黄土高原肥水坑施技术下苹果树根系及土壤水分布

为了解黄土丘陵区雨养条件下山地老果园布设肥水坑(water-wertilizer pit,WFP)技术对红富士老果树(Malus pumila Mill)根系及土壤水分空间分布特征的影响,以无肥水坑处理为对照(CK),利用管式TDR系统监测0~300 cm土层土壤含水率,利用根钻法获得21a生旱地果园0~300 cm土层的根系干质量密度。结果表明:WFP能够显著增加果园含水率低值区间(≥40~80 cm土层)土壤含水率,WFP60(60 cm坑深)处理土壤平均含水率增量(145.4%)最显著。WFP40(40 cm坑深)根际土壤湿润区主要集中在≥40~100cm土层,WFP60在≥20~140...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 34; no. 7; pp. 121 - 128
Main Author 宋小林;吴普特;赵西宁;高晓东
Format Journal Article
LanguageChinese
Published 西北农林科技大学水土保持研究所,杨凌 712100 2016
中国科学院水利部水土保持研究所,杨凌 712100%西北农林科技大学中国旱区节水农业研究院,杨凌 712100
中国科学院水利部水土保持研究所,杨凌 712100
国家节水灌溉杨凌工程技术研究中心,杨凌 712100%西北农林科技大学水土保持研究所,杨凌 712100
西北农林科技大学中国旱区节水农业研究院,杨凌 712100
国家节水灌溉杨凌工程技术研究中心,杨凌 712100
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.07.017

Cover

Abstract 为了解黄土丘陵区雨养条件下山地老果园布设肥水坑(water-wertilizer pit,WFP)技术对红富士老果树(Malus pumila Mill)根系及土壤水分空间分布特征的影响,以无肥水坑处理为对照(CK),利用管式TDR系统监测0~300 cm土层土壤含水率,利用根钻法获得21a生旱地果园0~300 cm土层的根系干质量密度。结果表明:WFP能够显著增加果园含水率低值区间(≥40~80 cm土层)土壤含水率,WFP60(60 cm坑深)处理土壤平均含水率增量(145.4%)最显著。WFP40(40 cm坑深)根际土壤湿润区主要集中在≥40~100cm土层,WFP60在≥20~140 cm土层,WFP80(80 cm坑深)主要集中在深层土壤≥140 cm土层。在0~200cm试验土层,WFP60处理土壤多次平均含水率值都最高,为11.02%,依次为WFP40(10.67%)和WFP80(9.80%)。总根系质量密度WFP60处理最大(594.76 g/m3),WFP40(579.08 g/m3)和WFP80(491.82 g/m3)次之,CK最小(372.12 g/m3)。根系在0~100、≥100~200和≥200~300 cm土层中的分配比例为:CK(69.88%、13.74%和16.38)、WFP40(66.04%、14.26%和19.70%)、WFP60(70.35%、24.08%和5.58%)和WFP80(46.54%、15.04%和38.42%),其根系分布与水分分布正相关。该研究表明WFP能够显著改变土壤水分在不同土层深度的分布,坑深越大向下湿润的土体范围也越深;从而显著促进果树根系的生长和根系在不同湿润土层的分配比例关系。总体而言,WFP60处理效果显著好于WFP40和WFP80处理。研究结果将对黄土高原旱地果园集雨和灌溉制度的制定和肥水坑技术的推广提供参考。
AbstractList 为了解黄土丘陵区雨养条件下山地老果园布设肥水坑(water-wertilizer pit,WFP)技术对红富士老果树(Malus pumila Mill)根系及土壤水分空间分布特征的影响,以无肥水坑处理为对照(CK),利用管式TDR系统监测0~300 cm土层土壤含水率,利用根钻法获得21a生旱地果园0~300 cm土层的根系干质量密度。结果表明:WFP能够显著增加果园含水率低值区间(≥40~80 cm土层)土壤含水率,WFP60(60 cm坑深)处理土壤平均含水率增量(145.4%)最显著。WFP40(40 cm坑深)根际土壤湿润区主要集中在≥40~100cm土层,WFP60在≥20~140 cm土层,WFP80(80 cm坑深)主要集中在深层土壤≥140 cm土层。在0~200cm试验土层,WFP60处理土壤多次平均含水率值都最高,为11.02%,依次为WFP40(10.67%)和WFP80(9.80%)。总根系质量密度WFP60处理最大(594.76 g/m3),WFP40(579.08 g/m3)和WFP80(491.82 g/m3)次之,CK最小(372.12 g/m3)。根系在0~100、≥100~200和≥200~300 cm土层中的分配比例为:CK(69.88%、13.74%和16.38)、WFP40(66.04%、14.26%和19.70%)、WFP60(70.35%、24.08%和5.58%)和WFP80(46.54%、15.04%和38.42%),其根系分布与水分分布正相关。该研究表明WFP能够显著改变土壤水分在不同土层深度的分布,坑深越大向下湿润的土体范围也越深;从而显著促进果树根系的生长和根系在不同湿润土层的分配比例关系。总体而言,WFP60处理效果显著好于WFP40和WFP80处理。研究结果将对黄土高原旱地果园集雨和灌溉制度的制定和肥水坑技术的推广提供参考。
S661.1; 为了解黄土丘陵区雨养条件下山地老果园布设肥水坑(water-wertilizer pit, WFP)技术对红富士老果树(Malus pumilaMill)根系及土壤水分空间分布特征的影响,以无肥水坑处理为对照(CK),利用管式TDR系统监测0~300 cm土层土壤含水率,利用根钻法获得21a生旱地果园0~300 cm土层的根系干质量密度。结果表明: WFP能够显著增加果园含水率低值区间(≥40~80 cm土层)土壤含水率,WFP60(60 cm坑深)处理土壤平均含水率增量(145.4%)最显著。WFP40(40 cm坑深)根际土壤湿润区主要集中在≥40~100cm土层,WFP60在≥20~140 cm土层,WFP80(80 cm坑深)主要集中在深层土壤≥140 cm土层。在0~200cm试验土层,WFP60处理土壤多次平均含水率值都最高,为11.02%,依次为WFP40(10.67%)和WFP80(9.80%)。总根系质量密度WFP60处理最大(594.76 g/m3),WFP40(579.08 g/m3)和WFP80(491.82 g/m3)次之,CK最小(372.12 g/m3)。根系在0~100、≥100~200和≥200~300 cm土层中的分配比例为:CK(69.88%、13.74%和16.38)、WFP40(66.04%、14.26%和19.70%)、WFP60(70.35%、24.08%和5.58%)和WFP80(46.54%、15.04%和38.42%),其根系分布与水分分布正相关。该研究表明WFP能够显著改变土壤水分在不同土层深度的分布,坑深越大向下湿润的土体范围也越深;从而显著促进果树根系的生长和根系在不同湿润土层的分配比例关系。总体而言,WFP60处理效果显著好于WFP40和WFP80处理。研究结果将对黄土高原旱地果园集雨和灌溉制度的制定和肥水坑技术的推广提供参考。
Abstract_FL Soil water is the key factor that limits vegetative growth and productivity in semiarid ecosystem, and the process of water uptake by the root system is of key importance for the effective management of irrigation. The relationships between soil water and plant have been reported for a wide range. However, there is very limited information about the relationships among soil water, fine root distribution and water-fertilizer pit (WFP) depth. This study was conducted to investigate the distribution characteristics of soil moisture and roots for 21-year-old ‘Fushi’ apple trees (Malus pumila Mill) under the WFP technology. The apple trees had a planting distance of 4 m between trees and 5 m between tree rows, and were planted on a typical rain-fed orchard with 15° slope. Three WFP treatments (with 3 replicates) were used in mature apple orchard, i.e., WFP40 (pit depth of 40 cm), WFP60 (pit depth of 60 cm) and WFP80 (pit depth of 80 cm), and CK (without WFP technology) as the controlled trial. c (Luoyang shovel) was used to obtain fine roots from 3 different horizontal positions, and soil moisture (volumetric) was measured by the time domain reflectometer (TDR) system with a measuring tube of 3 m at 20 cm increment in a vertical direction. The results showed that: 1) The low soil moisture content zone appeared in 40-80 cm soil profile of the CK, and the WFP significantly promoted the increase of the soil moisture content in the region. The average soil moisture content increment (145.4%) under WFP60 was the maximum, WFP40 was the next (133.4%) and WFP80was the minimum (76.6%). 2) The vertical variations of soil moisture content had the same tendency under WFP40 and WFP60 treatments, which was that the moisture content firstly increased and next decreased and then increased again with the increase of soil depth in the vertical direction, and WFP80 showed the opposite tendency. The wetted area under WFP40 was concentrated in 40-100 cm soil profile and WFP60 was in 20-140 cm and WFP80 was below 140 cm, and the depth of the wetted area moved down with the depth of the pit (WFP). In the horizontal direction, the soil moisture content decreased with the increase of horizontal distance. The mean moisture content under WFP60 was the maximum, which was 11.60% and 10.45% in 0-100 and 100-200 cm experimental soil profile, respectively. And under WFP40, it was 10.93% and 10.41%, respectively; and WFP80 was 9.33% and 10.27%, respectively. 3) In 0-300 cm soil layer, the total root dry weight density under CK, WFP40, WFP60and WFP80was 372.12, 579.08, 594.76 and 491.82 g/m3, respectively. The root system distribution proportion in 0-100,≥100-200 and≥200-300 cm soil profile was as follows: CK (69.88%, 13.74% and 16.38%), WFP40(66.04%, 14.26% and 19.70%), WFP60(70.35%, 24.08% and 5.58%) and WFP80(46.54%, 15.04% and 38.42%), and the distribution of root had relation with the spatial change of soil water. The result showed that the WFP technology could change the spatial distribution of soil water, which affected the root system distribution proportion in the soil profile with different depth, and the deeper the WFP got, the deeper the wetted area reached. Thus, the WFP technology is beneficial to roots by helping them absorb water and nutrients in a wider wetted area and improving drought resistance. Our results show that the application effect of WFP60 is better than WFP40 and WFP80.
Author 宋小林;吴普特;赵西宁;高晓东
AuthorAffiliation 西北农林科技大学水土保持研究所;西北农林科技大学中国旱区节水农业研究院;国家节水灌溉杨凌工程技术研究中心;中国科学院水利部水土保持研究所
AuthorAffiliation_xml – name: 西北农林科技大学水土保持研究所,杨凌 712100; 西北农林科技大学中国旱区节水农业研究院,杨凌 712100; 国家节水灌溉杨凌工程技术研究中心,杨凌 712100%西北农林科技大学水土保持研究所,杨凌 712100; 西北农林科技大学中国旱区节水农业研究院,杨凌 712100; 国家节水灌溉杨凌工程技术研究中心,杨凌 712100; 中国科学院水利部水土保持研究所,杨凌 712100%西北农林科技大学中国旱区节水农业研究院,杨凌 712100; 国家节水灌溉杨凌工程技术研究中心,杨凌 712100; 中国科学院水利部水土保持研究所,杨凌 712100
Author_FL Zhao Xining
Song Xiaolin
Wu Pute
Gao Xiaodong
Author_FL_xml – sequence: 1
  fullname: Song Xiaolin
– sequence: 2
  fullname: Wu Pute
– sequence: 3
  fullname: Zhao Xining
– sequence: 4
  fullname: Gao Xiaodong
Author_xml – sequence: 1
  fullname: 宋小林;吴普特;赵西宁;高晓东
BookMark eNpFz09LAkEYBvA5GGTlx4gOsdu8s7Pz51jSPxC6eJfZdddWaiyXKG9REaFQeIkOlkJ16lBQB0X6Nu2k36IVo04PPPx4X545lNE1HSC0CNgGkNxdqdpRHGsbMCYWEyBtgoHZmNsYeAZl__pZlIvjyMMuOBxjClm0Nh5eJJ3u-OUuue6Ozp7N20dy3za3n6Z5ajqvX_3WqDUwDx3Ta5ve4Pt9mNw0U588Pk3k1WXSP19AM6Hai4Pcb86j4sZ6Mb9lFXY2t_OrBctnglueklRIWhauQ2mIVegRKYnrBoFPGYFQKEkk9xkGYF4gGFWCBgC4LImDQwnOPFqanj1WOlS6UqrWjuo6fVjSjYp_4k0mY54OTuXyVPq7NV05jFJ7UI_2Vb1RYlwIyUG4__oHFT5z9Q
ClassificationCodes S661.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.07.017
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Distribution characteristic of soil moisture and roots in rain-fed old apple orchards with water-fertilizer pit on the Loess Plateau
EndPage 128
ExternalDocumentID nygcxb201607017
678897185201607017
GrantInformation_xml – fundername: 国家自然科学基金。
  funderid: (41401315,41571506,51579212)。
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c687-ba94894d85344f0afb299255eec4621f8a9297c60116be864a84e110d9230f913
ISSN 1002-6819
IngestDate Thu May 29 04:04:19 EDT 2025
Wed Feb 14 10:17:01 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords 养分
rain-fed orchards
the Loess Plateau
黄土高原
肥水坑技术
moisture
roots
土壤
根系
nutrients
water-fertilizer pit (WFP)
雨养果园
含水率
soils
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c687-ba94894d85344f0afb299255eec4621f8a9297c60116be864a84e110d9230f913
Notes 11-2047/S
Song Xiaolin;Wu Pute;Zhao Xining;Gao Xiaodong;Institute of Soil and Water Conservation, Northwest A University;Institute of Water Saving Agriculture in Arid regions of China, Northwest A University;National Engineering Research Center for Water Saving Irrigation at Yangling;Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201607017
chongqing_primary_678897185201607017
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 西北农林科技大学水土保持研究所,杨凌 712100
中国科学院水利部水土保持研究所,杨凌 712100%西北农林科技大学中国旱区节水农业研究院,杨凌 712100
中国科学院水利部水土保持研究所,杨凌 712100
国家节水灌溉杨凌工程技术研究中心,杨凌 712100%西北农林科技大学水土保持研究所,杨凌 712100
西北农林科技大学中国旱区节水农业研究院,杨凌 712100
国家节水灌溉杨凌工程技术研究中心,杨凌 712100
Publisher_xml – name: 国家节水灌溉杨凌工程技术研究中心,杨凌 712100%西北农林科技大学水土保持研究所,杨凌 712100
– name: 西北农林科技大学中国旱区节水农业研究院,杨凌 712100
– name: 中国科学院水利部水土保持研究所,杨凌 712100%西北农林科技大学中国旱区节水农业研究院,杨凌 712100
– name: 中国科学院水利部水土保持研究所,杨凌 712100
– name: 西北农林科技大学水土保持研究所,杨凌 712100
– name: 国家节水灌溉杨凌工程技术研究中心,杨凌 712100
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.138873
Snippet 为了解黄土丘陵区雨养条件下山地老果园布设肥水坑(water-wertilizer pit,WFP)技术对红富士老果树(Malus pumila Mill)根系及土壤水分空间分布特征的影响,以无肥水坑处理为...
S661.1; 为了解黄土丘陵区雨养条件下山地老果园布设肥水坑(water-wertilizer pit, WFP)技术对红富士老果树(Malus pumilaMill)根系及土壤水分空间分布特征的影响,以无...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 121
SubjectTerms 土壤;含水率;养分;肥水坑技术;根系;雨养果园;黄土高原
Title 黄土高原肥水坑施技术下苹果树根系及土壤水分布
URI http://lib.cqvip.com/qk/90712X/201607/678897185201607017.html
https://d.wanfangdata.com.cn/periodical/nygcxb201607017
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA91C6IH8RPrFz00x607H5lJjpPdWYqgpwq9LfOR2Z62WlvQnkRFpAWlF_Gw2oJ68qCgh5bif-OO7b_gyfeS7OxqRaowDI-Xl5ff5IXkZSbvDSEzrsuzIMn9Og8S2KCwolFPPAWOXK5cnoahkygMcL55K5i77d9YYAsTEz_GTi2trqSz2dof40r-x6rAA7tilOw_WLZSCgygwb5wBwvD_Ug2prGgUlLu05hR0aSijZxIUsGRw2PN4ZS7NGI0DqhsUGmEW1Q4yBHAbCHBIzz0gJwmjaCWTyVUlLq6pFLoohhLgYgatjoQWBRS6SESbLSNqkZ4GI08Gvm_tM5BZ4AENuGN-8e6VGMwAIRWJUONH-4GEuhs0SiwsCM2HDW6JLYi0BpgsahD6mmmMBCAKVASVHKBT-DpB5UMLyCgNdkeanN0adWvuq7whgCb4-9NTECnneRxFQi4narN-A7HJnHHxGxbf8AxweuHlxoRMr3WoM7ZSieeFjT5YE1M6m_ZvME34CLEiHWd2g-EjpFJNwQvqUYmI9mS7ZEz6-B-vZptHfzTgTOKcnYxh0Ew2iwyx8NfFVQHnPDzPtPf-i2y44QOcV__G2rMMrK41OveBd9Jh7L1iqTXHfO65k-TU3a7NB2ZsX-GTKwtniUno-6yTRmjzhF5sPdk0N86-PBq8Hxr_9H78tOXwevN8uXXcv1h2f_4bWdjf2O3fNMvtzfL7d3vn_cGL9ZBfvD2HUo-ezrYeXyezLfj-eZc3f4ZpJ4FsCimifC58HNwNX2_aCRFCk4V7I2VyvzAdQqegNMfZgF-ZEwVD_yE-wq6M4fdTKMQjneB1HpLPXWRTGdF6IWcsVzlwm8olTBV5KEC26QiKVgxRWaqzujcMQlgOoeNOEWmbT917Pxwr9N70M3up5XIpaNpukxOIG3e8l0htZXlVXUV_N6V9JodID8BJBuE9Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%BB%84%E5%9C%9F%E9%AB%98%E5%8E%9F%E8%82%A5%E6%B0%B4%E5%9D%91%E6%96%BD%E6%8A%80%E6%9C%AF%E4%B8%8B%E8%8B%B9%E6%9E%9C%E6%A0%91%E6%A0%B9%E7%B3%BB%E5%8F%8A%E5%9C%9F%E5%A3%A4%E6%B0%B4%E5%88%86%E5%B8%83&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AE%8B%E5%B0%8F%E6%9E%97%3B%E5%90%B4%E6%99%AE%E7%89%B9%3B%E8%B5%B5%E8%A5%BF%E5%AE%81%3B%E9%AB%98%E6%99%93%E4%B8%9C&rft.date=2016&rft.issn=1002-6819&rft.issue=7&rft.spage=121&rft.epage=128&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.07.017&rft.externalDocID=678897185201607017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg