Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis
BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of...
Saved in:
Published in | EMBO reports Vol. 16; no. 9; pp. 1145 - 1163 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing Ltd
01.09.2015
Nature Publishing Group UK Springer Nature B.V John Wiley & Sons, Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1469-221X 1469-3178 |
DOI | 10.15252/embr.201540759 |
Cover
Abstract | BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif‐1α and Hif target genes, including those involved in glycolysis and angiogenesis—two processes that are also markedly increased in BNip3‐null tumors. Glycolysis inhibition attenuates the growth of BNip3‐null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple‐negative breast cancer (TNBC). These studies show that mitochondrial dysfunction—caused by defects in mitophagy—can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment.
Synopsis
This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer.
Elevated ROS production by dysfunctional mitochondria in BNip3 null tumors results in increased Hif‐1α levels and increased tumor progression to invasiveness.
This novel negative feedback loop between BNip3 and Hif‐1α limits the oncogenic activity of Hif‐1 in glycolysis and angiogenesis.
Defective mitochondria and aerobic glycolysis arising from loss of BNip3 is associated with increased dependence on autophagy for survival.
BNIP3 is focally deleted in triple negative breast cancer and, together with high HIF‐1α levels, strongly predicts progression to metastasis in TNBC patients.
Graphical Abstract
This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer. |
---|---|
AbstractList | BNip3 is a hypoxia-inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif-1α and Hif target genes, including those involved in glycolysis and angiogenesis—two processes that are also markedly increased in BNip3-null tumors. Glycolysis inhibition attenuates the growth of BNip3-null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple-negative breast cancer (TNBC). These studies show that mitochondrial dysfunction—caused by defects in mitophagy—can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment. BNip3 is a hypoxia-inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif-1[alpha] and Hif target genes, including those involved in glycolysis and angiogenesis--two processes that are also markedly increased in BNip3-null tumors. Glycolysis inhibition attenuates the growth of BNip3-null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple-negative breast cancer (TNBC). These studies show that mitochondrial dysfunction--caused by defects in mitophagy--can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment. Synopsis This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer. Elevated ROS production by dysfunctional mitochondria in BNip3 null tumors results in increased Hif-1[alpha] levels and increased tumor progression to invasiveness. This novel negative feedback loop between BNip3 and Hif-1[alpha] limits the oncogenic activity of Hif-1 in glycolysis and angiogenesis. Defective mitochondria and aerobic glycolysis arising from loss of BNip3 is associated with increased dependence on autophagy for survival. BNIP3 is focally deleted in triple negative breast cancer and, together with high HIF-1[alpha] levels, strongly predicts progression to metastasis in TNBC patients. BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif‐1α and Hif target genes, including those involved in glycolysis and angiogenesis—two processes that are also markedly increased in BNip3‐null tumors. Glycolysis inhibition attenuates the growth of BNip3‐null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple‐negative breast cancer (TNBC). These studies show that mitochondrial dysfunction—caused by defects in mitophagy—can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment. Synopsis This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer. Elevated ROS production by dysfunctional mitochondria in BNip3 null tumors results in increased Hif‐1α levels and increased tumor progression to invasiveness. This novel negative feedback loop between BNip3 and Hif‐1α limits the oncogenic activity of Hif‐1 in glycolysis and angiogenesis. Defective mitochondria and aerobic glycolysis arising from loss of BNip3 is associated with increased dependence on autophagy for survival. BNIP3 is focally deleted in triple negative breast cancer and, together with high HIF‐1α levels, strongly predicts progression to metastasis in TNBC patients. Graphical Abstract This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer. BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a clinically relevant mouse model of mammary tumorigenesis. BNip3 delays primary mammary tumor growth and progression by preventing the accumulation of dysfunctional mitochondria and resultant excess ROS production. In the absence of BNip3, mammary tumor cells are unable to reduce mitochondrial mass effectively and elevated mitochondrial ROS increases the expression of Hif‐1α and Hif target genes, including those involved in glycolysis and angiogenesis—two processes that are also markedly increased in BNip3‐null tumors. Glycolysis inhibition attenuates the growth of BNip3‐null tumor cells, revealing an increased dependence on autophagy for survival. We also demonstrate that BNIP3 deletion can be used as a prognostic marker of tumor progression to metastasis in human triple‐negative breast cancer (TNBC). These studies show that mitochondrial dysfunction—caused by defects in mitophagy—can promote the Warburg effect and tumor progression, and suggest better approaches to stratifying TNBC for treatment. Synopsis This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer. Elevated ROS production by dysfunctional mitochondria in BNip3 null tumors results in increased Hif‐1α levels and increased tumor progression to invasiveness. This novel negative feedback loop between BNip3 and Hif‐1α limits the oncogenic activity of Hif‐1 in glycolysis and angiogenesis. Defective mitochondria and aerobic glycolysis arising from loss of BNip3 is associated with increased dependence on autophagy for survival. BNIP3 is focally deleted in triple negative breast cancer and, together with high HIF‐1α levels, strongly predicts progression to metastasis in TNBC patients. This study shows that BNip3 loss and the ensuing defects in mitophagy lead to ROS production, Hif transcriptional responses and mammary tumor progression. BNIP3 deletion is a prognostic marker of metastatic potential in triple negative breast cancer. |
Author | Sharifi, Marina N Asara, John M Sachleben, Joseph R Tracy, Kristin Locasale, Jason W Boland, Michelle L Frankenberger, Casey Macleod, Kay F Karczmar, Gregory S Chourasia, Aparajita H Drake, Lauren E |
Author_xml | – sequence: 1 givenname: Aparajita H surname: Chourasia fullname: Chourasia, Aparajita H organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA – sequence: 2 givenname: Kristin surname: Tracy fullname: Tracy, Kristin organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA – sequence: 3 givenname: Casey surname: Frankenberger fullname: Frankenberger, Casey organization: The Ben May Department for Cancer Research, The University of Chicago, IL, Chicago, USA – sequence: 4 givenname: Michelle L surname: Boland fullname: Boland, Michelle L organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA – sequence: 5 givenname: Marina N surname: Sharifi fullname: Sharifi, Marina N organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA – sequence: 6 givenname: Lauren E surname: Drake fullname: Drake, Lauren E organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA – sequence: 7 givenname: Joseph R surname: Sachleben fullname: Sachleben, Joseph R organization: Biomolecular NMR Facility, The University of Chicago, IL, Chicago, USA – sequence: 8 givenname: John M surname: Asara fullname: Asara, John M organization: Division of Signal Transduction, Beth Israel Deaconess Medical Center and Harvard Medical School, MA, Boston, USA – sequence: 9 givenname: Jason W surname: Locasale fullname: Locasale, Jason W organization: Division of Nutritional Sciences, Cornell University, NY, Ithaca, USA – sequence: 10 givenname: Gregory S surname: Karczmar fullname: Karczmar, Gregory S organization: Department of Radiology, The University of Chicago, IL, Chicago, USA – sequence: 11 givenname: Kay F surname: Macleod fullname: Macleod, Kay F email: kmacleod@uchicago.edu organization: The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26232272$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB-wZocisWGT1o84TlggtaNSENNBQiBgZTnOTeqSxMF2gPn3eMgwGioBkiW_znfu6xgdDHYAhB4TfEo45fQM-sqdUkx4hgUv76EjkuVlyogoDrZnSsmnQ3Ts_S3GmJeieIAOaU4ZpYIeoc_XJtjxRrXrpIYGdPCJcsaboU0aZ_vkYmVGlnTW-2SMdxsg6VXfK7dOwtRbt3ltHXhv7JAEm_QQlI_L-IfofqM6D4-2-wn68PLy_eJVunx79Xpxvkx1XogyFVg1FS1FrZosz7TWIHCmhKa1qDEHiiuW4aZRHBPSiIzqEgDyWtV1kVeFaNgJejH7jlPVQ61hCE51cnRmk6W0ysg_fwZzI1v7TWZc5GXBosGzrYGzXyfwQfbGa-g6NYCdvCQCl4IwnOVR-vSO9NZObojlbVRFyVj0jKon-xntUvnd9Sg4mwXaxcY6aHYSguWvucrNXOVurpHgdwhtggqx6bEk0_2Dez5z300H6_-FkZfXF-_2YTzDPnJDC26v2r_GS2fE-AA_dvGU-yJzwQSXH1dXMqPL1RtGmVywnykr2W4 |
