MEG current source reconstruction using a meta-analysis fMRI prior
Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 236; p. 118034 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.08.2021
Elsevier Limited Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2021.118034 |
Cover
| Abstract | Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers. |
|---|---|
| AbstractList | Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers. Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers.Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers. |
| ArticleNumber | 118034 |
| Author | Suzuki, Keita Yamashita, Okito |
| Author_xml | – sequence: 1 givenname: Keita orcidid: 0000-0002-6808-5827 surname: Suzuki fullname: Suzuki, Keita email: k_suzuki@atr.jp organization: Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan – sequence: 2 givenname: Okito surname: Yamashita fullname: Yamashita, Okito organization: Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33839265$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkk1v1DAQhiNURD_gL6BIXLhk64kTJ74gaFXalVohIThbE2eycsjai50U7b_HIaVIe1pOtqxnHo_f8XlyYp2lJEmBrYCBuOxXlibvzBY3tMpZDiuAmvHiRXIGTJaZLKv8ZN6XPKsB5GlyHkLPGJNQ1K-SU85rLnNRniVXDze3qZ68JzumwU1eU-pJOxtGP-nROJtOwdhNiumWRszQ4rAPJqTdw9d1uvPG-dfJyw6HQG-e1ovk--ebb9d32f2X2_X1p_tMi7ocs0KIjnd51XCCtmpFVQISx7wphUAERJYXNVRaywpQ6g6xBl4jNCBQFKzjF8l68bYOexWv3qLfK4dG_TlwfqPQj0YPpICoIlkIkKwtWhSNFlXXSJRE8bhuoksursnucP8Lh-FZCEzNGate_ctYzRmrJeNY-36p3Xn3c6Iwqq0JmoYBLbkpqLyMoBRcQkTfHaB9jDhGOFNFyePTJY_U2ydqarbUPnfyd0oR-LAA2rsQPHVKmxHn4YwezXBMy_WB4D9ee7WUUhztoyGvgjZkNbUm_pMxZm-OkXw8kOjBWKNx-EH74xS_ATrk6_4 |
| CitedBy_id | crossref_primary_10_1016_j_jneumeth_2023_110032 crossref_primary_10_1016_j_neuroimage_2023_120257 crossref_primary_10_3389_fnins_2023_1222749 crossref_primary_10_1587_bplus_16_326 |
| Cites_doi | 10.1016/j.neuroimage.2015.03.071 10.1016/S1053-8119(03)00202-7 10.1016/j.neuroimage.2011.12.027 10.1038/sdata.2015.1 10.1371/journal.pone.0077089 10.1109/79.962275 10.3389/fnins.2014.00001 10.1016/j.neuroimage.2020.117411 10.1016/j.neuroimage.2014.09.066 10.1002/jmri.20935 10.1016/S0730-725X(99)00102-2 10.1016/0167-8760(84)90014-X 10.1101/2020.03.19.998641 10.1016/S0925-2312(02)00740-3 10.1109/10.142641 10.3389/fncom.2019.00091 10.1016/j.neuroimage.2008.10.061 10.1162/jocn_a_00077 10.1016/j.pneurobio.2006.10.001 10.3389/fnins.2018.00530 10.1038/nn.4504 10.1016/j.neuroimage.2012.03.048 10.1016/j.neuroimage.2020.116995 10.1038/s41598-018-24981-0 10.1007/BF02512476 10.1146/annurev-bioeng-062117-120853 10.1016/j.neuroimage.2018.02.032 10.1016/j.neuroimage.2012.10.001 10.1016/j.neuroimage.2008.02.059 10.1155/2011/879716 10.1371/journal.pone.0198806 10.1146/annurev-vision-102016-061214 10.1016/j.mri.2009.05.036 10.1016/S0896-6273(00)81138-1 10.1002/hbm.20851 10.1038/nn1224 10.1016/j.neuroimage.2012.02.018 10.1016/j.neuroimage.2005.12.016 10.1103/RevModPhys.65.413 10.1111/nyas.13596 10.1016/j.neuroimage.2004.11.051 10.1038/nmeth.1635 10.1002/hbm.20155 10.3389/fnins.2019.00241 10.1016/j.neuroimage.2009.06.083 10.1113/JP277899 10.1038/nature26147 10.1002/hbm.20956 10.1073/pnas.1530509100 10.1016/j.neuroimage.2008.06.013 10.1016/j.biopsych.2020.02.356 10.1073/pnas.0905267106 10.7554/eLife.53385 10.1063/1.166453 10.1016/j.neuroimage.2004.06.037 10.1038/srep44259 10.1016/j.neuroimage.2007.09.048 10.1002/hbm.460020402 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Aug 1, 2021 |
| Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Aug 1, 2021 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 ADTOC UNPAY DOA |
| DOI | 10.1016/j.neuroimage.2021.118034 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| ExternalDocumentID | oai_doaj_org_article_1ee7e946190d4da6bc67fb9a9eee948b 10.1016/j.neuroimage.2021.118034 33839265 10_1016_j_neuroimage_2021_118034 S1053811921003116 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 6I. AACTN AAFTH ALIPV 29N 53G AAQFI AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EFLBG EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HMQ HVGLF HZ~ R2- SEW SNS WUQ XPP ZMT AGCQF AGRNS NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c685t-466f3f27b3e1d7d6751ae3a2b566aa1aa024817cc971a9cfaa8138a1b16a640f3 |
| IEDL.DBID | .~1 |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Fri Oct 03 12:52:18 EDT 2025 Tue Aug 19 20:23:47 EDT 2025 Thu Oct 02 11:50:39 EDT 2025 Tue Oct 07 07:06:27 EDT 2025 Mon Jul 21 05:33:50 EDT 2025 Sat Oct 25 05:07:36 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Sun Apr 06 06:53:09 EDT 2025 Tue Oct 14 19:31:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Source reconstruction fMRI MEG inverse problem Hierarchical Bayesian method Meta-analysis |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2021. Published by Elsevier Inc. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c685t-466f3f27b3e1d7d6751ae3a2b566aa1aa024817cc971a9cfaa8138a1b16a640f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6808-5827 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811921003116 |
| PMID | 33839265 |
| PQID | 2545356693 |
| PQPubID | 2031077 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1ee7e946190d4da6bc67fb9a9eee948b unpaywall_primary_10_1016_j_neuroimage_2021_118034 proquest_miscellaneous_2511896391 proquest_journals_2545356693 pubmed_primary_33839265 crossref_citationtrail_10_1016_j_neuroimage_2021_118034 crossref_primary_10_1016_j_neuroimage_2021_118034 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118034 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118034 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Yarkoni, Poldrack, Nichols, Van Essen, Wager (bib0065) 2011; 8 Tadel, Baillet, Mosher, Pantazis, Leahy (bib0052) 2011; 2011 Endo, Hiroe, Yamashita (bib0017) 2020; 13 Dalal, Zumer, Agrawal, Hild, Sekihara, Nagarajan (bib0012) 2004; 52 Baillet, Mosher, Leahy (bib0003) 2001; 18 Wipf, Owen, Attias, Sekihara, Nagarajan (bib0063) 2010; 49 Yoshioka, Toyama, Kawato, Yamashita, Nishina, Yamagishi, Sato (bib0066) 2008; 42 Thompson, Fransson (bib0054) 2017; 7 Baumgartner, Ryner, Richter, Summers, Jarmasz, Somorjai (bib0004) 2000; 18 Fukushima, Yamashita, Knösche, Sato (bib0021) 2015; 105 Tierney, T., Levy, A., Barry, D., Meyer, S., Shigihara, Y., Everatt, M., Mellor, S., Lopez, J. D., Bestmann, S., Holmes, N., Roberts, G., Hill, R., Boto, E., Leggett, J., Shah, V., Brookes, M., Bowtell, R., Maguire, E., Barnes, G., 2020. Mouth magnetoencephalography: a unique perspective on the human hippocampus. 17–19, 10.1101/2020.03.19.998641. Pernet (bib0045) 2014; 8 Palva, Wang, Palva, Zhigalov, Monto, Brookes, Schoffelen, Jerbi (bib0041) 2018; 173 Cai, Hashemi, Diwakar, Haufe, Sekihara, Nagarajan (bib0010) 2021; 225 Laird, Fox, Eickhoff, Turner, Ray, Mc Kay, Glahn, Beckmann, Smith, Fox (bib0034) 2011; 23 Neal (bib0038) 1996 Pascual-Marqui, R. D., 2007. Discrete, 3d distributed, linear imaging methods of electric neuronal activity. part 1: exact, zero error localization. 1–16. Hämäläinen, Ilmoniemi (bib0027) 1994; 32 Welvaert, Rosseel (bib0061) 2013; 8 Storey, Tibshirani (bib0051) 2003; 100 Ogawa, Aihara, Shimokawa, Yamashita (bib0039) 2018; 8 Pascual-Marqui, Michel, Lehmann (bib0044) 1994; 18 Sekihara, Sahani, Nagarajan (bib0049) 2005; 25 Breakspear, Terry, Friston (bib0008) 2003; 52–54 Sekihara, Nagarajan (bib0048) 2015 Sato, Yoshioka, Kajihara, Toyama, Goda, Doya, Kawato (bib0047) 2004; 23 Wipf, Nagarajan (bib0062) 2009; 44 Larter, Speelman, Worth (bib0035) 1999; 9 Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib0026) 1993; 65 Henson, Flandin, Friston, Mattout (bib0029) 2010; 31 Pascual-Marqui (bib0042) 2002 Friston, Harrison, Penny (bib0019) 2003; 19 Colclough, Brookes, Smith, Woolrich (bib0011) 2015; 117 Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C.,. Trujillo-Barreto, N., Henson, R., Flandin, G., Mattout, J., 2008. 39, 1104–1120, doi->10.1016/j.neuroimage.2007.09.048, Multiple sparse priors for the M/EEG inverse problem. Neuroimage. Grill-Spector, Knouf, Kanwisher (bib0023) 2004; 7 Boto, Holmes, Leggett, Roberts, Shah, Meyer, Muñoz, Mullinger, Tierney, Bestmann, Barnes, Bowtell, Brookes (bib0007) 2018; 555 Lin, Tierney, Holmes, Boto, Leggett, Bestmann, Bowtell, Brookes, Barnes, Miall (bib0036) 2019; 597 Takeda, Suzuki, Kawato, Yamashita (bib0053) 2019; 13 Ahlfors, Han, Lin, Witzel, Belliveau, Hämäläinen, Halgren (bib0001) 2010; 31 Dale, Liu, Fischl, Buckner, Belliveau, Lewine, Halgren, Louis (bib0013) 2000; 26 Lin, Belliveau, Dale, Hämäläinen (bib0037) 2006; 27 Jas, Larson, Engemann, Leppäkangas, Taulu, Hämäläinen, Gramfort (bib0032) 2018; 12 Kaneoke (bib0033) 2006; 80 Rossion, Jacques, Jonas (bib0046) 2018; 1426 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib0050) 2009; 106 He, Sohrabpour, Brown, Liu (bib0028) 2018; 20 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bib0020) 1994; 2 Bertrand, Massias, Gramfort, Salmon (bib0005) 2019 Wang, J., Williamson, S. J., Kaufman, L., 1992. Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation. IEEE Trans. Biomed. Eng., 39, 665–675, 10.1109/10.142641.s Brookes, Woolrich, Barnes (bib0009) 2012; 63 Grill-Spector, Weiner, Kay, Gomez (bib0024) 2017; 3 Van Wager, Lindquist, Nichols, Kober, Van Snellenberg (bib0058) 2009; 45 Dockès, Poldrack, Primet, Gözükan, Yarkoni, Suchanek, Thirion, Varoquaux (bib0014) 2020; 9 Hill, R. M., Boto, E., Rea, M., Holmes, N., Leggett, J., Coles, L. A., Papastavrou, M., Everton, S. K., Hunt, B. A. E., Sims, D., Osborne, J., Shah, V., Bowtell, R., Brookes, M. J., 2020. 10.1016/j.neuroimage.2020.116995, Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neuroimage 219, 116995. Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub (bib0057) 2012; 62 Elliott, Knodt, Ireland, Morris, Poulton, Ramrakha, Sison, Moffitt, Caspi, Hariri (bib0016) 2020; 87 Wakeman, Henson (bib0059) 2015; 2 Bishop, New York (bib0006) 2006 Sato, Yamashita, Sato, Miyawaki (bib0064) 2018; 13 Owen, Wipf, Attias, Sekihara, Nagarajan (bib0040) 2012; 60 Geissler, Gartus, Foki, Tahamtan, Beisteiner, Barth (bib0022) 2007; 25 Drobyshevsky, Baumann, Schneider (bib0015) 2006; 31 Gross, Baillet, Barnes, Henson, Hillebrand, Jensen, Jerbi, Litvak, Maess, Oostenveld, Parkkonen, Taylor, van Wassenhove, Wibral, Schoffelen (bib0025) 2013; 65 Baillet (bib0002) 2017; 20 Valente, De Martino, Filosa, Balsi, Formisano (bib0056) 2009; 27 Hill, Boto, Holmes, Hartley, Seedat, Leggett, Roberts, Shah, Tierney, Woolrich, Stagg, Barnes, Bowtell, Slater, Brookes (bib0030) 2019; 10 Drobyshevsky (10.1016/j.neuroimage.2021.118034_bib0015) 2006; 31 Henson (10.1016/j.neuroimage.2021.118034_bib0029) 2010; 31 Lin (10.1016/j.neuroimage.2021.118034_bib0037) 2006; 27 Van Essen (10.1016/j.neuroimage.2021.118034_bib0057) 2012; 62 Geissler (10.1016/j.neuroimage.2021.118034_bib0022) 2007; 25 Elliott (10.1016/j.neuroimage.2021.118034_bib0016) 2020; 87 Owen (10.1016/j.neuroimage.2021.118034_bib0040) 2012; 60 10.1016/j.neuroimage.2021.118034_bib0031 Dalal (10.1016/j.neuroimage.2021.118034_bib0012) 2004; 52 Grill-Spector (10.1016/j.neuroimage.2021.118034_bib0023) 2004; 7 Neal (10.1016/j.neuroimage.2021.118034_bib0038) 1996 Fukushima (10.1016/j.neuroimage.2021.118034_bib0021) 2015; 105 Welvaert (10.1016/j.neuroimage.2021.118034_bib0061) 2013; 8 Larter (10.1016/j.neuroimage.2021.118034_bib0035) 1999; 9 Gross (10.1016/j.neuroimage.2021.118034_bib0025) 2013; 65 10.1016/j.neuroimage.2021.118034_bib0060 Sekihara (10.1016/j.neuroimage.2021.118034_bib0048) 2015 Sato (10.1016/j.neuroimage.2021.118034_bib0064) 2018; 13 Storey (10.1016/j.neuroimage.2021.118034_bib0051) 2003; 100 Cai (10.1016/j.neuroimage.2021.118034_bib0010) 2021; 225 Lin (10.1016/j.neuroimage.2021.118034_bib0036) 2019; 597 Bertrand (10.1016/j.neuroimage.2021.118034_bib0005) 2019 Friston (10.1016/j.neuroimage.2021.118034_bib0020) 1994; 2 He (10.1016/j.neuroimage.2021.118034_bib0028) 2018; 20 Colclough (10.1016/j.neuroimage.2021.118034_bib0011) 2015; 117 Laird (10.1016/j.neuroimage.2021.118034_bib0034) 2011; 23 Van Wager (10.1016/j.neuroimage.2021.118034_bib0058) 2009; 45 Pernet (10.1016/j.neuroimage.2021.118034_bib0045) 2014; 8 Brookes (10.1016/j.neuroimage.2021.118034_bib0009) 2012; 63 10.1016/j.neuroimage.2021.118034_bib0055 Endo (10.1016/j.neuroimage.2021.118034_bib0017) 2020; 13 Yarkoni (10.1016/j.neuroimage.2021.118034_bib0065) 2011; 8 Ahlfors (10.1016/j.neuroimage.2021.118034_bib0001) 2010; 31 10.1016/j.neuroimage.2021.118034_bib0018 Hämäläinen (10.1016/j.neuroimage.2021.118034_bib0026) 1993; 65 Ogawa (10.1016/j.neuroimage.2021.118034_bib0039) 2018; 8 Sato (10.1016/j.neuroimage.2021.118034_bib0047) 2004; 23 Jas (10.1016/j.neuroimage.2021.118034_bib0032) 2018; 12 Baumgartner (10.1016/j.neuroimage.2021.118034_bib0004) 2000; 18 Bishop (10.1016/j.neuroimage.2021.118034_bib0006) 2006 Kaneoke (10.1016/j.neuroimage.2021.118034_bib0033) 2006; 80 Tadel (10.1016/j.neuroimage.2021.118034_bib0052) 2011; 2011 Hill (10.1016/j.neuroimage.2021.118034_bib0030) 2019; 10 Palva (10.1016/j.neuroimage.2021.118034_bib0041) 2018; 173 Friston (10.1016/j.neuroimage.2021.118034_bib0019) 2003; 19 Dale (10.1016/j.neuroimage.2021.118034_bib0013) 2000; 26 Takeda (10.1016/j.neuroimage.2021.118034_bib0053) 2019; 13 Baillet (10.1016/j.neuroimage.2021.118034_bib0002) 2017; 20 Thompson (10.1016/j.neuroimage.2021.118034_bib0054) 2017; 7 Valente (10.1016/j.neuroimage.2021.118034_bib0056) 2009; 27 Dockès (10.1016/j.neuroimage.2021.118034_bib0014) 2020; 9 Wakeman (10.1016/j.neuroimage.2021.118034_bib0059) 2015; 2 10.1016/j.neuroimage.2021.118034_bib0043 Wipf (10.1016/j.neuroimage.2021.118034_bib0063) 2010; 49 Pascual-Marqui (10.1016/j.neuroimage.2021.118034_bib0044) 1994; 18 Grill-Spector (10.1016/j.neuroimage.2021.118034_bib0024) 2017; 3 Pascual-Marqui (10.1016/j.neuroimage.2021.118034_bib0042) 2002 Wipf (10.1016/j.neuroimage.2021.118034_bib0062) 2009; 44 Boto (10.1016/j.neuroimage.2021.118034_bib0007) 2018; 555 Hämäläinen (10.1016/j.neuroimage.2021.118034_bib0027) 1994; 32 Sekihara (10.1016/j.neuroimage.2021.118034_bib0049) 2005; 25 Yoshioka (10.1016/j.neuroimage.2021.118034_bib0066) 2008; 42 Breakspear (10.1016/j.neuroimage.2021.118034_bib0008) 2003; 52–54 Rossion (10.1016/j.neuroimage.2021.118034_bib0046) 2018; 1426 Baillet (10.1016/j.neuroimage.2021.118034_bib0003) 2001; 18 Smith (10.1016/j.neuroimage.2021.118034_bib0050) 2009; 106 |
| References_xml | – volume: 49 start-page: 641 year: 2010 end-page: 655 ident: bib0063 article-title: Robust bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG publication-title: Neuroimage – volume: 18 start-page: 14 year: 2001 end-page: 30 ident: bib0003 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Process. Mag. – volume: 105 start-page: 408 year: 2015 end-page: 427 ident: bib0021 article-title: MEG source reconstruction based on identification of directed source interactions on whole-brain anatomical networks publication-title: Neuroimage – volume: 25 start-page: 1263 year: 2007 end-page: 1270 ident: bib0022 article-title: Contrast-to-noise ratio (CNR) as a quality parameter in fMRI publication-title: J. Magn. Reson. Imaging – volume: 7 start-page: 555 year: 2004 end-page: 562 ident: bib0023 article-title: The fusiform face area subserves face perception, not generic within-category identification publication-title: Nat. Neurosci. – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib0050 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. – volume: 27 start-page: 1 year: 2006 end-page: 13 ident: bib0037 article-title: Distributed current estimates using cortical orientation constraints publication-title: Hum. Brain Mapp. – volume: 31 start-page: 140 year: 2010 end-page: 149 ident: bib0001 article-title: Cancellation of EEG and MEG signals generated by extended and distributed sources publication-title: Hum. Brain Mapp. – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bib0057 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage – volume: 23 start-page: 806 year: 2004 end-page: 826 ident: bib0047 article-title: Hierarchical bayesian estimation for MEG inverse problem publication-title: Neuroimage – volume: 31 start-page: 1512 year: 2010 end-page: 1531 ident: bib0029 article-title: A parametric empirical bayesian framework for fMRI-constrained MEG/EEG source reconstruction publication-title: Hum. Brain Mapp. – volume: 26 start-page: 55 year: 2000 end-page: 67 ident: bib0013 article-title: Dynamic statistical parametric mapping : Combining fMRI and MEG for high-resolution imaging of cortical activity publication-title: Neuron – volume: 2 start-page: 189 year: 1994 end-page: 210 ident: bib0020 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – volume: 32 start-page: 35 year: 1994 end-page: 42 ident: bib0027 article-title: Interpreting magnetic fields of the brain: minimum norm estimates publication-title: Med. Biol. Eng. Comput. – volume: 60 start-page: 305 year: 2012 end-page: 323 ident: bib0040 article-title: Performance evaluation of the champagne source reconstruction algorithm on simulated and real M/EEG data publication-title: Neuroimage – volume: 2011 year: 2011 ident: bib0052 article-title: Brainstorm: a user-friendly application for MEG/EEG analysis publication-title: Comput. Intell. Neurosci. – year: 2015 ident: bib0048 article-title: Electromagnetic Brain Imaging: A Bayesian Perspective – reference: Hill, R. M., Boto, E., Rea, M., Holmes, N., Leggett, J., Coles, L. A., Papastavrou, M., Everton, S. K., Hunt, B. A. E., Sims, D., Osborne, J., Shah, V., Bowtell, R., Brookes, M. J., 2020. 10.1016/j.neuroimage.2020.116995, Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neuroimage 219, 116995. – volume: 12 start-page: 1 year: 2018 end-page: 18 ident: bib0032 article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices publication-title: Front. Neurosci. – volume: 2 start-page: 150001 year: 2015 ident: bib0059 article-title: A multi-subject, multi-modal human neuroimaging dataset publication-title: Sci. data – volume: 1426 start-page: 5 year: 2018 end-page: 24 ident: bib0046 article-title: Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings publication-title: Ann. N. Y. Acad. Sci. – volume: 52 year: 2004 ident: bib0012 article-title: NUTMEG: a neuromagnetic source reconstruction toolbox publication-title: Neurol. Clin. Neurophysiol. – volume: 63 start-page: 910 year: 2012 end-page: 920 ident: bib0009 article-title: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage publication-title: Neuroimage – year: 1996 ident: bib0038 article-title: Bayesian Learning for Neural Networks – year: 2006 ident: bib0006 article-title: Pattern Recognition and Machine Learning, Information Science and Statistics – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: bib0026 article-title: Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. – start-page: 3959 year: 2019 end-page: 3970 ident: bib0005 article-title: Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso publication-title: Advances in Neural Information Processing Systems – volume: 10 start-page: 1 year: 2019 end-page: 11 ident: bib0030 article-title: A tool for functional brain imaging with lifespan compliance publication-title: Nat. Commun. – reference: Tierney, T., Levy, A., Barry, D., Meyer, S., Shigihara, Y., Everatt, M., Mellor, S., Lopez, J. D., Bestmann, S., Holmes, N., Roberts, G., Hill, R., Boto, E., Leggett, J., Shah, V., Brookes, M., Bowtell, R., Maguire, E., Barnes, G., 2020. Mouth magnetoencephalography: a unique perspective on the human hippocampus. 17–19, 10.1101/2020.03.19.998641. – volume: 3 start-page: 167 year: 2017 end-page: 196 ident: bib0024 article-title: The functional neuroanatomy of human face perception publication-title: Annu. Rev. Vis. Sci. – volume: 8 year: 2013 ident: bib0061 article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data publication-title: PLoS One – volume: 44 start-page: 947 year: 2009 end-page: 966 ident: bib0062 article-title: A unified bayesian framework for MEG/EEG source imaging publication-title: Neuroimage – volume: 225 start-page: 117411 year: 2021 ident: bib0010 article-title: Robust estimation of noise for electromagnetic brain imaging with the champagne algorithm publication-title: Neuroimage – reference: Wang, J., Williamson, S. J., Kaufman, L., 1992. Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation. IEEE Trans. Biomed. Eng., 39, 665–675, 10.1109/10.142641.s – volume: 8 start-page: 1 year: 2018 end-page: 11 ident: bib0039 article-title: Large-scale brain network associated with creative insight: combined voxel-based morphometry and resting-state functional connectivity analyses publication-title: Sci. Rep. – volume: 13 start-page: 1 year: 2018 end-page: 28 ident: bib0064 article-title: Information spreading by a combination of MEG source estimation and multivariate pattern classification publication-title: PLoS One – volume: 117 start-page: 439 year: 2015 end-page: 448 ident: bib0011 article-title: A symmetric multivariate leakage correction for MEG connectomes publication-title: Neuroimage – volume: 42 start-page: 1397 year: 2008 end-page: 1413 ident: bib0066 article-title: Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals publication-title: Neuroimage – volume: 9 start-page: 795 year: 1999 end-page: 804 ident: bib0035 article-title: A coupled ordinary differential equation lattice model for the simulation of epileptic seizures publication-title: Chaos – volume: 25 start-page: 1056 year: 2005 end-page: 1067 ident: bib0049 article-title: Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction publication-title: Neuroimage – volume: 23 start-page: 4022 year: 2011 end-page: 4037 ident: bib0034 article-title: Behavioral interpretations of intrinsic connectivity networks publication-title: J. Cogn. Neurosci. – volume: 65 start-page: 349 year: 2013 end-page: 363 ident: bib0025 article-title: Good practice for conducting and reporting MEG research publication-title: Neuroimage – volume: 8 start-page: 665 year: 2011 end-page: 670 ident: bib0065 article-title: Large-scale automated synthesis of human functional neuroimaging data publication-title: Nat. Methods – reference: Pascual-Marqui, R. D., 2007. Discrete, 3d distributed, linear imaging methods of electric neuronal activity. part 1: exact, zero error localization. 1–16. – volume: 19 start-page: 1273 year: 2003 end-page: 1302 ident: bib0019 article-title: Dynamic causal modelling publication-title: Neuroimage – volume: 27 start-page: 1110 year: 2009 end-page: 1119 ident: bib0056 article-title: Optimizing ICA in fMRI using information on spatial regularities of the sources publication-title: Magn. Reson. Imaging – volume: 100 start-page: 9440 year: 2003 end-page: 9445 ident: bib0051 article-title: Statistical significance for genomewide studies publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 1 year: 2020 end-page: 11 ident: bib0017 article-title: Evaluation of resting spatio-temporal dynamics of a neural mass model using resting fMRI connectivity and EEG microstates publication-title: Front. Comput. Neurosci. – volume: 20 start-page: 171 year: 2018 end-page: 196 ident: bib0028 article-title: Electrophysiological source imaging: a noninvasive window to brain dynamics publication-title: Annu. Rev. Biomed. Eng. – volume: 173 start-page: 632 year: 2018 end-page: 643 ident: bib0041 article-title: Ghost interactions in MEG/EEG source space: a note of caution on inter-areal coupling measures publication-title: Neuroimage – volume: 20 start-page: 327 year: 2017 end-page: 339 ident: bib0002 article-title: Magnetoencephalography for brain electrophysiology and imaging publication-title: Nat. Neurosci. – volume: 45 start-page: S210 year: 2009 end-page: S221 ident: bib0058 article-title: Evaluating the consistency and specificity of neuroimaging data using meta-analysis publication-title: Neuroimage – reference: Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C.,. Trujillo-Barreto, N., Henson, R., Flandin, G., Mattout, J., 2008. 39, 1104–1120, doi->10.1016/j.neuroimage.2007.09.048, Multiple sparse priors for the M/EEG inverse problem. Neuroimage. – volume: 52–54 start-page: 151 year: 2003 end-page: 158 ident: bib0008 article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a nonlinear model of neuronal dynamics publication-title: Neurocomputing – volume: 597 start-page: 4309 year: 2019 end-page: 4324 ident: bib0036 article-title: Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum publication-title: J. Physiol. – volume: 80 start-page: 219 year: 2006 end-page: 240 ident: bib0033 article-title: Magnetoencephalography: in search of neural processes for visual motion information publication-title: Prog. Neurobiol. – volume: 8 start-page: 1 year: 2014 end-page: 12 ident: bib0045 article-title: Misconceptions in the use of the general linear model applied to functional MRI: A tutorial for junior neuro-imagers publication-title: Front. Neurosci. – volume: 7 start-page: 1 year: 2017 end-page: 11 ident: bib0054 article-title: Spatial confluence of psychological and anatomical network constructs in the human brain revealed by a mass meta-analysis of fMRI activation publication-title: Sci. Rep. – volume: 31 start-page: 732 year: 2006 end-page: 744 ident: bib0015 article-title: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function publication-title: Neuroimage – year: 2002 ident: bib0042 article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 13 start-page: 1 year: 2019 end-page: 12 ident: bib0053 article-title: MEG source imaging and group analysis using VBMEG publication-title: Front. Neurosci. – volume: 87 start-page: S132 year: 2020 end-page: S133 ident: bib0016 article-title: What is the test-retest reliability of common task-fMRI measures? New Empirical Evidence and a Meta-Analysis publication-title: Biol. Psychiatry – volume: 18 start-page: 89 year: 2000 end-page: 94 ident: bib0004 article-title: Comparison of two exploratory data analysis methods for fMRI: Fuzzy clustering vs. principal component analysis publication-title: Magn. Reson. Imaging – volume: 9 start-page: 1 year: 2020 end-page: 34 ident: bib0014 article-title: Neuroquery, comprehensive meta-analysis of human brain mapping publication-title: Elife – volume: 555 start-page: 657 year: 2018 end-page: 661 ident: bib0007 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature – volume: 18 start-page: 49 year: 1994 end-page: 65 ident: bib0044 article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain publication-title: Int. J. Psychophysiol. – volume: 117 start-page: 439 year: 2015 ident: 10.1016/j.neuroimage.2021.118034_bib0011 article-title: A symmetric multivariate leakage correction for MEG connectomes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.071 – volume: 19 start-page: 1273 year: 2003 ident: 10.1016/j.neuroimage.2021.118034_bib0019 article-title: Dynamic causal modelling publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00202-7 – volume: 60 start-page: 305 year: 2012 ident: 10.1016/j.neuroimage.2021.118034_bib0040 article-title: Performance evaluation of the champagne source reconstruction algorithm on simulated and real M/EEG data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.027 – volume: 2 start-page: 150001 year: 2015 ident: 10.1016/j.neuroimage.2021.118034_bib0059 article-title: A multi-subject, multi-modal human neuroimaging dataset publication-title: Sci. data doi: 10.1038/sdata.2015.1 – volume: 8 year: 2013 ident: 10.1016/j.neuroimage.2021.118034_bib0061 article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data publication-title: PLoS One doi: 10.1371/journal.pone.0077089 – volume: 18 start-page: 14 year: 2001 ident: 10.1016/j.neuroimage.2021.118034_bib0003 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.962275 – volume: 8 start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2021.118034_bib0045 article-title: Misconceptions in the use of the general linear model applied to functional MRI: A tutorial for junior neuro-imagers publication-title: Front. Neurosci. doi: 10.3389/fnins.2014.00001 – volume: 225 start-page: 117411 year: 2021 ident: 10.1016/j.neuroimage.2021.118034_bib0010 article-title: Robust estimation of noise for electromagnetic brain imaging with the champagne algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117411 – volume: 105 start-page: 408 year: 2015 ident: 10.1016/j.neuroimage.2021.118034_bib0021 article-title: MEG source reconstruction based on identification of directed source interactions on whole-brain anatomical networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.09.066 – volume: 25 start-page: 1263 year: 2007 ident: 10.1016/j.neuroimage.2021.118034_bib0022 article-title: Contrast-to-noise ratio (CNR) as a quality parameter in fMRI publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20935 – volume: 18 start-page: 89 year: 2000 ident: 10.1016/j.neuroimage.2021.118034_bib0004 article-title: Comparison of two exploratory data analysis methods for fMRI: Fuzzy clustering vs. principal component analysis publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(99)00102-2 – volume: 18 start-page: 49 year: 1994 ident: 10.1016/j.neuroimage.2021.118034_bib0044 article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(84)90014-X – ident: 10.1016/j.neuroimage.2021.118034_bib0055 doi: 10.1101/2020.03.19.998641 – volume: 52–54 start-page: 151 year: 2003 ident: 10.1016/j.neuroimage.2021.118034_bib0008 article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a nonlinear model of neuronal dynamics publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00740-3 – ident: 10.1016/j.neuroimage.2021.118034_bib0060 doi: 10.1109/10.142641 – volume: 13 start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118034_bib0017 article-title: Evaluation of resting spatio-temporal dynamics of a neural mass model using resting fMRI connectivity and EEG microstates publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2019.00091 – volume: 45 start-page: S210 year: 2009 ident: 10.1016/j.neuroimage.2021.118034_bib0058 article-title: Evaluating the consistency and specificity of neuroimaging data using meta-analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.061 – volume: 23 start-page: 4022 year: 2011 ident: 10.1016/j.neuroimage.2021.118034_bib0034 article-title: Behavioral interpretations of intrinsic connectivity networks publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00077 – volume: 80 start-page: 219 year: 2006 ident: 10.1016/j.neuroimage.2021.118034_bib0033 article-title: Magnetoencephalography: in search of neural processes for visual motion information publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2006.10.001 – volume: 12 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118034_bib0032 article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00530 – volume: 20 start-page: 327 year: 2017 ident: 10.1016/j.neuroimage.2021.118034_bib0002 article-title: Magnetoencephalography for brain electrophysiology and imaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4504 – year: 2006 ident: 10.1016/j.neuroimage.2021.118034_bib0006 – volume: 63 start-page: 910 year: 2012 ident: 10.1016/j.neuroimage.2021.118034_bib0009 article-title: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.048 – volume: 52 year: 2004 ident: 10.1016/j.neuroimage.2021.118034_bib0012 article-title: NUTMEG: a neuromagnetic source reconstruction toolbox publication-title: Neurol. Clin. Neurophysiol. – ident: 10.1016/j.neuroimage.2021.118034_bib0031 doi: 10.1016/j.neuroimage.2020.116995 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118034_bib0039 article-title: Large-scale brain network associated with creative insight: combined voxel-based morphometry and resting-state functional connectivity analyses publication-title: Sci. Rep. doi: 10.1038/s41598-018-24981-0 – volume: 32 start-page: 35 year: 1994 ident: 10.1016/j.neuroimage.2021.118034_bib0027 article-title: Interpreting magnetic fields of the brain: minimum norm estimates publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02512476 – volume: 20 start-page: 171 year: 2018 ident: 10.1016/j.neuroimage.2021.118034_bib0028 article-title: Electrophysiological source imaging: a noninvasive window to brain dynamics publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-062117-120853 – volume: 173 start-page: 632 year: 2018 ident: 10.1016/j.neuroimage.2021.118034_bib0041 article-title: Ghost interactions in MEG/EEG source space: a note of caution on inter-areal coupling measures publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.02.032 – ident: 10.1016/j.neuroimage.2021.118034_bib0043 – volume: 65 start-page: 349 year: 2013 ident: 10.1016/j.neuroimage.2021.118034_bib0025 article-title: Good practice for conducting and reporting MEG research publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.10.001 – volume: 44 start-page: 947 year: 2009 ident: 10.1016/j.neuroimage.2021.118034_bib0062 article-title: A unified bayesian framework for MEG/EEG source imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.059 – start-page: 3959 year: 2019 ident: 10.1016/j.neuroimage.2021.118034_bib0005 article-title: Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118034_bib0030 article-title: A tool for functional brain imaging with lifespan compliance publication-title: Nat. Commun. – volume: 2011 year: 2011 ident: 10.1016/j.neuroimage.2021.118034_bib0052 article-title: Brainstorm: a user-friendly application for MEG/EEG analysis publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/879716 – volume: 13 start-page: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118034_bib0064 article-title: Information spreading by a combination of MEG source estimation and multivariate pattern classification publication-title: PLoS One doi: 10.1371/journal.pone.0198806 – volume: 3 start-page: 167 year: 2017 ident: 10.1016/j.neuroimage.2021.118034_bib0024 article-title: The functional neuroanatomy of human face perception publication-title: Annu. Rev. Vis. Sci. doi: 10.1146/annurev-vision-102016-061214 – volume: 27 start-page: 1110 year: 2009 ident: 10.1016/j.neuroimage.2021.118034_bib0056 article-title: Optimizing ICA in fMRI using information on spatial regularities of the sources publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2009.05.036 – volume: 26 start-page: 55 year: 2000 ident: 10.1016/j.neuroimage.2021.118034_bib0013 article-title: Dynamic statistical parametric mapping : Combining fMRI and MEG for high-resolution imaging of cortical activity publication-title: Neuron doi: 10.1016/S0896-6273(00)81138-1 – volume: 31 start-page: 140 year: 2010 ident: 10.1016/j.neuroimage.2021.118034_bib0001 article-title: Cancellation of EEG and MEG signals generated by extended and distributed sources publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20851 – volume: 7 start-page: 555 year: 2004 ident: 10.1016/j.neuroimage.2021.118034_bib0023 article-title: The fusiform face area subserves face perception, not generic within-category identification publication-title: Nat. Neurosci. doi: 10.1038/nn1224 – volume: 62 start-page: 2222 year: 2012 ident: 10.1016/j.neuroimage.2021.118034_bib0057 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 31 start-page: 732 year: 2006 ident: 10.1016/j.neuroimage.2021.118034_bib0015 article-title: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.016 – volume: 65 start-page: 413 year: 1993 ident: 10.1016/j.neuroimage.2021.118034_bib0026 article-title: Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – volume: 1426 start-page: 5 year: 2018 ident: 10.1016/j.neuroimage.2021.118034_bib0046 article-title: Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.13596 – volume: 25 start-page: 1056 year: 2005 ident: 10.1016/j.neuroimage.2021.118034_bib0049 article-title: Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.11.051 – volume: 8 start-page: 665 year: 2011 ident: 10.1016/j.neuroimage.2021.118034_bib0065 article-title: Large-scale automated synthesis of human functional neuroimaging data publication-title: Nat. Methods doi: 10.1038/nmeth.1635 – volume: 27 start-page: 1 year: 2006 ident: 10.1016/j.neuroimage.2021.118034_bib0037 article-title: Distributed current estimates using cortical orientation constraints publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20155 – volume: 13 start-page: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118034_bib0053 article-title: MEG source imaging and group analysis using VBMEG publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00241 – volume: 49 start-page: 641 year: 2010 ident: 10.1016/j.neuroimage.2021.118034_bib0063 article-title: Robust bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.083 – volume: 597 start-page: 4309 year: 2019 ident: 10.1016/j.neuroimage.2021.118034_bib0036 article-title: Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum publication-title: J. Physiol. doi: 10.1113/JP277899 – volume: 555 start-page: 657 year: 2018 ident: 10.1016/j.neuroimage.2021.118034_bib0007 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature doi: 10.1038/nature26147 – volume: 31 start-page: 1512 year: 2010 ident: 10.1016/j.neuroimage.2021.118034_bib0029 article-title: A parametric empirical bayesian framework for fMRI-constrained MEG/EEG source reconstruction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20956 – year: 2002 ident: 10.1016/j.neuroimage.2021.118034_bib0042 article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 100 start-page: 9440 year: 2003 ident: 10.1016/j.neuroimage.2021.118034_bib0051 article-title: Statistical significance for genomewide studies publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1530509100 – volume: 42 start-page: 1397 year: 2008 ident: 10.1016/j.neuroimage.2021.118034_bib0066 article-title: Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.06.013 – volume: 87 start-page: S132 year: 2020 ident: 10.1016/j.neuroimage.2021.118034_bib0016 article-title: What is the test-retest reliability of common task-fMRI measures? New Empirical Evidence and a Meta-Analysis publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2020.02.356 – year: 2015 ident: 10.1016/j.neuroimage.2021.118034_bib0048 – volume: 106 start-page: 13040 year: 2009 ident: 10.1016/j.neuroimage.2021.118034_bib0050 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0905267106 – volume: 9 start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118034_bib0014 article-title: Neuroquery, comprehensive meta-analysis of human brain mapping publication-title: Elife doi: 10.7554/eLife.53385 – year: 1996 ident: 10.1016/j.neuroimage.2021.118034_bib0038 – volume: 9 start-page: 795 year: 1999 ident: 10.1016/j.neuroimage.2021.118034_bib0035 article-title: A coupled ordinary differential equation lattice model for the simulation of epileptic seizures publication-title: Chaos doi: 10.1063/1.166453 – volume: 23 start-page: 806 year: 2004 ident: 10.1016/j.neuroimage.2021.118034_bib0047 article-title: Hierarchical bayesian estimation for MEG inverse problem publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.06.037 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.118034_bib0054 article-title: Spatial confluence of psychological and anatomical network constructs in the human brain revealed by a mass meta-analysis of fMRI activation publication-title: Sci. Rep. doi: 10.1038/srep44259 – ident: 10.1016/j.neuroimage.2021.118034_bib0018 doi: 10.1016/j.neuroimage.2007.09.048 – volume: 2 start-page: 189 year: 1994 ident: 10.1016/j.neuroimage.2021.118034_bib0020 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 |
| SSID | ssj0009148 |
| Score | 2.4200513 |
| Snippet | Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields... |
| SourceID | doaj unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118034 |
| SubjectTerms | Bayesian analysis fMRI Functional magnetic resonance imaging Hierarchical Bayesian method Magnetic fields Magnetoencephalography Mathematical models MEG inverse problem Meta-analysis Noise Pattern recognition Random variables Source reconstruction Systematic review Time series |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiDeBgozENRDHjh2LE0UtBWk5ICr1Zo1faKttdlW2Qvx7xrETWnFgDxzjeKzo83g8Y0--IeR1qn0Dsve1j7qtheO-ti7GWnHfBd-oxPmUsi2-yOMT8fm0O71S6ivlhGV64AzcWxaCClqgn9944UFaJ1W0GnQI2NzbZH2bXk_B1ES3i15-ydvJ2VwjO-TyHNcoxoQte5OYz7i4thmNnP3X9qS_fc475NblsIFfP2G1urIPHd0jd4sDSd_nD79PboThAbm5KFfkD8nB4vAjdZl1ieajeTpGvTNTLE257t8p0POwhRoKKwmNi6-f6OZiub54RE6ODr99OK5LoYTayb7b1kLKyGOrLA_MK48xAIPAobXoqwEwgERcxpRzWjHQLgL0jPfALJMgRRP5Y7I3rIfwlFBout7LkfhMCG4VAo7PGJdJFrgOuiJqQsy4wiKeilmszJQudmb-YG0S1iZjXRE2S24yk8YOMgdpUub-iQt7bEANMUVDzL80pCJ6mlIz_W6KBhIHWu7wAe9m2eKSZFdjR-n9SYNMMQ0_DEbkHceJ0bwir-bXuKjTTQ0MYX2Z-uAAaBo1q8iTrHkzBulMQbeyq0g7q-LOgD77H4A-J7fTkDkNcp_sofqGF-iabe3LcRX-BiyBN4k priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OPfDjQfw6r3pKBF-rmyZNGkTElT1PYRc5PLi3Mk3SY2WvXff2EP97kybtegiyj00zIUxmJjPJ5DcAr33tGxSFSU2tspRrZtJK13UqmcmtGUuP-eSzLebi5Ix_Pc_P92Dev4XxaZW9TewMtWm1PyN_6wKZnDnfQ7EPq5-prxrlb1f7EhoYSyuY9x3E2C3Yzzwy1gj2J9P5t9MtDC_l4XFcztKCUhVze0LGV4cgubh0euzixoy-8ehojN_YsDpc_xv71r9-6T24c92s8PcvXC7_2quOH8D96GSSj0EqHsKebR7B7Vm8Rn8Mk9n0M9EBmYmE43vSRcYDmizx-fAXBMml3WCKEbmE1LPTL2S1XrTrJ3B2PP3-6SSNxRRSLYp8k3IhalZnsmKWGmlcnEDRMswqx1NEiujBzajUWkmKSteIBWUF0ooKFHxcswMYNW1jD4HgOC-M6MDROGeVRFG5bxe7CWqZsioB2XOs1BFp3Be8WJZ9StmPcsvr0vO6DLxOgA6Uq4C2sQPNxC_K0N_jZXcN7fqijOpXUmulVdxFi2PDjZuwFrKuFCprXXNRJaD6JS37J6nOiLqBFjtM4N1AG92W4I7sSH3US1AZzcdVuRX2BF4Nv53i-9scbGx77fu4AZz5VDSBp0HyBh74cweViTyBbBDFnRn67P8zeg53feeQBHkEIyeY9oVzzDbVy6htfwCJpDYG priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToLxwPcgMJCReE0Vx4kdi6cNbQykToCoNJ6sc-ygQpdWoxWCv55zvqAgocJjHJ9ln8_2ne_8O4BnIfcNysLFrtJpnJXCxbasqlgJl3uXqID5FKItzuTpNHt9np_vQNK_hdnw3zdxWA2u4-yCVhdZcykfB8wykV2BXZmT9j2C3enZm8MPjVMzF3HBm1wePAkpCHPVB-_8ramNE6kB7t84mP5UPK_DtXW9xG9fcT7_5TA6uQlv-2G0MSifx-uVHZfff0N4_Jdx3oIbnWbKDltRug07vr4DVyed7_0uHE2OX7KyhXNi7Z0_a8zpAYKWhSD6jwzZhV9hjB3cCasm716x5eVscXkPpifH71-cxl0GhriURb6KMykrUaXKCs-dcmRccPQCU0tKICJHDIhoXJWlVhx1WSEWXBTILZcos6QS-zCqF7V_AAyTvHCyQVTLMmEVSkvfZPBJ7oX2OgLVz4IpO3jykCVjbvo4tE_mJ4tMYJFpWRQBHyiXLUTHFjRHYaKH-gFkuymgOTHdmjXce-V1RiZm4jJHHS6lqqxG7T0VFzYC3YuJ6d-x0s5LDc226MDzgbbTdVodZkvqg14qTbfnfDFk6ueCJkaLCJ4Ov2m3CC4grP1iHepQA7Tnah7B_VaaBx6EywqdyjyCdBDvrRn68H-IHsFe-GrjKQ9gROLqH5OOt7JPumX9A2FQSqA priority: 102 providerName: Unpaywall |
| Title | MEG current source reconstruction using a meta-analysis fMRI prior |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921003116 https://dx.doi.org/10.1016/j.neuroimage.2021.118034 https://www.ncbi.nlm.nih.gov/pubmed/33839265 https://www.proquest.com/docview/2545356693 https://www.proquest.com/docview/2511896391 https://doi.org/10.1016/j.neuroimage.2021.118034 https://doaj.org/article/1ee7e946190d4da6bc67fb9a9eee948b |
| UnpaywallVersion | publishedVersion |
| Volume | 236 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBelg30cxj47d13QYFc3kSVLFjslJV26kVC6BbKTeLbl4pE6IUspu-xv35Mtuwu7BHaxkSwJ-enpfUhPPxHywd19AzLJw7zQUSgynodpVhSh4nls84FymE8u2mImJ3PxeREvDshZexbGhVV62d_I9Fpa-5y-p2Z_XZb9r2gZoLpxeF6OM5mD3RZCuVsMTn_fh3loJprjcDEPXWkfzdPEeNWYkeUNzlz0FCN26vDQuNhRUTWS_46m-tcSfUIe3VZr-HUHy-Vf2un8GXnqzUo6bHr-nBzY6gV5OPUb5y_JaDr-RLMGi4k2C_a09oU7_FjqIuCvKdAbu4UQPFYJLaZXF3S9KVebV2R-Pv52Ngn99QlhJpN4GwopC15EKuWW5SpHz4CB5RClaMEBMAAHZ8ZUlmnFQGcFQMJ4AixlEqQYFPw1OaxWlX1DKAziJJc1HJoQPFUgU0yjtyaZ5drqgKiWYibz2OLuioulaYPIfph7WhtHa9PQOiCsq7lu8DX2qDNyg9KVdwjZdcZqc208ixhmrbJaoH84yEWOHc6kKlIN2lrMTtKA6HZITXsIFcUmNlTu0YGPXd0dZt2z9knLQcYLjJ8G_fSY48BoHpD33Wec6m7_Biq7unVlsAEUmJoF5KjhvI4GbqVBRzIOSNSx4t4EPf6v_3lLHrtUExV5Qg6Rb-07tNS2aa-eivhUC9UjD4YXXyYzfI_Gs8urXr36gan57HL4_Q-7MkFK |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTWLwgPhPYECQ4DGsjh0nFpoQhY6WrRWaNmlv5hI7U1HXlm7TtC_HZ-OcOCkTEurLHpP4HOt8Pt_5zr8DeOtq36DMTGRKFUei4CbKi7KMUm4Sazqpw3xy2RYj2T8S346T4zX43dyFcWmVjU6sFLWZFe6MfJscmYST7aH4x_mvyFWNctHVpoQG-tIKZqeCGPMXO_bs1SW5cGc7gy803-_ieLd3-Lkf-SoDUSGz5DwSUpa8jNOcW2ZSQwY0Q8sxzulniAzRoX6xtChUylAVJWLGeIYsZxKl6JSc-r0FG4ILRc7fRrc3-n6whP1lor6Ml_AoY0z5XKI6w6xCrByfkt4gPzVm7x0aGxfXNsiqjsC1ffJfO_gubF5M53h1iZPJX3vj7n24543a8FMthQ9gzU4fwu2hD9s_gu6w9zUsaiSosA4XhJUn3qLXhi7__iTE8NSeY4QeKSUshweDcL4YzxaP4ehG2PoE1qezqX0GIXaSzMgKjE0Inqcoc3omX1Eyy5VVAaQNx3Thkc1dgY2JblLYfuolr7Xjta55HQBrKec1uscKNF03KW17h89dvZgtTrRf7ppZm1olyDvtGGFowIVMy1yhspZeZ3kAqplS3VyBJaVNHY1XGMCHltabSbX5syL1ViNB2qurM71cXAG8aT-TonHRI5za2YVrQx2QulYsgKe15LU8cOccKpZJAHEriisz9Pn_R_QaNvuHw329PxjtvYA7jrBOwNyCdRJS-5KMwvP8lV95Ify46cX-B6SRcv4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQ14QPwnMMBI8BhWx4kdCyHE2MbK6IQQk_pmLrEzFXVt6TpN-2p8Os5xkjIhob7sMYnPsc535zv7_DuAV772DcrcxrbSSZyWwsZFWVWxEjZztqc85pPPtjiU-0fp52E2XIPf7V0Yn1bZ2sTaUNtp6ffItyiQyQT5HlpsVU1axNedvfezX7GvIOVPWttyGkFEDtzFOYVvp-_6OzTXr5Nkb_f7x_24qTAQlzLPFnEqZSWqRBXCcassOc8cncCkoB8hckSP-MVVWWrFUZcVYs5FjrzgEmXaqwT1ew2uKyG0TydUQ7UE_OVpuIaXiTjnXDdZRCG3rMaqHJ2QxaAINeFvPA6bSC8tjXUFgUsr5L8e8C24cTaZ4cU5jsd_rYp7d-B2486yD0H-7sKam9yDjUFzYH8ftge7n1gZMKBYOChgdQze4dYyn3l_zJCduAXG2GCksGrwrc9m89F0_gCOroSpD2F9Mp24x8Cwl-VW1jBsaSoKhbKgZ4oSJXdCOx2BajlmygbT3JfWGJs2ee2nWfLaeF6bwOsIeEc5C7geK9Bs-0np2ntk7vrFdH5sGkU33DnldEpxac-mlgZcSlUVGrVz9DovItDtlJr28iuZa-potMIA3na0jYMUHJ8VqTdbCTKNoTo1S7WK4GX3mUyMPzfCiZue-TbUARlqzSN4FCSv44Hf4dCJzCJIOlFcmaFP_j-iF7BBKm6-9A8PnsJNTxcyLzdhnWTUPSNvcFE8r9WOwY-r1vM_dUpwmA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToLxwPcgMJCReE0Vx4kdi6cNbQykToCoNJ6sc-ygQpdWoxWCv55zvqAgocJjHJ9ln8_2ne_8O4BnIfcNysLFrtJpnJXCxbasqlgJl3uXqID5FKItzuTpNHt9np_vQNK_hdnw3zdxWA2u4-yCVhdZcykfB8wykV2BXZmT9j2C3enZm8MPjVMzF3HBm1wePAkpCHPVB-_8ramNE6kB7t84mP5UPK_DtXW9xG9fcT7_5TA6uQlv-2G0MSifx-uVHZfff0N4_Jdx3oIbnWbKDltRug07vr4DVyed7_0uHE2OX7KyhXNi7Z0_a8zpAYKWhSD6jwzZhV9hjB3cCasm716x5eVscXkPpifH71-cxl0GhriURb6KMykrUaXKCs-dcmRccPQCU0tKICJHDIhoXJWlVhx1WSEWXBTILZcos6QS-zCqF7V_AAyTvHCyQVTLMmEVSkvfZPBJ7oX2OgLVz4IpO3jykCVjbvo4tE_mJ4tMYJFpWRQBHyiXLUTHFjRHYaKH-gFkuymgOTHdmjXce-V1RiZm4jJHHS6lqqxG7T0VFzYC3YuJ6d-x0s5LDc226MDzgbbTdVodZkvqg14qTbfnfDFk6ueCJkaLCJ4Ov2m3CC4grP1iHepQA7Tnah7B_VaaBx6EywqdyjyCdBDvrRn68H-IHsFe-GrjKQ9gROLqH5OOt7JPumX9A2FQSqA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEG+current+source+reconstruction+using+a+meta-analysis+fMRI+prior&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Suzuki%2C+Keita&rft.au=Yamashita%2C+Okito&rft.date=2021-08-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=236&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118034&rft.externalDocID=S1053811921003116 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |