The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics
The chalcogen bond is a nonclassical σ‐hole‐based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harbori...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 53; no. 38; pp. 10139 - 10142 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
15.09.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201405901 |
Cover
Abstract | The chalcogen bond is a nonclassical σ‐hole‐based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl‐substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ‐hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.
Chalcogen bonds of thiaboranes were found to be considerably stronger than σ‐hole bonds in organic compounds. The reason is the highly positive belt of σ‐holes on the positively charged sulfur atom. The charge distribution is the driving force for chalcogen bonding of thiaboranes. |
---|---|
AbstractList | The chalcogen bond is a nonclassical σ‐hole‐based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl‐substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ‐hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.
Chalcogen bonds of thiaboranes were found to be considerably stronger than σ‐hole bonds in organic compounds. The reason is the highly positive belt of σ‐holes on the positively charged sulfur atom. The charge distribution is the driving force for chalcogen bonding of thiaboranes. The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design. The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design.The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2D aromatics, but has so far never been observed in 3D aromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur⋅⋅⋅π type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design. The chalcogen bond is a nonclassical sigma -hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2Daromatics, but has so far never been observed in 3Daromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfur pi type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive sigma -hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design. Chalcogen bonds of thiaboranes were found to be considerably stronger than sigma -hole bonds in organic compounds. The reason is the highly positive belt of sigma -holes on the positively charged sulfur atom. The charge distribution is the driving force for chalcogen bonding of thiaboranes. The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found in organic compounds, including 2Daromatics, but has so far never been observed in 3Daromatic inorganic boron hydrides. Thiaboranes, harboring a sulfur heteroatom in the icosahedral cage, are candidates for the formation of chalcogen bonds. The phenyl-substituted thiaborane, synthesized and crystalized in this study, forms sulfurπ type chalcogen bonds. Quantum chemical analysis revealed that these interactions are considerably stronger than both in their organic counterparts and in the known halogen bond. The reason is the existence of a highly positive σ-hole on the positively charged sulfur atom. This discovery expands the possibilities of applying substituted boron clusters in crystal engineering and drug design. |
Author | Fanfrlík, Jindřich Holub, Josef Macháček, Jan Lepšík, Martin Růžička, Aleš Hnyk, Drahomír Přáda, Adam Hobza, Pavel Pecina, Adam Padělková, Zdeňka |
Author_xml | – sequence: 1 givenname: Jindřich surname: Fanfrlík fullname: Fanfrlík, Jindřich organization: Gilead Sciences Research Center and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) – sequence: 2 givenname: Adam surname: Přáda fullname: Přáda, Adam organization: Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i. 25068 Řež u Prahy (Czech Republic) – sequence: 3 givenname: Zdeňka surname: Padělková fullname: Padělková, Zdeňka organization: University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic) – sequence: 4 givenname: Adam surname: Pecina fullname: Pecina, Adam organization: Gilead Sciences Research Center and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) – sequence: 5 givenname: Jan surname: Macháček fullname: Macháček, Jan organization: Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i. 25068 Řež u Prahy (Czech Republic) – sequence: 6 givenname: Martin surname: Lepšík fullname: Lepšík, Martin organization: Gilead Sciences Research Center and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) – sequence: 7 givenname: Josef surname: Holub fullname: Holub, Josef organization: Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i. 25068 Řež u Prahy (Czech Republic) – sequence: 8 givenname: Aleš surname: Růžička fullname: Růžička, Aleš email: ales.ruzicka@upce.cz organization: University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic) – sequence: 9 givenname: Drahomír surname: Hnyk fullname: Hnyk, Drahomír email: hnyk@iic.cas.cz organization: Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i. 25068 Řež u Prahy (Czech Republic) – sequence: 10 givenname: Pavel surname: Hobza fullname: Hobza, Pavel email: hobza@uochb.cas.cz organization: Gilead Sciences Research Center and Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, 16610 Prague 6 (Czech Republic) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25066639$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv0zAYhi00xLbClSOKxIVLOn92bCfHko5tYowJFcHNcpMvm7fEHnYq6L_HUbcJTUJwsS3reT7Z73tI9px3SMhroHOglB0ZZ3HOKBRUVBSekQMQDHKuFN9L54LzXJUC9slhjDeJL0sqX5B9JqiUklcH5HJ1jdnSD9YZN2ZffI-Z77L62vSNv0KXvfeute4qsy4bE1mHbRxNn12a5na6TixbHvFltgh-MKNt4kvyvDN9xFf3-4x8_XC8qk_z888nZ_XiPG9kqSAHUXZCKA6AKNoO6fSiqlJMyQpl2yqKUGJa1qLkhstGrEVhKsGRgmpawWfk3W7uXfA_NhhHPdjYYN8bh34TNSgKtFCM_wcqJAArWQptRt4-QW_8Jrj0kYmiiWCKJ-rNPbVZD9jqu2AHE7b6IdYEFDugCT7GgJ1u7Jji8W4MxvYaqJ7a01N7-rG9pM2faA-T_ypUO-Gn7XH7D1ovLs6O_3TznWvjiL8eXRNutVRcCf3t4kSv6vL7x0-noDn_DcP_tv8 |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1002_chem_201904762 crossref_primary_10_1002_open_202000323 crossref_primary_10_1039_C8CE01853G crossref_primary_10_1021_jp511101n crossref_primary_10_1021_acs_jpca_8b11490 crossref_primary_10_1080_17415993_2016_1244269 crossref_primary_10_1021_acs_inorgchem_3c03141 crossref_primary_10_1021_cg5016687 crossref_primary_10_1002_cphc_201800409 crossref_primary_10_1016_j_ccr_2020_213243 crossref_primary_10_1021_acs_inorgchem_6b02320 crossref_primary_10_1002_chem_201803393 crossref_primary_10_3390_cryst13050766 crossref_primary_10_1002_cplu_201900115 crossref_primary_10_1007_s00894_015_2701_6 crossref_primary_10_1021_acs_chemmater_0c01401 crossref_primary_10_1039_D4OB00944D crossref_primary_10_1002_chem_201800820 crossref_primary_10_1039_C7CP02762A crossref_primary_10_1039_C8CP03937B crossref_primary_10_1021_acs_inorgchem_2c00971 crossref_primary_10_1063_5_0076872 crossref_primary_10_1021_acs_inorgchem_5b02102 crossref_primary_10_1039_C4FD00183D crossref_primary_10_1021_jp509212t crossref_primary_10_1039_C7CE01266G crossref_primary_10_1002_chem_201705428 crossref_primary_10_1002_jcc_26489 crossref_primary_10_1039_D0CP05033D crossref_primary_10_1021_acs_cgd_5b01807 crossref_primary_10_1002_cphc_201900899 crossref_primary_10_1021_acs_inorgchem_8b03037 crossref_primary_10_1039_D3CP00978E crossref_primary_10_1088_1361_648X_ab8253 crossref_primary_10_1021_acs_chemrev_5b00560 crossref_primary_10_1007_s00214_016_1972_z crossref_primary_10_1021_acs_cgd_6b00358 crossref_primary_10_1002_cplu_201800174 crossref_primary_10_1039_D1DT03925C crossref_primary_10_1002_anie_201810637 crossref_primary_10_1039_C8CP04401E crossref_primary_10_1016_j_isci_2024_108917 crossref_primary_10_1016_j_chemphys_2017_11_014 crossref_primary_10_1021_acs_langmuir_7b03306 crossref_primary_10_1002_hlca_201800014 crossref_primary_10_1021_ic5023328 crossref_primary_10_1002_cphc_201600848 crossref_primary_10_3390_molecules24142657 crossref_primary_10_1002_anie_202219018 crossref_primary_10_1021_acs_inorgchem_1c00796 crossref_primary_10_1002_qua_25837 crossref_primary_10_1002_ange_201810637 crossref_primary_10_1002_hlca_201600328 crossref_primary_10_1063_1_4944088 crossref_primary_10_1002_cphc_201500211 crossref_primary_10_3390_inorganics6030064 crossref_primary_10_1039_C6CE01861K crossref_primary_10_1039_D2QO00684G crossref_primary_10_1039_C7CP07422K crossref_primary_10_1080_00268976_2018_1539259 crossref_primary_10_3390_antiox8100487 crossref_primary_10_1021_acs_jpca_5b03359 crossref_primary_10_1039_D4CP00057A crossref_primary_10_1002_ejic_202400053 crossref_primary_10_1021_acs_inorgchem_0c00917 crossref_primary_10_1039_C7DT02845H crossref_primary_10_1002_chem_201802656 crossref_primary_10_3390_cryst8100390 crossref_primary_10_1002_chem_201805131 crossref_primary_10_1002_chem_202401346 crossref_primary_10_1021_acs_jpca_3c06093 crossref_primary_10_1021_acs_jpcc_9b10935 crossref_primary_10_1039_C6CE01703G crossref_primary_10_1021_acs_inorgchem_3c01837 crossref_primary_10_1039_C5CC10363K crossref_primary_10_1021_acs_orglett_6b02557 crossref_primary_10_3390_cryst11080877 crossref_primary_10_1002_ange_202419677 crossref_primary_10_1002_chem_201905786 crossref_primary_10_1021_acs_jpca_2c08965 crossref_primary_10_1002_cphc_201500314 crossref_primary_10_1039_D1CE01046H crossref_primary_10_1039_C5CP03617H crossref_primary_10_1002_anie_202202137 crossref_primary_10_1021_acs_chemrev_5b00527 crossref_primary_10_1039_C8CC06797J crossref_primary_10_1002_ange_202219018 crossref_primary_10_1039_C9CP03301G crossref_primary_10_1039_C7CE00033B crossref_primary_10_1002_anie_202419677 crossref_primary_10_1016_j_ccr_2016_09_002 crossref_primary_10_1002_ange_202010462 crossref_primary_10_1007_s12039_019_1708_4 crossref_primary_10_1002_cphc_202300326 crossref_primary_10_1021_acs_inorgchem_9b00875 crossref_primary_10_1002_ange_202202137 crossref_primary_10_1016_j_ica_2017_09_005 crossref_primary_10_1021_ja512183e crossref_primary_10_1039_D3CP03479H crossref_primary_10_1016_j_molstruc_2016_11_085 crossref_primary_10_1021_acs_jpca_3c04097 crossref_primary_10_1039_C7DT01685A crossref_primary_10_3390_molecules28227520 crossref_primary_10_1021_jacs_6b12745 crossref_primary_10_1002_chem_201504328 crossref_primary_10_1021_acs_inorgchem_7b01259 crossref_primary_10_1002_qua_25369 crossref_primary_10_1021_acs_inorgchem_6b02073 crossref_primary_10_1021_acs_jpca_7b06479 crossref_primary_10_1021_acs_jpca_4c00541 crossref_primary_10_1039_C8NJ00553B crossref_primary_10_1039_C7CP08215K crossref_primary_10_3390_cryst8040163 crossref_primary_10_1002_anie_202010462 crossref_primary_10_1002_anie_202406751 crossref_primary_10_3390_molecules25051200 crossref_primary_10_1039_C7CP05537D crossref_primary_10_1002_ange_202406751 crossref_primary_10_1039_D3CS00431G crossref_primary_10_1016_j_comptc_2018_11_011 crossref_primary_10_1021_acs_joc_5b01985 crossref_primary_10_1039_D0CP02880K crossref_primary_10_1016_j_fuel_2024_131673 crossref_primary_10_1002_chem_202400385 |
Cites_doi | 10.1021/ja026472q 10.1246/cl.2001.132 10.1074/jbc.274.46.32909 10.1021/ja027146d 10.1021/jp0143645 10.1021/jm3012068 10.1073/pnas.0507577102 10.1021/ct300647k 10.1201/b11199 10.1021/cr0300892 10.1007/s00894-006-0130-2 10.1002/anie.201006781 10.1021/ja973109o 10.1002/anie.201307583 10.1002/cphc.200500648 10.1021/ja00033a004 10.1021/cb400526n 10.1002/ange.201307583 10.1080/00268948408078687 10.1039/B512345C 10.1007/s00894-011-1015-6 10.1039/C3CP55188A 10.1002/ange.201006781 10.1021/jp904128b 10.1021/la051122d |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/anie.201405901 |
DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 10142 |
ExternalDocumentID | 3426181751 25066639 10_1002_anie_201405901 ANIE201405901 ark_67375_WNG_TC8XKMH1_3 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Czech Science Foundation funderid: P208/12/G016; P208/10/2269 – fundername: Czech Ministry of Education, Youth and Sports – fundername: IOCB Research Centre – fundername: Academy of Sciences of the Czech Republic – fundername: Gilead Sciences – fundername: European Science Fund funderid: CZ.1.05/2.1.00/03.0058 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEIGN AEIMD AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c6871-158f557311ee5dfe050669972769e6dd70e18e0e1b583a36c5b54a953e017cd53 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:16:55 EDT 2025 Fri Jul 11 10:46:58 EDT 2025 Fri Jul 25 12:09:41 EDT 2025 Thu Apr 03 07:09:04 EDT 2025 Tue Jul 01 03:26:37 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Wed Aug 20 07:27:49 EDT 2025 Tue Sep 09 05:32:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | boranes X-ray diffraction chalcogen bonds sulfur crystal structures |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6871-158f557311ee5dfe050669972769e6dd70e18e0e1b583a36c5b54a953e017cd53 |
Notes | istex:2E0D9D907122F70775D4DA797DBA3D01A2758165 Czech Science Foundation - No. P208/12/G016; No. P208/10/2269 ark:/67375/WNG-TC8XKMH1-3 IOCB Research Centre ArticleID:ANIE201405901 Academy of Sciences of the Czech Republic Czech Ministry of Education, Youth and Sports This work was supported by research projects RVO 61388963 awarded by the Academy of Sciences of the Czech Republic. We acknowledge the financial support of the Czech Science Foundation (J.F., A.P., M.L., P.H.: grant number P208/12/G016; D.H.: grant number P208/10/2269). We also thank the Gilead Sciences and IOCB Research Centre for financial support. This work was also supported by the Operational Program Research and Development for Innovations-European Science Fund (grant number CZ.1.05/2.1.00/03.0058). This work was supported by the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund and the national budget of the Czech Republic via the Research and Development for Innovations Operational Programme, as well as Czech Ministry of Education, Youth and Sports via the project Large Research, Development and Innovations Infrastructures (LM2011033). Gilead Sciences European Science Fund - No. CZ.1.05/2.1.00/03.0058 These authors contributed equally to this work. This work was supported by research projects RVO 61388963 awarded by the Academy of Sciences of the Czech Republic. We acknowledge the financial support of the Czech Science Foundation (J.F., A.P., M.L., P.H.: grant number P208/12/G016; D.H.: grant number P208/10/2269). We also thank the Gilead Sciences and IOCB Research Centre for financial support. This work was also supported by the Operational Program Research and Development for Innovations—European Science Fund (grant number CZ.1.05/2.1.00/03.0058). This work was supported by the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund and the national budget of the Czech Republic via the Research and Development for Innovations Operational Programme, as well as Czech Ministry of Education, Youth and Sports via the project Large Research, Development and Innovations Infrastructures (LM2011033). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25066639 |
PQID | 1560773273 |
PQPubID | 946352 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1701047235 proquest_miscellaneous_1561128277 proquest_journals_1560773273 pubmed_primary_25066639 crossref_citationtrail_10_1002_anie_201405901 crossref_primary_10_1002_anie_201405901 wiley_primary_10_1002_anie_201405901_ANIE201405901 istex_primary_ark_67375_WNG_TC8XKMH1_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 15, 2014 |
PublicationDateYYYYMMDD | 2014-09-15 |
PublicationDate_xml | – month: 09 year: 2014 text: September 15, 2014 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | K. Bender, I. Hennig, D. Schweitzer, Mol. Cryst. Liq. Cryst. 1984, 108, 359-371. M. Kolář, J. Hostaš, P. Hobza, Phys. Chem. Chem. Phys. 2014, 16, 9987-9996 J. Macháček, J. Plešek, J. Holub, D. Hnyk, V. Všetečka, I. Císařová, M. Kaupp, B. Štíbr, Dalton Trans. 2006, 8, 1024-1029. M. Iwaoka, S. Takemoto, M. Okada, S. Tomoda, Chem. Lett. 2001, 132-133. Angew. Chem. Int. Ed. 2011, 50, 314-319. Angew. Chem. Int. Ed. 2013, 52, 13760-13763. J. Fanfrlík, M. Lepšík, D. Horinek, Z. Havlas, P. Hobza, ChemPhysChem 2006, 7, 1100-1105. P. Sanz, M. Yanez, O. Mo, J. Phys. Chem. A 2002, 106, 4661-4668. K. E. Riley, J. S. Murray, J. Fanfrlík, J. řezáč, R. J. Sola, M. C. Concha, F. M. Ramos, P. Politzer, J. Mol. Model. 2011, 17, 3309-3318. J. C. Taylor, G. D. Markham, J. Biol. Chem. 1999, 274, 32909-32914. M. Iwaoka, S. Takemoto, S. Tomoda, J. Am. Chem. Soc. 2002, 124, 10613-10620. Y. Nagao, T. Hirata, S. Goto, S. Sano, A. Kakehi, K. Iizuka, M. Shiro, J. Am. Chem. Soc. 1998, 120, 3104-3110. J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2012, 8, 4285-4292. N. S. Hosmane, Boron Science, CRC, Boca Raton, FL, 2011 W. Wang, B. Ji, Y. Zhang, J. Phys. Chem. A 2009, 113, 8132-8135. P. Cígler, M. Kožíšek, P. Řezáčová, J. Brynda, Z. Otwinowski, J. Pokorná, J. Plešek, B. Grüner, L. Dolečková-Marešová, M. Máša, et al., Proc. Natl. Acad. Sci. USA 2005, 102, 15394-15399. L. A. Hardegger, B. Kuhn, B. Spinnler, L. Anselm, R. Ecabert, M. Stihle, B. Gsell, R. Thoma, J. Diez, J. Benz, et al., Angew. Chem. 2011, 123, 329-334 J. Fanfrlík, M. Kolář, M. Kamlar, D. Hurny, F. X. Ruiz, A. Cousido-Siah, A. Mitschler, J. Řezáč, E. Munusamy, M. Lepšík, et al., ACS Chem. Biol. 2013, 8, 2484-2492. T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291-296. R. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, J. Med. Chem. 2013, 56, 1363-1388. F. T. Burling, B. M. Goldstein, J. Am. Chem. Soc. 1992, 114, 2313-2320. J. Brynda, P. Mader, V. Šícha, M. Fábry, K. Poncová, M. Bakardiev, B. Grüner, P. Cígler, P. Řezáčová, Angew. Chem. 2013, 125, 14005-14008 T. Baše, Z. Bastl, Z. Plzák, T. Grygar, J. Plešek, V. Malina, J. Šubrt, J. Boháček, E. Večerníková, O. Kříž, Langmuir 2005, 21, 7776-7785. D. B. Werz, R. Gleiter, F. Rominger, J. Am. Chem. Soc. 2002, 124, 10638-10639. Z. F. Chen, R. B. King, Chem. Rev. 2005, 105, 3613-3642. 2001 2011 2013; 56 2005; 102 2002; 124 1992; 114 2005; 105 2002; 106 1999; 274 2014; 16 2013 2013; 125 52 2006; 7 2006; 8 2009; 113 1984; 108 2005; 21 2011 2011; 123 50 2011; 17 2013; 8 2007; 13 1998; 120 2012; 8 e_1_2_3_19_2 e_1_2_3_1_2 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_4_2 e_1_2_3_15_3 e_1_2_3_16_2 e_1_2_3_3_2 e_1_2_3_17_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_10_2 e_1_2_3_21_3 e_1_2_3_22_2 e_1_2_3_23_2 e_1_2_3_24_2 e_1_2_3_25_2 e_1_2_3_20_2 e_1_2_3_21_2 |
References_xml | – reference: J. Macháček, J. Plešek, J. Holub, D. Hnyk, V. Všetečka, I. Císařová, M. Kaupp, B. Štíbr, Dalton Trans. 2006, 8, 1024-1029. – reference: P. Sanz, M. Yanez, O. Mo, J. Phys. Chem. A 2002, 106, 4661-4668. – reference: F. T. Burling, B. M. Goldstein, J. Am. Chem. Soc. 1992, 114, 2313-2320. – reference: J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2012, 8, 4285-4292. – reference: D. B. Werz, R. Gleiter, F. Rominger, J. Am. Chem. Soc. 2002, 124, 10638-10639. – reference: K. Bender, I. Hennig, D. Schweitzer, Mol. Cryst. Liq. Cryst. 1984, 108, 359-371. – reference: M. Iwaoka, S. Takemoto, M. Okada, S. Tomoda, Chem. Lett. 2001, 132-133. – reference: R. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, J. Med. Chem. 2013, 56, 1363-1388. – reference: J. Fanfrlík, M. Lepšík, D. Horinek, Z. Havlas, P. Hobza, ChemPhysChem 2006, 7, 1100-1105. – reference: Z. F. Chen, R. B. King, Chem. Rev. 2005, 105, 3613-3642. – reference: L. A. Hardegger, B. Kuhn, B. Spinnler, L. Anselm, R. Ecabert, M. Stihle, B. Gsell, R. Thoma, J. Diez, J. Benz, et al., Angew. Chem. 2011, 123, 329-334; – reference: M. Kolář, J. Hostaš, P. Hobza, Phys. Chem. Chem. Phys. 2014, 16, 9987-9996; – reference: T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291-296. – reference: K. E. Riley, J. S. Murray, J. Fanfrlík, J. řezáč, R. J. Sola, M. C. Concha, F. M. Ramos, P. Politzer, J. Mol. Model. 2011, 17, 3309-3318. – reference: Angew. Chem. Int. Ed. 2011, 50, 314-319. – reference: T. Baše, Z. Bastl, Z. Plzák, T. Grygar, J. Plešek, V. Malina, J. Šubrt, J. Boháček, E. Večerníková, O. Kříž, Langmuir 2005, 21, 7776-7785. – reference: Angew. Chem. Int. Ed. 2013, 52, 13760-13763. – reference: N. S. Hosmane, Boron Science, CRC, Boca Raton, FL, 2011; – reference: J. Fanfrlík, M. Kolář, M. Kamlar, D. Hurny, F. X. Ruiz, A. Cousido-Siah, A. Mitschler, J. Řezáč, E. Munusamy, M. Lepšík, et al., ACS Chem. Biol. 2013, 8, 2484-2492. – reference: J. Brynda, P. Mader, V. Šícha, M. Fábry, K. Poncová, M. Bakardiev, B. Grüner, P. Cígler, P. Řezáčová, Angew. Chem. 2013, 125, 14005-14008; – reference: W. Wang, B. Ji, Y. Zhang, J. Phys. Chem. A 2009, 113, 8132-8135. – reference: J. C. Taylor, G. D. Markham, J. Biol. Chem. 1999, 274, 32909-32914. – reference: M. Iwaoka, S. Takemoto, S. Tomoda, J. Am. Chem. Soc. 2002, 124, 10613-10620. – reference: Y. Nagao, T. Hirata, S. Goto, S. Sano, A. Kakehi, K. Iizuka, M. Shiro, J. Am. Chem. Soc. 1998, 120, 3104-3110. – reference: P. Cígler, M. Kožíšek, P. Řezáčová, J. Brynda, Z. Otwinowski, J. Pokorná, J. Plešek, B. Grüner, L. Dolečková-Marešová, M. Máša, et al., Proc. Natl. Acad. Sci. USA 2005, 102, 15394-15399. – volume: 124 start-page: 10638 year: 2002 end-page: 10639 publication-title: J. Am. Chem. Soc. – volume: 124 start-page: 10613 year: 2002 end-page: 10620 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 3104 year: 1998 end-page: 3110 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 1363 year: 2013 end-page: 1388 publication-title: J. Med. Chem. – year: 2011 – volume: 7 start-page: 1100 year: 2006 end-page: 1105 publication-title: ChemPhysChem – volume: 102 start-page: 15394 year: 2005 end-page: 15399 publication-title: Proc. Natl. Acad. Sci. USA – volume: 125 52 start-page: 14005 13760 year: 2013 2013 end-page: 14008 13763 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 8 start-page: 1024 year: 2006 end-page: 1029 publication-title: Dalton Trans. – volume: 8 start-page: 2484 year: 2013 end-page: 2492 publication-title: ACS Chem. Biol. – start-page: 132 year: 2001 end-page: 133 publication-title: Chem. Lett. – volume: 16 start-page: 9987 year: 2014 end-page: 9996 publication-title: Phys. Chem. Chem. Phys. – volume: 106 start-page: 4661 year: 2002 end-page: 4668 publication-title: J. Phys. Chem. A – volume: 123 50 start-page: 329 314 year: 2011 2011 end-page: 334 319 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 21 start-page: 7776 year: 2005 end-page: 7785 publication-title: Langmuir – volume: 114 start-page: 2313 year: 1992 end-page: 2320 publication-title: J. Am. Chem. Soc. – volume: 274 start-page: 32909 year: 1999 end-page: 32914 publication-title: J. Biol. Chem. – volume: 8 start-page: 4285 year: 2012 end-page: 4292 publication-title: J. Chem. Theory Comput. – volume: 105 start-page: 3613 year: 2005 end-page: 3642 publication-title: Chem. Rev. – volume: 13 start-page: 291 year: 2007 end-page: 296 publication-title: J. Mol. Model. – volume: 108 start-page: 359 year: 1984 end-page: 371 publication-title: Mol. Cryst. Liq. Cryst. – volume: 113 start-page: 8132 year: 2009 end-page: 8135 publication-title: J. Phys. Chem. A – volume: 17 start-page: 3309 year: 2011 end-page: 3318 publication-title: J. Mol. Model. – ident: e_1_2_3_3_2 doi: 10.1021/ja026472q – ident: e_1_2_3_6_2 doi: 10.1246/cl.2001.132 – ident: e_1_2_3_9_2 doi: 10.1074/jbc.274.46.32909 – ident: e_1_2_3_2_2 doi: 10.1021/ja027146d – ident: e_1_2_3_1_2 doi: 10.1021/jp0143645 – ident: e_1_2_3_13_2 doi: 10.1021/jm3012068 – ident: e_1_2_3_17_2 – ident: e_1_2_3_20_2 doi: 10.1073/pnas.0507577102 – ident: e_1_2_3_25_2 doi: 10.1021/ct300647k – ident: e_1_2_3_18_2 doi: 10.1201/b11199 – ident: e_1_2_3_23_2 doi: 10.1021/cr0300892 – ident: e_1_2_3_5_2 doi: 10.1007/s00894-006-0130-2 – ident: e_1_2_3_15_3 doi: 10.1002/anie.201006781 – ident: e_1_2_3_8_2 doi: 10.1021/ja973109o – ident: e_1_2_3_21_3 doi: 10.1002/anie.201307583 – ident: e_1_2_3_22_2 doi: 10.1002/cphc.200500648 – ident: e_1_2_3_7_2 doi: 10.1021/ja00033a004 – ident: e_1_2_3_16_2 doi: 10.1021/cb400526n – ident: e_1_2_3_21_2 doi: 10.1002/ange.201307583 – ident: e_1_2_3_10_2 doi: 10.1080/00268948408078687 – ident: e_1_2_3_24_2 doi: 10.1039/B512345C – ident: e_1_2_3_14_2 doi: 10.1007/s00894-011-1015-6 – ident: e_1_2_3_12_2 doi: 10.1039/C3CP55188A – ident: e_1_2_3_15_2 doi: 10.1002/ange.201006781 – ident: e_1_2_3_11_2 – ident: e_1_2_3_4_2 doi: 10.1021/jp904128b – ident: e_1_2_3_19_2 doi: 10.1021/la051122d |
SSID | ssj0028806 |
Score | 2.5046551 |
Snippet | The chalcogen bond is a nonclassical σ‐hole‐based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found... The chalcogen bond is a nonclassical σ-hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is found... The chalcogen bond is a nonclassical sigma -hole-based noncovalent interaction with emerging applications in medicinal chemistry and material science. It is... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10139 |
SubjectTerms | Bonding Bonding strength boranes Boron chalcogen bonds Charge distribution Charging Chemical analysis crystal structures Crystals Organic compounds Quantum chemistry Sulfur Three dimensional X-ray diffraction |
Title | The Dominant Role of Chalcogen Bonding in the Crystal Packing of 2D/3D Aromatics |
URI | https://api.istex.fr/ark:/67375/WNG-TC8XKMH1-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201405901 https://www.ncbi.nlm.nih.gov/pubmed/25066639 https://www.proquest.com/docview/1560773273 https://www.proquest.com/docview/1561128277 https://www.proquest.com/docview/1701047235 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3773 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1433-7851 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcAFKM9Ai4yE4JRubMdxcqyyLQuoq6pqxd4s23FU1FWC9iHR_npmnE1gEQ8JLlGijBU_Zuwv9sw3hLzOHLPGViquRV7HqRE2LipexN5mRSpTkyQWA5xPptnkIv0wk7Mfovg7fohhww0tI8zXaODGLkffSUMxAhtds9IQPgmTMBMynNOeDfxRHJSzCy8SIsYs9D1rY8JH28W3VqXb2MFffwU5txFsWIKO7xPTV77zPLk6WK_sgbv5idfxf1r3gNzb4FN62CnULrnlm4fkTtmnhXtETkGx6LjtPGjoWTv3tK1peWnmrgVlpJinGJZD-rmhgC1pubgG_Dmnp8bhpjzK8vFIjOELbWCLXT4mF8dH5-Uk3qRliF0Gv1cxk3ktpRKMeS-r2icSYAvG36qs8FlVqcSz3MPFylwYkTlpYdALKTxYv6ukeEJ2mrbxzwitcXGEqd9xL9JaVTZlSa5E7TLmMUY2InE_LNptOMsxdcZcd2zLXGM_6aGfIvJ2kP_SsXX8VvJNGOVBzCyu0MdNSf1p-k6fl_ns48mEaRGRvV4N9Ma8lxrDz5USAP0i8mp4DQOBpy2m8e06yACWzblSf5BRgR6JCxmRp52KDRXi2K2AHyPCg6L8pUH6cPr-aHh6_i-FXpC7eI_eMEzukZ3VYu33AXKt7MtgVt8A_p8d-Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeyiX8qaBFoyE4JRubMdxcqyyLVvaXVXVVvRmxY4jqq6SarsrAb8ej7NJtYiHBJdIScaKHzP2F3vmG4B3iaG60KUMK55WYVxwHWYly0KrkywWcRFFGgOcx5NkdBF_uhSdNyHGwrT8EP2GG1qGn6_RwHFDenDHGooh2OibFfv4yfuwiYd0aJvD855Bijn1bAOMOA8xD33H2xixwXr5tXVpE7v4669A5zqG9YvQ0UPQXfVb35Pr_eVC75vvPzE7_lf7HsH2CqKSg1anHsM9Wz-BrbzLDPcUzpxukWHTOtGQ82ZmSVOR_EsxM43TR4Kpit2KSK5q4uAlyeffHASdkbPC4L48yrLhgA_dFxpPGHv7DC6ODqf5KFxlZghN4v6wQirSSgjJKbVWlJWNhEMuGIIrk8wmZSkjS1PrLlqkvOCJEdqNeya4dROAKQV_Dht1U9sdIBWuj272N8zyuJKljmmUSl6ZhFoMkw0g7MZFmRVtOWbPmKmWcJkp7CfV91MAH3r5m5aw47eS7_0w92LF_Brd3KRQnycf1TRPL0_GI6p4ALudHqiVhd8qjECXkjv0F8Db_rUbCDxwKWrbLL2Mg7Mpk_IPMtIzJDEuAnjR6lhfIYbd6iBkAMxryl8apA4mx4f93ct_KfQGtkbT8ak6PZ6cvIIH-BydY6jYhY3FfGn3HAJb6Nfexn4A56UiFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BJsFe-N4IDDASgqesiR3HyeOUrnSMVdW0ib5ZseMItCqZulYC_nrukiZQxIcEL5GSnBV_3Nk_O3e_A3gV29DkplB-KZLSj3Jh_LTgqe9MnEYyyoPAUIDz6SQeX0TvZnL2QxR_yw_RH7iRZTTzNRn4VVEOvpOGUgQ2uWZFTfjkTdiOYtxiESw66wmkOGpnG18khE9p6DvaxoAPNstvLEvb1MOff4U5NyFsswaN7kLe1b51Pbk8WC3Ngf36E7Hj_zTvHtxZA1R22GrUfbjhqgdwO-vywj2EKWoWG9atCw07q-eO1SXLPuZzW6M2MkpUjOsh-1QxBJcsW3xBADpn09zSqTzJ8uFADPELdUMXe_0ILkZH59nYX-dl8G2M-ys_lEkppRJh6JwsShdIxC0UgKvi1MVFoQIXJg4vRiYiF7GVBkc9lcKh-dtCil3YqurKPQZW0uqIc7_lTkSlKkwUBokSpY1DR0GyHvjdsGi7Ji2n3Blz3dItc039pPt-8uBNL3_V0nX8VvJ1M8q9WL64JCc3JfWHyVt9niWzk9NxqIUH-50a6LV9X2uKP1dKIPbz4GX_GgeCfrfklatXjQyC2YQr9QcZ1fAjcSE92GtVrK8Qp25FAOkBbxTlLw3Sh5Pjo_7uyb8UegG3psORfn88OXkKO_SYPGNCuQ9by8XKPUP4tTTPGwv7BlIIIMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dominant+role+of+chalcogen+bonding+in+the+crystal+packing+of+2D%2F3D+aromatics&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fanfrl%C3%ADk%2C+Jind%C5%99ich&rft.au=P%C5%99%C3%A1da%2C+Adam&rft.au=Pad%C4%9Blkov%C3%A1%2C+Zde%C5%88ka&rft.au=Pecina%2C+Adam&rft.date=2014-09-15&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=53&rft.issue=38&rft.spage=10139&rft_id=info:doi/10.1002%2Fanie.201405901&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |