Hybrid approach for denoising and segmentation: N2S with swin transformerenhanced U-net
Accurate segmentation in medical imaging, particularly for modalities such as Chest X-rays, CT scans, and microscopic images, is critical for diagnosis and treatment. However, noisy and low-quality data can significantly affect performance. This paper presents a novel framework that integrates Noise...
        Saved in:
      
    
          | Published in | I-manager's Journal on Image Processing Vol. 12; no. 1; p. 50 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Nagercoil
          iManager Publications
    
        01.03.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2349-4530 2349-6827  | 
| DOI | 10.26634/jip.12.1.21658 | 
Cover
| Abstract | Accurate segmentation in medical imaging, particularly for modalities such as Chest X-rays, CT scans, and microscopic images, is critical for diagnosis and treatment. However, noisy and low-quality data can significantly affect performance. This paper presents a novel framework that integrates Noise2Split denoising with a Hybrid Swin Transformer U-Net to enhance segmentation accuracy in these challenging medical imaging tasks. By combining Noise2Split's effective noise reduction with the Swin Transformer's advanced feature extraction and U-Net's robust segmentation architecture, the model efficiently addresses both noise and segmentation challenges. The Swin Transformer effectively captures both local and global context, while the skip connections in U-Net contribute to recovering detailed high- resolution features. Extensive experiments on Chest X-rays, CT scans, and microscopic images demonstrate that this integrated model performs better than traditional methods in terms of segmentation accuracy, making it a valuable tool for clinical applications where imaging quality is compromised. | 
    
|---|---|
| AbstractList | Accurate segmentation in medical imaging, particularly for modalities such as Chest X-rays, CT scans, and microscopic images, is critical for diagnosis and treatment. However, noisy and low-quality data can significantly affect performance. This paper presents a novel framework that integrates Noise2Split denoising with a Hybrid Swin Transformer U-Net to enhance segmentation accuracy in these challenging medical imaging tasks. By combining Noise2Split's effective noise reduction with the Swin Transformer's advanced feature extraction and U-Net's robust segmentation architecture, the model efficiently addresses both noise and segmentation challenges. The Swin Transformer effectively captures both local and global context, while the skip connections in U-Net contribute to recovering detailed high- resolution features. Extensive experiments on Chest X-rays, CT scans, and microscopic images demonstrate that this integrated model performs better than traditional methods in terms of segmentation accuracy, making it a valuable tool for clinical applications where imaging quality is compromised. | 
    
| Author | Ramashri, T. Ashwini, G.  | 
    
| Author_xml | – sequence: 1 givenname: G. surname: Ashwini fullname: Ashwini, G. – sequence: 2 givenname: T. surname: Ramashri fullname: Ramashri, T.  | 
    
| BookMark | eNotkM1PAjEQxRuDiYicvTbxvEu_ttt6M0TFhOhBjMembGehRLpru4Tw39sgp5nDm_fm_W7RKHQBELqnpGRScjHb-b6krKQlo7JSV2jMuNCFVKweXXZRcXKDpintCCFMS6E1HaPvxWkdvcO272Nnmy1uu4gdhM4nHzbYBocTbPYQBjv4Ljzid_aJj37Y4nT0AQ_RhpRP9hAhbG1owOGvIsBwh65b-5NgepkTtHp5Xs0XxfLj9W3-tCwaqWShLcC6UoIxSxhXXNXUOaiBElBStJWSVrlcsKaNVZqTtnFWahB6bSlnleUT9PBvm7__PUAazK47xJATDWecCJG9ZVbN_lVN7FKK0Jo--r2NJ0OJOfMzmZ-hzFBz5sf_AD03ZQ0 | 
    
| Cites_doi | 10.1007/978-3-031-25066-8_9 10.48550/arXiv.2010.11929 10.48550/arXiv.1511.07122 10.1007/978-3-030-01234-2_49 10.1007/978-3-030-00889-5_1 10.1007/978-3-319-46723-8_49 10.1109/ICCV48922.2021.00986 10.1142/S0219467824500578 10.1109/LGRS.2018.2802944 10.48550/arXiv.2102.04306 10.1007/978-3-030-58452-8_13 10.1016/j.media.2018.10.004 10.1007/978-3-319-24574-4_28 10.32628/IJSRST 10.1109/CVPR.2016.90 10.1109/JBHI.2020.2986926  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2025 i-manager publications. All rights reserved. | 
    
| Copyright_xml | – notice: Copyright © 2025 i-manager publications. All rights reserved. | 
    
| DBID | AAYXX CITATION 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U  | 
    
| DOI | 10.26634/jip.12.1.21658 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer Science Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2349-6827 | 
    
| ExternalDocumentID | 10_26634_jip_12_1_21658 | 
    
| GroupedDBID | 8FE 8FG AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQGLB PQQKQ PROAC PUEGO 3V. 7XB 8AL 8FK JQ2 M0N PKEHL PQEST PQUKI Q9U  | 
    
| ID | FETCH-LOGICAL-c686-9aeeb58422a02383871dde7e10e864f586a8d26671ca8930fcda69e49ba1325a3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2349-4530 | 
    
| IngestDate | Tue Aug 05 07:10:46 EDT 2025 Wed Oct 01 06:06:04 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c686-9aeeb58422a02383871dde7e10e864f586a8d26671ca8930fcda69e49ba1325a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3230448426 | 
    
| PQPubID | 2042734 | 
    
| ParticipantIDs | proquest_journals_3230448426 crossref_primary_10_26634_jip_12_1_21658  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250301 | 
    
| PublicationDateYYYYMMDD | 2025-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2025 text: 20250301 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Nagercoil | 
    
| PublicationPlace_xml | – name: Nagercoil | 
    
| PublicationTitle | I-manager's Journal on Image Processing | 
    
| PublicationYear | 2025 | 
    
| Publisher | iManager Publications | 
    
| Publisher_xml | – name: iManager Publications | 
    
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref4 doi: 10.1007/978-3-031-25066-8_9 – ident: ref9 doi: 10.48550/arXiv.2010.11929 – ident: ref3 – ident: ref18 doi: 10.48550/arXiv.1511.07122 – ident: ref7 doi: 10.1007/978-3-030-01234-2_49 – ident: ref20 doi: 10.1007/978-3-030-00889-5_1 – ident: ref8 doi: 10.1007/978-3-319-46723-8_49 – ident: ref14 doi: 10.1109/ICCV48922.2021.00986 – ident: ref2 doi: 10.1142/S0219467824500578 – ident: ref19 doi: 10.1109/LGRS.2018.2802944 – ident: ref6 doi: 10.48550/arXiv.2102.04306 – ident: ref5 doi: 10.1007/978-3-030-58452-8_13 – ident: ref13 doi: 10.1016/j.media.2018.10.004 – ident: ref15 doi: 10.1007/978-3-319-24574-4_28 – ident: ref1 doi: 10.32628/IJSRST – ident: ref11 – ident: ref17 – ident: ref10 doi: 10.1109/CVPR.2016.90 – ident: ref12 – ident: ref16 doi: 10.1109/JBHI.2020.2986926  | 
    
| SSID | ssj0002964991 | 
    
| Score | 2.2868629 | 
    
| Snippet | Accurate segmentation in medical imaging, particularly for modalities such as Chest X-rays, CT scans, and microscopic images, is critical for diagnosis and... | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Index Database  | 
    
| StartPage | 50 | 
    
| SubjectTerms | Accuracy Computed tomography Datasets Deep learning Image segmentation Medical imaging Methods Neural networks Noise reduction X-rays  | 
    
| Title | Hybrid approach for denoising and segmentation: N2S with swin transformerenhanced U-net | 
    
| URI | https://www.proquest.com/docview/3230448426 | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2349-6827 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002964991 issn: 2349-4530 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2349-6827 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002964991 issn: 2349-4530 databaseCode: 8FG dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5zu3gRRcXpHDl48BLWNmnWCCJTN4dgEbfhbiFpUp1gN3Ui_vfmZa0_Lp5LC3mPvh9f3vs-hI5yFigrdEys6uaEJcABqbsByagwyog44x4auEn5cMKup_G0htJqFwbGKquY6AO1mWeAkXcooJcscQnlbPFCQDUKblcrCQ1VSiuYU08xtoYaETBj1VHjvJ_e3n2jLnDJKLyMXkSZICymwYrvx-UpyjpPswWAg65vDDmIwP9OVX8jtU8_g020UdaNuLdy9Baq2WIb3Q8_YeEK90picOwqUHxpi_kMEACsCoNH9uG5XC8qTnAajTAgr3j0MSvwuCpaYeXv0Y8C4AlJ7XIHjQf98cWQlEoJJOMJJ0JZq10lEUUKUjB1TZCLWl0bBjbhLI8TrhLjTtgNM-XqkyDPjOLCMqGVa0ZjRXdRvZgXdg9h119p7b4Q5BTI6ZkO3Qs0tiLMuYhN3kTHlU3kYsWHIV0f4c0nnflkGMlQevM1UauymSx_jDf548b9_x8foPUIpHb9uFcL1Zev7_bQ5f-lbqO1ZHDVLl37Ba_qrlo | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTsMwELRKe4ALAgHiUcAHkLhYTWLHjZEqVGhRyyNCtAhulpM4UCTSQouqfhz_xtpNeFy4cbbiw9rx7Iy9OwgdpMxRWkQ-0aqeEhaYHpBR3SExFYlKhB9zKw1ch7xzxy4e_IcS-ihqYcyzyuJMtAd1MoyNRl6jRr1kAQDKyeiVGNcoc7taWGio3FohadgWY3lhx6WeTYHCjRvdFqz3oeedt_tnHZK7DJCYB5wIpXUEKOx5ysAXBQIBf3xdu44OOEv9gKsgARSru7ECbHfSOFFcaCYiBUTOVxSmXUAVRpkA7lc5bYc3t18ij7nTFNa1z4NxwnzqzNsLwYSU1Z4HI6NFAk11ufGc_4mMv4HBot35ClrO01TcnO-rVVTS2Rq678xMfRdu5n3IMSS8uKWz4cAIDlhlCe7px5e8mik7xqHXw0boxb3pIMP9Ikc2FYZP9uUBviOhnqyj_n-EbAOVs2GmNxEGOhdFMIOTUtMLn0UufEB9LdyUCz9Jt9BRERM5mrffkEBbbPgkhE-6nnSlDd8WqhYxk_l_OJbfu2b77-F9tNjpX1_Jq254uYOWPOPya1_tVVF58vaudyH1mER7-QJjJP95S30CM-_pDA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Approach+for+Denoising+and+Segmentation%3A+N2S+with+Swin+Transformerenhanced+U-Net&rft.jtitle=I-manager%27s+Journal+on+Image+Processing&rft.au=Ashwini%2C+G&rft.au=Ramashri%2C+T&rft.date=2025-03-01&rft.pub=iManager+Publications&rft.issn=2349-4530&rft.eissn=2349-6827&rft.volume=12&rft.issue=1&rft_id=info:doi/10.26634%2Fjip.12.1.21658 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-4530&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-4530&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-4530&client=summon |