CODEN | ERMEAX |
CitedBy_id | crossref_primary_10_1016_j_drup_2024_101170 crossref_primary_10_1002_adma_202007778 crossref_primary_10_3389_fonc_2020_00409 crossref_primary_10_4103_njms_NJMS_123_20 crossref_primary_10_1007_s00018_015_2087_8 crossref_primary_10_3390_cancers16244133 crossref_primary_10_1089_ars_2019_7950 crossref_primary_10_1016_j_ejps_2019_04_011 crossref_primary_10_1101_cshperspect_a041542 crossref_primary_10_3389_fcell_2022_974851 crossref_primary_10_1089_ars_2023_0380 crossref_primary_10_1515_hsz_2016_0137 crossref_primary_10_1016_j_lfs_2023_122098 crossref_primary_10_1002_mco2_462 crossref_primary_10_3390_ijms24098048 crossref_primary_10_1038_s41418_020_00657_z crossref_primary_10_5483_BMBRep_2019_52_4_263 crossref_primary_10_1038_s41419_024_06829_w crossref_primary_10_1016_j_mrrev_2023_108467 crossref_primary_10_1016_j_cytogfr_2025_01_004 crossref_primary_10_1002_1873_3468_14060 crossref_primary_10_1016_j_mito_2020_10_001 crossref_primary_10_3389_fonc_2018_00676 crossref_primary_10_3389_fmolb_2022_851966 crossref_primary_10_3389_fcell_2020_594203 crossref_primary_10_1111_cpr_13327 crossref_primary_10_1080_15548627_2020_1850609 crossref_primary_10_1038_cddis_2017_190 crossref_primary_10_1073_pnas_2416076121 crossref_primary_10_1038_cr_2017_155 crossref_primary_10_1002_med_21571 crossref_primary_10_1002_path_4774 crossref_primary_10_1016_j_tranon_2024_101879 crossref_primary_10_1016_j_abb_2024_110213 crossref_primary_10_1016_j_ceca_2020_102308 crossref_primary_10_1158_2159_8290_CD_18_1409 crossref_primary_10_3324_haematol_2022_282552 crossref_primary_10_1016_j_devcel_2021_02_010 crossref_primary_10_1002_jev2_12244 crossref_primary_10_1016_j_mito_2020_01_002 crossref_primary_10_1007_s10565_020_09561_1 crossref_primary_10_1186_s40880_018_0314_z crossref_primary_10_1016_j_pharmthera_2017_04_005 crossref_primary_10_1016_j_bbabio_2016_12_008 crossref_primary_10_1146_annurev_cancerbio_030419_033405 crossref_primary_10_1038_s41420_024_02226_6 crossref_primary_10_3389_fphar_2022_935937 crossref_primary_10_1007_s00018_022_04585_8 crossref_primary_10_1126_sciadv_ado5887 crossref_primary_10_1007_s00203_024_03838_3 crossref_primary_10_1089_ars_2019_8013 crossref_primary_10_1002_cbin_11332 crossref_primary_10_1038_s41419_021_03639_2 crossref_primary_10_1158_0008_5472_CAN_15_3458 crossref_primary_10_3389_pore_2021_1609782 crossref_primary_10_1016_j_bbrc_2017_07_047 crossref_primary_10_1080_15548627_2021_1975914 crossref_primary_10_1016_j_yexcr_2017_07_029 crossref_primary_10_1101_gad_325514_119 crossref_primary_10_1186_s12967_023_04286_1 crossref_primary_10_1155_2018_1027453 crossref_primary_10_3724_abbs_2023246 crossref_primary_10_1007_s10616_024_00689_0 crossref_primary_10_3390_cancers15041112 crossref_primary_10_3390_cancers13133311 crossref_primary_10_1007_s00018_021_03774_1 crossref_primary_10_3389_fcell_2019_00355 crossref_primary_10_1016_j_fsi_2023_109037 crossref_primary_10_1038_s41419_022_05418_z crossref_primary_10_1016_j_bbrc_2016_10_088 crossref_primary_10_1002_advs_202412593 crossref_primary_10_3389_fcell_2021_727822 crossref_primary_10_1002_mabi_202300238 crossref_primary_10_3390_cancers14010096 crossref_primary_10_1080_15476286_2020_1871215 crossref_primary_10_1134_S0006297920100120 crossref_primary_10_1038_s41598_023_47942_8 crossref_primary_10_1016_j_kint_2023_01_025 crossref_primary_10_1111_cas_14276 crossref_primary_10_1016_j_cmet_2019_07_014 crossref_primary_10_1038_s41419_020_03024_5 crossref_primary_10_1039_D3DT00738C crossref_primary_10_1038_s41580_023_00585_z crossref_primary_10_1016_j_ejcb_2019_151061 crossref_primary_10_1016_j_lfs_2023_121378 crossref_primary_10_1371_journal_pone_0245155 crossref_primary_10_1016_j_fsi_2021_12_017 crossref_primary_10_3390_cancers13102475 crossref_primary_10_3390_biology11020300 crossref_primary_10_1016_j_tcb_2018_07_004 crossref_primary_10_1016_j_bbamcr_2024_119752 crossref_primary_10_1016_j_semcancer_2019_07_015 crossref_primary_10_1089_ars_2019_7898 crossref_primary_10_1080_15548627_2024_2395142 crossref_primary_10_1080_16078454_2023_2231739 crossref_primary_10_1080_10409238_2018_1556578 crossref_primary_10_1080_15548627_2018_1509609 crossref_primary_10_1016_j_celbio_2025_100016 crossref_primary_10_1007_s12640_022_00475_w crossref_primary_10_1002_iub_2524 crossref_primary_10_46308_kmj_2020_00101 crossref_primary_10_1042_BCJ20210676 crossref_primary_10_1016_j_molmet_2024_101966 crossref_primary_10_3390_cancers12113390 crossref_primary_10_1038_s41556_018_0042_2 crossref_primary_10_1080_13813455_2019_1675714 crossref_primary_10_1155_2016_9460462 crossref_primary_10_1515_hsz_2017_0228 crossref_primary_10_7554_eLife_59686 crossref_primary_10_1152_ajpcell_00360_2021 crossref_primary_10_1080_15548627_2020_1848971 crossref_primary_10_1016_j_bj_2015_10_002 crossref_primary_10_1101_gad_287524_116 crossref_primary_10_1242_jcs_247056 crossref_primary_10_3390_ijms22010179 crossref_primary_10_1089_ars_2017_7423 crossref_primary_10_1016_j_jep_2025_119555 crossref_primary_10_1038_srep41927 crossref_primary_10_1186_s13578_021_00696_0 crossref_primary_10_1016_j_canlet_2021_12_032 crossref_primary_10_1016_j_mcn_2018_04_009 crossref_primary_10_3390_antiox10050794 crossref_primary_10_1002_jmr_3044 crossref_primary_10_1155_2016_4085727 crossref_primary_10_1016_j_ijbiomac_2025_141752 crossref_primary_10_1016_j_cell_2018_09_048 crossref_primary_10_1007_s00018_016_2451_3 crossref_primary_10_1002_iub_2585 crossref_primary_10_1002_mc_23463 crossref_primary_10_1002_hep_30191 crossref_primary_10_1038_s41419_019_2134_8 crossref_primary_10_1038_onc_2016_302 crossref_primary_10_1038_bcj_2017_61 crossref_primary_10_1089_ars_2022_0122 crossref_primary_10_1080_15548627_2020_1720427 crossref_primary_10_3390_cancers13225622 crossref_primary_10_1038_s41418_024_01280_y crossref_primary_10_3390_antiox13121563 crossref_primary_10_1007_s10555_024_10211_9 crossref_primary_10_3389_fonc_2021_612009 crossref_primary_10_1016_j_freeradbiomed_2020_12_452 crossref_primary_10_15252_embj_2020104705 crossref_primary_10_3389_fimmu_2018_01243 crossref_primary_10_1016_j_semcancer_2017_04_008 crossref_primary_10_15252_embj_2020106214 crossref_primary_10_3389_fonc_2018_00126 crossref_primary_10_1016_j_pharmthera_2020_107748 crossref_primary_10_1111_febs_14336 crossref_primary_10_1155_2022_1749111 crossref_primary_10_1080_15548627_2018_1450020 crossref_primary_10_1007_s10528_024_10794_6 crossref_primary_10_3389_fphys_2023_1236651 crossref_primary_10_1007_s12672_021_00454_1 crossref_primary_10_1016_j_blre_2017_04_001 crossref_primary_10_1155_2019_7187128 crossref_primary_10_1016_j_molmed_2019_11_001 crossref_primary_10_1186_s12885_021_07886_6 crossref_primary_10_1016_j_arr_2024_102428 crossref_primary_10_3389_fcell_2021_699621 crossref_primary_10_1155_2017_8316094 crossref_primary_10_1074_jbc_M117_792838 crossref_primary_10_1089_dna_2018_4348 crossref_primary_10_3390_cells11132097 crossref_primary_10_1016_j_jep_2024_117734 crossref_primary_10_3390_cells8050493 crossref_primary_10_15252_embj_2021108863 crossref_primary_10_1016_j_bbamcr_2022_119325 crossref_primary_10_1038_s41419_019_1475_7 crossref_primary_10_1038_s44318_023_00006_z crossref_primary_10_3390_ijms25126719 crossref_primary_10_1002_iid3_70041 crossref_primary_10_1007_s10495_019_01535_x crossref_primary_10_3390_ijms22147551 crossref_primary_10_1083_jcb_202004029 crossref_primary_10_3390_cells12232742 crossref_primary_10_1038_bjc_2017_201 crossref_primary_10_15252_embj_2021110031 crossref_primary_10_1016_j_tcm_2017_11_008 crossref_primary_10_3390_cancers15204916 crossref_primary_10_3390_cells8111349 crossref_primary_10_3389_fcell_2020_00413 crossref_primary_10_1007_s00432_023_05515_2 crossref_primary_10_1016_j_semcancer_2019_11_005 crossref_primary_10_1016_j_cell_2016_05_051 crossref_primary_10_2147_JIR_S493037 crossref_primary_10_1111_jcmm_18265 crossref_primary_10_1016_j_bbrep_2024_101893 crossref_primary_10_1016_j_bbrc_2023_149320 crossref_primary_10_1093_carcin_bgaa114 crossref_primary_10_3892_ijmm_2024_5440 crossref_primary_10_1016_j_cca_2020_02_024 crossref_primary_10_1016_j_drup_2019_100643 crossref_primary_10_1080_15548627_2018_1558002 crossref_primary_10_15252_embj_201796697 crossref_primary_10_3390_cancers15082195 crossref_primary_10_1159_000541486 crossref_primary_10_3390_ijms20020399 crossref_primary_10_1038_s41416_019_0641_0 crossref_primary_10_1089_ars_2020_8058 crossref_primary_10_15252_embr_202357574 crossref_primary_10_1016_j_semcdb_2019_05_029 crossref_primary_10_1038_nrm_2017_129 crossref_primary_10_3389_fphar_2019_00203 crossref_primary_10_1080_15548627_2021_1888244 crossref_primary_10_2174_1389450120666190402145325 crossref_primary_10_1002_adfm_202421288 crossref_primary_10_1016_j_phrs_2024_107383 crossref_primary_10_1155_2019_6387357 crossref_primary_10_1038_s41523_020_00191_8 crossref_primary_10_3390_biomedicines12020462 crossref_primary_10_1038_s41598_023_34710_x crossref_primary_10_1016_j_canlet_2023_216590 crossref_primary_10_3390_cancers13215484 crossref_primary_10_1016_j_mito_2024_101920 crossref_primary_10_1038_s41388_019_0697_6 crossref_primary_10_1038_s41556_018_0034_2 crossref_primary_10_3390_ijms21238974 crossref_primary_10_1080_15548627_2018_1460010 crossref_primary_10_1038_s41392_023_01503_7 crossref_primary_10_1007_s00018_018_2973_y crossref_primary_10_1038_s41419_023_05929_3 crossref_primary_10_1038_s41568_021_00435_0 crossref_primary_10_3390_ijms252212387 crossref_primary_10_1016_j_semcancer_2024_03_004 crossref_primary_10_3389_fcvm_2023_1309863 crossref_primary_10_3389_fonc_2022_923890 crossref_primary_10_1038_s41419_022_04741_9 crossref_primary_10_1089_ars_2018_7702 crossref_primary_10_7717_peerj_17260 crossref_primary_10_3389_fphar_2024_1360179 crossref_primary_10_1038_s41598_019_39563_x crossref_primary_10_1152_physrev_00005_2018 |
Cites_doi | 10.1016/j.cmet.2005.05.001 10.1128/MCB.02246-06 10.1038/nature13110 10.1016/S0002-9440(10)64554-3 10.1016/j.tibs.2010.04.002 10.1158/1078-0432.CCR-04-1785 10.1038/sj.emboj.7600846 10.1016/j.cmet.2005.05.003 10.1016/j.molcel.2012.09.025 10.1016/j.ccr.2009.06.018 10.1038/sj.onc.1208642 10.1158/0008-5472.CAN-06-2701 10.1038/nature08822 10.1016/j.cell.2014.02.049 10.1002/path.1486 10.1101/gad.2051011 10.1101/gad.2016111 10.1073/pnas.1003428107 10.1038/nature11207 10.1172/JCI32490 10.1074/jbc.M001914200 10.1038/nature04695 10.1158/1078-0432.CCR-06-1466 10.1186/s40170-015-0130-8 10.1158/1078-0432.1021.11.3 10.1158/0008-5472.CAN-05-1235 10.1038/sj.bjc.6602422 10.1007/s13277-013-0707-1 10.1126/science.1196371 10.1155/2010/852197 10.1016/j.ccr.2012.12.008 10.1038/nature12865 10.1172/JCI31457 10.1038/nature13611 10.1038/nature14587 10.1158/0008-5472.CAN-13-3470 10.1158/1078-0432.CCR-05-2690 10.1038/sj.cdd.4400810 10.1186/1471-2407-9-175 10.1172/JCI45014 10.1074/jbc.M800102200 10.1073/pnas.1113483108 10.1128/MCB.00167-12 10.1074/jbc.M111.322933 10.1016/j.cmet.2005.05.002 10.1038/embor.2009.256 10.1038/nprot.2012.024 10.1038/nrm3801 10.1101/gad.219642.113 10.1016/j.ccr.2008.06.016 10.1128/MCB.20.15.5454-5468.2000 10.1126/science.1156906 10.1038/nrc3038 10.1158/0008-5472.CAN-04-0089 10.1172/JCI67230 10.1038/nrm3028 10.1016/S0002-9440(10)63568-7 |
ContentType | Journal Article |
Copyright | The Authors 2015 2015 The Authors 2015 The Authors. 2015 EMBO 2015 The Authors 2015 |
Copyright_xml | – notice: The Authors 2015 – notice: 2015 The Authors – notice: 2015 The Authors. – notice: 2015 EMBO – notice: 2015 The Authors 2015 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embr.201540759 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1469-3178 |
EndPage | 1163 |
ExternalDocumentID | PMC4576983 3795045951 26232272 10_15252_embr_201540759 EMBR201540759 ark_67375_WNG_42LNK323_C |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Human Tissue Resource Center – fundername: University of Chicago Cancer Center – fundername: NIH grantid: RO1 CA131188; RO1 CA162405; T32 CA009594; T32 DK780073; RO1 CA133490 – fundername: University of Chicago Medical Scientist Training Program – fundername: NIH funderid: RO1 CA131188; RO1 CA162405; T32 CA009594; T32 DK780073; RO1 CA133490 – fundername: NIGMS NIH HHS grantid: T32 GM007281 – fundername: NCI NIH HHS grantid: R00 CA168997 – fundername: NCI NIH HHS grantid: R01 CA162405 – fundername: NCI NIH HHS grantid: R01 CA131188 – fundername: NCI NIH HHS grantid: R01 CA133490 – fundername: NCI NIH HHS grantid: T32 CA009594 – fundername: NIDDK NIH HHS grantid: T32 DK780073 – fundername: NCATS NIH HHS grantid: UL1 TR000430 – fundername: NCI NIH HHS grantid: P30 CA014599 – fundername: NCATS NIH HHS grantid: TL1 TR000432 |
GroupedDBID | --- -DZ -Q- .55 0R~ 1OC 29G 2WC 33P 36B 39C 3O- 53G 5GY 5VS 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAESR AAEVG AAHBH AAJSJ AAMMB AANHP AANLZ AAONW AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABUWG ABZEH ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYN AEUYR AFBPY AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C1A C6C CAG CCPQU COF CS3 DCZOG DIK DPXWK DRFUL DRSTM DWQXO E3Z EBLON EBS EJD EMB EMOBN F5P FEDTE FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HK~ HMCUK HVGLF HYE H~9 KQ8 L7B LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NAO O9- OK1 P2P P2W PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X R.K RHI RNI RNS ROL RPM RZO SV3 TR2 UKHRP WBKPD WIH WIK WIN WOHZO WOQ WXSBR X7M ZGI ZZTAW 24P AAHHS ACCFJ ADZOD AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV RHF WYJ 3V. 88A ABJNI M0L RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T5 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c6879-70afb297daf464ccce704a7c2d7d05e20b340ffa5011f742c9eee6dadd86b87f3 |
IEDL.DBID | C6C |
ISSN | 1469-221X |
IngestDate | Thu Aug 21 14:03:18 EDT 2025 Thu Sep 04 22:33:53 EDT 2025 Fri Jul 25 10:59:17 EDT 2025 Mon Jul 21 05:44:26 EDT 2025 Tue Jul 01 02:52:14 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Wed Jan 22 16:19:55 EST 2025 Fri Feb 21 02:37:41 EST 2025 Sun Sep 21 06:18:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | HIF‐1α mitophagy invasive carcinoma BNip3 glycolysis ROS breast cancer |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6879-70afb297daf464ccce704a7c2d7d05e20b340ffa5011f742c9eee6dadd86b87f3 |
Notes | Expanded View Figures PDFReview Process File University of Chicago Medical Scientist Training Program istex:889AC4239FEC187EECBBCA568014D874C3FAAA01 NIH - No. RO1 CA131188; No. RO1 CA162405; No. T32 CA009594; No. T32 DK780073; No. RO1 CA133490 University of Chicago Cancer Center Human Tissue Resource Center ark:/67375/WNG-42LNK323-C ArticleID:EMBR201540759 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Subject Categories Autophagy & Cell Death; Cancer |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embr.201540759 |
PMID | 26232272 |
PQID | 1708933576 |
PQPubID | 26169 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4576983 proquest_miscellaneous_1709713046 proquest_journals_1708933576 pubmed_primary_26232272 crossref_primary_10_15252_embr_201540759 crossref_citationtrail_10_15252_embr_201540759 wiley_primary_10_15252_embr_201540759_EMBR201540759 springer_journals_10_15252_embr_201540759 istex_primary_ark_67375_WNG_42LNK323_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2015 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Chichester, UK |
PublicationTitle | EMBO reports |
PublicationTitleAbbrev | EMBO Rep |
PublicationTitleAlternate | EMBO rep |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Nature Publishing Group UK Springer Nature B.V John Wiley & Sons, Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley & Sons, Ltd |
References | Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M, Rehg J, Baudino T, Cleveland JL, Brindle PK (2005) Two transcriptional mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J 24: 3846-3858 Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25: 1510-1527 Maycotte P, Gearheart CM, Barnard R, Aryal S, Mulcahy Levy JM, Fosmire SP, Hansen RJ, Morgan MJ, Porter CC, Gustafson DL et al (2014) STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res 74: 2579-2590 Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) HIF1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61: 6669-6673 Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yaaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi JI (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320: 661-664 Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to Malignancy in the Polyoma Middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Path 163: 2113-2126 Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15: 411-421 Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK, Ferrone CR et al (2015) Transcriptional control of the autophagy-lysosome system in pancreatic cancer. Nature doi: 10.1038/nature14587 DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16: 91-102 Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1: 393-399 Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11: 325-337 Generali D, Berruti A, Brizzi MP, Campo L, Bonardi S, Wigfield S, Bersiga A, Allevi G, Milani M, Aguggini S et al (2006) Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res 12: 4562-4568 Semenza G (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123: 3664-3671 Chourasia AH, Boland ML, Macleod KF (2015) Mitophagy & Cancer. Cancer Metabol 3: 1-11 Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner E, Schroeder I, Factor VM, Thorgeirsson SS (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117: 2713-2722 Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, Jakesz R, Kubista E, Birner P, Oberhuber G (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8: 1831-1837 Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC, Harris AL, Fox SR (2007) BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer. Clin Cancer Res 13: 467-474 Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A, Rampazzo E, Basso G, Leo G, Rosato A, Bicciato S et al (2012) SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature 487: 380-384 Murai M, Toyota M, Suzuki H, Satoh A, Sasaki Y, Akino K, Ueno M, Takahashi F, Kusano M, Mita H et al (2005) Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res 11: 1021-1027 Koop EA, van Laar T, van Wichen DF, Weger RA, van der Wall E, van Diest PJ (2009) Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features. BMC Cancer 9: 175-182 Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64: 5338-5346 Liao D, Corle C, Seagroves TN, Johnson RS (2007) Hypoxia-inducible factor-1a is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67: 563-572 Erkan M, Kleef J, Esposito I, Giese T, Ketterer K, Buchler MW, Giese NA, Friess H (2005) Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24: 4421-4432 Hardwick JM, Youle RJ (2009) Snapshot: Bcl2 proteins. Cell 23: 404 Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, Hakem R, Greenberg AH (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20: 5454-5468 Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. TIBS 35: 505-513 Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor RC et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456-461 Weinberg F, Hamanaka RB, Wheaton WW, Weinberg S, Joseph JW, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107: 8788-8793 Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628-632 Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza G (2008) Mitochondrial autophagy is a HIF-1 dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-10903 Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW II, Brady MJ, Macleod KF (2012) BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 32: 2570-2584 Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121: 2750-2767 Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27: 1447-1461 Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K, Yu KT, Jaye M, Ivashchenko Y (2001) Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Diff 8: 367-376 Green DR, Levine B (2014) To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157: 65-75 Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, Fraley SI, Wong CM, Khoo US, Ng IO et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA 108: 16369-16374 Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1: 401-408 van Diest PJ, Suijkerbuijk KPM, Koop EA, Weger RA, van der Wall E (2010) Low levels of BNIP3 promoter hypermethylation in invasive breast cancer. Anal Cell Pathol 33: 175-176 Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275: 25130-25138 Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirschenbaum LA, Hahn HS, Robbins J et al (2007) Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of BNip3 restrains postinfarction remodeling in mice. J Clin Invest 117: 2825-2833 Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M, Matsuno S, Lemoine NR (2005) Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11: 3094-3101 Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14: 156-165 Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1: 409-414 Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463: 899-905 Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with BNip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287: 19094-19104 Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65: 9047-9055 Youle RJ, Narendra DP (2011) Mechanisms of Mitophagy. Nat Rev Mol Biol 12: 9-14 Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, Wang TC, Chen WW, Clish CB, Sabatini DM (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and Kong, Park, Stephen, Calvani, Cardellina, Monks, Fisher, Shoemaker, Melillo (CR25) 2005; 65 Weinberg, Hamanaka, Wheaton, Weinberg, Joseph, Lopez, Kalyanaraman, Mutlu, Budinger, Chandel (CR49) 2010; 107 Sakurai, He, Matsuzawa, Yu, Maeda, Hardiman, Karin (CR32) 2008; 14 Wong, Gilkes, Zhang, Chen, Wei, Chaturvedi, Fraley, Wong, Khoo, Ng (CR19) 2011; 108 Hamanaka, Chandel (CR48) 2010; 35 Koppenol, Bounds, Dang (CR24) 2011; 11 Zhang, Bosch‐Marce, Shimoda, Tan, Baek, Wesley, Gonzalez, Semenza (CR16) 2008; 283 Schindl, Schoppmann, Samonigg, Hausmaninger, Kwasny, Gnant, Jakesz, Kubista, Birner, Oberhuber (CR45) 2002; 8 Diwan, Krenz, Syed, Wansapura, Ren, Koesters, Li, Kirschenbaum, Hahn, Robbins (CR57) 2007; 117 Vande Velde, Cizeau, Dubik, Alimonti, Brown, Israels, Hakem, Greenberg (CR13) 2000; 20 Youle, Narendra (CR1) 2011; 12 Wei, Wei, Gan, Peng, Zou, Guan (CR22) 2011; 25 Generali, Berruti, Brizzi, Campo, Bonardi, Wigfield, Bersiga, Allevi, Milani, Aguggini (CR46) 2006; 12 Erler, Bennewith, Nicolau, Dornhofer, Kong, Le, Chi, Jeffrey, Giaccia (CR18) 2006; 440 Ishikawa, Takenaga, Akimoto, Koshikawa, Yaaguchi, Imanishi, Nakada, Honma, Hayashi (CR51) 2008; 320 Akada, Crnogorac‐Jurcevic, Lattimore, Mahon, Lopes, Sunamura, Matsuno, Lemoine (CR42) 2005; 11 Lin, Jones, Li, Zhu, Whitney, Muller, Pollard (CR20) 2003; 163 Calvisi, Ladu, Gorden, Farina, Lee, Conner, Schroeder, Factor, Thorgeirsson (CR40) 2007; 117 Hanna, Quinsay, Orogo, Giang, Rikka, Gustafsson (CR17) 2012; 287 Holmstrom, Finkel (CR50) 2014; 15 Guo, Karsli‐Uzunbas, Mathew, Aisner, Kamphorst, Strohecker, Chen, Price, Lu, Teng (CR9) 2013; 27 van Diest, Suijkerbuijk, Koop, Weger, van der Wall (CR43) 2010; 33 DeNardo, Barreto, Andreu, Vasquez, Tawfik, Kolhatkar, Coussens (CR21) 2009; 16 Yuan, Breitkopf, Yang, Asara (CR58) 2012; 7 Sowter, Ferguson, Pym, Watson, Fox, Han, Harris (CR33) 2003; 201 Koop, van Laar, van Wichen, Weger, van der Wall, van Diest (CR36) 2009; 9 Beroukhim, Mermel, Porter, Wei, Raychaudhuri, Donovan, Barretina, Boehm, Dobson, Urashima (CR44) 2010; 463 Liao, Corle, Seagroves, Johnson (CR23) 2007; 67 Viale, Pettazzoni, Lyssiotis, Ying, Sánchez, Marchesini, Carugo, Green, Seth, Giuliani (CR6) 2014; 514 Hardwick, Youle (CR14) 2009; 23 Novak, Kirkin, McEwan, Zhang, Wild, Rozenknop, Rogov, Löhr, Popovic, Occhipinti (CR53) 2010; 11 Maycotte, Gearheart, Barnard, Aryal, Mulcahy Levy, Fosmire, Hansen, Morgan, Porter, Gustafson (CR56) 2014; 74 Chandel, McClintock, Feliciano, Wood, Melendez, Rodriguez, Schumacker (CR27) 2000; 275 Kasper, Boussouar, Boyd, Xu, Biesen, Rehg, Baudino, Cleveland, Brindle (CR12) 2005; 24 Tan, Campo, Han, Turley, Pezzella, Gatter, Harris, Fox (CR35) 2007; 13 Semenza (CR26) 2013; 123 Guzy, Hoyos, Robin, Chen, Liu, Mansfield, Simon, Hammerling, Schumacker (CR30) 2005; 1 CR52 Chourasia, Boland, Macleod (CR54) 2015; 3 Kim, Kim, Jung, Koo (CR47) 2013; 34 Egan, Shackelford, Mihaylova, Gelino, Kohnz, Mair, Vasquez, Joshi, Gwinn, Taylor (CR4) 2011; 331 Shackelford, Abt, Gerken, Vasquez, Seki, Leblanc, Wei, Fishbein, Czernin, Mischel (CR5) 2013; 23 Okami, Simeone, Logsdon (CR37) 2004; 64 Murai, Toyota, Satoh, Suzuki, Akino, Mita, Sasaki, Ishida, Shen, Garcia‐Manero (CR38) 2005; 92 Mansfield, Guzy, Pan, Young, Cash, Schumacker, Simon (CR28) 2005; 1 Erkan, Kleef, Esposito, Giese, Ketterer, Buchler, Giese, Friess (CR41) 2005; 24 Murai, Toyota, Suzuki, Satoh, Sasaki, Akino, Ueno, Takahashi, Kusano, Mita (CR39) 2005; 11 Lehmann, Bauer, Chen, Sanders, Chakravarthy, Shyr, Pietenpol (CR59) 2011; 121 Montagner, Enzo, Forcato, Zanconato, Parenti, Rampazzo, Basso, Leo, Rosato, Bicciato (CR55) 2012; 487 Yang, Wang, Contino, Liesa, Sahin, Ying, Bause, Li, Stommel, Dell’ Antonio (CR8) 2011; 25 Green, Levine (CR2) 2014; 157 Glick, Zhang, Beaton, Marsboom, Gruber, Simon, Hart, Dorn, Brady, Macleod (CR15) 2012; 32 Birsoy, Possemato, Lorbeer, Bayraktar, Thiru, Yucel, Wang, Chen, Clish, Sabatini (CR7) 2014; 508 Sena, Chandel (CR31) 2012; 48 Guo, Searfoss, Krolikowski, Pagnoni, Franks, Clark, Yu, Jaye, Ivashchenko (CR11) 2001; 8 Tracy, Dibling, Spike, Knabb, Schumacker, Macleod (CR3) 2007; 27 Brunelle, Bell, Quesada, Vercauteren, Tiranti, Zeviani, Scarpulla, Chandel (CR29) 2005; 1 Rosenfeldt, O'Prey, Morton, Nixon, MacKay, Mrowinska, Au, Rai, Zheng, Ridgway (CR10) 2013; 504 Sowter, Ratcliffe, Watson, Greenberg, Harris (CR34) 2001; 61 2010; 11 2004; 64 2012; 287 2013; 27 2012; 487 2010; 107 2013; 23 2013; 123 2010; 463 2011; 11 2005; 65 2011; 12 2005; 24 2001; 61 2014; 15 2006; 440 2011; 25 2003; 201 2007; 67 2009; 16 2011; 121 2007; 27 2003; 163 2014; 514 2009; 23 2010; 33 2010; 35 2015; 3 2006; 12 2013; 504 2000; 20 2002; 8 2008; 14 2000; 275 2008; 320 2012; 32 2007; 13 2011; 331 2008; 283 2014; 157 2014; 508 2011; 108 2007; 117 2013; 34 2001; 8 2009; 9 2005; 1 2005; 92 2015 2012; 48 2014; 74 2012; 7 2005; 11 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Murai M (e_1_2_8_40_1) 2005; 11 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 Hardwick JM (e_1_2_8_15_1) 2009; 23 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 Sowter HM (e_1_2_8_35_1) 2001; 61 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – reference: Yuan M, Breitkopf SB, Yang X, Asara JM (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protocol 7: 872-881 – reference: Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirschenbaum LA, Hahn HS, Robbins J et al (2007) Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of BNip3 restrains postinfarction remodeling in mice. J Clin Invest 117: 2825-2833 – reference: Erkan M, Kleef J, Esposito I, Giese T, Ketterer K, Buchler MW, Giese NA, Friess H (2005) Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene 24: 4421-4432 – reference: Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K, Yu KT, Jaye M, Ivashchenko Y (2001) Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Diff 8: 367-376 – reference: Youle RJ, Narendra DP (2011) Mechanisms of Mitophagy. Nat Rev Mol Biol 12: 9-14 – reference: van Diest PJ, Suijkerbuijk KPM, Koop EA, Weger RA, van der Wall E (2010) Low levels of BNIP3 promoter hypermethylation in invasive breast cancer. Anal Cell Pathol 33: 175-176 – reference: Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, Jakesz R, Kubista E, Birner P, Oberhuber G (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8: 1831-1837 – reference: Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza G (2008) Mitochondrial autophagy is a HIF-1 dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-10903 – reference: Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor RC et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456-461 – reference: Hardwick JM, Youle RJ (2009) Snapshot: Bcl2 proteins. Cell 23: 404 – reference: Murai M, Toyota M, Suzuki H, Satoh A, Sasaki Y, Akino K, Ueno M, Takahashi F, Kusano M, Mita H et al (2005) Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clin Cancer Res 11: 1021-1027 – reference: Akada M, Crnogorac-Jurcevic T, Lattimore S, Mahon P, Lopes R, Sunamura M, Matsuno S, Lemoine NR (2005) Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11: 3094-3101 – reference: Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Löhr F, Popovic D, Occhipinti A et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11: 45-51 – reference: Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A, Rampazzo E, Basso G, Leo G, Rosato A, Bicciato S et al (2012) SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature 487: 380-384 – reference: Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC, Harris AL, Fox SR (2007) BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer. Clin Cancer Res 13: 467-474 – reference: Sowter HM, Ferguson M, Pym C, Watson P, Fox SB, Han C, Harris AL (2003) Expression of the cell death genes BNip3 and Nix in ductal carcinoma in situ of the breast; correlation of BNip3 levels with necrosis and grade. J Path 201: 573-580 – reference: Liao D, Corle C, Seagroves TN, Johnson RS (2007) Hypoxia-inducible factor-1a is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67: 563-572 – reference: Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463: 899-905 – reference: Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF (2007) BNIP3 is a RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27: 6229-6242 – reference: Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW II, Brady MJ, Macleod KF (2012) BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol 32: 2570-2584 – reference: Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yaaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi JI (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320: 661-664 – reference: Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15: 411-421 – reference: Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK, Ferrone CR et al (2015) Transcriptional control of the autophagy-lysosome system in pancreatic cancer. Nature doi: 10.1038/nature14587 – reference: Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 25: 1510-1527 – reference: Semenza G (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123: 3664-3671 – reference: Green DR, Levine B (2014) To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157: 65-75 – reference: Koop EA, van Laar T, van Wichen DF, Weger RA, van der Wall E, van Diest PJ (2009) Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features. BMC Cancer 9: 175-182 – reference: Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27: 1447-1461 – reference: Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1: 401-408 – reference: Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275: 25130-25138 – reference: Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48: 158-167 – reference: Murai M, Toyota M, Satoh A, Suzuki H, Akino K, Mita H, Sasaki Y, Ishida T, Shen L, Garcia-Manero G et al (2005) Aberrant methylation associated with silencing BNIP3 expression in haematopoietic tumours. Br J Cancer 92: 1165-1172 – reference: Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, Wei L, Fishbein MC, Czernin J, Mischel PS et al (2013) LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23: 143-158 – reference: Kim S, Kim DH, Jung WH, Koo JS (2013) Metabolic phenotypes in triple-negative breast cancer. Tumour Biol 34: 1699-1712 – reference: Okami J, Simeone DM, Logsdon CD (2004) Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res 64: 5338-5346 – reference: Maycotte P, Gearheart CM, Barnard R, Aryal S, Mulcahy Levy JM, Fosmire SP, Hansen RJ, Morgan MJ, Porter CC, Gustafson DL et al (2014) STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res 74: 2579-2590 – reference: Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R et al (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature 504: 296-300 – reference: Wong CC, Gilkes DM, Zhang H, Chen J, Wei H, Chaturvedi P, Fraley SI, Wong CM, Khoo US, Ng IO et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA 108: 16369-16374 – reference: Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1: 393-399 – reference: Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11: 325-337 – reference: DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16: 91-102 – reference: Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. TIBS 35: 505-513 – reference: Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440: 1222-1226 – reference: Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with BNip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287: 19094-19104 – reference: Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to Malignancy in the Polyoma Middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Path 163: 2113-2126 – reference: Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S, Hakem R, Greenberg AH (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20: 5454-5468 – reference: Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1: 409-414 – reference: Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65: 9047-9055 – reference: Generali D, Berruti A, Brizzi MP, Campo L, Bonardi S, Wigfield S, Bersiga A, Allevi G, Milani M, Aguggini S et al (2006) Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res 12: 4562-4568 – reference: Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner E, Schroeder I, Factor VM, Thorgeirsson SS (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117: 2713-2722 – reference: Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121: 2750-2767 – reference: Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M, Rehg J, Baudino T, Cleveland JL, Brindle PK (2005) Two transcriptional mechanisms cooperate for the bulk of HIF-1-responsive gene expression. EMBO J 24: 3846-3858 – reference: Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514: 628-632 – reference: Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell' Antonio G et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25: 717-729 – reference: Chourasia AH, Boland ML, Macleod KF (2015) Mitophagy & Cancer. Cancer Metabol 3: 1-11 – reference: Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B, Wang TC, Chen WW, Clish CB, Sabatini DM (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508: 108-112 – reference: Weinberg F, Hamanaka RB, Wheaton WW, Weinberg S, Joseph JW, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107: 8788-8793 – reference: Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) HIF1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61: 6669-6673 – reference: Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14: 156-165 – volume: 8 start-page: 1831 year: 2002 end-page: 1837 ident: CR45 article-title: Overexpression of hypoxia‐inducible factor 1alpha is associated with an unfavorable prognosis in lymph node‐positive breast cancer publication-title: Clin Cancer Res – volume: 107 start-page: 8788 year: 2010 end-page: 8793 ident: CR49 article-title: Mitochondrial metabolism and ROS generation are essential for Kras‐mediated tumorigenicity publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 1021 year: 2005 end-page: 1027 ident: CR39 article-title: Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer publication-title: Clin Cancer Res – volume: 287 start-page: 19094 year: 2012 end-page: 19104 ident: CR17 article-title: Microtubule‐associated protein 1 light chain 3 (LC3) interacts with BNip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy publication-title: J Biol Chem – volume: 24 start-page: 4421 year: 2005 end-page: 4432 ident: CR41 article-title: Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis publication-title: Oncogene – volume: 16 start-page: 91 year: 2009 end-page: 102 ident: CR21 article-title: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages publication-title: Cancer Cell – volume: 201 start-page: 573 year: 2003 end-page: 580 ident: CR33 article-title: Expression of the cell death genes BNip3 and Nix in ductal carcinoma in situ of the breast; correlation of BNip3 levels with necrosis and grade publication-title: J Path – volume: 64 start-page: 5338 year: 2004 end-page: 5346 ident: CR37 article-title: Silencing of the hypoxia‐inducible cell death protein BNIP3 in pancreatic cancer publication-title: Cancer Res – volume: 117 start-page: 2825 year: 2007 end-page: 2833 ident: CR57 article-title: Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of BNip3 restrains postinfarction remodeling in mice publication-title: J Clin Invest – volume: 117 start-page: 2713 year: 2007 end-page: 2722 ident: CR40 article-title: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma publication-title: J Clin Invest – volume: 15 start-page: 411 year: 2014 end-page: 421 ident: CR50 article-title: Cellular mechanisms and physiological consequences of redox‐dependent signalling publication-title: Nat Rev Mol Cell Biol – volume: 35 start-page: 505 year: 2010 end-page: 513 ident: CR48 article-title: Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes publication-title: TIBS – volume: 3 start-page: 1 year: 2015 end-page: 11 ident: CR54 article-title: Mitophagy & Cancer publication-title: Cancer Metabol – volume: 8 start-page: 367 year: 2001 end-page: 376 ident: CR11 article-title: Hypoxia induces the expression of the pro‐apoptotic gene BNIP3 publication-title: Cell Death Diff – volume: 61 start-page: 6669 year: 2001 end-page: 6673 ident: CR34 article-title: HIF1‐dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors publication-title: Cancer Res – volume: 121 start-page: 2750 year: 2011 end-page: 2767 ident: CR59 article-title: Identification of human triple‐negative breast cancer subtypes and preclinical models for selection of targeted therapies publication-title: J Clin Invest – volume: 27 start-page: 6229 year: 2007 end-page: 6242 ident: CR3 article-title: BNIP3 is a RB/E2F target gene required for hypoxia‐induced autophagy publication-title: Mol Cell Biol – volume: 32 start-page: 2570 year: 2012 end-page: 2584 ident: CR15 article-title: BNip3 regulates mitochondrial function and lipid metabolism in the liver publication-title: Mol Cell Biol – volume: 25 start-page: 717 year: 2011 end-page: 729 ident: CR8 article-title: Pancreatic cancers require autophagy for tumor growth publication-title: Genes Dev – volume: 514 start-page: 628 year: 2014 end-page: 632 ident: CR6 article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature – volume: 67 start-page: 563 year: 2007 end-page: 572 ident: CR23 article-title: Hypoxia‐inducible factor‐1a is a key regulator of metastasis in a transgenic model of cancer initiation and progression publication-title: Cancer Res – volume: 13 start-page: 467 year: 2007 end-page: 474 ident: CR35 article-title: BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer publication-title: Clin Cancer Res – volume: 7 start-page: 872 year: 2012 end-page: 881 ident: CR58 article-title: A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue publication-title: Nat Protocol – volume: 33 start-page: 175 year: 2010 end-page: 176 ident: CR43 article-title: Low levels of BNIP3 promoter hypermethylation in invasive breast cancer publication-title: Anal Cell Pathol – volume: 163 start-page: 2113 year: 2003 end-page: 2126 ident: CR20 article-title: Progression to Malignancy in the Polyoma Middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases publication-title: Am J Path – volume: 23 start-page: 404 year: 2009 ident: CR14 article-title: Snapshot: Bcl2 proteins publication-title: Cell – volume: 24 start-page: 3846 year: 2005 end-page: 3858 ident: CR12 article-title: Two transcriptional mechanisms cooperate for the bulk of HIF‐1‐responsive gene expression publication-title: EMBO J – volume: 320 start-page: 661 year: 2008 end-page: 664 ident: CR51 article-title: ROS‐generating mitochondrial DNA mutations can regulate tumor cell metastasis publication-title: Science – volume: 1 start-page: 393 year: 2005 end-page: 399 ident: CR28 article-title: Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF‐alpha activation publication-title: Cell Metab – volume: 9 start-page: 175 year: 2009 end-page: 182 ident: CR36 article-title: Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features publication-title: BMC Cancer – volume: 463 start-page: 899 year: 2010 end-page: 905 ident: CR44 article-title: The landscape of somatic copy‐number alteration across human cancers publication-title: Nature – volume: 1 start-page: 401 year: 2005 end-page: 408 ident: CR30 article-title: Mitochondrial complex III is required for hypoxia‐induced ROS production and cellular oxygen sensing publication-title: Cell Metab – volume: 283 start-page: 10892 year: 2008 end-page: 10903 ident: CR16 article-title: Mitochondrial autophagy is a HIF‐1 dependent adaptive metabolic response to hypoxia publication-title: J Biol Chem – volume: 331 start-page: 456 year: 2011 end-page: 461 ident: CR4 article-title: Phosphorylation of ULK1 (hATG1) by AMP‐activated protein kinase connects energy sensing to mitophagy publication-title: Science – volume: 23 start-page: 143 year: 2013 end-page: 158 ident: CR5 article-title: LKB1 inactivation dictates therapeutic response of non‐small cell lung cancer to the metabolism drug phenformin publication-title: Cancer Cell – volume: 14 start-page: 156 year: 2008 end-page: 165 ident: CR32 article-title: Hepatocyte necrosis induced by oxidative stress and IL‐1 alpha release mediate carcinogen‐induced compensatory proliferation and liver tumorigenesis publication-title: Cancer Cell – volume: 487 start-page: 380 year: 2012 end-page: 384 ident: CR55 article-title: SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia‐inducible factors publication-title: Nature – volume: 157 start-page: 65 year: 2014 end-page: 75 ident: CR2 article-title: To be or not to be? How selective autophagy and cell death govern cell fate publication-title: Cell – volume: 25 start-page: 1510 year: 2011 end-page: 1527 ident: CR22 article-title: Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis publication-title: Genes Dev – volume: 11 start-page: 45 year: 2010 end-page: 51 ident: CR53 article-title: Nix is a selective autophagy receptor for mitochondrial clearance publication-title: EMBO Rep – volume: 123 start-page: 3664 year: 2013 end-page: 3671 ident: CR26 article-title: HIF‐1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations publication-title: J Clin Invest – volume: 27 start-page: 1447 year: 2013 end-page: 1461 ident: CR9 article-title: Autophagy suppresses progression of K‐ras‐induced lung tumors to oncocytomas and maintains lipid homeostasis publication-title: Genes Dev – volume: 504 start-page: 296 year: 2013 end-page: 300 ident: CR10 article-title: p53 status determines the role of autophagy in pancreatic tumour development publication-title: Nature – volume: 275 start-page: 25130 year: 2000 end-page: 25138 ident: CR27 article-title: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia‐inducible factor‐1alpha during hypoxia: a mechanism of O sensing publication-title: J Biol Chem – volume: 11 start-page: 325 year: 2011 end-page: 337 ident: CR24 article-title: Otto Warburg's contributions to current concepts of cancer metabolism publication-title: Nat Rev Cancer – volume: 1 start-page: 409 year: 2005 end-page: 414 ident: CR29 article-title: Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation publication-title: Cell Metab – volume: 440 start-page: 1222 year: 2006 end-page: 1226 ident: CR18 article-title: Lysyl oxidase is essential for hypoxia‐induced metastasis publication-title: Nature – volume: 508 start-page: 108 year: 2014 end-page: 112 ident: CR7 article-title: Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides publication-title: Nature – volume: 12 start-page: 9 year: 2011 end-page: 14 ident: CR1 article-title: Mechanisms of Mitophagy publication-title: Nat Rev Mol Biol – ident: CR52 – volume: 74 start-page: 2579 year: 2014 end-page: 2590 ident: CR56 article-title: STAT3‐mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious publication-title: Cancer Res – volume: 48 start-page: 158 year: 2012 end-page: 167 ident: CR31 article-title: Physiological roles of mitochondrial reactive oxygen species publication-title: Mol Cell – volume: 34 start-page: 1699 year: 2013 end-page: 1712 ident: CR47 article-title: Metabolic phenotypes in triple‐negative breast cancer publication-title: Tumour Biol – volume: 11 start-page: 3094 year: 2005 end-page: 3101 ident: CR42 article-title: Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer publication-title: Clin Cancer Res – volume: 108 start-page: 16369 year: 2011 end-page: 16374 ident: CR19 article-title: Hypoxia‐inducible factor 1 is a master regulator of breast cancer metastatic niche formation publication-title: Proc Natl Acad Sci USA – volume: 92 start-page: 1165 year: 2005 end-page: 1172 ident: CR38 article-title: Aberrant methylation associated with silencing BNIP3 expression in haematopoietic tumours publication-title: Br J Cancer – volume: 20 start-page: 5454 year: 2000 end-page: 5468 ident: CR13 article-title: BNIP3 and genetic control of necrosis‐like cell death through the mitochondrial permeability transition pore publication-title: Mol Cell Biol – volume: 65 start-page: 9047 year: 2005 end-page: 9055 ident: CR25 article-title: Echinomycin, a small‐molecule inhibitor of hypoxia‐inducible factor‐1 DNA‐binding activity publication-title: Cancer Res – volume: 12 start-page: 4562 year: 2006 end-page: 4568 ident: CR46 article-title: Hypoxia‐inducible factor‐1alpha expression predicts a poor response to primary chemoendocrine therapy and disease‐free survival in primary human breast cancer publication-title: Clin Cancer Res – volume: 64 start-page: 5338 year: 2004 end-page: 5346 article-title: Silencing of the hypoxia‐inducible cell death protein BNIP3 in pancreatic cancer publication-title: Cancer Res – volume: 33 start-page: 175 year: 2010 end-page: 176 article-title: Low levels of BNIP3 promoter hypermethylation in invasive breast cancer publication-title: Anal Cell Pathol – volume: 23 start-page: 404 year: 2009 article-title: Snapshot: Bcl2 proteins publication-title: Cell – year: 2015 article-title: Transcriptional control of the autophagy‐lysosome system in pancreatic cancer publication-title: Nature – volume: 201 start-page: 573 year: 2003 end-page: 580 article-title: Expression of the cell death genes BNip3 and Nix in ductal carcinoma in situ of the breast; correlation of BNip3 levels with necrosis and grade publication-title: J Path – volume: 514 start-page: 628 year: 2014 end-page: 632 article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature – volume: 123 start-page: 3664 year: 2013 end-page: 3671 article-title: HIF‐1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations publication-title: J Clin Invest – volume: 16 start-page: 91 year: 2009 end-page: 102 article-title: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages publication-title: Cancer Cell – volume: 121 start-page: 2750 year: 2011 end-page: 2767 article-title: Identification of human triple‐negative breast cancer subtypes and preclinical models for selection of targeted therapies publication-title: J Clin Invest – volume: 157 start-page: 65 year: 2014 end-page: 75 article-title: To be or not to be? How selective autophagy and cell death govern cell fate publication-title: Cell – volume: 25 start-page: 717 year: 2011 end-page: 729 article-title: Pancreatic cancers require autophagy for tumor growth publication-title: Genes Dev – volume: 117 start-page: 2713 year: 2007 end-page: 2722 article-title: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma publication-title: J Clin Invest – volume: 320 start-page: 661 year: 2008 end-page: 664 article-title: ROS‐generating mitochondrial DNA mutations can regulate tumor cell metastasis publication-title: Science – volume: 61 start-page: 6669 year: 2001 end-page: 6673 article-title: HIF1‐dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors publication-title: Cancer Res – volume: 440 start-page: 1222 year: 2006 end-page: 1226 article-title: Lysyl oxidase is essential for hypoxia‐induced metastasis publication-title: Nature – volume: 463 start-page: 899 year: 2010 end-page: 905 article-title: The landscape of somatic copy‐number alteration across human cancers publication-title: Nature – volume: 12 start-page: 4562 year: 2006 end-page: 4568 article-title: Hypoxia‐inducible factor‐1alpha expression predicts a poor response to primary chemoendocrine therapy and disease‐free survival in primary human breast cancer publication-title: Clin Cancer Res – volume: 14 start-page: 156 year: 2008 end-page: 165 article-title: Hepatocyte necrosis induced by oxidative stress and IL‐1 alpha release mediate carcinogen‐induced compensatory proliferation and liver tumorigenesis publication-title: Cancer Cell – volume: 25 start-page: 1510 year: 2011 end-page: 1527 article-title: Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis publication-title: Genes Dev – volume: 487 start-page: 380 year: 2012 end-page: 384 article-title: SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia‐inducible factors publication-title: Nature – volume: 508 start-page: 108 year: 2014 end-page: 112 article-title: Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides publication-title: Nature – volume: 1 start-page: 409 year: 2005 end-page: 414 article-title: Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation publication-title: Cell Metab – volume: 11 start-page: 325 year: 2011 end-page: 337 article-title: Otto Warburg's contributions to current concepts of cancer metabolism publication-title: Nat Rev Cancer – volume: 20 start-page: 5454 year: 2000 end-page: 5468 article-title: BNIP3 and genetic control of necrosis‐like cell death through the mitochondrial permeability transition pore publication-title: Mol Cell Biol – volume: 32 start-page: 2570 year: 2012 end-page: 2584 article-title: BNip3 regulates mitochondrial function and lipid metabolism in the liver publication-title: Mol Cell Biol – volume: 11 start-page: 3094 year: 2005 end-page: 3101 article-title: Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer publication-title: Clin Cancer Res – volume: 287 start-page: 19094 year: 2012 end-page: 19104 article-title: Microtubule‐associated protein 1 light chain 3 (LC3) interacts with BNip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy publication-title: J Biol Chem – volume: 9 start-page: 175 year: 2009 end-page: 182 article-title: Expression of BNIP3 in invasive breast cancer: correlations with the hypoxic response and clinicopathological features publication-title: BMC Cancer – volume: 92 start-page: 1165 year: 2005 end-page: 1172 article-title: Aberrant methylation associated with silencing BNIP3 expression in haematopoietic tumours publication-title: Br J Cancer – volume: 24 start-page: 4421 year: 2005 end-page: 4432 article-title: Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis publication-title: Oncogene – volume: 13 start-page: 467 year: 2007 end-page: 474 article-title: BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer publication-title: Clin Cancer Res – volume: 163 start-page: 2113 year: 2003 end-page: 2126 article-title: Progression to Malignancy in the Polyoma Middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases publication-title: Am J Path – volume: 7 start-page: 872 year: 2012 end-page: 881 article-title: A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue publication-title: Nat Protocol – volume: 48 start-page: 158 year: 2012 end-page: 167 article-title: Physiological roles of mitochondrial reactive oxygen species publication-title: Mol Cell – volume: 8 start-page: 1831 year: 2002 end-page: 1837 article-title: Overexpression of hypoxia‐inducible factor 1alpha is associated with an unfavorable prognosis in lymph node‐positive breast cancer publication-title: Clin Cancer Res – volume: 1 start-page: 401 year: 2005 end-page: 408 article-title: Mitochondrial complex III is required for hypoxia‐induced ROS production and cellular oxygen sensing publication-title: Cell Metab – volume: 11 start-page: 1021 year: 2005 end-page: 1027 article-title: Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer publication-title: Clin Cancer Res – volume: 15 start-page: 411 year: 2014 end-page: 421 article-title: Cellular mechanisms and physiological consequences of redox‐dependent signalling publication-title: Nat Rev Mol Cell Biol – volume: 1 start-page: 393 year: 2005 end-page: 399 article-title: Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF‐alpha activation publication-title: Cell Metab – volume: 23 start-page: 143 year: 2013 end-page: 158 article-title: LKB1 inactivation dictates therapeutic response of non‐small cell lung cancer to the metabolism drug phenformin publication-title: Cancer Cell – volume: 275 start-page: 25130 year: 2000 end-page: 25138 article-title: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia‐inducible factor‐1alpha during hypoxia: a mechanism of O sensing publication-title: J Biol Chem – volume: 283 start-page: 10892 year: 2008 end-page: 10903 article-title: Mitochondrial autophagy is a HIF‐1 dependent adaptive metabolic response to hypoxia publication-title: J Biol Chem – volume: 8 start-page: 367 year: 2001 end-page: 376 article-title: Hypoxia induces the expression of the pro‐apoptotic gene BNIP3 publication-title: Cell Death Diff – volume: 65 start-page: 9047 year: 2005 end-page: 9055 article-title: Echinomycin, a small‐molecule inhibitor of hypoxia‐inducible factor‐1 DNA‐binding activity publication-title: Cancer Res – volume: 3 start-page: 1 year: 2015 end-page: 11 article-title: Mitophagy & Cancer publication-title: Cancer Metabol – volume: 107 start-page: 8788 year: 2010 end-page: 8793 article-title: Mitochondrial metabolism and ROS generation are essential for Kras‐mediated tumorigenicity publication-title: Proc Natl Acad Sci USA – volume: 35 start-page: 505 year: 2010 end-page: 513 article-title: Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes publication-title: TIBS – volume: 27 start-page: 1447 year: 2013 end-page: 1461 article-title: Autophagy suppresses progression of K‐ras‐induced lung tumors to oncocytomas and maintains lipid homeostasis publication-title: Genes Dev – volume: 11 start-page: 45 year: 2010 end-page: 51 article-title: Nix is a selective autophagy receptor for mitochondrial clearance publication-title: EMBO Rep – volume: 74 start-page: 2579 year: 2014 end-page: 2590 article-title: STAT3‐mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious publication-title: Cancer Res – volume: 108 start-page: 16369 year: 2011 end-page: 16374 article-title: Hypoxia‐inducible factor 1 is a master regulator of breast cancer metastatic niche formation publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 3846 year: 2005 end-page: 3858 article-title: Two transcriptional mechanisms cooperate for the bulk of HIF‐1‐responsive gene expression publication-title: EMBO J – volume: 12 start-page: 9 year: 2011 end-page: 14 article-title: Mechanisms of Mitophagy publication-title: Nat Rev Mol Biol – volume: 34 start-page: 1699 year: 2013 end-page: 1712 article-title: Metabolic phenotypes in triple‐negative breast cancer publication-title: Tumour Biol – volume: 504 start-page: 296 year: 2013 end-page: 300 article-title: p53 status determines the role of autophagy in pancreatic tumour development publication-title: Nature – volume: 117 start-page: 2825 year: 2007 end-page: 2833 article-title: Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of BNip3 restrains postinfarction remodeling in mice publication-title: J Clin Invest – volume: 27 start-page: 6229 year: 2007 end-page: 6242 article-title: BNIP3 is a RB/E2F target gene required for hypoxia‐induced autophagy publication-title: Mol Cell Biol – volume: 67 start-page: 563 year: 2007 end-page: 572 article-title: Hypoxia‐inducible factor‐1a is a key regulator of metastasis in a transgenic model of cancer initiation and progression publication-title: Cancer Res – volume: 331 start-page: 456 year: 2011 end-page: 461 article-title: Phosphorylation of ULK1 (hATG1) by AMP‐activated protein kinase connects energy sensing to mitophagy publication-title: Science – ident: e_1_2_8_31_1 doi: 10.1016/j.cmet.2005.05.001 – ident: e_1_2_8_4_1 doi: 10.1128/MCB.02246-06 – ident: e_1_2_8_8_1 doi: 10.1038/nature13110 – ident: e_1_2_8_46_1 doi: 10.1016/S0002-9440(10)64554-3 – ident: e_1_2_8_49_1 doi: 10.1016/j.tibs.2010.04.002 – ident: e_1_2_8_43_1 doi: 10.1158/1078-0432.CCR-04-1785 – ident: e_1_2_8_13_1 doi: 10.1038/sj.emboj.7600846 – ident: e_1_2_8_29_1 doi: 10.1016/j.cmet.2005.05.003 – ident: e_1_2_8_32_1 doi: 10.1016/j.molcel.2012.09.025 – ident: e_1_2_8_22_1 doi: 10.1016/j.ccr.2009.06.018 – ident: e_1_2_8_42_1 doi: 10.1038/sj.onc.1208642 – ident: e_1_2_8_24_1 doi: 10.1158/0008-5472.CAN-06-2701 – ident: e_1_2_8_45_1 doi: 10.1038/nature08822 – ident: e_1_2_8_3_1 doi: 10.1016/j.cell.2014.02.049 – ident: e_1_2_8_34_1 doi: 10.1002/path.1486 – ident: e_1_2_8_23_1 doi: 10.1101/gad.2051011 – ident: e_1_2_8_9_1 doi: 10.1101/gad.2016111 – volume: 61 start-page: 6669 year: 2001 ident: e_1_2_8_35_1 article-title: HIF1‐dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors publication-title: Cancer Res – ident: e_1_2_8_50_1 doi: 10.1073/pnas.1003428107 – ident: e_1_2_8_56_1 doi: 10.1038/nature11207 – ident: e_1_2_8_58_1 doi: 10.1172/JCI32490 – ident: e_1_2_8_28_1 doi: 10.1074/jbc.M001914200 – ident: e_1_2_8_19_1 doi: 10.1038/nature04695 – ident: e_1_2_8_36_1 doi: 10.1158/1078-0432.CCR-06-1466 – ident: e_1_2_8_55_1 doi: 10.1186/s40170-015-0130-8 – volume: 11 start-page: 1021 year: 2005 ident: e_1_2_8_40_1 article-title: Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.1021.11.3 – ident: e_1_2_8_26_1 doi: 10.1158/0008-5472.CAN-05-1235 – volume: 23 start-page: 404 year: 2009 ident: e_1_2_8_15_1 article-title: Snapshot: Bcl2 proteins publication-title: Cell – ident: e_1_2_8_39_1 doi: 10.1038/sj.bjc.6602422 – ident: e_1_2_8_48_1 doi: 10.1007/s13277-013-0707-1 – ident: e_1_2_8_5_1 doi: 10.1126/science.1196371 – ident: e_1_2_8_44_1 doi: 10.1155/2010/852197 – ident: e_1_2_8_6_1 doi: 10.1016/j.ccr.2012.12.008 – ident: e_1_2_8_11_1 doi: 10.1038/nature12865 – ident: e_1_2_8_41_1 doi: 10.1172/JCI31457 – ident: e_1_2_8_7_1 doi: 10.1038/nature13611 – ident: e_1_2_8_53_1 doi: 10.1038/nature14587 – ident: e_1_2_8_57_1 doi: 10.1158/0008-5472.CAN-13-3470 – ident: e_1_2_8_47_1 doi: 10.1158/1078-0432.CCR-05-2690 – ident: e_1_2_8_12_1 doi: 10.1038/sj.cdd.4400810 – ident: e_1_2_8_37_1 doi: 10.1186/1471-2407-9-175 – ident: e_1_2_8_60_1 doi: 10.1172/JCI45014 – ident: e_1_2_8_17_1 doi: 10.1074/jbc.M800102200 – ident: e_1_2_8_20_1 doi: 10.1073/pnas.1113483108 – ident: e_1_2_8_16_1 doi: 10.1128/MCB.00167-12 – ident: e_1_2_8_18_1 doi: 10.1074/jbc.M111.322933 – ident: e_1_2_8_30_1 doi: 10.1016/j.cmet.2005.05.002 – ident: e_1_2_8_54_1 doi: 10.1038/embor.2009.256 – ident: e_1_2_8_59_1 doi: 10.1038/nprot.2012.024 – ident: e_1_2_8_51_1 doi: 10.1038/nrm3801 – ident: e_1_2_8_10_1 doi: 10.1101/gad.219642.113 – ident: e_1_2_8_33_1 doi: 10.1016/j.ccr.2008.06.016 – ident: e_1_2_8_14_1 doi: 10.1128/MCB.20.15.5454-5468.2000 – ident: e_1_2_8_52_1 doi: 10.1126/science.1156906 – ident: e_1_2_8_25_1 doi: 10.1038/nrc3038 – ident: e_1_2_8_38_1 doi: 10.1158/0008-5472.CAN-04-0089 – ident: e_1_2_8_27_1 doi: 10.1172/JCI67230 – ident: e_1_2_8_2_1 doi: 10.1038/nrm3028 – ident: e_1_2_8_21_1 doi: 10.1016/S0002-9440(10)63568-7 |
SSID | ssj0005978 |
Score | 2.5880494 |
Snippet | BNip3 is a hypoxia‐inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a... BNip3 is a hypoxia-inducible protein that targets mitochondria for autophagosomal degradation. We report a novel tumor suppressor role for BNip3 in a... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1145 |
SubjectTerms | Angiogenesis Animals Autophagy Biomarkers, Tumor - analysis BNip3 Breast cancer Defects Disease Progression EMBO03 EMBO07 Female Genes Glycolysis HIF-1α Humans Hypoxia Hypoxia-Inducible Factor 1, alpha Subunit - metabolism invasive carcinoma Lung Neoplasms - secondary Mammary Neoplasms, Experimental - metabolism Mammary Neoplasms, Experimental - pathology Membrane Proteins - deficiency Membrane Proteins - genetics Membrane Proteins - metabolism Metastasis Mice Mitochondria Mitochondrial Proteins - deficiency Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Mitophagy Neoplasm Metastasis Neovascularization, Pathologic - metabolism Prognosis Reactive Oxygen Species - metabolism Rodents ROS Triple Negative Breast Neoplasms - metabolism Triple Negative Breast Neoplasms - pathology Tumors |
Title | Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis |
URI | https://api.istex.fr/ark:/67375/WNG-42LNK323-C/fulltext.pdf https://link.springer.com/article/10.15252/embr.201540759 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembr.201540759 https://www.ncbi.nlm.nih.gov/pubmed/26232272 https://www.proquest.com/docview/1708933576 https://www.proquest.com/docview/1709713046 https://pubmed.ncbi.nlm.nih.gov/PMC4576983 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgE2gvCMZXYCAjIQQPYY7txMkjKxuD0T4gJsqTZTsOVFvTqk0l9t9z56RhFZsQL1EiX2LHd2ff6e5-JuSls0xYJcrYpobFiCgXGy6KOLGZdJlxmZNYKDwcZcen8tM4HXcgSVgLczl-n_KU7_upRdjOBIHi0uIm2U5h1UVRHmSDP7kcRVhyQeuLmPNk3GH4XPGBje1nG2fy11W25d8pkn2cdNOKDdvQ0V1yp7Mf6buW4ffIDV_vklvtiZIXu-T2sIuV3yffhxMEDTA_LmjpQ9IGxQMH4esUa0rowWgyF_QcRknnISfP06kJlWy0WU1nCxpSt1rYDtrM6NQ3BkzJ5WT5gJweHX4dHMfdQQqxy3JVxIqZyvJClaaSwALnvGLSKMdLVbLUc2aFZFVlUlD2CnxlV3jvsxKWvjyzuarEQ7JVz2r_mNA8U5I5dBttJSuDvjXnnpUleELW2iQib9fzq12HMo6HXZxr9DaQIRoZonuGROR1_8K8Bdi4nvRVYFhPZxZnmJemUv1t9EFL_nl0IrjQg4jsrTmqO5Vc6kQxsM0E-FcRedE3gzJhhMTUfrYKNAV47UwCzaNWAPrOOBiKnCseEbUhGj0BAnVvttSTnwGwW0KnRS4i8mYtRJeGdd2_iiBl_5oTfTg8-NI_PfmPHp6SHbxv8-X2yFazWPlnYGA19nlQLri-_3jyG-3UHiw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJj5eEIyvwAAjIQQPAdd24uSRVRuFtX1AmyhPlu04ULGmVZtK7L_H56RhFZsQj4kvtuPz2Xe6u98BvLKGciN5EZtE0xgR5WLNeB73TCpsqm1qBSYKj8bp4FR8niSTFiQJc2Eu-u8TlrD3bmYQtrOHQHFJfh120W2JIPn9tP8nliMPR66X-jxmrDdpMXwu6WDr-tnFlfx1mW75d4hk5yfd1mLDNXR0F-60-iP50DD8Hlxz1R7caCpKnu_BzVHrK78P30ZTBA3Q389J4ULQBsGCg753gjkl5GA8XXBy5mdJFiEmz5GZDplspF7P5ksSQrca2A5Sz8nM1dqrkqvp6gGcHh2e9AdxW0ghtmkm81hSXRqWy0KXwrPAWiep0NKyQhY0cYwaLmhZ6sQLe-ltZZs759LCH31ZajJZ8oewU80r9xhIlkpBLZqNphSlRtuaMUeLwltCxpheBO8266tsizKOxS7OFFobyBCFDFEdQyJ4032waAA2riZ9HRjW0enlT4xLk4n6Ov6oBBuOjznjqh_B_oajqhXJlepJ6nUz7u2rCF52zV6Y0EOiKzdfB5rcW-1UeJpHzQboBmNeUWRMsgjk1tboCBCoe7ulmv4IgN3CD5pnPIK3m010YVpX_SsPu-xfa6IORwdfuqcn_zHCC7g1OBkN1fDT-Pgp3Mb3TezcPuzUy7V75pWt2jwPgvYbziAgIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJiZeEIyvwAAjIQQPYa7txM0jKyuDrRVCTHRPlu04ULGmVZtK7L_H53xAxSbEY-KL7fjO9p388-8AXlhDuZE8j02iaYyMcrFmPIt7JhU21Ta1Ai8Kj8bp0an4OEkmDTZn1aLd2yPJ-k4DsjSV1f4iL9p8PWzfzQySefaQPi7JrsM2EnUhom-QDn4jPLKwEPu1IIsZ600aZp9LKtjYlLZxfH9e5nH-DZzsTk83fduwOQ1vw63GqyRvazO4A9dcuQs36jyTF7uwM2pO0O_C2WiKVAL62wXJXYByEExD6GsneNOEHIynC07OfS_JIiD1HJnpcL-NVOvZfEkCoKsm8yDVnMxcpb2DuZqu7sHp8PDL4Chu0ivENu3LLJZUF4ZlMteF8Iqx1kkqtLQslzlNHKOGC1oUOvFLQOEjaJs559LcL4j91PRlwe_DVjkv3UMg_VQKajGYNIUoNEbcjDma5z4-Msb0InjTjq-yDfc4psA4VxiDoEIUKkR1CongVffBoqbduFr0ZVBYJ6eXPxCtJhP1dfxeCXYyPuaMq0EEe61GVTNRV6onqffYuI-6InjeFfsphucmunTzdZDJfCxPhZd5UBtA1xjz7iNjkkUgN0yjE0D67s2Scvo90HgL32jW5xG8bo3oj25d9a88WNm_xkQdjg4-d0-P_qOFZ7Dz6d1QnXwYHz-Gm_i6BtTtwVa1XLsn3gOrzNMwz34Bdfsocg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitophagy+defects+arising+from+BNip3+loss+promote+mammary+tumor+progression+to+metastasis&rft.jtitle=EMBO+reports&rft.au=Chourasia%2C+Aparajita+H&rft.au=Tracy%2C+Kristin&rft.au=Frankenberger%2C+Casey&rft.au=Boland%2C+Michelle+L&rft.date=2015-09-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=16&rft.issue=9&rft.spage=1145&rft.epage=1163&rft_id=info:doi/10.15252%2Fembr.201540759&rft_id=info%3Apmid%2F26232272&rft.externalDocID=PMC4576983 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon |