primary_10_1002_mco2_462
crossref_primary_10_3390_ijms24098048
crossref_primary_10_1038_s41418_020_00657_z
crossref_primary_10_5483_BMBRep_2019_52_4_263
crossref_primary_10_1038_s41419_024_06829_w
crossref_primary_10_1016_j_mrrev_2023_108467
crossref_primary_10_1016_j_cytogfr_2025_01_004
crossref_primary_10_1002_1873_3468_14060
crossref_primary_10_1016_j_mito_2020_10_001
crossref_primary_10_3389_fonc_2018_00676
crossref_primary_10_3389_fmolb_2022_851966
crossref_primary_10_3389_fcell_2020_594203
crossref_primary_10_1111_cpr_13327
crossref_primary_10_1080_15548627_2020_1850609
crossref_primary_10_1038_cddis_2017_190
crossref_primary_10_1073_pnas_2416076121
crossref_primary_10_1038_cr_2017_155
crossref_primary_10_1002_med_21571
crossref_primary_10_1002_path_4774
crossref_primary_10_1016_j_tranon_2024_101879
crossref_primary_10_1016_j_abb_2024_110213
crossref_primary_10_1016_j_ceca_2020_102308
crossref_primary_10_1158_2159_8290_CD_18_1409
crossref_primary_10_3324_haematol_2022_282552
crossref_primary_10_1016_j_devcel_2021_02_010
crossref_primary_10_1002_jev2_12244
crossref_primary_10_1016_j_mito_2020_01_002
crossref_primary_10_1007_s10565_020_09561_1
crossref_primary_10_1186_s40880_018_0314_z
crossref_primary_10_1016_j_pharmthera_2017_04_005
crossref_primary_10_1016_j_bbabio_2016_12_008
crossref_primary_10_1146_annurev_cancerbio_030419_033405
crossref_primary_10_1038_s41420_024_02226_6
crossref_primary_10_3389_fphar_2022_935937
crossref_primary_10_1007_s00018_022_04585_8
crossref_primary_10_1126_sciadv_ado5887
crossref_primary_10_1007_s00203_024_03838_3
crossref_primary_10_1089_ars_2019_8013
crossref_primary_10_1002_cbin_11332
crossref_primary_10_1038_s41419_021_03639_2
crossref_primary_10_1158_0008_5472_CAN_15_3458
crossref_primary_10_3389_pore_2021_1609782
crossref_primary_10_1016_j_bbrc_2017_07_047
crossref_primary_10_1080_15548627_2021_1975914
crossref_primary_10_1016_j_yexcr_2017_07_029
crossref_primary_10_1101_gad_325514_119
crossref_primary_10_1186_s12967_023_04286_1
crossref_primary_10_1155_2018_1027453
crossref_primary_10_3724_abbs_2023246
crossref_primary_10_1007_s10616_024_00689_0
crossref_primary_10_3390_cancers15041112
crossref_primary_10_3390_cancers13133311
crossref_primary_10_1007_s00018_021_03774_1
crossref_primary_10_3389_fcell_2019_00355
crossref_primary_10_1016_j_fsi_2023_109037
crossref_primary_10_1038_s41419_022_05418_z
crossref_primary_10_1016_j_bbrc_2016_10_088
crossref_primary_10_1002_advs_202412593
crossref_primary_10_3389_fcell_2021_727822
crossref_primary_10_1002_mabi_202300238
crossref_primary_10_3390_cancers14010096
crossref_primary_10_1080_15476286_2020_1871215
crossref_primary_10_1134_S0006297920100120
crossref_primary_10_1038_s41598_023_47942_8
crossref_primary_10_1016_j_kint_2023_01_025
crossref_primary_10_1111_cas_14276
crossref_primary_10_1016_j_cmet_2019_07_014
crossref_primary_10_1038_s41419_020_03024_5
crossref_primary_10_1039_D3DT00738C
crossref_primary_10_1038_s41580_023_00585_z
crossref_primary_10_1016_j_ejcb_2019_151061
crossref_primary_10_1016_j_lfs_2023_121378
crossref_primary_10_1371_journal_pone_0245155
crossref_primary_10_1016_j_fsi_2021_12_017
crossref_primary_10_3390_cancers13102475
crossref_primary_10_3390_biology11020300
crossref_primary_10_1016_j_tcb_2018_07_004
crossref_primary_10_1016_j_bbamcr_2024_119752
crossref_primary_10_1016_j_semcancer_2019_07_015
crossref_primary_10_1089_ars_2019_7898
crossref_primary_10_1080_15548627_2024_2395142
crossref_primary_10_1080_16078454_2023_2231739
crossref_primary_10_1080_10409238_2018_1556578
crossref_primary_10_1080_15548627_2018_1509609
crossref_primary_10_1016_j_celbio_2025_100016
crossref_primary_10_1007_s12640_022_00475_w
crossref_primary_10_1002_iub_2524
crossref_primary_10_46308_kmj_2020_00101
crossref_primary_10_1042_BCJ20210676
crossref_primary_10_1016_j_molmet_2024_101966
crossref_primary_10_3390_cancers12113390
crossref_primary_10_1038_s41556_018_0042_2
crossref_primary_10_1080_13813455_2019_1675714
crossref_primary_10_1155_2016_9460462
crossref_primary_10_1515_hsz_2017_0228
crossref_primary_10_7554_eLife_59686
crossref_primary_10_1152_ajpcell_00360_2021
crossref_primary_10_1080_15548627_2020_1848971
crossref_primary_10_1016_j_bj_2015_10_002
crossref_primary_10_1101_gad_287524_116
crossref_primary_10_1242_jcs_247056
crossref_primary_10_3390_ijms22010179
crossref_primary_10_1089_ars_2017_7423
crossref_primary_10_1016_j_jep_2025_119555
crossref_primary_10_1038_srep41927
crossref_primary_10_1186_s13578_021_00696_0
crossref_primary_10_1016_j_canlet_2021_12_032
crossref_primary_10_1016_j_mcn_2018_04_009
crossref_primary_10_3390_antiox10050794
crossref_primary_10_1002_jmr_3044
crossref_primary_10_1155_2016_4085727
crossref_primary_10_1016_j_ijbiomac_2025_141752
crossref_primary_10_1016_j_cell_2018_09_048
crossref_primary_10_1007_s00018_016_2451_3
crossref_primary_10_1002_iub_2585
crossref_primary_10_1002_mc_23463
crossref_primary_10_1002_hep_30191
crossref_primary_10_1038_s41419_019_2134_8
crossref_primary_10_1038_onc_2016_302
crossref_primary_10_1038_bcj_2017_61
crossref_primary_10_1089_ars_2022_0122
crossref_primary_10_1080_15548627_2020_1720427
crossref_primary_10_3390_cancers13225622
crossref_primary_10_1038_s41418_024_01280_y
crossref_primary_10_3390_antiox13121563
crossref_primary_10_1007_s10555_024_10211_9
crossref_primary_10_3389_fonc_2021_612009
crossref_primary_10_1016_j_freeradbiomed_2020_12_452
crossref_primary_10_15252_embj_2020104705
crossref_primary_10_3389_fimmu_2018_01243
crossref_primary_10_1016_j_semcancer_2017_04_008
crossref_primary_10_15252_embj_2020106214
crossref_primary_10_3389_fonc_2018_00126
crossref_primary_10_1016_j_pharmthera_2020_107748
crossref_primary_10_1111_febs_14336
crossref_primary_10_1155_2022_1749111
crossref_primary_10_1080_15548627_2018_1450020
crossref_primary_10_1007_s10528_024_10794_6
crossref_primary_10_3389_fphys_2023_1236651
crossref_primary_10_1007_s12672_021_00454_1
crossref_primary_10_1016_j_blre_2017_04_001
crossref_primary_10_1155_2019_7187128
crossref_primary_10_1016_j_molmed_2019_11_001
crossref_primary_10_1186_s12885_021_07886_6
crossref_primary_10_1016_j_arr_2024_102428
crossref_primary_10_3389_fcell_2021_699621
crossref_primary_10_1155_2017_8316094
crossref_primary_10_1074_jbc_M117_792838
crossref_primary_10_1089_dna_2018_4348
crossref_primary_10_3390_cells11132097
crossref_primary_10_1016_j_jep_2024_117734
crossref_primary_10_3390_cells8050493
crossref_primary_10_15252_embj_2021108863
crossref_primary_10_1016_j_bbamcr_2022_119325
crossref_primary_10_1038_s41419_019_1475_7
crossref_primary_10_1038_s44318_023_00006_z
crossref_primary_10_3390_ijms25126719
crossref_primary_10_1002_iid3_70041
crossref_primary_10_1007_s10495_019_01535_x
crossref_primary_10_3390_ijms22147551
crossref_primary_10_1083_jcb_202004029
crossref_primary_10_3390_cells12232742
crossref_primary_10_1038_bjc_2017_201
crossref_primary_10_15252_embj_2021110031
crossref_primary_10_1016_j_tcm_2017_11_008
crossref_primary_10_3390_cancers15204916
crossref_primary_10_3390_cells8111349
crossref_primary_10_3389_fcell_2020_00413
crossref_primary_10_1007_s00432_023_05515_2
crossref_primary_10_1016_j_semcancer_2019_11_005
crossref_primary_10_1016_j_cell_2016_05_051
crossref_primary_10_2147_JIR_S493037
crossref_primary_10_1111_jcmm_18265
crossref_primary_10_1016_j_bbrep_2024_101893
crossref_primary_10_1016_j_bbrc_2023_149320
crossref_primary_10_1093_carcin_bgaa114
crossref_primary_10_3892_ijmm_2024_5440
crossref_primary_10_1016_j_cca_2020_02_024
crossref_primary_10_1016_j_drup_2019_100643
crossref_primary_10_1080_15548627_2018_1558002
crossref_primary_10_15252_embj_201796697
crossref_primary_10_3390_cancers15082195
crossref_primary_10_1159_000541486
crossref_primary_10_3390_ijms20020399
crossref_primary_10_1038_s41416_019_0641_0
crossref_primary_10_1089_ars_2020_8058
crossref_primary_10_15252_embr_202357574
crossref_primary_10_1016_j_semcdb_2019_05_029
crossref_primary_10_1038_nrm_2017_129
crossref_primary_10_3389_fphar_2019_00203
crossref_primary_10_1080_15548627_2021_1888244
crossref_primary_10_2174_1389450120666190402145325
crossref_primary_10_1002_adfm_202421288
crossref_primary_10_1016_j_phrs_2024_107383
crossref_primary_10_1155_2019_6387357
crossref_primary_10_1038_s41523_020_00191_8
crossref_primary_10_3390_biomedicines12020462
crossref_primary_10_1038_s41598_023_34710_x
crossref_primary_10_1016_j_canlet_2023_216590
crossref_primary_10_3390_cancers13215484
crossref_primary_10_1016_j_mito_2024_101920
crossref_primary_10_1038_s41388_019_0697_6
crossref_primary_10_1038_s41556_018_0034_2
crossref_primary_10_3390_ijms21238974
crossref_primary_10_1080_15548627_2018_1460010
crossref_primary_10_1038_s41392_023_01503_7
crossref_primary_10_1007_s00018_018_2973_y
crossref_primary_10_1038_s41419_023_05929_3
crossref_primary_10_1038_s41568_021_00435_0
crossref_primary_10_3390_ijms252212387
crossref_primary_10_1016_j_semcancer_2024_03_004
crossref_primary_10_3389_fcvm_2023_1309863
crossref_primary_10_3389_fonc_2022_923890
crossref_primary_10_1038_s41419_022_04741_9
crossref_primary_10_1089_ars_2018_7702
crossref_primary_10_7717_peerj_17260
crossref_primary_10_3389_fphar_2024_1360179
crossref_primary_10_1038_s41598_019_39563_x
crossref_primary_10_1152_physrev_00005_2018
Cites_doi 10.1016/j.cmet.2005.05.001
10.1128/MCB.02246-06
10.1038/nature13110
10.1016/S0002-9440(10)64554-3
10.1016/j.tibs.2010.04.002
10.1158/1078-0432.CCR-04-1785
10.1038/sj.emboj.7600846
10.1016/j.cmet.2005.05.003
10.1016/j.molcel.2012.09.025
10.1016/j.ccr.2009.06.018
10.1038/sj.onc.1208642
10.1158/0008-5472.CAN-06-2701
10.1038/nature08822
10.1016/j.cell.2014.02.049
10.1002/path.1486
10.1101/gad.2051011
10.1101/gad.2016111
10.1073/pnas.1003428107
10.1038/nature11207
10.1172/JCI32490
10.1074/jbc.M001914200
10.1038/nature04695
10.1158/1078-0432.CCR-06-1466
10.1186/s40170-015-0130-8
10.1158/1078-0432.1021.11.3
10.1158/0008-5472.CAN-05-1235
10.1038/sj.bjc.6602422
10.1007/s13277-013-0707-1
10.1126/science.1196371
10.1155/2010/852197
10.1016/j.ccr.2012.12.008
10.1038/nature12865
10.1172/JCI31457
10.1038/nature13611
10.1038/nature14587
10.1158/0008-5472.CAN-13-3470
10.1158/1078-0432.CCR-05-2690
10.1038/sj.cdd.4400810
10.1186/1471-2407-9-175
10.1172/JCI45014
10.1074/jbc.M800102200
10.1073/pnas.1113483108
10.1128/MCB.00167-12
10.1074/jbc.M111.322933
10.1016/j.cmet.2005.05.002
10.1038/embor.2009.256
10.1038/nprot.2012.024
10.1038/nrm3801
10.1101/gad.219642.113
10.1016/j.ccr.2008.06.016
10.1128/MCB.20.15.5454-5468.2000
10.1126/science.1156906
10.1038/nrc3038
10.1158/0008-5472.CAN-04-0089
10.1172/JCI67230
10.1038/nrm3028
10.1016/S0002-9440(10)63568-7
ContentType Journal Article
Copyright The Authors 2015
2015 The Authors
2015 The Authors.
2015 EMBO
2015 The Authors 2015
Copyright_xml – notice: The Authors 2015
– notice: 2015 The Authors
– notice: 2015 The Authors.
– notice: 2015 EMBO
– notice: 2015 The Authors 2015
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embr.201540759
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Virology and AIDS Abstracts


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1469-3178
EndPage 1163
ExternalDocumentID PMC4576983
3795045951
26232272
10_15252_embr_201540759
EMBR201540759
ark_67375_WNG_42LNK323_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Human Tissue Resource Center
– fundername: University of Chicago Cancer Center
– fundername: NIH
  grantid: RO1 CA131188; RO1 CA162405; T32 CA009594; T32 DK780073; RO1 CA133490
– fundername: University of Chicago Medical Scientist Training Program
– fundername: NIH
  funderid: RO1 CA131188; RO1 CA162405; T32 CA009594; T32 DK780073; RO1 CA133490
– fundername: NIGMS NIH HHS
  grantid: T32 GM007281
– fundername: NCI NIH HHS
  grantid: R00 CA168997
– fundername: NCI NIH HHS
  grantid: R01 CA162405
– fundername: NCI NIH HHS
  grantid: R01 CA131188
– fundername: NCI NIH HHS
  grantid: R01 CA133490
– fundername: NCI NIH HHS
  grantid: T32 CA009594
– fundername: NIDDK NIH HHS
  grantid: T32 DK780073
– fundername: NCATS NIH HHS
  grantid: UL1 TR000430
– fundername: NCI NIH HHS
  grantid: P30 CA014599
– fundername: NCATS NIH HHS
  grantid: TL1 TR000432
GroupedDBID ---
-DZ
-Q-
.55
0R~
1OC
29G
2WC
33P
36B
39C
3O-
53G
5GY
5VS
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAESR
AAEVG
AAHBH
AAJSJ
AAMMB
AANHP
AANLZ
AAONW
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DWQXO
E3Z
EBLON
EBS
EJD
EMB
EMOBN
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NAO
O9-
OK1
P2P
P2W
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
R.K
RHI
RNI
RNS
ROL
RPM
RZO
SV3
TR2
UKHRP
WBKPD
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
X7M
ZGI
ZZTAW
24P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
RHF
WYJ
3V.
88A
ABJNI
M0L
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c6879-70afb297daf464ccce704a7c2d7d05e20b340ffa5011f742c9eee6dadd86b87f3
IEDL.DBID C6C
ISSN 1469-221X
IngestDate Thu Aug 21 14:03:18 EDT 2025
Thu Sep 04 22:33:53 EDT 2025
Fri Jul 25 10:59:17 EDT 2025
Mon Jul 21 05:44:26 EDT 2025
Tue Jul 01 02:52:14 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Wed Jan 22 16:19:55 EST 2025
Fri Feb 21 02:37:41 EST 2025
Sun Sep 21 06:18:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords HIF‐1α
mitophagy
invasive carcinoma
BNip3
glycolysis
ROS
breast cancer
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6879-70afb297daf464ccce704a7c2d7d05e20b340ffa5011f742c9eee6dadd86b87f3
Notes Expanded View Figures PDFReview Process File
University of Chicago Medical Scientist Training Program
istex:889AC4239FEC187EECBBCA568014D874C3FAAA01
NIH - No. RO1 CA131188; No. RO1 CA162405; No. T32 CA009594; No. T32 DK780073; No. RO1 CA133490
University of Chicago Cancer Center
Human Tissue Resource Center
ark:/67375/WNG-42LNK323-C
ArticleID:EMBR201540759
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Subject Categories Autophagy & Cell Death; Cancer
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embr.201540759
PMID 26232272
PQID 1708933576
PQPubID 26169
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4576983
proquest_miscellaneous_1709713046
proquest_journals_1708933576
pubmed_primary_26232272
crossref_primary_10_15252_embr_201540759
crossref_citationtrail_10_15252_embr_201540759
wiley_primary_10_15252_embr_201540759_EMBR201540759
springer_journals_10_15252_embr_201540759
istex_primary_ark_67375_WNG_42LNK323_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Chichester, UK
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO rep
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
Springer Nature B.V
John Wiley & Sons, Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley & Sons, Ltd
References Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M, Rehg J, Baudino T, Cleveland JL, Brindle PK (2005) Two transcriptional mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J 24: 3846-3858
Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25: 1510-1527
Maycotte P, Gearheart CM, Barnard R, Aryal S, Mulcahy Levy JM, Fosmire SP, Hansen RJ, Morgan MJ, Porter CC, Gustafson DL et al (2014) STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res 74: 2579-2590
Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) HIF1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61: 6669-6673
Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yaaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi JI (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320: 661-664
Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to Malignancy in the Polyoma Middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Path 163: 2113-2126
Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15: 411-421
Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK, Ferrone CR et al (2015) Transcriptional control of the autophagy-lysosome system in pancreatic cancer. Nature doi: 10.1038/nature14587
DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16: 91-102
Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1: 393-399
Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11: 325-337
Generali D, Berruti A, Brizzi MP, Campo L, Bonardi S, Wigfield S, Bersiga A, Allevi G, Milani M, Aguggini S et al (2006) Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res 12: 4562-4568
Semenza G (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123: 3664-3671
Chourasia AH, Boland ML, Macleod KF (2015) Mitophagy & Cancer. Cancer Metabol 3: 1-11
Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner E, Schroeder I, Factor VM, Thorgeirsson SS (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117: 2713-2722
Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, Jakesz R, Kubista E, Birner P, Oberhuber G (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8: 1831-1837
Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC, Harris AL, Fox SR (2007) BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer. Clin Cancer Res 13: 467-474
Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A, Rampazzo E, Basso G, Leo G, Rosato A, Bicciato S et al (2012) SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature 487: 380-384
Murai M, Toyota M, Suzuki H, Satoh A, Sasaki Y, Akino K, Ueno M, Takahashi F, Kusano M, Mita H et al (2005) Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res 11: 1021-1027
Koop EA, van Laar T, van Wichen DF, Weger RA, van der Wall E, van Diest PJ (2009) Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features. BMC Cancer 9: 175-182
Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64: 5338-5346
Liao D, Corle C, Seagroves TN, Johnson RS (2007) Hypoxia-inducible factor-1a is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67: 563-572
Erkan M, Kleef J, Esposito I, Giese T, Ketterer K, Buchler MW, Giese NA, Friess H (2005) Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24: 4421-4432
Hardwick JM, Youle RJ (2009) Snapshot: Bcl2 proteins. Cell 23: 404
Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, Hakem R, Greenberg AH (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20: 5454-5468
Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. TIBS 35: 505-513
Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor RC et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456-461
Weinberg F, Hamanaka RB, Wheaton WW, Weinberg S, Joseph JW, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107: 8788-8793
Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628-632
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza G (2008) Mitochondrial autophagy is a HIF-1 dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-10903
Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW II, Brady MJ, Macleod KF (2012) BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 32: 2570-2584
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121: 2750-2767
Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27: 1447-1461
Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K, Yu KT, Jaye M, Ivashchenko Y (2001) Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Diff 8: 367-376
Green DR, Levine B (2014) To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157: 65-75
Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, Fraley SI, Wong CM, Khoo US, Ng IO et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA 108: 16369-16374
Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1: 401-408
van Diest PJ, Suijkerbuijk KPM, Koop EA, Weger RA, van der Wall E (2010) Low levels of BNIP3 promoter hypermethylation in invasive breast cancer. Anal Cell Pathol 33: 175-176
Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275: 25130-25138
Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirschenbaum LA, Hahn HS, Robbins J et al (2007) Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of BNip3 restrains postinfarction remodeling in mice. J Clin Invest 117: 2825-2833
Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M, Matsuno S, Lemoine NR (2005) Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11: 3094-3101
Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14: 156-165
Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1: 409-414
Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463: 899-905
Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with BNip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287: 19094-19104
Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65: 9047-9055
Youle RJ, Narendra DP (2011) Mechanisms of Mitophagy. Nat Rev Mol Biol 12: 9-14
Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, Wang TC, Chen WW, Clish CB, Sabatini DM (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and
Kong, Park, Stephen, Calvani, Cardellina, Monks, Fisher, Shoemaker, Melillo (CR25) 2005; 65
Weinberg, Hamanaka, Wheaton, Weinberg, Joseph, Lopez, Kalyanaraman, Mutlu, Budinger, Chandel (CR49) 2010; 107
Sakurai, He, Matsuzawa, Yu, Maeda, Hardiman, Karin (CR32) 2008; 14
Wong, Gilkes, Zhang, Chen, Wei, Chaturvedi, Fraley, Wong, Khoo, Ng (CR19) 2011; 108
Hamanaka, Chandel (CR48) 2010; 35
Koppenol, Bounds, Dang (CR24) 2011; 11
Zhang, Bosch‐Marce, Shimoda, Tan, Baek, Wesley, Gonzalez, Semenza (CR16) 2008; 283
Schindl, Schoppmann, Samonigg, Hausmaninger, Kwasny, Gnant, Jakesz, Kubista, Birner, Oberhuber (CR45) 2002; 8
Diwan, Krenz, Syed, Wansapura, Ren, Koesters, Li, Kirschenbaum, Hahn, Robbins (CR57) 2007; 117
Vande Velde, Cizeau, Dubik, Alimonti, Brown, Israels, Hakem, Greenberg (CR13) 2000; 20
Youle, Narendra (CR1) 2011; 12
Wei, Wei, Gan, Peng, Zou, Guan (CR22) 2011; 25
Generali, Berruti, Brizzi, Campo, Bonardi, Wigfield, Bersiga, Allevi, Milani, Aguggini (CR46) 2006; 12
Erler, Bennewith, Nicolau, Dornhofer, Kong, Le, Chi, Jeffrey, Giaccia (CR18) 2006; 440
Ishikawa, Takenaga, Akimoto, Koshikawa, Yaaguchi, Imanishi, Nakada, Honma, Hayashi (CR51) 2008; 320
Akada, Crnogorac‐Jurcevic, Lattimore, Mahon, Lopes, Sunamura, Matsuno, Lemoine (CR42) 2005; 11
Lin, Jones, Li, Zhu, Whitney, Muller, Pollard (CR20) 2003; 163
Calvisi, Ladu, Gorden, Farina, Lee, Conner, Schroeder, Factor, Thorgeirsson (CR40) 2007; 117
Hanna, Quinsay, Orogo, Giang, Rikka, Gustafsson (CR17) 2012; 287
Holmstrom, Finkel (CR50) 2014; 15
Guo, Karsli‐Uzunbas, Mathew, Aisner, Kamphorst, Strohecker, Chen, Price, Lu, Teng (CR9) 2013; 27
van Diest, Suijkerbuijk, Koop, Weger, van der Wall (CR43) 2010; 33
DeNardo, Barreto, Andreu, Vasquez, Tawfik, Kolhatkar, Coussens (CR21) 2009; 16
Yuan, Breitkopf, Yang, Asara (CR58) 2012; 7
Sowter, Ferguson, Pym, Watson, Fox, Han, Harris (CR33) 2003; 201
Koop, van Laar, van Wichen, Weger, van der Wall, van Diest (CR36) 2009; 9
Beroukhim, Mermel, Porter, Wei, Raychaudhuri, Donovan, Barretina, Boehm, Dobson, Urashima (CR44) 2010; 463
Liao, Corle, Seagroves, Johnson (CR23) 2007; 67
Viale, Pettazzoni, Lyssiotis, Ying, Sánchez, Marchesini, Carugo, Green, Seth, Giuliani (CR6) 2014; 514
Hardwick, Youle (CR14) 2009; 23
Novak, Kirkin, McEwan, Zhang, Wild, Rozenknop, Rogov, Löhr, Popovic, Occhipinti (CR53) 2010; 11
Maycotte, Gearheart, Barnard, Aryal, Mulcahy Levy, Fosmire, Hansen, Morgan, Porter, Gustafson (CR56) 2014; 74
Chandel, McClintock, Feliciano, Wood, Melendez, Rodriguez, Schumacker (CR27) 2000; 275
Kasper, Boussouar, Boyd, Xu, Biesen, Rehg, Baudino, Cleveland, Brindle (CR12) 2005; 24
Tan, Campo, Han, Turley, Pezzella, Gatter, Harris, Fox (CR35) 2007; 13
Semenza (CR26) 2013; 123
Guzy, Hoyos, Robin, Chen, Liu, Mansfield, Simon, Hammerling, Schumacker (CR30) 2005; 1
CR52
Chourasia, Boland, Macleod (CR54) 2015; 3
Kim, Kim, Jung, Koo (CR47) 2013; 34
Egan, Shackelford, Mihaylova, Gelino, Kohnz, Mair, Vasquez, Joshi, Gwinn, Taylor (CR4) 2011; 331
Shackelford, Abt, Gerken, Vasquez, Seki, Leblanc, Wei, Fishbein, Czernin, Mischel (CR5) 2013; 23
Okami, Simeone, Logsdon (CR37) 2004; 64
Murai, Toyota, Satoh, Suzuki, Akino, Mita, Sasaki, Ishida, Shen, Garcia‐Manero (CR38) 2005; 92
Mansfield, Guzy, Pan, Young, Cash, Schumacker, Simon (CR28) 2005; 1
Erkan, Kleef, Esposito, Giese, Ketterer, Buchler, Giese, Friess (CR41) 2005; 24
Murai, Toyota, Suzuki, Satoh, Sasaki, Akino, Ueno, Takahashi, Kusano, Mita (CR39) 2005; 11
Lehmann, Bauer, Chen, Sanders, Chakravarthy, Shyr, Pietenpol (CR59) 2011; 121
Montagner, Enzo, Forcato, Zanconato, Parenti, Rampazzo, Basso, Leo, Rosato, Bicciato (CR55) 2012; 487
Yang, Wang, Contino, Liesa, Sahin, Ying, Bause, Li, Stommel, Dell’ Antonio (CR8) 2011; 25
Green, Levine (CR2) 2014; 157
Glick, Zhang, Beaton, Marsboom, Gruber, Simon, Hart, Dorn, Brady, Macleod (CR15) 2012; 32
Birsoy, Possemato, Lorbeer, Bayraktar, Thiru, Yucel, Wang, Chen, Clish, Sabatini (CR7) 2014; 508
Sena, Chandel (CR31) 2012; 48
Guo, Searfoss, Krolikowski, Pagnoni, Franks, Clark, Yu, Jaye, Ivashchenko (CR11) 2001; 8
Tracy, Dibling, Spike, Knabb, Schumacker, Macleod (CR3) 2007; 27
Brunelle, Bell, Quesada, Vercauteren, Tiranti, Zeviani, Scarpulla, Chandel (CR29) 2005; 1
Rosenfeldt, O'Prey, Morton, Nixon, MacKay, Mrowinska, Au, Rai, Zheng, Ridgway (CR10) 2013; 504
Sowter, Ratcliffe, Watson, Greenberg, Harris (CR34) 2001; 61
2010; 11
2004; 64
2012; 287
2013; 27
2012; 487
2010; 107
2013; 23
2013; 123
2010; 463
2011; 11
2005; 65
2011; 12
2005; 24
2001; 61
2014; 15
2006; 440
2011; 25
2003; 201
2007; 67
2009; 16
2011; 121
2007; 27
2003; 163
2014; 514
2009; 23
2010; 33
2010; 35
2015; 3
2006; 12
2013; 504
2000; 20
2002; 8
2008; 14
2000; 275
2008; 320
2012; 32
2007; 13
2011; 331
2008; 283
2014; 157
2014; 508
2011; 108
2007; 117
2013; 34
2001; 8
2009; 9
2005; 1
2005; 92
2015
2012; 48
2014; 74
2012; 7
2005; 11
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Murai M (e_1_2_8_40_1) 2005; 11
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
Hardwick JM (e_1_2_8_15_1) 2009; 23
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
Sowter HM (e_1_2_8_35_1) 2001; 61
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: Yuan M, Breitkopf SB, Yang X, Asara JM (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protocol 7: 872-881
– reference: Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirschenbaum LA, Hahn HS, Robbins J et al (2007) Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of BNip3 restrains postinfarction remodeling in mice. J Clin Invest 117: 2825-2833
– reference: Erkan M, Kleef J, Esposito I, Giese T, Ketterer K, Buchler MW, Giese NA, Friess H (2005) Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24: 4421-4432
– reference: Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K, Yu KT, Jaye M, Ivashchenko Y (2001) Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Diff 8: 367-376
– reference: Youle RJ, Narendra DP (2011) Mechanisms of Mitophagy. Nat Rev Mol Biol 12: 9-14
– reference: van Diest PJ, Suijkerbuijk KPM, Koop EA, Weger RA, van der Wall E (2010) Low levels of BNIP3 promoter hypermethylation in invasive breast cancer. Anal Cell Pathol 33: 175-176
– reference: Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, Jakesz R, Kubista E, Birner P, Oberhuber G (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8: 1831-1837
– reference: Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza G (2008) Mitochondrial autophagy is a HIF-1 dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-10903
– reference: Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor RC et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456-461
– reference: Hardwick JM, Youle RJ (2009) Snapshot: Bcl2 proteins. Cell 23: 404
– reference: Murai M, Toyota M, Suzuki H, Satoh A, Sasaki Y, Akino K, Ueno M, Takahashi F, Kusano M, Mita H et al (2005) Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res 11: 1021-1027
– reference: Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M, Matsuno S, Lemoine NR (2005) Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11: 3094-3101
– reference: Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Löhr F, Popovic D, Occhipinti A et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11: 45-51
– reference: Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A, Rampazzo E, Basso G, Leo G, Rosato A, Bicciato S et al (2012) SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature 487: 380-384
– reference: Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC, Harris AL, Fox SR (2007) BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer. Clin Cancer Res 13: 467-474
– reference: Sowter HM, Ferguson M, Pym C, Watson P, Fox SB, Han C, Harris AL (2003) Expression of the cell death genes BNip3 and Nix in ductal carcinoma in situ of the breast; correlation of BNip3 levels with necrosis and grade. J Path 201: 573-580
– reference: Liao D, Corle C, Seagroves TN, Johnson RS (2007) Hypoxia-inducible factor-1a is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67: 563-572
– reference: Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463: 899-905
– reference: Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF (2007) BNIP3 is a RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27: 6229-6242
– reference: Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW II, Brady MJ, Macleod KF (2012) BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 32: 2570-2584
– reference: Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yaaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi JI (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320: 661-664
– reference: Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15: 411-421
– reference: Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK, Ferrone CR et al (2015) Transcriptional control of the autophagy-lysosome system in pancreatic cancer. Nature doi: 10.1038/nature14587
– reference: Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25: 1510-1527
– reference: Semenza G (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123: 3664-3671
– reference: Green DR, Levine B (2014) To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157: 65-75
– reference: Koop EA, van Laar T, van Wichen DF, Weger RA, van der Wall E, van Diest PJ (2009) Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features. BMC Cancer 9: 175-182
– reference: Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27: 1447-1461
– reference: Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1: 401-408
– reference: Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275: 25130-25138
– reference: Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48: 158-167
– reference: Murai M, Toyota M, Satoh A, Suzuki H, Akino K, Mita H, Sasaki Y, Ishida T, Shen L, Garcia-Manero G et al (2005) Aberrant methylation associated with silencing BNIP3 expression in haematopoietic tumours. Br J Cancer 92: 1165-1172
– reference: Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, Wei L, Fishbein MC, Czernin J, Mischel PS et al (2013) LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23: 143-158
– reference: Kim S, Kim DH, Jung WH, Koo JS (2013) Metabolic phenotypes in triple-negative breast cancer. Tumour Biol 34: 1699-1712
– reference: Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64: 5338-5346
– reference: Maycotte P, Gearheart CM, Barnard R, Aryal S, Mulcahy Levy JM, Fosmire SP, Hansen RJ, Morgan MJ, Porter CC, Gustafson DL et al (2014) STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res 74: 2579-2590
– reference: Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R et al (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature 504: 296-300
– reference: Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, Fraley SI, Wong CM, Khoo US, Ng IO et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA 108: 16369-16374
– reference: Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1: 393-399
– reference: Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11: 325-337
– reference: DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16: 91-102
– reference: Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. TIBS 35: 505-513
– reference: Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440: 1222-1226
– reference: Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with BNip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287: 19094-19104
– reference: Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to Malignancy in the Polyoma Middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Path 163: 2113-2126
– reference: Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, Hakem R, Greenberg AH (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20: 5454-5468
– reference: Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1: 409-414
– reference: Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65: 9047-9055
– reference: Generali D, Berruti A, Brizzi MP, Campo L, Bonardi S, Wigfield S, Bersiga A, Allevi G, Milani M, Aguggini S et al (2006) Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res 12: 4562-4568
– reference: Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner E, Schroeder I, Factor VM, Thorgeirsson SS (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117: 2713-2722
– reference: Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121: 2750-2767
– reference: Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M, Rehg J, Baudino T, Cleveland JL, Brindle PK (2005) Two transcriptional mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J 24: 3846-3858
– reference: Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628-632
– reference: Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell' Antonio G et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25: 717-729
– reference: Chourasia AH, Boland ML, Macleod KF (2015) Mitophagy & Cancer. Cancer Metabol 3: 1-11
– reference: Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, Wang TC, Chen WW, Clish CB, Sabatini DM (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508: 108-112
– reference: Weinberg F, Hamanaka RB, Wheaton WW, Weinberg S, Joseph JW, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107: 8788-8793
– reference: Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) HIF1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61: 6669-6673
– reference: Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14: 156-165
– volume: 8
  start-page: 1831
  year: 2002
  end-page: 1837
  ident: CR45
  article-title: Overexpression of hypoxia‐inducible factor 1alpha is associated with an unfavorable prognosis in lymph node‐positive breast cancer
  publication-title: Clin Cancer Res
– volume: 107
  start-page: 8788
  year: 2010
  end-page: 8793
  ident: CR49
  article-title: Mitochondrial metabolism and ROS generation are essential for Kras‐mediated tumorigenicity
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 1021
  year: 2005
  end-page: 1027
  ident: CR39
  article-title: Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer
  publication-title: Clin Cancer Res
– volume: 287
  start-page: 19094
  year: 2012
  end-page: 19104
  ident: CR17
  article-title: Microtubule‐associated protein 1 light chain 3 (LC3) interacts with BNip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
  publication-title: J Biol Chem
– volume: 24
  start-page: 4421
  year: 2005
  end-page: 4432
  ident: CR41
  article-title: Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis
  publication-title: Oncogene
– volume: 16
  start-page: 91
  year: 2009
  end-page: 102
  ident: CR21
  article-title: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages
  publication-title: Cancer Cell
– volume: 201
  start-page: 573
  year: 2003
  end-page: 580
  ident: CR33
  article-title: Expression of the cell death genes BNip3 and Nix in ductal carcinoma in situ of the breast; correlation of BNip3 levels with necrosis and grade
  publication-title: J Path
– volume: 64
  start-page: 5338
  year: 2004
  end-page: 5346
  ident: CR37
  article-title: Silencing of the hypoxia‐inducible cell death protein BNIP3 in pancreatic cancer
  publication-title: Cancer Res
– volume: 117
  start-page: 2825
  year: 2007
  end-page: 2833
  ident: CR57
  article-title: Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of BNip3 restrains postinfarction remodeling in mice
  publication-title: J Clin Invest
– volume: 117
  start-page: 2713
  year: 2007
  end-page: 2722
  ident: CR40
  article-title: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma
  publication-title: J Clin Invest
– volume: 15
  start-page: 411
  year: 2014
  end-page: 421
  ident: CR50
  article-title: Cellular mechanisms and physiological consequences of redox‐dependent signalling
  publication-title: Nat Rev Mol Cell Biol
– volume: 35
  start-page: 505
  year: 2010
  end-page: 513
  ident: CR48
  article-title: Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
  publication-title: TIBS
– volume: 3
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR54
  article-title: Mitophagy & Cancer
  publication-title: Cancer Metabol
– volume: 8
  start-page: 367
  year: 2001
  end-page: 376
  ident: CR11
  article-title: Hypoxia induces the expression of the pro‐apoptotic gene BNIP3
  publication-title: Cell Death Diff
– volume: 61
  start-page: 6669
  year: 2001
  end-page: 6673
  ident: CR34
  article-title: HIF1‐dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors
  publication-title: Cancer Res
– volume: 121
  start-page: 2750
  year: 2011
  end-page: 2767
  ident: CR59
  article-title: Identification of human triple‐negative breast cancer subtypes and preclinical models for selection of targeted therapies
  publication-title: J Clin Invest
– volume: 27
  start-page: 6229
  year: 2007
  end-page: 6242
  ident: CR3
  article-title: BNIP3 is a RB/E2F target gene required for hypoxia‐induced autophagy
  publication-title: Mol Cell Biol
– volume: 32
  start-page: 2570
  year: 2012
  end-page: 2584
  ident: CR15
  article-title: BNip3 regulates mitochondrial function and lipid metabolism in the liver
  publication-title: Mol Cell Biol
– volume: 25
  start-page: 717
  year: 2011
  end-page: 729
  ident: CR8
  article-title: Pancreatic cancers require autophagy for tumor growth
  publication-title: Genes Dev
– volume: 514
  start-page: 628
  year: 2014
  end-page: 632
  ident: CR6
  article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function
  publication-title: Nature
– volume: 67
  start-page: 563
  year: 2007
  end-page: 572
  ident: CR23
  article-title: Hypoxia‐inducible factor‐1a is a key regulator of metastasis in a transgenic model of cancer initiation and progression
  publication-title: Cancer Res
– volume: 13
  start-page: 467
  year: 2007
  end-page: 474
  ident: CR35
  article-title: BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer
  publication-title: Clin Cancer Res
– volume: 7
  start-page: 872
  year: 2012
  end-page: 881
  ident: CR58
  article-title: A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue
  publication-title: Nat Protocol
– volume: 33
  start-page: 175
  year: 2010
  end-page: 176
  ident: CR43
  article-title: Low levels of BNIP3 promoter hypermethylation in invasive breast cancer
  publication-title: Anal Cell Pathol
– volume: 163
  start-page: 2113
  year: 2003
  end-page: 2126
  ident: CR20
  article-title: Progression to Malignancy in the Polyoma Middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases
  publication-title: Am J Path
– volume: 23
  start-page: 404
  year: 2009
  ident: CR14
  article-title: Snapshot: Bcl2 proteins
  publication-title: Cell
– volume: 24
  start-page: 3846
  year: 2005
  end-page: 3858
  ident: CR12
  article-title: Two transcriptional mechanisms cooperate for the bulk of HIF‐1‐responsive gene expression
  publication-title: EMBO J
– volume: 320
  start-page: 661
  year: 2008
  end-page: 664
  ident: CR51
  article-title: ROS‐generating mitochondrial DNA mutations can regulate tumor cell metastasis
  publication-title: Science
– volume: 1
  start-page: 393
  year: 2005
  end-page: 399
  ident: CR28
  article-title: Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF‐alpha activation
  publication-title: Cell Metab
– volume: 9
  start-page: 175
  year: 2009
  end-page: 182
  ident: CR36
  article-title: Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features
  publication-title: BMC Cancer
– volume: 463
  start-page: 899
  year: 2010
  end-page: 905
  ident: CR44
  article-title: The landscape of somatic copy‐number alteration across human cancers
  publication-title: Nature
– volume: 1
  start-page: 401
  year: 2005
  end-page: 408
  ident: CR30
  article-title: Mitochondrial complex III is required for hypoxia‐induced ROS production and cellular oxygen sensing
  publication-title: Cell Metab
– volume: 283
  start-page: 10892
  year: 2008
  end-page: 10903
  ident: CR16
  article-title: Mitochondrial autophagy is a HIF‐1 dependent adaptive metabolic response to hypoxia
  publication-title: J Biol Chem
– volume: 331
  start-page: 456
  year: 2011
  end-page: 461
  ident: CR4
  article-title: Phosphorylation of ULK1 (hATG1) by AMP‐activated protein kinase connects energy sensing to mitophagy
  publication-title: Science
– volume: 23
  start-page: 143
  year: 2013
  end-page: 158
  ident: CR5
  article-title: LKB1 inactivation dictates therapeutic response of non‐small cell lung cancer to the metabolism drug phenformin
  publication-title: Cancer Cell
– volume: 14
  start-page: 156
  year: 2008
  end-page: 165
  ident: CR32
  article-title: Hepatocyte necrosis induced by oxidative stress and IL‐1 alpha release mediate carcinogen‐induced compensatory proliferation and liver tumorigenesis
  publication-title: Cancer Cell
– volume: 487
  start-page: 380
  year: 2012
  end-page: 384
  ident: CR55
  article-title: SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia‐inducible factors
  publication-title: Nature
– volume: 157
  start-page: 65
  year: 2014
  end-page: 75
  ident: CR2
  article-title: To be or not to be? How selective autophagy and cell death govern cell fate
  publication-title: Cell
– volume: 25
  start-page: 1510
  year: 2011
  end-page: 1527
  ident: CR22
  article-title: Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
  publication-title: Genes Dev
– volume: 11
  start-page: 45
  year: 2010
  end-page: 51
  ident: CR53
  article-title: Nix is a selective autophagy receptor for mitochondrial clearance
  publication-title: EMBO Rep
– volume: 123
  start-page: 3664
  year: 2013
  end-page: 3671
  ident: CR26
  article-title: HIF‐1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
  publication-title: J Clin Invest
– volume: 27
  start-page: 1447
  year: 2013
  end-page: 1461
  ident: CR9
  article-title: Autophagy suppresses progression of K‐ras‐induced lung tumors to oncocytomas and maintains lipid homeostasis
  publication-title: Genes Dev
– volume: 504
  start-page: 296
  year: 2013
  end-page: 300
  ident: CR10
  article-title: p53 status determines the role of autophagy in pancreatic tumour development
  publication-title: Nature
– volume: 275
  start-page: 25130
  year: 2000
  end-page: 25138
  ident: CR27
  article-title: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia‐inducible factor‐1alpha during hypoxia: a mechanism of O sensing
  publication-title: J Biol Chem
– volume: 11
  start-page: 325
  year: 2011
  end-page: 337
  ident: CR24
  article-title: Otto Warburg's contributions to current concepts of cancer metabolism
  publication-title: Nat Rev Cancer
– volume: 1
  start-page: 409
  year: 2005
  end-page: 414
  ident: CR29
  article-title: Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
  publication-title: Cell Metab
– volume: 440
  start-page: 1222
  year: 2006
  end-page: 1226
  ident: CR18
  article-title: Lysyl oxidase is essential for hypoxia‐induced metastasis
  publication-title: Nature
– volume: 508
  start-page: 108
  year: 2014
  end-page: 112
  ident: CR7
  article-title: Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
  publication-title: Nature
– volume: 12
  start-page: 9
  year: 2011
  end-page: 14
  ident: CR1
  article-title: Mechanisms of Mitophagy
  publication-title: Nat Rev Mol Biol
– ident: CR52
– volume: 74
  start-page: 2579
  year: 2014
  end-page: 2590
  ident: CR56
  article-title: STAT3‐mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious
  publication-title: Cancer Res
– volume: 48
  start-page: 158
  year: 2012
  end-page: 167
  ident: CR31
  article-title: Physiological roles of mitochondrial reactive oxygen species
  publication-title: Mol Cell
– volume: 34
  start-page: 1699
  year: 2013
  end-page: 1712
  ident: CR47
  article-title: Metabolic phenotypes in triple‐negative breast cancer
  publication-title: Tumour Biol
– volume: 11
  start-page: 3094
  year: 2005
  end-page: 3101
  ident: CR42
  article-title: Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer
  publication-title: Clin Cancer Res
– volume: 108
  start-page: 16369
  year: 2011
  end-page: 16374
  ident: CR19
  article-title: Hypoxia‐inducible factor 1 is a master regulator of breast cancer metastatic niche formation
  publication-title: Proc Natl Acad Sci USA
– volume: 92
  start-page: 1165
  year: 2005
  end-page: 1172
  ident: CR38
  article-title: Aberrant methylation associated with silencing BNIP3 expression in haematopoietic tumours
  publication-title: Br J Cancer
– volume: 20
  start-page: 5454
  year: 2000
  end-page: 5468
  ident: CR13
  article-title: BNIP3 and genetic control of necrosis‐like cell death through the mitochondrial permeability transition pore
  publication-title: Mol Cell Biol
– volume: 65
  start-page: 9047
  year: 2005
  end-page: 9055
  ident: CR25
  article-title: Echinomycin, a small‐molecule inhibitor of hypoxia‐inducible factor‐1 DNA‐binding activity
  publication-title: Cancer Res
– volume: 12
  start-page: 4562
  year: 2006
  end-page: 4568
  ident: CR46
  article-title: Hypoxia‐inducible factor‐1alpha expression predicts a poor response to primary chemoendocrine therapy and disease‐free survival in primary human breast cancer
  publication-title: Clin Cancer Res
– volume: 64
  start-page: 5338
  year: 2004
  end-page: 5346
  article-title: Silencing of the hypoxia‐inducible cell death protein BNIP3 in pancreatic cancer
  publication-title: Cancer Res
– volume: 33
  start-page: 175
  year: 2010
  end-page: 176
  article-title: Low levels of BNIP3 promoter hypermethylation in invasive breast cancer
  publication-title: Anal Cell Pathol
– volume: 23
  start-page: 404
  year: 2009
  article-title: Snapshot: Bcl2 proteins
  publication-title: Cell
– year: 2015
  article-title: Transcriptional control of the autophagy‐lysosome system in pancreatic cancer
  publication-title: Nature
– volume: 201
  start-page: 573
  year: 2003
  end-page: 580
  article-title: Expression of the cell death genes BNip3 and Nix in ductal carcinoma in situ of the breast; correlation of BNip3 levels with necrosis and grade
  publication-title: J Path
– volume: 514
  start-page: 628
  year: 2014
  end-page: 632
  article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function
  publication-title: Nature
– volume: 123
  start-page: 3664
  year: 2013
  end-page: 3671
  article-title: HIF‐1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
  publication-title: J Clin Invest
– volume: 16
  start-page: 91
  year: 2009
  end-page: 102
  article-title: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages
  publication-title: Cancer Cell
– volume: 121
  start-page: 2750
  year: 2011
  end-page: 2767
  article-title: Identification of human triple‐negative breast cancer subtypes and preclinical models for selection of targeted therapies
  publication-title: J Clin Invest
– volume: 157
  start-page: 65
  year: 2014
  end-page: 75
  article-title: To be or not to be? How selective autophagy and cell death govern cell fate
  publication-title: Cell
– volume: 25
  start-page: 717
  year: 2011
  end-page: 729
  article-title: Pancreatic cancers require autophagy for tumor growth
  publication-title: Genes Dev
– volume: 117
  start-page: 2713
  year: 2007
  end-page: 2722
  article-title: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma
  publication-title: J Clin Invest
– volume: 320
  start-page: 661
  year: 2008
  end-page: 664
  article-title: ROS‐generating mitochondrial DNA mutations can regulate tumor cell metastasis
  publication-title: Science
– volume: 61
  start-page: 6669
  year: 2001
  end-page: 6673
  article-title: HIF1‐dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors
  publication-title: Cancer Res
– volume: 440
  start-page: 1222
  year: 2006
  end-page: 1226
  article-title: Lysyl oxidase is essential for hypoxia‐induced metastasis
  publication-title: Nature
– volume: 463
  start-page: 899
  year: 2010
  end-page: 905
  article-title: The landscape of somatic copy‐number alteration across human cancers
  publication-title: Nature
– volume: 12
  start-page: 4562
  year: 2006
  end-page: 4568
  article-title: Hypoxia‐inducible factor‐1alpha expression predicts a poor response to primary chemoendocrine therapy and disease‐free survival in primary human breast cancer
  publication-title: Clin Cancer Res
– volume: 14
  start-page: 156
  year: 2008
  end-page: 165
  article-title: Hepatocyte necrosis induced by oxidative stress and IL‐1 alpha release mediate carcinogen‐induced compensatory proliferation and liver tumorigenesis
  publication-title: Cancer Cell
– volume: 25
  start-page: 1510
  year: 2011
  end-page: 1527
  article-title: Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
  publication-title: Genes Dev
– volume: 487
  start-page: 380
  year: 2012
  end-page: 384
  article-title: SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia‐inducible factors
  publication-title: Nature
– volume: 508
  start-page: 108
  year: 2014
  end-page: 112
  article-title: Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
  publication-title: Nature
– volume: 1
  start-page: 409
  year: 2005
  end-page: 414
  article-title: Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
  publication-title: Cell Metab
– volume: 11
  start-page: 325
  year: 2011
  end-page: 337
  article-title: Otto Warburg's contributions to current concepts of cancer metabolism
  publication-title: Nat Rev Cancer
– volume: 20
  start-page: 5454
  year: 2000
  end-page: 5468
  article-title: BNIP3 and genetic control of necrosis‐like cell death through the mitochondrial permeability transition pore
  publication-title: Mol Cell Biol
– volume: 32
  start-page: 2570
  year: 2012
  end-page: 2584
  article-title: BNip3 regulates mitochondrial function and lipid metabolism in the liver
  publication-title: Mol Cell Biol
– volume: 11
  start-page: 3094
  year: 2005
  end-page: 3101
  article-title: Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer
  publication-title: Clin Cancer Res
– volume: 287
  start-page: 19094
  year: 2012
  end-page: 19104
  article-title: Microtubule‐associated protein 1 light chain 3 (LC3) interacts with BNip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
  publication-title: J Biol Chem
– volume: 9
  start-page: 175
  year: 2009
  end-page: 182
  article-title: Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features
  publication-title: BMC Cancer
– volume: 92
  start-page: 1165
  year: 2005
  end-page: 1172
  article-title: Aberrant methylation associated with silencing BNIP3 expression in haematopoietic tumours
  publication-title: Br J Cancer
– volume: 24
  start-page: 4421
  year: 2005
  end-page: 4432
  article-title: Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis
  publication-title: Oncogene
– volume: 13
  start-page: 467
  year: 2007
  end-page: 474
  article-title: BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer
  publication-title: Clin Cancer Res
– volume: 163
  start-page: 2113
  year: 2003
  end-page: 2126
  article-title: Progression to Malignancy in the Polyoma Middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases
  publication-title: Am J Path
– volume: 7
  start-page: 872
  year: 2012
  end-page: 881
  article-title: A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue
  publication-title: Nat Protocol
– volume: 48
  start-page: 158
  year: 2012
  end-page: 167
  article-title: Physiological roles of mitochondrial reactive oxygen species
  publication-title: Mol Cell
– volume: 8
  start-page: 1831
  year: 2002
  end-page: 1837
  article-title: Overexpression of hypoxia‐inducible factor 1alpha is associated with an unfavorable prognosis in lymph node‐positive breast cancer
  publication-title: Clin Cancer Res
– volume: 1
  start-page: 401
  year: 2005
  end-page: 408
  article-title: Mitochondrial complex III is required for hypoxia‐induced ROS production and cellular oxygen sensing
  publication-title: Cell Metab
– volume: 11
  start-page: 1021
  year: 2005
  end-page: 1027
  article-title: Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer
  publication-title: Clin Cancer Res
– volume: 15
  start-page: 411
  year: 2014
  end-page: 421
  article-title: Cellular mechanisms and physiological consequences of redox‐dependent signalling
  publication-title: Nat Rev Mol Cell Biol
– volume: 1
  start-page: 393
  year: 2005
  end-page: 399
  article-title: Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF‐alpha activation
  publication-title: Cell Metab
– volume: 23
  start-page: 143
  year: 2013
  end-page: 158
  article-title: LKB1 inactivation dictates therapeutic response of non‐small cell lung cancer to the metabolism drug phenformin
  publication-title: Cancer Cell
– volume: 275
  start-page: 25130
  year: 2000
  end-page: 25138
  article-title: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia‐inducible factor‐1alpha during hypoxia: a mechanism of O sensing
  publication-title: J Biol Chem
– volume: 283
  start-page: 10892
  year: 2008
  end-page: 10903
  article-title: Mitochondrial autophagy is a HIF‐1 dependent adaptive metabolic response to hypoxia
  publication-title: J Biol Chem
– volume: 8
  start-page: 367
  year: 2001
  end-page: 376
  article-title: Hypoxia induces the expression of the pro‐apoptotic gene BNIP3
  publication-title: Cell Death Diff
– volume: 65
  start-page: 9047
  year: 2005
  end-page: 9055
  article-title: Echinomycin, a small‐molecule inhibitor of hypoxia‐inducible factor‐1 DNA‐binding activity
  publication-title: Cancer Res
– volume: 3
  start-page: 1
  year: 2015
  end-page: 11
  article-title: Mitophagy & Cancer
  publication-title: Cancer Metabol
– volume: 107
  start-page: 8788
  year: 2010
  end-page: 8793
  article-title: Mitochondrial metabolism and ROS generation are essential for Kras‐mediated tumorigenicity
  publication-title: Proc Natl Acad Sci USA
– volume: 35
  start-page: 505
  year: 2010
  end-page: 513
  article-title: Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
  publication-title: TIBS
– volume: 27
  start-page: 1447
  year: 2013
  end-page: 1461
  article-title: Autophagy suppresses progression of K‐ras‐induced lung tumors to oncocytomas and maintains lipid homeostasis
  publication-title: Genes Dev
– volume: 11
  start-page: 45
  year: 2010
  end-page: 51
  article-title: Nix is a selective autophagy receptor for mitochondrial clearance
  publication-title: EMBO Rep
– volume: 74
  start-page: 2579
  year: 2014
  end-page: 2590
  article-title: STAT3‐mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious
  publication-title: Cancer Res
– volume: 108
  start-page: 16369
  year: 2011
  end-page: 16374
  article-title: Hypoxia‐inducible factor 1 is a master regulator of breast cancer metastatic niche formation
  publication-title: Proc Natl Acad Sci USA
– volume: 24
  start-page: 3846
  year: 2005
  end-page: 3858
  article-title: Two transcriptional mechanisms cooperate for the bulk of HIF‐1‐responsive gene expression
  publication-title: EMBO J
– volume: 12
  start-page: 9
  year: 2011
  end-page: 14
  article-title: Mechanisms of Mitophagy
  publication-title: Nat Rev Mol Biol
– volume: 34
  start-page: 1699
  year: 2013
  end-page: 1712
  article-title: Metabolic phenotypes in triple‐negative breast cancer
  publication-title: Tumour Biol
– volume: 504
  start-page: 296
  year: 2013
  end-page: 300
  article-title: p53 status determines the role of autophagy in pancreatic tumour development
  publication-title: Nature
– volume: 117
  start-page: 2825
  year: 2007
  end-page: 2833
  article-title: Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of BNip3 restrains postinfarction remodeling in mice
  publication-title: J Clin Invest
– volume: 27
  start-page: 6229
  year: 2007
  end-page: 6242
  article-title: BNIP3 is a RB/E2F target gene required for hypoxia‐induced autophagy
  publication-title: Mol Cell Biol
– volume: 67
  start-page: 563
  year: 2007
  end-page: 572
  article-title: Hypoxia‐inducible factor‐1a is a key regulator of metastasis in a transgenic model of cancer initiation and progression
  publication-title: Cancer Res
– volume: 331
  start-page: 456
  year: 2011
  end-page: 461
  article-title: Phosphorylation of ULK1 (hATG1) by AMP‐activated protein kinase connects energy sensing to mitophagy
  publication-title: Science
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cmet.2005.05.001
– ident: e_1_2_8_4_1
  doi: 10.1128/MCB.02246-06
– ident: e_1_2_8_8_1
  doi: 10.1038/nature13110
– ident: e_1_2_8_46_1
  doi: 10.1016/S0002-9440(10)64554-3
– ident: e_1_2_8_49_1
  doi: 10.1016/j.tibs.2010.04.002
– ident: e_1_2_8_43_1
  doi: 10.1158/1078-0432.CCR-04-1785
– ident: e_1_2_8_13_1
  doi: 10.1038/sj.emboj.7600846
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cmet.2005.05.003
– ident: e_1_2_8_32_1
  doi: 10.1016/j.molcel.2012.09.025
– ident: e_1_2_8_22_1
  doi: 10.1016/j.ccr.2009.06.018
– ident: e_1_2_8_42_1
  doi: 10.1038/sj.onc.1208642
– ident: e_1_2_8_24_1
  doi: 10.1158/0008-5472.CAN-06-2701
– ident: e_1_2_8_45_1
  doi: 10.1038/nature08822
– ident: e_1_2_8_3_1
  doi: 10.1016/j.cell.2014.02.049
– ident: e_1_2_8_34_1
  doi: 10.1002/path.1486
– ident: e_1_2_8_23_1
  doi: 10.1101/gad.2051011
– ident: e_1_2_8_9_1
  doi: 10.1101/gad.2016111
– volume: 61
  start-page: 6669
  year: 2001
  ident: e_1_2_8_35_1
  article-title: HIF1‐dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors
  publication-title: Cancer Res
– ident: e_1_2_8_50_1
  doi: 10.1073/pnas.1003428107
– ident: e_1_2_8_56_1
  doi: 10.1038/nature11207
– ident: e_1_2_8_58_1
  doi: 10.1172/JCI32490
– ident: e_1_2_8_28_1
  doi: 10.1074/jbc.M001914200
– ident: e_1_2_8_19_1
  doi: 10.1038/nature04695
– ident: e_1_2_8_36_1
  doi: 10.1158/1078-0432.CCR-06-1466
– ident: e_1_2_8_55_1
  doi: 10.1186/s40170-015-0130-8
– volume: 11
  start-page: 1021
  year: 2005
  ident: e_1_2_8_40_1
  article-title: Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.1021.11.3
– ident: e_1_2_8_26_1
  doi: 10.1158/0008-5472.CAN-05-1235
– volume: 23
  start-page: 404
  year: 2009
  ident: e_1_2_8_15_1
  article-title: Snapshot: Bcl2 proteins
  publication-title: Cell
– ident: e_1_2_8_39_1
  doi: 10.1038/sj.bjc.6602422
– ident: e_1_2_8_48_1
  doi: 10.1007/s13277-013-0707-1
– ident: e_1_2_8_5_1
  doi: 10.1126/science.1196371
– ident: e_1_2_8_44_1
  doi: 10.1155/2010/852197
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ccr.2012.12.008
– ident: e_1_2_8_11_1
  doi: 10.1038/nature12865
– ident: e_1_2_8_41_1
  doi: 10.1172/JCI31457
– ident: e_1_2_8_7_1
  doi: 10.1038/nature13611
– ident: e_1_2_8_53_1
  doi: 10.1038/nature14587
– ident: e_1_2_8_57_1
  doi: 10.1158/0008-5472.CAN-13-3470
– ident: e_1_2_8_47_1
  doi: 10.1158/1078-0432.CCR-05-2690
– ident: e_1_2_8_12_1
  doi: 10.1038/sj.cdd.4400810
– ident: e_1_2_8_37_1
  doi: 10.1186/1471-2407-9-175
– ident: e_1_2_8_60_1
  doi: 10.1172/JCI45014
– ident: e_1_2_8_17_1
  doi: 10.1074/jbc.M800102200
– ident: e_1_2_8_20_1
  doi: 10.1073/pnas.1113483108
– ident: e_1_2_8_16_1
  doi: 10.1128/MCB.00167-12
– ident: e_1_2_8_18_1
  doi: 10.1074/jbc.M111.322933
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cmet.2005.05.002
– ident: e_1_2_8_54_1
  doi: 10.1038/embor.2009.256
– ident: e_1_2_8_59_1
  doi: 10.1038/nprot.2012.024
– ident: e_1_2_8_51_1
  doi: 10.1038/nrm3801
– ident: e_1_2_8_10_1
  doi: 10.1101/gad.219642.113
– ident: e_1_2_8_33_1
  doi: 10.1016/j.ccr.2008.06.016
– ident: e_1_2_8_14_1
  doi: 10.1128/MCB.20.15.5454-5468.2000
– ident: e_1_2_8_52_1
  doi: 10.1126/science.1156906
– ident: e_1_2_8_25_1
  doi: 10.1038/nrc3038
– ident: e_1_2_8_38_1
  doi: 10.1158/0008-5472.CAN-04-0089
– ident: e_1_2_8_27_1
  doi: 10.1172/JCI67230
– ident: e_1_2_8_2_1
  doi: 10.1038/nrm3028
– ident: e_1_2_8_21_1
  doi: 10.1016/S0002-9440(10)63568-7
SSID ssj0005978
Score 2.5880494
Snippet BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a...
BNip3 is a hypoxia-inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1145
SubjectTerms Angiogenesis
Animals
Autophagy
Biomarkers, Tumor - analysis
BNip3
Breast cancer
Defects
Disease Progression
EMBO03
EMBO07
Female
Genes
Glycolysis
HIF-1α
Humans
Hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
invasive carcinoma
Lung Neoplasms - secondary
Mammary Neoplasms, Experimental - metabolism
Mammary Neoplasms, Experimental - pathology
Membrane Proteins - deficiency
Membrane Proteins - genetics
Membrane Proteins - metabolism
Metastasis
Mice
Mitochondria
Mitochondrial Proteins - deficiency
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Mitophagy
Neoplasm Metastasis
Neovascularization, Pathologic - metabolism
Prognosis
Reactive Oxygen Species - metabolism
Rodents
ROS
Triple Negative Breast Neoplasms - metabolism
Triple Negative Breast Neoplasms - pathology
Tumors
Title Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis
URI https://api.istex.fr/ark:/67375/WNG-42LNK323-C/fulltext.pdf
https://link.springer.com/article/10.15252/embr.201540759
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201540759
https://www.ncbi.nlm.nih.gov/pubmed/26232272
https://www.proquest.com/docview/1708933576
https://www.proquest.com/docview/1709713046
https://pubmed.ncbi.nlm.nih.gov/PMC4576983
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgE2gvCMZXYCAjIQQPYY7txMkjKxuD0T4gJsqTZTsOVFvTqk0l9t9z56RhFZsQL1EiX2LHd2ff6e5-JuSls0xYJcrYpobFiCgXGy6KOLGZdJlxmZNYKDwcZcen8tM4HXcgSVgLczl-n_KU7_upRdjOBIHi0uIm2U5h1UVRHmSDP7kcRVhyQeuLmPNk3GH4XPGBje1nG2fy11W25d8pkn2cdNOKDdvQ0V1yp7Mf6buW4ffIDV_vklvtiZIXu-T2sIuV3yffhxMEDTA_LmjpQ9IGxQMH4esUa0rowWgyF_QcRknnISfP06kJlWy0WU1nCxpSt1rYDtrM6NQ3BkzJ5WT5gJweHX4dHMfdQQqxy3JVxIqZyvJClaaSwALnvGLSKMdLVbLUc2aFZFVlUlD2CnxlV3jvsxKWvjyzuarEQ7JVz2r_mNA8U5I5dBttJSuDvjXnnpUleELW2iQib9fzq12HMo6HXZxr9DaQIRoZonuGROR1_8K8Bdi4nvRVYFhPZxZnmJemUv1t9EFL_nl0IrjQg4jsrTmqO5Vc6kQxsM0E-FcRedE3gzJhhMTUfrYKNAV47UwCzaNWAPrOOBiKnCseEbUhGj0BAnVvttSTnwGwW0KnRS4i8mYtRJeGdd2_iiBl_5oTfTg8-NI_PfmPHp6SHbxv8-X2yFazWPlnYGA19nlQLri-_3jyG-3UHiw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJj5eEIyvwAAjIQQPAdd24uSRVRuFtX1AmyhPlu04ULGmVZtK7L_H56RhFZsQj4kvtuPz2Xe6u98BvLKGciN5EZtE0xgR5WLNeB73TCpsqm1qBSYKj8bp4FR8niSTFiQJc2Eu-u8TlrD3bmYQtrOHQHFJfh120W2JIPn9tP8nliMPR66X-jxmrDdpMXwu6WDr-tnFlfx1mW75d4hk5yfd1mLDNXR0F-60-iP50DD8Hlxz1R7caCpKnu_BzVHrK78P30ZTBA3Q389J4ULQBsGCg753gjkl5GA8XXBy5mdJFiEmz5GZDplspF7P5ksSQrca2A5Sz8nM1dqrkqvp6gGcHh2e9AdxW0ghtmkm81hSXRqWy0KXwrPAWiep0NKyQhY0cYwaLmhZ6sQLe-ltZZs759LCH31ZajJZ8oewU80r9xhIlkpBLZqNphSlRtuaMUeLwltCxpheBO8266tsizKOxS7OFFobyBCFDFEdQyJ4032waAA2riZ9HRjW0enlT4xLk4n6Ov6oBBuOjznjqh_B_oajqhXJlepJ6nUz7u2rCF52zV6Y0EOiKzdfB5rcW-1UeJpHzQboBmNeUWRMsgjk1tboCBCoe7ulmv4IgN3CD5pnPIK3m010YVpX_SsPu-xfa6IORwdfuqcn_zHCC7g1OBkN1fDT-Pgp3Mb3TezcPuzUy7V75pWt2jwPgvYbziAgIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJiZeEIyvwAAjIQQPYa7txM0jKyuDrRVCTHRPlu04ULGmVZtK7L_H53xAxSbEY-KL7fjO9p388-8AXlhDuZE8j02iaYyMcrFmPIt7JhU21Ta1Ai8Kj8bp0an4OEkmDTZn1aLd2yPJ-k4DsjSV1f4iL9p8PWzfzQySefaQPi7JrsM2EnUhom-QDn4jPLKwEPu1IIsZ600aZp9LKtjYlLZxfH9e5nH-DZzsTk83fduwOQ1vw63GqyRvazO4A9dcuQs36jyTF7uwM2pO0O_C2WiKVAL62wXJXYByEExD6GsneNOEHIynC07OfS_JIiD1HJnpcL-NVOvZfEkCoKsm8yDVnMxcpb2DuZqu7sHp8PDL4Chu0ivENu3LLJZUF4ZlMteF8Iqx1kkqtLQslzlNHKOGC1oUOvFLQOEjaJs559LcL4j91PRlwe_DVjkv3UMg_VQKajGYNIUoNEbcjDma5z4-Msb0InjTjq-yDfc4psA4VxiDoEIUKkR1CongVffBoqbduFr0ZVBYJ6eXPxCtJhP1dfxeCXYyPuaMq0EEe61GVTNRV6onqffYuI-6InjeFfsphucmunTzdZDJfCxPhZd5UBtA1xjz7iNjkkUgN0yjE0D67s2Scvo90HgL32jW5xG8bo3oj25d9a88WNm_xkQdjg4-d0-P_qOFZ7Dz6d1QnXwYHz-Gm_i6BtTtwVa1XLsn3gOrzNMwz34Bdfsocg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitophagy+defects+arising+from+BNip3+loss+promote+mammary+tumor+progression+to+metastasis&rft.jtitle=EMBO+reports&rft.au=Chourasia%2C+Aparajita+H&rft.au=Tracy%2C+Kristin&rft.au=Frankenberger%2C+Casey&rft.au=Boland%2C+Michelle+L&rft.date=2015-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=16&rft.issue=9&rft.spage=1145&rft.epage=1163&rft_id=info:doi/10.15252%2Fembr.201540759&rft_id=info%3Apmid%2F26232272&rft.externalDocID=PMC4576983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon