Hybrid approach for denoising and segmentation: N2S with swin transformerenhanced U-net

Accurate segmentation in medical imaging, particularly for modalities such as Chest X-rays, CT scans, and microscopic images, is critical for diagnosis and treatment. However, noisy and low-quality data can significantly affect performance. This paper presents a novel framework that integrates Noise...

Full description

Saved in:
Bibliographic Details
Published inI-manager's Journal on Image Processing Vol. 12; no. 1; p. 50
Main Authors Ashwini, G., Ramashri, T.
Format Journal Article
LanguageEnglish
Published Nagercoil iManager Publications 01.03.2025
Subjects
Online AccessGet full text
ISSN2349-4530
2349-6827
DOI10.26634/jip.12.1.21658

Cover

Abstract Accurate segmentation in medical imaging, particularly for modalities such as Chest X-rays, CT scans, and microscopic images, is critical for diagnosis and treatment. However, noisy and low-quality data can significantly affect performance. This paper presents a novel framework that integrates Noise2Split denoising with a Hybrid Swin Transformer U-Net to enhance segmentation accuracy in these challenging medical imaging tasks. By combining Noise2Split's effective noise reduction with the Swin Transformer's advanced feature extraction and U-Net's robust segmentation architecture, the model efficiently addresses both noise and segmentation challenges. The Swin Transformer effectively captures both local and global context, while the skip connections in U-Net contribute to recovering detailed high- resolution features. Extensive experiments on Chest X-rays, CT scans, and microscopic images demonstrate that this integrated model performs better than traditional methods in terms of segmentation accuracy, making it a valuable tool for clinical applications where imaging quality is compromised.
AbstractList Accurate segmentation in medical imaging, particularly for modalities such as Chest X-rays, CT scans, and microscopic images, is critical for diagnosis and treatment. However, noisy and low-quality data can significantly affect performance. This paper presents a novel framework that integrates Noise2Split denoising with a Hybrid Swin Transformer U-Net to enhance segmentation accuracy in these challenging medical imaging tasks. By combining Noise2Split's effective noise reduction with the Swin Transformer's advanced feature extraction and U-Net's robust segmentation architecture, the model efficiently addresses both noise and segmentation challenges. The Swin Transformer effectively captures both local and global context, while the skip connections in U-Net contribute to recovering detailed high- resolution features. Extensive experiments on Chest X-rays, CT scans, and microscopic images demonstrate that this integrated model performs better than traditional methods in terms of segmentation accuracy, making it a valuable tool for clinical applications where imaging quality is compromised.
Author Ramashri, T.
Ashwini, G.
Author_xml – sequence: 1
  givenname: G.
  surname: Ashwini
  fullname: Ashwini, G.
– sequence: 2
  givenname: T.
  surname: Ramashri
  fullname: Ramashri, T.
BookMark eNotkM1PAjEQxRuDiYicvTbxvEu_ttt6M0TFhOhBjMembGehRLpru4Tw39sgp5nDm_fm_W7RKHQBELqnpGRScjHb-b6krKQlo7JSV2jMuNCFVKweXXZRcXKDpintCCFMS6E1HaPvxWkdvcO272Nnmy1uu4gdhM4nHzbYBocTbPYQBjv4Ljzid_aJj37Y4nT0AQ_RhpRP9hAhbG1owOGvIsBwh65b-5NgepkTtHp5Xs0XxfLj9W3-tCwaqWShLcC6UoIxSxhXXNXUOaiBElBStJWSVrlcsKaNVZqTtnFWahB6bSlnleUT9PBvm7__PUAazK47xJATDWecCJG9ZVbN_lVN7FKK0Jo--r2NJ0OJOfMzmZ-hzFBz5sf_AD03ZQ0
Cites_doi 10.1007/978-3-031-25066-8_9
10.48550/arXiv.2010.11929
10.48550/arXiv.1511.07122
10.1007/978-3-030-01234-2_49
10.1007/978-3-030-00889-5_1
10.1007/978-3-319-46723-8_49
10.1109/ICCV48922.2021.00986
10.1142/S0219467824500578
10.1109/LGRS.2018.2802944
10.48550/arXiv.2102.04306
10.1007/978-3-030-58452-8_13
10.1016/j.media.2018.10.004
10.1007/978-3-319-24574-4_28
10.32628/IJSRST
10.1109/CVPR.2016.90
10.1109/JBHI.2020.2986926
ContentType Journal Article
Copyright Copyright © 2025 i-manager publications. All rights reserved.
Copyright_xml – notice: Copyright © 2025 i-manager publications. All rights reserved.
DBID AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.26634/jip.12.1.21658
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2349-6827
ExternalDocumentID 10_26634_jip_12_1_21658
GroupedDBID 8FE
8FG
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PUEGO
3V.
7XB
8AL
8FK
JQ2
M0N
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c686-9aeeb58422a02383871dde7e10e864f586a8d26671ca8930fcda69e49ba1325a3
IEDL.DBID BENPR
ISSN 2349-4530
IngestDate Tue Aug 05 07:10:46 EDT 2025
Wed Oct 01 06:06:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c686-9aeeb58422a02383871dde7e10e864f586a8d26671ca8930fcda69e49ba1325a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3230448426
PQPubID 2042734
ParticipantIDs proquest_journals_3230448426
crossref_primary_10_26634_jip_12_1_21658
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 20250301
  day: 01
PublicationDecade 2020
PublicationPlace Nagercoil
PublicationPlace_xml – name: Nagercoil
PublicationTitle I-manager's Journal on Image Processing
PublicationYear 2025
Publisher iManager Publications
Publisher_xml – name: iManager Publications
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.1007/978-3-031-25066-8_9
– ident: ref9
  doi: 10.48550/arXiv.2010.11929
– ident: ref3
– ident: ref18
  doi: 10.48550/arXiv.1511.07122
– ident: ref7
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref20
  doi: 10.1007/978-3-030-00889-5_1
– ident: ref8
  doi: 10.1007/978-3-319-46723-8_49
– ident: ref14
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref2
  doi: 10.1142/S0219467824500578
– ident: ref19
  doi: 10.1109/LGRS.2018.2802944
– ident: ref6
  doi: 10.48550/arXiv.2102.04306
– ident: ref5
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref13
  doi: 10.1016/j.media.2018.10.004
– ident: ref15
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref1
  doi: 10.32628/IJSRST
– ident: ref11
– ident: ref17
– ident: ref10
  doi: 10.1109/CVPR.2016.90
– ident: ref12
– ident: ref16
  doi: 10.1109/JBHI.2020.2986926
SSID ssj0002964991
Score 2.2868629
Snippet Accurate segmentation in medical imaging, particularly for modalities such as Chest X-rays, CT scans, and microscopic images, is critical for diagnosis and...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 50
SubjectTerms Accuracy
Computed tomography
Datasets
Deep learning
Image segmentation
Medical imaging
Methods
Neural networks
Noise reduction
X-rays
Title Hybrid approach for denoising and segmentation: N2S with swin transformerenhanced U-net
URI https://www.proquest.com/docview/3230448426
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2349-6827
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002964991
  issn: 2349-4530
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2349-6827
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002964991
  issn: 2349-4530
  databaseCode: 8FG
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA5zu3gRRcXpHDl48BLWNmnWCCJTN4dgEbfhbiFpUp1gN3Ui_vfmZa0_Lp5LC3mPvh9f3vs-hI5yFigrdEys6uaEJcABqbsByagwyog44x4auEn5cMKup_G0htJqFwbGKquY6AO1mWeAkXcooJcscQnlbPFCQDUKblcrCQ1VSiuYU08xtoYaETBj1VHjvJ_e3n2jLnDJKLyMXkSZICymwYrvx-UpyjpPswWAg65vDDmIwP9OVX8jtU8_g020UdaNuLdy9Baq2WIb3Q8_YeEK90picOwqUHxpi_kMEACsCoNH9uG5XC8qTnAajTAgr3j0MSvwuCpaYeXv0Y8C4AlJ7XIHjQf98cWQlEoJJOMJJ0JZq10lEUUKUjB1TZCLWl0bBjbhLI8TrhLjTtgNM-XqkyDPjOLCMqGVa0ZjRXdRvZgXdg9h119p7b4Q5BTI6ZkO3Qs0tiLMuYhN3kTHlU3kYsWHIV0f4c0nnflkGMlQevM1UauymSx_jDf548b9_x8foPUIpHb9uFcL1Zev7_bQ5f-lbqO1ZHDVLl37Ba_qrlo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTsMwELRKe4ALAgHiUcAHkLhYTWLHjZEqVGhRyyNCtAhulpM4UCTSQouqfhz_xtpNeFy4cbbiw9rx7Iy9OwgdpMxRWkQ-0aqeEhaYHpBR3SExFYlKhB9zKw1ch7xzxy4e_IcS-ihqYcyzyuJMtAd1MoyNRl6jRr1kAQDKyeiVGNcoc7taWGio3FohadgWY3lhx6WeTYHCjRvdFqz3oeedt_tnHZK7DJCYB5wIpXUEKOx5ysAXBQIBf3xdu44OOEv9gKsgARSru7ECbHfSOFFcaCYiBUTOVxSmXUAVRpkA7lc5bYc3t18ij7nTFNa1z4NxwnzqzNsLwYSU1Z4HI6NFAk11ufGc_4mMv4HBot35ClrO01TcnO-rVVTS2Rq678xMfRdu5n3IMSS8uKWz4cAIDlhlCe7px5e8mik7xqHXw0boxb3pIMP9Ikc2FYZP9uUBviOhnqyj_n-EbAOVs2GmNxEGOhdFMIOTUtMLn0UufEB9LdyUCz9Jt9BRERM5mrffkEBbbPgkhE-6nnSlDd8WqhYxk_l_OJbfu2b77-F9tNjpX1_Jq254uYOWPOPya1_tVVF58vaudyH1mER7-QJjJP95S30CM-_pDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Approach+for+Denoising+and+Segmentation%3A+N2S+with+Swin+Transformerenhanced+U-Net&rft.jtitle=I-manager%27s+Journal+on+Image+Processing&rft.au=Ashwini%2C+G&rft.au=Ramashri%2C+T&rft.date=2025-03-01&rft.pub=iManager+Publications&rft.issn=2349-4530&rft.eissn=2349-6827&rft.volume=12&rft.issue=1&rft_id=info:doi/10.26634%2Fjip.12.1.21658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-4530&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-4530&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-4530&client=summon