The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics

The chalcogen bond is a nonclassical σ‐hole‐based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harbori...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 53; no. 38; pp. 10139 - 10142
Main Authors Fanfrlík, Jindřich, Přáda, Adam, Padělková, Zdeňka, Pecina, Adam, Macháček, Jan, Lepšík, Martin, Holub, Josef, Růžička, Aleš, Hnyk, Drahomír, Hobza, Pavel
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 15.09.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201405901

Cover

Abstract The chalcogen bond is a nonclassical σ‐hole‐based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl‐substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ‐hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design. Chalcogen bonds of thiaboranes were found to be considerably stronger than σ‐hole bonds in organic compounds. The reason is the highly positive belt of σ‐holes on the positively charged sulfur atom. The charge distribution is the driving force for chalcogen bonding of thiaboranes.
AbstractList The chalcogen bond is a nonclassical σ‐hole‐based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl‐substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ‐hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design. Chalcogen bonds of thiaboranes were found to be considerably stronger than σ‐hole bonds in organic compounds. The reason is the highly positive belt of σ‐holes on the positively charged sulfur atom. The charge distribution is the driving force for chalcogen bonding of thiaboranes.
The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.
The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.
The chalcogen bond is a nonclassical sigma -hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2Daromatics, but has so far never been observed in 3Daromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur pi type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive sigma -hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design. Chalcogen bonds of thiaboranes were found to be considerably stronger than sigma -hole bonds in organic compounds. The reason is the highly positive belt of sigma -holes on the positively charged sulfur atom. The charge distribution is the driving force for chalcogen bonding of thiaboranes.
The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2Daromatics, but has so far never been observed in 3Daromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfurπ type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.
Author Fanfrlík, Jindřich
Holub, Josef
Macháček, Jan
Lepšík, Martin
Růžička, Aleš
Hnyk, Drahomír
Přáda, Adam
Hobza, Pavel
Pecina, Adam
Padělková, Zdeňka
Author_xml – sequence: 1
  givenname: Jindřich
  surname: Fanfrlík
  fullname: Fanfrlík, Jindřich
  organization: Gilead Sciences Research Center and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
– sequence: 2
  givenname: Adam
  surname: Přáda
  fullname: Přáda, Adam
  organization: Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i. 25068 Řež u Prahy (Czech Republic)
– sequence: 3
  givenname: Zdeňka
  surname: Padělková
  fullname: Padělková, Zdeňka
  organization: University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic)
– sequence: 4
  givenname: Adam
  surname: Pecina
  fullname: Pecina, Adam
  organization: Gilead Sciences Research Center and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
– sequence: 5
  givenname: Jan
  surname: Macháček
  fullname: Macháček, Jan
  organization: Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i. 25068 Řež u Prahy (Czech Republic)
– sequence: 6
  givenname: Martin
  surname: Lepšík
  fullname: Lepšík, Martin
  organization: Gilead Sciences Research Center and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
– sequence: 7
  givenname: Josef
  surname: Holub
  fullname: Holub, Josef
  organization: Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i. 25068 Řež u Prahy (Czech Republic)
– sequence: 8
  givenname: Aleš
  surname: Růžička
  fullname: Růžička, Aleš
  email: ales.ruzicka@upce.cz
  organization: University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic)
– sequence: 9
  givenname: Drahomír
  surname: Hnyk
  fullname: Hnyk, Drahomír
  email: hnyk@iic.cas.cz
  organization: Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i. 25068 Řež u Prahy (Czech Republic)
– sequence: 10
  givenname: Pavel
  surname: Hobza
  fullname: Hobza, Pavel
  email: hobza@uochb.cas.cz
  organization: Gilead Sciences Research Center and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25066639$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv0zAYhi00xLbClSOKxIVLOn92bCfHko5tYowJFcHNcpMvm7fEHnYq6L_HUbcJTUJwsS3reT7Z73tI9px3SMhroHOglB0ZZ3HOKBRUVBSekQMQDHKuFN9L54LzXJUC9slhjDeJL0sqX5B9JqiUklcH5HJ1jdnSD9YZN2ZffI-Z77L62vSNv0KXvfeute4qsy4bE1mHbRxNn12a5na6TixbHvFltgh-MKNt4kvyvDN9xFf3-4x8_XC8qk_z888nZ_XiPG9kqSAHUXZCKA6AKNoO6fSiqlJMyQpl2yqKUGJa1qLkhstGrEVhKsGRgmpawWfk3W7uXfA_NhhHPdjYYN8bh34TNSgKtFCM_wcqJAArWQptRt4-QW_8Jrj0kYmiiWCKJ-rNPbVZD9jqu2AHE7b6IdYEFDugCT7GgJ1u7Jji8W4MxvYaqJ7a01N7-rG9pM2faA-T_ypUO-Gn7XH7D1ovLs6O_3TznWvjiL8eXRNutVRcCf3t4kSv6vL7x0-noDn_DcP_tv8
CODEN ACIEAY
CitedBy_id crossref_primary_10_1002_chem_201904762
crossref_primary_10_1002_open_202000323
crossref_primary_10_1039_C8CE01853G
crossref_primary_10_1021_jp511101n
crossref_primary_10_1021_acs_jpca_8b11490
crossref_primary_10_1080_17415993_2016_1244269
crossref_primary_10_1021_acs_inorgchem_3c03141
crossref_primary_10_1021_cg5016687
crossref_primary_10_1002_cphc_201800409
crossref_primary_10_1016_j_ccr_2020_213243
crossref_primary_10_1021_acs_inorgchem_6b02320
crossref_primary_10_1002_chem_201803393
crossref_primary_10_3390_cryst13050766
crossref_primary_10_1002_cplu_201900115
crossref_primary_10_1007_s00894_015_2701_6
crossref_primary_10_1021_acs_chemmater_0c01401
crossref_primary_10_1039_D4OB00944D
crossref_primary_10_1002_chem_201800820
crossref_primary_10_1039_C7CP02762A
crossref_primary_10_1039_C8CP03937B
crossref_primary_10_1021_acs_inorgchem_2c00971
crossref_primary_10_1063_5_0076872
crossref_primary_10_1021_acs_inorgchem_5b02102
crossref_primary_10_1039_C4FD00183D
crossref_primary_10_1021_jp509212t
crossref_primary_10_1039_C7CE01266G
crossref_primary_10_1002_chem_201705428
crossref_primary_10_1002_jcc_26489
crossref_primary_10_1039_D0CP05033D
crossref_primary_10_1021_acs_cgd_5b01807
crossref_primary_10_1002_cphc_201900899
crossref_primary_10_1021_acs_inorgchem_8b03037
crossref_primary_10_1039_D3CP00978E
crossref_primary_10_1088_1361_648X_ab8253
crossref_primary_10_1021_acs_chemrev_5b00560
crossref_primary_10_1007_s00214_016_1972_z
crossref_primary_10_1021_acs_cgd_6b00358
crossref_primary_10_1002_cplu_201800174
crossref_primary_10_1039_D1DT03925C
crossref_primary_10_1002_anie_201810637
crossref_primary_10_1039_C8CP04401E
crossref_primary_10_1016_j_isci_2024_108917
crossref_primary_10_1016_j_chemphys_2017_11_014
crossref_primary_10_1021_acs_langmuir_7b03306
crossref_primary_10_1002_hlca_201800014
crossref_primary_10_1021_ic5023328
crossref_primary_10_1002_cphc_201600848
crossref_primary_10_3390_molecules24142657
crossref_primary_10_1002_anie_202219018
crossref_primary_10_1021_acs_inorgchem_1c00796
crossref_primary_10_1002_qua_25837
crossref_primary_10_1002_ange_201810637
crossref_primary_10_1002_hlca_201600328
crossref_primary_10_1063_1_4944088
crossref_primary_10_1002_cphc_201500211
crossref_primary_10_3390_inorganics6030064
crossref_primary_10_1039_C6CE01861K
crossref_primary_10_1039_D2QO00684G
crossref_primary_10_1039_C7CP07422K
crossref_primary_10_1080_00268976_2018_1539259
crossref_primary_10_3390_antiox8100487
crossref_primary_10_1021_acs_jpca_5b03359
crossref_primary_10_1039_D4CP00057A
crossref_primary_10_1002_ejic_202400053
crossref_primary_10_1021_acs_inorgchem_0c00917
crossref_primary_10_1039_C7DT02845H
crossref_primary_10_1002_chem_201802656
crossref_primary_10_3390_cryst8100390
crossref_primary_10_1002_chem_201805131
crossref_primary_10_1002_chem_202401346
crossref_primary_10_1021_acs_jpca_3c06093
crossref_primary_10_1021_acs_jpcc_9b10935
crossref_primary_10_1039_C6CE01703G
crossref_primary_10_1021_acs_inorgchem_3c01837
crossref_primary_10_1039_C5CC10363K
crossref_primary_10_1021_acs_orglett_6b02557
crossref_primary_10_3390_cryst11080877
crossref_primary_10_1002_ange_202419677
crossref_primary_10_1002_chem_201905786
crossref_primary_10_1021_acs_jpca_2c08965
crossref_primary_10_1002_cphc_201500314
crossref_primary_10_1039_D1CE01046H
crossref_primary_10_1039_C5CP03617H
crossref_primary_10_1002_anie_202202137
crossref_primary_10_1021_acs_chemrev_5b00527
crossref_primary_10_1039_C8CC06797J
crossref_primary_10_1002_ange_202219018
crossref_primary_10_1039_C9CP03301G
crossref_primary_10_1039_C7CE00033B
crossref_primary_10_1002_anie_202419677
crossref_primary_10_1016_j_ccr_2016_09_002
crossref_primary_10_1002_ange_202010462
crossref_primary_10_1007_s12039_019_1708_4
crossref_primary_10_1002_cphc_202300326
crossref_primary_10_1021_acs_inorgchem_9b00875
crossref_primary_10_1002_ange_202202137
crossref_primary_10_1016_j_ica_2017_09_005
crossref_primary_10_1021_ja512183e
crossref_primary_10_1039_D3CP03479H
crossref_primary_10_1016_j_molstruc_2016_11_085
crossref_primary_10_1021_acs_jpca_3c04097
crossref_primary_10_1039_C7DT01685A
crossref_primary_10_3390_molecules28227520
crossref_primary_10_1021_jacs_6b12745
crossref_primary_10_1002_chem_201504328
crossref_primary_10_1021_acs_inorgchem_7b01259
crossref_primary_10_1002_qua_25369
crossref_primary_10_1021_acs_inorgchem_6b02073
crossref_primary_10_1021_acs_jpca_7b06479
crossref_primary_10_1021_acs_jpca_4c00541
crossref_primary_10_1039_C8NJ00553B
crossref_primary_10_1039_C7CP08215K
crossref_primary_10_3390_cryst8040163
crossref_primary_10_1002_anie_202010462
crossref_primary_10_1002_anie_202406751
crossref_primary_10_3390_molecules25051200
crossref_primary_10_1039_C7CP05537D
crossref_primary_10_1002_ange_202406751
crossref_primary_10_1039_D3CS00431G
crossref_primary_10_1016_j_comptc_2018_11_011
crossref_primary_10_1021_acs_joc_5b01985
crossref_primary_10_1039_D0CP02880K
crossref_primary_10_1016_j_fuel_2024_131673
crossref_primary_10_1002_chem_202400385
Cites_doi 10.1021/ja026472q
10.1246/cl.2001.132
10.1074/jbc.274.46.32909
10.1021/ja027146d
10.1021/jp0143645
10.1021/jm3012068
10.1073/pnas.0507577102
10.1021/ct300647k
10.1201/b11199
10.1021/cr0300892
10.1007/s00894-006-0130-2
10.1002/anie.201006781
10.1021/ja973109o
10.1002/anie.201307583
10.1002/cphc.200500648
10.1021/ja00033a004
10.1021/cb400526n
10.1002/ange.201307583
10.1080/00268948408078687
10.1039/B512345C
10.1007/s00894-011-1015-6
10.1039/C3CP55188A
10.1002/ange.201006781
10.1021/jp904128b
10.1021/la051122d
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/anie.201405901
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 10142
ExternalDocumentID 3426181751
25066639
10_1002_anie_201405901
ANIE201405901
ark_67375_WNG_TC8XKMH1_3
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Czech Science Foundation
  funderid: P208/12/G016; P208/10/2269
– fundername: Czech Ministry of Education, Youth and Sports
– fundername: IOCB Research Centre
– fundername: Academy of Sciences of the Czech Republic
– fundername: Gilead Sciences
– fundername: European Science Fund
  funderid: CZ.1.05/2.1.00/03.0058
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c6871-158f557311ee5dfe050669972769e6dd70e18e0e1b583a36c5b54a953e017cd53
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:16:55 EDT 2025
Fri Jul 11 10:46:58 EDT 2025
Fri Jul 25 12:09:41 EDT 2025
Thu Apr 03 07:09:04 EDT 2025
Tue Jul 01 03:26:37 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Wed Aug 20 07:27:49 EDT 2025
Tue Sep 09 05:32:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords boranes
X-ray diffraction
chalcogen bonds
sulfur
crystal structures
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6871-158f557311ee5dfe050669972769e6dd70e18e0e1b583a36c5b54a953e017cd53
Notes istex:2E0D9D907122F70775D4DA797DBA3D01A2758165
Czech Science Foundation - No. P208/12/G016; No. P208/10/2269
ark:/67375/WNG-TC8XKMH1-3
IOCB Research Centre
ArticleID:ANIE201405901
Academy of Sciences of the Czech Republic
Czech Ministry of Education, Youth and Sports
This work was supported by research projects RVO 61388963 awarded by the Academy of Sciences of the Czech Republic. We acknowledge the financial support of the Czech Science Foundation (J.F., A.P., M.L., P.H.: grant number P208/12/G016; D.H.: grant number P208/10/2269). We also thank the Gilead Sciences and IOCB Research Centre for financial support. This work was also supported by the Operational Program Research and Development for Innovations-European Science Fund (grant number CZ.1.05/2.1.00/03.0058). This work was supported by the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund and the national budget of the Czech Republic via the Research and Development for Innovations Operational Programme, as well as Czech Ministry of Education, Youth and Sports via the project Large Research, Development and Innovations Infrastructures (LM2011033).
Gilead Sciences
European Science Fund - No. CZ.1.05/2.1.00/03.0058
These authors contributed equally to this work.
This work was supported by research projects RVO 61388963 awarded by the Academy of Sciences of the Czech Republic. We acknowledge the financial support of the Czech Science Foundation (J.F., A.P., M.L., P.H.: grant number P208/12/G016; D.H.: grant number P208/10/2269). We also thank the Gilead Sciences and IOCB Research Centre for financial support. This work was also supported by the Operational Program Research and Development for Innovations—European Science Fund (grant number CZ.1.05/2.1.00/03.0058). This work was supported by the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund and the national budget of the Czech Republic via the Research and Development for Innovations Operational Programme, as well as Czech Ministry of Education, Youth and Sports via the project Large Research, Development and Innovations Infrastructures (LM2011033).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25066639
PQID 1560773273
PQPubID 946352
PageCount 4
ParticipantIDs proquest_miscellaneous_1701047235
proquest_miscellaneous_1561128277
proquest_journals_1560773273
pubmed_primary_25066639
crossref_citationtrail_10_1002_anie_201405901
crossref_primary_10_1002_anie_201405901
wiley_primary_10_1002_anie_201405901_ANIE201405901
istex_primary_ark_67375_WNG_TC8XKMH1_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 15, 2014
PublicationDateYYYYMMDD 2014-09-15
PublicationDate_xml – month: 09
  year: 2014
  text: September 15, 2014
  day: 15
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References K. Bender, I. Hennig, D. Schweitzer, Mol. Cryst. Liq. Cryst. 1984, 108, 359-371.
M. Kolář, J. Hostaš, P. Hobza, Phys. Chem. Chem. Phys. 2014, 16, 9987-9996
J. Macháček, J. Plešek, J. Holub, D. Hnyk, V. Všetečka, I. Císařová, M. Kaupp, B. Štíbr, Dalton Trans. 2006, 8, 1024-1029.
M. Iwaoka, S. Takemoto, M. Okada, S. Tomoda, Chem. Lett. 2001, 132-133.
Angew. Chem. Int. Ed. 2011, 50, 314-319.
Angew. Chem. Int. Ed. 2013, 52, 13760-13763.
J. Fanfrlík, M. Lepšík, D. Horinek, Z. Havlas, P. Hobza, ChemPhysChem 2006, 7, 1100-1105.
P. Sanz, M. Yanez, O. Mo, J. Phys. Chem. A 2002, 106, 4661-4668.
K. E. Riley, J. S. Murray, J. Fanfrlík, J. řezáč, R. J. Sola, M. C. Concha, F. M. Ramos, P. Politzer, J. Mol. Model. 2011, 17, 3309-3318.
J. C. Taylor, G. D. Markham, J. Biol. Chem. 1999, 274, 32909-32914.
M. Iwaoka, S. Takemoto, S. Tomoda, J. Am. Chem. Soc. 2002, 124, 10613-10620.
Y. Nagao, T. Hirata, S. Goto, S. Sano, A. Kakehi, K. Iizuka, M. Shiro, J. Am. Chem. Soc. 1998, 120, 3104-3110.
J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2012, 8, 4285-4292.
N. S. Hosmane, Boron Science, CRC, Boca Raton, FL, 2011
W. Wang, B. Ji, Y. Zhang, J. Phys. Chem. A 2009, 113, 8132-8135.
P. Cígler, M. Kožíšek, P. Řezáčová, J. Brynda, Z. Otwinowski, J. Pokorná, J. Plešek, B. Grüner, L. Dolečková-Marešová, M. Máša, et al., Proc. Natl. Acad. Sci. USA 2005, 102, 15394-15399.
L. A. Hardegger, B. Kuhn, B. Spinnler, L. Anselm, R. Ecabert, M. Stihle, B. Gsell, R. Thoma, J. Diez, J. Benz, et al., Angew. Chem. 2011, 123, 329-334
J. Fanfrlík, M. Kolář, M. Kamlar, D. Hurny, F. X. Ruiz, A. Cousido-Siah, A. Mitschler, J. Řezáč, E. Munusamy, M. Lepšík, et al., ACS Chem. Biol. 2013, 8, 2484-2492.
T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291-296.
R. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, J. Med. Chem. 2013, 56, 1363-1388.
F. T. Burling, B. M. Goldstein, J. Am. Chem. Soc. 1992, 114, 2313-2320.
J. Brynda, P. Mader, V. Šícha, M. Fábry, K. Poncová, M. Bakardiev, B. Grüner, P. Cígler, P. Řezáčová, Angew. Chem. 2013, 125, 14005-14008
T. Baše, Z. Bastl, Z. Plzák, T. Grygar, J. Plešek, V. Malina, J. Šubrt, J. Boháček, E. Večerníková, O. Kříž, Langmuir 2005, 21, 7776-7785.
D. B. Werz, R. Gleiter, F. Rominger, J. Am. Chem. Soc. 2002, 124, 10638-10639.
Z. F. Chen, R. B. King, Chem. Rev. 2005, 105, 3613-3642.
2001
2011
2013; 56
2005; 102
2002; 124
1992; 114
2005; 105
2002; 106
1999; 274
2014; 16
2013 2013; 125 52
2006; 7
2006; 8
2009; 113
1984; 108
2005; 21
2011 2011; 123 50
2011; 17
2013; 8
2007; 13
1998; 120
2012; 8
e_1_2_3_19_2
e_1_2_3_1_2
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_4_2
e_1_2_3_15_3
e_1_2_3_16_2
e_1_2_3_3_2
e_1_2_3_17_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_10_2
e_1_2_3_21_3
e_1_2_3_22_2
e_1_2_3_23_2
e_1_2_3_24_2
e_1_2_3_25_2
e_1_2_3_20_2
e_1_2_3_21_2
References_xml – reference: J. Macháček, J. Plešek, J. Holub, D. Hnyk, V. Všetečka, I. Císařová, M. Kaupp, B. Štíbr, Dalton Trans. 2006, 8, 1024-1029.
– reference: P. Sanz, M. Yanez, O. Mo, J. Phys. Chem. A 2002, 106, 4661-4668.
– reference: F. T. Burling, B. M. Goldstein, J. Am. Chem. Soc. 1992, 114, 2313-2320.
– reference: J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2012, 8, 4285-4292.
– reference: D. B. Werz, R. Gleiter, F. Rominger, J. Am. Chem. Soc. 2002, 124, 10638-10639.
– reference: K. Bender, I. Hennig, D. Schweitzer, Mol. Cryst. Liq. Cryst. 1984, 108, 359-371.
– reference: M. Iwaoka, S. Takemoto, M. Okada, S. Tomoda, Chem. Lett. 2001, 132-133.
– reference: R. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, J. Med. Chem. 2013, 56, 1363-1388.
– reference: J. Fanfrlík, M. Lepšík, D. Horinek, Z. Havlas, P. Hobza, ChemPhysChem 2006, 7, 1100-1105.
– reference: Z. F. Chen, R. B. King, Chem. Rev. 2005, 105, 3613-3642.
– reference: L. A. Hardegger, B. Kuhn, B. Spinnler, L. Anselm, R. Ecabert, M. Stihle, B. Gsell, R. Thoma, J. Diez, J. Benz, et al., Angew. Chem. 2011, 123, 329-334;
– reference: M. Kolář, J. Hostaš, P. Hobza, Phys. Chem. Chem. Phys. 2014, 16, 9987-9996;
– reference: T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291-296.
– reference: K. E. Riley, J. S. Murray, J. Fanfrlík, J. řezáč, R. J. Sola, M. C. Concha, F. M. Ramos, P. Politzer, J. Mol. Model. 2011, 17, 3309-3318.
– reference: Angew. Chem. Int. Ed. 2011, 50, 314-319.
– reference: T. Baše, Z. Bastl, Z. Plzák, T. Grygar, J. Plešek, V. Malina, J. Šubrt, J. Boháček, E. Večerníková, O. Kříž, Langmuir 2005, 21, 7776-7785.
– reference: Angew. Chem. Int. Ed. 2013, 52, 13760-13763.
– reference: N. S. Hosmane, Boron Science, CRC, Boca Raton, FL, 2011;
– reference: J. Fanfrlík, M. Kolář, M. Kamlar, D. Hurny, F. X. Ruiz, A. Cousido-Siah, A. Mitschler, J. Řezáč, E. Munusamy, M. Lepšík, et al., ACS Chem. Biol. 2013, 8, 2484-2492.
– reference: J. Brynda, P. Mader, V. Šícha, M. Fábry, K. Poncová, M. Bakardiev, B. Grüner, P. Cígler, P. Řezáčová, Angew. Chem. 2013, 125, 14005-14008;
– reference: W. Wang, B. Ji, Y. Zhang, J. Phys. Chem. A 2009, 113, 8132-8135.
– reference: J. C. Taylor, G. D. Markham, J. Biol. Chem. 1999, 274, 32909-32914.
– reference: M. Iwaoka, S. Takemoto, S. Tomoda, J. Am. Chem. Soc. 2002, 124, 10613-10620.
– reference: Y. Nagao, T. Hirata, S. Goto, S. Sano, A. Kakehi, K. Iizuka, M. Shiro, J. Am. Chem. Soc. 1998, 120, 3104-3110.
– reference: P. Cígler, M. Kožíšek, P. Řezáčová, J. Brynda, Z. Otwinowski, J. Pokorná, J. Plešek, B. Grüner, L. Dolečková-Marešová, M. Máša, et al., Proc. Natl. Acad. Sci. USA 2005, 102, 15394-15399.
– volume: 124
  start-page: 10638
  year: 2002
  end-page: 10639
  publication-title: J. Am. Chem. Soc.
– volume: 124
  start-page: 10613
  year: 2002
  end-page: 10620
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 3104
  year: 1998
  end-page: 3110
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 1363
  year: 2013
  end-page: 1388
  publication-title: J. Med. Chem.
– year: 2011
– volume: 7
  start-page: 1100
  year: 2006
  end-page: 1105
  publication-title: ChemPhysChem
– volume: 102
  start-page: 15394
  year: 2005
  end-page: 15399
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 125 52
  start-page: 14005 13760
  year: 2013 2013
  end-page: 14008 13763
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1024
  year: 2006
  end-page: 1029
  publication-title: Dalton Trans.
– volume: 8
  start-page: 2484
  year: 2013
  end-page: 2492
  publication-title: ACS Chem. Biol.
– start-page: 132
  year: 2001
  end-page: 133
  publication-title: Chem. Lett.
– volume: 16
  start-page: 9987
  year: 2014
  end-page: 9996
  publication-title: Phys. Chem. Chem. Phys.
– volume: 106
  start-page: 4661
  year: 2002
  end-page: 4668
  publication-title: J. Phys. Chem. A
– volume: 123 50
  start-page: 329 314
  year: 2011 2011
  end-page: 334 319
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 21
  start-page: 7776
  year: 2005
  end-page: 7785
  publication-title: Langmuir
– volume: 114
  start-page: 2313
  year: 1992
  end-page: 2320
  publication-title: J. Am. Chem. Soc.
– volume: 274
  start-page: 32909
  year: 1999
  end-page: 32914
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 4285
  year: 2012
  end-page: 4292
  publication-title: J. Chem. Theory Comput.
– volume: 105
  start-page: 3613
  year: 2005
  end-page: 3642
  publication-title: Chem. Rev.
– volume: 13
  start-page: 291
  year: 2007
  end-page: 296
  publication-title: J. Mol. Model.
– volume: 108
  start-page: 359
  year: 1984
  end-page: 371
  publication-title: Mol. Cryst. Liq. Cryst.
– volume: 113
  start-page: 8132
  year: 2009
  end-page: 8135
  publication-title: J. Phys. Chem. A
– volume: 17
  start-page: 3309
  year: 2011
  end-page: 3318
  publication-title: J. Mol. Model.
– ident: e_1_2_3_3_2
  doi: 10.1021/ja026472q
– ident: e_1_2_3_6_2
  doi: 10.1246/cl.2001.132
– ident: e_1_2_3_9_2
  doi: 10.1074/jbc.274.46.32909
– ident: e_1_2_3_2_2
  doi: 10.1021/ja027146d
– ident: e_1_2_3_1_2
  doi: 10.1021/jp0143645
– ident: e_1_2_3_13_2
  doi: 10.1021/jm3012068
– ident: e_1_2_3_17_2
– ident: e_1_2_3_20_2
  doi: 10.1073/pnas.0507577102
– ident: e_1_2_3_25_2
  doi: 10.1021/ct300647k
– ident: e_1_2_3_18_2
  doi: 10.1201/b11199
– ident: e_1_2_3_23_2
  doi: 10.1021/cr0300892
– ident: e_1_2_3_5_2
  doi: 10.1007/s00894-006-0130-2
– ident: e_1_2_3_15_3
  doi: 10.1002/anie.201006781
– ident: e_1_2_3_8_2
  doi: 10.1021/ja973109o
– ident: e_1_2_3_21_3
  doi: 10.1002/anie.201307583
– ident: e_1_2_3_22_2
  doi: 10.1002/cphc.200500648
– ident: e_1_2_3_7_2
  doi: 10.1021/ja00033a004
– ident: e_1_2_3_16_2
  doi: 10.1021/cb400526n
– ident: e_1_2_3_21_2
  doi: 10.1002/ange.201307583
– ident: e_1_2_3_10_2
  doi: 10.1080/00268948408078687
– ident: e_1_2_3_24_2
  doi: 10.1039/B512345C
– ident: e_1_2_3_14_2
  doi: 10.1007/s00894-011-1015-6
– ident: e_1_2_3_12_2
  doi: 10.1039/C3CP55188A
– ident: e_1_2_3_15_2
  doi: 10.1002/ange.201006781
– ident: e_1_2_3_11_2
– ident: e_1_2_3_4_2
  doi: 10.1021/jp904128b
– ident: e_1_2_3_19_2
  doi: 10.1021/la051122d
SSID ssj0028806
Score 2.5046551
Snippet The chalcogen bond is a nonclassical σ‐hole‐based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found...
The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found...
The chalcogen bond is a nonclassical sigma -hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10139
SubjectTerms Bonding
Bonding strength
boranes
Boron
chalcogen bonds
Charge distribution
Charging
Chemical analysis
crystal structures
Crystals
Organic compounds
Quantum chemistry
Sulfur
Three dimensional
X-ray diffraction
Title The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics
URI https://api.istex.fr/ark:/67375/WNG-TC8XKMH1-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201405901
https://www.ncbi.nlm.nih.gov/pubmed/25066639
https://www.proquest.com/docview/1560773273
https://www.proquest.com/docview/1561128277
https://www.proquest.com/docview/1701047235
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3773
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1433-7851
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcAFKM9Ai4yE4JRubMdxcqyyLQuoq6pqxd4s23FU1FWC9iHR_npmnE1gEQ8JLlGijBU_Zuwv9sw3hLzOHLPGViquRV7HqRE2LipexN5mRSpTkyQWA5xPptnkIv0wk7Mfovg7fohhww0tI8zXaODGLkffSUMxAhtds9IQPgmTMBMynNOeDfxRHJSzCy8SIsYs9D1rY8JH28W3VqXb2MFffwU5txFsWIKO7xPTV77zPLk6WK_sgbv5idfxf1r3gNzb4FN62CnULrnlm4fkTtmnhXtETkGx6LjtPGjoWTv3tK1peWnmrgVlpJinGJZD-rmhgC1pubgG_Dmnp8bhpjzK8vFIjOELbWCLXT4mF8dH5-Uk3qRliF0Gv1cxk3ktpRKMeS-r2icSYAvG36qs8FlVqcSz3MPFylwYkTlpYdALKTxYv6ukeEJ2mrbxzwitcXGEqd9xL9JaVTZlSa5E7TLmMUY2InE_LNptOMsxdcZcd2zLXGM_6aGfIvJ2kP_SsXX8VvJNGOVBzCyu0MdNSf1p-k6fl_ns48mEaRGRvV4N9Ma8lxrDz5USAP0i8mp4DQOBpy2m8e06yACWzblSf5BRgR6JCxmRp52KDRXi2K2AHyPCg6L8pUH6cPr-aHh6_i-FXpC7eI_eMEzukZ3VYu33AXKt7MtgVt8A_p8d-Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeyiX8qaBFoyE4JRubMdxcqyyLVvaXVXVVvRmxY4jqq6SarsrAb8ej7NJtYiHBJdIScaKHzP2F3vmG4B3iaG60KUMK55WYVxwHWYly0KrkywWcRFFGgOcx5NkdBF_uhSdNyHGwrT8EP2GG1qGn6_RwHFDenDHGooh2OibFfv4yfuwiYd0aJvD855Bijn1bAOMOA8xD33H2xixwXr5tXVpE7v4669A5zqG9YvQ0UPQXfVb35Pr_eVC75vvPzE7_lf7HsH2CqKSg1anHsM9Wz-BrbzLDPcUzpxukWHTOtGQ82ZmSVOR_EsxM43TR4Kpit2KSK5q4uAlyeffHASdkbPC4L48yrLhgA_dFxpPGHv7DC6ODqf5KFxlZghN4v6wQirSSgjJKbVWlJWNhEMuGIIrk8wmZSkjS1PrLlqkvOCJEdqNeya4dROAKQV_Dht1U9sdIBWuj272N8zyuJKljmmUSl6ZhFoMkw0g7MZFmRVtOWbPmKmWcJkp7CfV91MAH3r5m5aw47eS7_0w92LF_Brd3KRQnycf1TRPL0_GI6p4ALudHqiVhd8qjECXkjv0F8Db_rUbCDxwKWrbLL2Mg7Mpk_IPMtIzJDEuAnjR6lhfIYbd6iBkAMxryl8apA4mx4f93ct_KfQGtkbT8ak6PZ6cvIIH-BydY6jYhY3FfGn3HAJb6Nfexn4A56UiFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BJsFe-N4IDDASgqesiR3HyeOUrnSMVdW0ib5ZseMItCqZulYC_nrukiZQxIcEL5GSnBV_3Nk_O3e_A3gV29DkplB-KZLSj3Jh_LTgqe9MnEYyyoPAUIDz6SQeX0TvZnL2QxR_yw_RH7iRZTTzNRn4VVEOvpOGUgQ2uWZFTfjkTdiOYtxiESw66wmkOGpnG18khE9p6DvaxoAPNstvLEvb1MOff4U5NyFsswaN7kLe1b51Pbk8WC3Ngf36E7Hj_zTvHtxZA1R22GrUfbjhqgdwO-vywj2EKWoWG9atCw07q-eO1SXLPuZzW6M2MkpUjOsh-1QxBJcsW3xBADpn09zSqTzJ8uFADPELdUMXe_0ILkZH59nYX-dl8G2M-ys_lEkppRJh6JwsShdIxC0UgKvi1MVFoQIXJg4vRiYiF7GVBkc9lcKh-dtCil3YqurKPQZW0uqIc7_lTkSlKkwUBokSpY1DR0GyHvjdsGi7Ji2n3Blz3dItc039pPt-8uBNL3_V0nX8VvJ1M8q9WL64JCc3JfWHyVt9niWzk9NxqIUH-50a6LV9X2uKP1dKIPbz4GX_GgeCfrfklatXjQyC2YQr9QcZ1fAjcSE92GtVrK8Qp25FAOkBbxTlLw3Sh5Pjo_7uyb8UegG3psORfn88OXkKO_SYPGNCuQ9by8XKPUP4tTTPGwv7BlIIIMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dominant+role+of+chalcogen+bonding+in+the+crystal+packing+of+2D%2F3D+aromatics&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fanfrl%C3%ADk%2C+Jind%C5%99ich&rft.au=P%C5%99%C3%A1da%2C+Adam&rft.au=Pad%C4%9Blkov%C3%A1%2C+Zde%C5%88ka&rft.au=Pecina%2C+Adam&rft.date=2014-09-15&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=53&rft.issue=38&rft.spage=10139&rft_id=info:doi/10.1002%2Fanie.201405901&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon