MEG current source reconstruction using a meta-analysis fMRI prior

Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 236; p. 118034
Main Authors Suzuki, Keita, Yamashita, Okito
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2021.118034

Cover

Abstract Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers.
AbstractList Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers.
Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers.Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers.
ArticleNumber 118034
Author Suzuki, Keita
Yamashita, Okito
Author_xml – sequence: 1
  givenname: Keita
  orcidid: 0000-0002-6808-5827
  surname: Suzuki
  fullname: Suzuki, Keita
  email: k_suzuki@atr.jp
  organization: Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
– sequence: 2
  givenname: Okito
  surname: Yamashita
  fullname: Yamashita, Okito
  organization: Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33839265$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1v1DAQhiNURD_gL6BIXLhk64kTJ74gaFXalVohIThbE2eycsjai50U7b_HIaVIe1pOtqxnHo_f8XlyYp2lJEmBrYCBuOxXlibvzBY3tMpZDiuAmvHiRXIGTJaZLKv8ZN6XPKsB5GlyHkLPGJNQ1K-SU85rLnNRniVXDze3qZ68JzumwU1eU-pJOxtGP-nROJtOwdhNiumWRszQ4rAPJqTdw9d1uvPG-dfJyw6HQG-e1ovk--ebb9d32f2X2_X1p_tMi7ocs0KIjnd51XCCtmpFVQISx7wphUAERJYXNVRaywpQ6g6xBl4jNCBQFKzjF8l68bYOexWv3qLfK4dG_TlwfqPQj0YPpICoIlkIkKwtWhSNFlXXSJRE8bhuoksursnucP8Lh-FZCEzNGate_ctYzRmrJeNY-36p3Xn3c6Iwqq0JmoYBLbkpqLyMoBRcQkTfHaB9jDhGOFNFyePTJY_U2ydqarbUPnfyd0oR-LAA2rsQPHVKmxHn4YwezXBMy_WB4D9ee7WUUhztoyGvgjZkNbUm_pMxZm-OkXw8kOjBWKNx-EH74xS_ATrk6_4
CitedBy_id crossref_primary_10_1016_j_jneumeth_2023_110032
crossref_primary_10_1016_j_neuroimage_2023_120257
crossref_primary_10_3389_fnins_2023_1222749
crossref_primary_10_1587_bplus_16_326
Cites_doi 10.1016/j.neuroimage.2015.03.071
10.1016/S1053-8119(03)00202-7
10.1016/j.neuroimage.2011.12.027
10.1038/sdata.2015.1
10.1371/journal.pone.0077089
10.1109/79.962275
10.3389/fnins.2014.00001
10.1016/j.neuroimage.2020.117411
10.1016/j.neuroimage.2014.09.066
10.1002/jmri.20935
10.1016/S0730-725X(99)00102-2
10.1016/0167-8760(84)90014-X
10.1101/2020.03.19.998641
10.1016/S0925-2312(02)00740-3
10.1109/10.142641
10.3389/fncom.2019.00091
10.1016/j.neuroimage.2008.10.061
10.1162/jocn_a_00077
10.1016/j.pneurobio.2006.10.001
10.3389/fnins.2018.00530
10.1038/nn.4504
10.1016/j.neuroimage.2012.03.048
10.1016/j.neuroimage.2020.116995
10.1038/s41598-018-24981-0
10.1007/BF02512476
10.1146/annurev-bioeng-062117-120853
10.1016/j.neuroimage.2018.02.032
10.1016/j.neuroimage.2012.10.001
10.1016/j.neuroimage.2008.02.059
10.1155/2011/879716
10.1371/journal.pone.0198806
10.1146/annurev-vision-102016-061214
10.1016/j.mri.2009.05.036
10.1016/S0896-6273(00)81138-1
10.1002/hbm.20851
10.1038/nn1224
10.1016/j.neuroimage.2012.02.018
10.1016/j.neuroimage.2005.12.016
10.1103/RevModPhys.65.413
10.1111/nyas.13596
10.1016/j.neuroimage.2004.11.051
10.1038/nmeth.1635
10.1002/hbm.20155
10.3389/fnins.2019.00241
10.1016/j.neuroimage.2009.06.083
10.1113/JP277899
10.1038/nature26147
10.1002/hbm.20956
10.1073/pnas.1530509100
10.1016/j.neuroimage.2008.06.013
10.1016/j.biopsych.2020.02.356
10.1073/pnas.0905267106
10.7554/eLife.53385
10.1063/1.166453
10.1016/j.neuroimage.2004.06.037
10.1038/srep44259
10.1016/j.neuroimage.2007.09.048
10.1002/hbm.460020402
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Aug 1, 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Aug 1, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
ADTOC
UNPAY
DOA
DOI 10.1016/j.neuroimage.2021.118034
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_1ee7e946190d4da6bc67fb9a9eee948b
10.1016/j.neuroimage.2021.118034
33839265
10_1016_j_neuroimage_2021_118034
S1053811921003116
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
6I.
AACTN
AAFTH
ALIPV
29N
53G
AAQFI
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HMQ
HVGLF
HZ~
R2-
SEW
SNS
WUQ
XPP
ZMT
AGCQF
AGRNS
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c685t-466f3f27b3e1d7d6751ae3a2b566aa1aa024817cc971a9cfaa8138a1b16a640f3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Fri Oct 03 12:52:18 EDT 2025
Tue Aug 19 20:23:47 EDT 2025
Thu Oct 02 11:50:39 EDT 2025
Tue Oct 07 07:06:27 EDT 2025
Mon Jul 21 05:33:50 EDT 2025
Sat Oct 25 05:07:36 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Sun Apr 06 06:53:09 EDT 2025
Tue Oct 14 19:31:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Source reconstruction
fMRI
MEG inverse problem
Hierarchical Bayesian method
Meta-analysis
Language English
License This is an open access article under the CC BY license.
Copyright © 2021. Published by Elsevier Inc.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c685t-466f3f27b3e1d7d6751ae3a2b566aa1aa024817cc971a9cfaa8138a1b16a640f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6808-5827
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811921003116
PMID 33839265
PQID 2545356693
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_1ee7e946190d4da6bc67fb9a9eee948b
unpaywall_primary_10_1016_j_neuroimage_2021_118034
proquest_miscellaneous_2511896391
proquest_journals_2545356693
pubmed_primary_33839265
crossref_citationtrail_10_1016_j_neuroimage_2021_118034
crossref_primary_10_1016_j_neuroimage_2021_118034
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118034
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118034
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Yarkoni, Poldrack, Nichols, Van Essen, Wager (bib0065) 2011; 8
Tadel, Baillet, Mosher, Pantazis, Leahy (bib0052) 2011; 2011
Endo, Hiroe, Yamashita (bib0017) 2020; 13
Dalal, Zumer, Agrawal, Hild, Sekihara, Nagarajan (bib0012) 2004; 52
Baillet, Mosher, Leahy (bib0003) 2001; 18
Wipf, Owen, Attias, Sekihara, Nagarajan (bib0063) 2010; 49
Yoshioka, Toyama, Kawato, Yamashita, Nishina, Yamagishi, Sato (bib0066) 2008; 42
Thompson, Fransson (bib0054) 2017; 7
Baumgartner, Ryner, Richter, Summers, Jarmasz, Somorjai (bib0004) 2000; 18
Fukushima, Yamashita, Knösche, Sato (bib0021) 2015; 105
Tierney, T., Levy, A., Barry, D., Meyer, S., Shigihara, Y., Everatt, M., Mellor, S., Lopez, J. D., Bestmann, S., Holmes, N., Roberts, G., Hill, R., Boto, E., Leggett, J., Shah, V., Brookes, M., Bowtell, R., Maguire, E., Barnes, G., 2020. Mouth magnetoencephalography: a unique perspective on the human hippocampus. 17–19, 10.1101/2020.03.19.998641.
Pernet (bib0045) 2014; 8
Palva, Wang, Palva, Zhigalov, Monto, Brookes, Schoffelen, Jerbi (bib0041) 2018; 173
Cai, Hashemi, Diwakar, Haufe, Sekihara, Nagarajan (bib0010) 2021; 225
Laird, Fox, Eickhoff, Turner, Ray, Mc Kay, Glahn, Beckmann, Smith, Fox (bib0034) 2011; 23
Neal (bib0038) 1996
Pascual-Marqui, R. D., 2007. Discrete, 3d distributed, linear imaging methods of electric neuronal activity. part 1: exact, zero error localization. 1–16.
Hämäläinen, Ilmoniemi (bib0027) 1994; 32
Welvaert, Rosseel (bib0061) 2013; 8
Storey, Tibshirani (bib0051) 2003; 100
Ogawa, Aihara, Shimokawa, Yamashita (bib0039) 2018; 8
Pascual-Marqui, Michel, Lehmann (bib0044) 1994; 18
Sekihara, Sahani, Nagarajan (bib0049) 2005; 25
Breakspear, Terry, Friston (bib0008) 2003; 52–54
Sekihara, Nagarajan (bib0048) 2015
Sato, Yoshioka, Kajihara, Toyama, Goda, Doya, Kawato (bib0047) 2004; 23
Wipf, Nagarajan (bib0062) 2009; 44
Larter, Speelman, Worth (bib0035) 1999; 9
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib0026) 1993; 65
Henson, Flandin, Friston, Mattout (bib0029) 2010; 31
Pascual-Marqui (bib0042) 2002
Friston, Harrison, Penny (bib0019) 2003; 19
Colclough, Brookes, Smith, Woolrich (bib0011) 2015; 117
Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C.,. Trujillo-Barreto, N., Henson, R., Flandin, G., Mattout, J., 2008. 39, 1104–1120, doi->10.1016/j.neuroimage.2007.09.048, Multiple sparse priors for the M/EEG inverse problem. Neuroimage.
Grill-Spector, Knouf, Kanwisher (bib0023) 2004; 7
Boto, Holmes, Leggett, Roberts, Shah, Meyer, Muñoz, Mullinger, Tierney, Bestmann, Barnes, Bowtell, Brookes (bib0007) 2018; 555
Lin, Tierney, Holmes, Boto, Leggett, Bestmann, Bowtell, Brookes, Barnes, Miall (bib0036) 2019; 597
Takeda, Suzuki, Kawato, Yamashita (bib0053) 2019; 13
Ahlfors, Han, Lin, Witzel, Belliveau, Hämäläinen, Halgren (bib0001) 2010; 31
Dale, Liu, Fischl, Buckner, Belliveau, Lewine, Halgren, Louis (bib0013) 2000; 26
Lin, Belliveau, Dale, Hämäläinen (bib0037) 2006; 27
Jas, Larson, Engemann, Leppäkangas, Taulu, Hämäläinen, Gramfort (bib0032) 2018; 12
Kaneoke (bib0033) 2006; 80
Rossion, Jacques, Jonas (bib0046) 2018; 1426
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird, Beckmann (bib0050) 2009; 106
He, Sohrabpour, Brown, Liu (bib0028) 2018; 20
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bib0020) 1994; 2
Bertrand, Massias, Gramfort, Salmon (bib0005) 2019
Wang, J., Williamson, S. J., Kaufman, L., 1992. Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation. IEEE Trans. Biomed. Eng., 39, 665–675, 10.1109/10.142641.s
Brookes, Woolrich, Barnes (bib0009) 2012; 63
Grill-Spector, Weiner, Kay, Gomez (bib0024) 2017; 3
Van Wager, Lindquist, Nichols, Kober, Van Snellenberg (bib0058) 2009; 45
Dockès, Poldrack, Primet, Gözükan, Yarkoni, Suchanek, Thirion, Varoquaux (bib0014) 2020; 9
Hill, R. M., Boto, E., Rea, M., Holmes, N., Leggett, J., Coles, L. A., Papastavrou, M., Everton, S. K., Hunt, B. A. E., Sims, D., Osborne, J., Shah, V., Bowtell, R., Brookes, M. J., 2020. 10.1016/j.neuroimage.2020.116995, Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neuroimage 219, 116995.
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub (bib0057) 2012; 62
Elliott, Knodt, Ireland, Morris, Poulton, Ramrakha, Sison, Moffitt, Caspi, Hariri (bib0016) 2020; 87
Wakeman, Henson (bib0059) 2015; 2
Bishop, New York (bib0006) 2006
Sato, Yamashita, Sato, Miyawaki (bib0064) 2018; 13
Owen, Wipf, Attias, Sekihara, Nagarajan (bib0040) 2012; 60
Geissler, Gartus, Foki, Tahamtan, Beisteiner, Barth (bib0022) 2007; 25
Drobyshevsky, Baumann, Schneider (bib0015) 2006; 31
Gross, Baillet, Barnes, Henson, Hillebrand, Jensen, Jerbi, Litvak, Maess, Oostenveld, Parkkonen, Taylor, van Wassenhove, Wibral, Schoffelen (bib0025) 2013; 65
Baillet (bib0002) 2017; 20
Valente, De Martino, Filosa, Balsi, Formisano (bib0056) 2009; 27
Hill, Boto, Holmes, Hartley, Seedat, Leggett, Roberts, Shah, Tierney, Woolrich, Stagg, Barnes, Bowtell, Slater, Brookes (bib0030) 2019; 10
Drobyshevsky (10.1016/j.neuroimage.2021.118034_bib0015) 2006; 31
Henson (10.1016/j.neuroimage.2021.118034_bib0029) 2010; 31
Lin (10.1016/j.neuroimage.2021.118034_bib0037) 2006; 27
Van Essen (10.1016/j.neuroimage.2021.118034_bib0057) 2012; 62
Geissler (10.1016/j.neuroimage.2021.118034_bib0022) 2007; 25
Elliott (10.1016/j.neuroimage.2021.118034_bib0016) 2020; 87
Owen (10.1016/j.neuroimage.2021.118034_bib0040) 2012; 60
10.1016/j.neuroimage.2021.118034_bib0031
Dalal (10.1016/j.neuroimage.2021.118034_bib0012) 2004; 52
Grill-Spector (10.1016/j.neuroimage.2021.118034_bib0023) 2004; 7
Neal (10.1016/j.neuroimage.2021.118034_bib0038) 1996
Fukushima (10.1016/j.neuroimage.2021.118034_bib0021) 2015; 105
Welvaert (10.1016/j.neuroimage.2021.118034_bib0061) 2013; 8
Larter (10.1016/j.neuroimage.2021.118034_bib0035) 1999; 9
Gross (10.1016/j.neuroimage.2021.118034_bib0025) 2013; 65
10.1016/j.neuroimage.2021.118034_bib0060
Sekihara (10.1016/j.neuroimage.2021.118034_bib0048) 2015
Sato (10.1016/j.neuroimage.2021.118034_bib0064) 2018; 13
Storey (10.1016/j.neuroimage.2021.118034_bib0051) 2003; 100
Cai (10.1016/j.neuroimage.2021.118034_bib0010) 2021; 225
Lin (10.1016/j.neuroimage.2021.118034_bib0036) 2019; 597
Bertrand (10.1016/j.neuroimage.2021.118034_bib0005) 2019
Friston (10.1016/j.neuroimage.2021.118034_bib0020) 1994; 2
He (10.1016/j.neuroimage.2021.118034_bib0028) 2018; 20
Colclough (10.1016/j.neuroimage.2021.118034_bib0011) 2015; 117
Laird (10.1016/j.neuroimage.2021.118034_bib0034) 2011; 23
Van Wager (10.1016/j.neuroimage.2021.118034_bib0058) 2009; 45
Pernet (10.1016/j.neuroimage.2021.118034_bib0045) 2014; 8
Brookes (10.1016/j.neuroimage.2021.118034_bib0009) 2012; 63
10.1016/j.neuroimage.2021.118034_bib0055
Endo (10.1016/j.neuroimage.2021.118034_bib0017) 2020; 13
Yarkoni (10.1016/j.neuroimage.2021.118034_bib0065) 2011; 8
Ahlfors (10.1016/j.neuroimage.2021.118034_bib0001) 2010; 31
10.1016/j.neuroimage.2021.118034_bib0018
Hämäläinen (10.1016/j.neuroimage.2021.118034_bib0026) 1993; 65
Ogawa (10.1016/j.neuroimage.2021.118034_bib0039) 2018; 8
Sato (10.1016/j.neuroimage.2021.118034_bib0047) 2004; 23
Jas (10.1016/j.neuroimage.2021.118034_bib0032) 2018; 12
Baumgartner (10.1016/j.neuroimage.2021.118034_bib0004) 2000; 18
Bishop (10.1016/j.neuroimage.2021.118034_bib0006) 2006
Kaneoke (10.1016/j.neuroimage.2021.118034_bib0033) 2006; 80
Tadel (10.1016/j.neuroimage.2021.118034_bib0052) 2011; 2011
Hill (10.1016/j.neuroimage.2021.118034_bib0030) 2019; 10
Palva (10.1016/j.neuroimage.2021.118034_bib0041) 2018; 173
Friston (10.1016/j.neuroimage.2021.118034_bib0019) 2003; 19
Dale (10.1016/j.neuroimage.2021.118034_bib0013) 2000; 26
Takeda (10.1016/j.neuroimage.2021.118034_bib0053) 2019; 13
Baillet (10.1016/j.neuroimage.2021.118034_bib0002) 2017; 20
Thompson (10.1016/j.neuroimage.2021.118034_bib0054) 2017; 7
Valente (10.1016/j.neuroimage.2021.118034_bib0056) 2009; 27
Dockès (10.1016/j.neuroimage.2021.118034_bib0014) 2020; 9
Wakeman (10.1016/j.neuroimage.2021.118034_bib0059) 2015; 2
10.1016/j.neuroimage.2021.118034_bib0043
Wipf (10.1016/j.neuroimage.2021.118034_bib0063) 2010; 49
Pascual-Marqui (10.1016/j.neuroimage.2021.118034_bib0044) 1994; 18
Grill-Spector (10.1016/j.neuroimage.2021.118034_bib0024) 2017; 3
Pascual-Marqui (10.1016/j.neuroimage.2021.118034_bib0042) 2002
Wipf (10.1016/j.neuroimage.2021.118034_bib0062) 2009; 44
Boto (10.1016/j.neuroimage.2021.118034_bib0007) 2018; 555
Hämäläinen (10.1016/j.neuroimage.2021.118034_bib0027) 1994; 32
Sekihara (10.1016/j.neuroimage.2021.118034_bib0049) 2005; 25
Yoshioka (10.1016/j.neuroimage.2021.118034_bib0066) 2008; 42
Breakspear (10.1016/j.neuroimage.2021.118034_bib0008) 2003; 52–54
Rossion (10.1016/j.neuroimage.2021.118034_bib0046) 2018; 1426
Baillet (10.1016/j.neuroimage.2021.118034_bib0003) 2001; 18
Smith (10.1016/j.neuroimage.2021.118034_bib0050) 2009; 106
References_xml – volume: 49
  start-page: 641
  year: 2010
  end-page: 655
  ident: bib0063
  article-title: Robust bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG
  publication-title: Neuroimage
– volume: 18
  start-page: 14
  year: 2001
  end-page: 30
  ident: bib0003
  article-title: Electromagnetic brain mapping
  publication-title: IEEE Signal Process. Mag.
– volume: 105
  start-page: 408
  year: 2015
  end-page: 427
  ident: bib0021
  article-title: MEG source reconstruction based on identification of directed source interactions on whole-brain anatomical networks
  publication-title: Neuroimage
– volume: 25
  start-page: 1263
  year: 2007
  end-page: 1270
  ident: bib0022
  article-title: Contrast-to-noise ratio (CNR) as a quality parameter in fMRI
  publication-title: J. Magn. Reson. Imaging
– volume: 7
  start-page: 555
  year: 2004
  end-page: 562
  ident: bib0023
  article-title: The fusiform face area subserves face perception, not generic within-category identification
  publication-title: Nat. Neurosci.
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib0050
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
– volume: 27
  start-page: 1
  year: 2006
  end-page: 13
  ident: bib0037
  article-title: Distributed current estimates using cortical orientation constraints
  publication-title: Hum. Brain Mapp.
– volume: 31
  start-page: 140
  year: 2010
  end-page: 149
  ident: bib0001
  article-title: Cancellation of EEG and MEG signals generated by extended and distributed sources
  publication-title: Hum. Brain Mapp.
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib0057
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 23
  start-page: 806
  year: 2004
  end-page: 826
  ident: bib0047
  article-title: Hierarchical bayesian estimation for MEG inverse problem
  publication-title: Neuroimage
– volume: 31
  start-page: 1512
  year: 2010
  end-page: 1531
  ident: bib0029
  article-title: A parametric empirical bayesian framework for fMRI-constrained MEG/EEG source reconstruction
  publication-title: Hum. Brain Mapp.
– volume: 26
  start-page: 55
  year: 2000
  end-page: 67
  ident: bib0013
  article-title: Dynamic statistical parametric mapping : Combining fMRI and MEG for high-resolution imaging of cortical activity
  publication-title: Neuron
– volume: 2
  start-page: 189
  year: 1994
  end-page: 210
  ident: bib0020
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– volume: 32
  start-page: 35
  year: 1994
  end-page: 42
  ident: bib0027
  article-title: Interpreting magnetic fields of the brain: minimum norm estimates
  publication-title: Med. Biol. Eng. Comput.
– volume: 60
  start-page: 305
  year: 2012
  end-page: 323
  ident: bib0040
  article-title: Performance evaluation of the champagne source reconstruction algorithm on simulated and real M/EEG data
  publication-title: Neuroimage
– volume: 2011
  year: 2011
  ident: bib0052
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
– year: 2015
  ident: bib0048
  article-title: Electromagnetic Brain Imaging: A Bayesian Perspective
– reference: Hill, R. M., Boto, E., Rea, M., Holmes, N., Leggett, J., Coles, L. A., Papastavrou, M., Everton, S. K., Hunt, B. A. E., Sims, D., Osborne, J., Shah, V., Bowtell, R., Brookes, M. J., 2020. 10.1016/j.neuroimage.2020.116995, Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neuroimage 219, 116995.
– volume: 12
  start-page: 1
  year: 2018
  end-page: 18
  ident: bib0032
  article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices
  publication-title: Front. Neurosci.
– volume: 2
  start-page: 150001
  year: 2015
  ident: bib0059
  article-title: A multi-subject, multi-modal human neuroimaging dataset
  publication-title: Sci. data
– volume: 1426
  start-page: 5
  year: 2018
  end-page: 24
  ident: bib0046
  article-title: Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 52
  year: 2004
  ident: bib0012
  article-title: NUTMEG: a neuromagnetic source reconstruction toolbox
  publication-title: Neurol. Clin. Neurophysiol.
– volume: 63
  start-page: 910
  year: 2012
  end-page: 920
  ident: bib0009
  article-title: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage
  publication-title: Neuroimage
– year: 1996
  ident: bib0038
  article-title: Bayesian Learning for Neural Networks
– year: 2006
  ident: bib0006
  article-title: Pattern Recognition and Machine Learning, Information Science and Statistics
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: bib0026
  article-title: Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
– start-page: 3959
  year: 2019
  end-page: 3970
  ident: bib0005
  article-title: Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso
  publication-title: Advances in Neural Information Processing Systems
– volume: 10
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib0030
  article-title: A tool for functional brain imaging with lifespan compliance
  publication-title: Nat. Commun.
– reference: Tierney, T., Levy, A., Barry, D., Meyer, S., Shigihara, Y., Everatt, M., Mellor, S., Lopez, J. D., Bestmann, S., Holmes, N., Roberts, G., Hill, R., Boto, E., Leggett, J., Shah, V., Brookes, M., Bowtell, R., Maguire, E., Barnes, G., 2020. Mouth magnetoencephalography: a unique perspective on the human hippocampus. 17–19, 10.1101/2020.03.19.998641.
– volume: 3
  start-page: 167
  year: 2017
  end-page: 196
  ident: bib0024
  article-title: The functional neuroanatomy of human face perception
  publication-title: Annu. Rev. Vis. Sci.
– volume: 8
  year: 2013
  ident: bib0061
  article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data
  publication-title: PLoS One
– volume: 44
  start-page: 947
  year: 2009
  end-page: 966
  ident: bib0062
  article-title: A unified bayesian framework for MEG/EEG source imaging
  publication-title: Neuroimage
– volume: 225
  start-page: 117411
  year: 2021
  ident: bib0010
  article-title: Robust estimation of noise for electromagnetic brain imaging with the champagne algorithm
  publication-title: Neuroimage
– reference: Wang, J., Williamson, S. J., Kaufman, L., 1992. Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation. IEEE Trans. Biomed. Eng., 39, 665–675, 10.1109/10.142641.s
– volume: 8
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0039
  article-title: Large-scale brain network associated with creative insight: combined voxel-based morphometry and resting-state functional connectivity analyses
  publication-title: Sci. Rep.
– volume: 13
  start-page: 1
  year: 2018
  end-page: 28
  ident: bib0064
  article-title: Information spreading by a combination of MEG source estimation and multivariate pattern classification
  publication-title: PLoS One
– volume: 117
  start-page: 439
  year: 2015
  end-page: 448
  ident: bib0011
  article-title: A symmetric multivariate leakage correction for MEG connectomes
  publication-title: Neuroimage
– volume: 42
  start-page: 1397
  year: 2008
  end-page: 1413
  ident: bib0066
  article-title: Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals
  publication-title: Neuroimage
– volume: 9
  start-page: 795
  year: 1999
  end-page: 804
  ident: bib0035
  article-title: A coupled ordinary differential equation lattice model for the simulation of epileptic seizures
  publication-title: Chaos
– volume: 25
  start-page: 1056
  year: 2005
  end-page: 1067
  ident: bib0049
  article-title: Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction
  publication-title: Neuroimage
– volume: 23
  start-page: 4022
  year: 2011
  end-page: 4037
  ident: bib0034
  article-title: Behavioral interpretations of intrinsic connectivity networks
  publication-title: J. Cogn. Neurosci.
– volume: 65
  start-page: 349
  year: 2013
  end-page: 363
  ident: bib0025
  article-title: Good practice for conducting and reporting MEG research
  publication-title: Neuroimage
– volume: 8
  start-page: 665
  year: 2011
  end-page: 670
  ident: bib0065
  article-title: Large-scale automated synthesis of human functional neuroimaging data
  publication-title: Nat. Methods
– reference: Pascual-Marqui, R. D., 2007. Discrete, 3d distributed, linear imaging methods of electric neuronal activity. part 1: exact, zero error localization. 1–16.
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302
  ident: bib0019
  article-title: Dynamic causal modelling
  publication-title: Neuroimage
– volume: 27
  start-page: 1110
  year: 2009
  end-page: 1119
  ident: bib0056
  article-title: Optimizing ICA in fMRI using information on spatial regularities of the sources
  publication-title: Magn. Reson. Imaging
– volume: 100
  start-page: 9440
  year: 2003
  end-page: 9445
  ident: bib0051
  article-title: Statistical significance for genomewide studies
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib0017
  article-title: Evaluation of resting spatio-temporal dynamics of a neural mass model using resting fMRI connectivity and EEG microstates
  publication-title: Front. Comput. Neurosci.
– volume: 20
  start-page: 171
  year: 2018
  end-page: 196
  ident: bib0028
  article-title: Electrophysiological source imaging: a noninvasive window to brain dynamics
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 173
  start-page: 632
  year: 2018
  end-page: 643
  ident: bib0041
  article-title: Ghost interactions in MEG/EEG source space: a note of caution on inter-areal coupling measures
  publication-title: Neuroimage
– volume: 20
  start-page: 327
  year: 2017
  end-page: 339
  ident: bib0002
  article-title: Magnetoencephalography for brain electrophysiology and imaging
  publication-title: Nat. Neurosci.
– volume: 45
  start-page: S210
  year: 2009
  end-page: S221
  ident: bib0058
  article-title: Evaluating the consistency and specificity of neuroimaging data using meta-analysis
  publication-title: Neuroimage
– reference: Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C.,. Trujillo-Barreto, N., Henson, R., Flandin, G., Mattout, J., 2008. 39, 1104–1120, doi->10.1016/j.neuroimage.2007.09.048, Multiple sparse priors for the M/EEG inverse problem. Neuroimage.
– volume: 52–54
  start-page: 151
  year: 2003
  end-page: 158
  ident: bib0008
  article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a nonlinear model of neuronal dynamics
  publication-title: Neurocomputing
– volume: 597
  start-page: 4309
  year: 2019
  end-page: 4324
  ident: bib0036
  article-title: Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum
  publication-title: J. Physiol.
– volume: 80
  start-page: 219
  year: 2006
  end-page: 240
  ident: bib0033
  article-title: Magnetoencephalography: in search of neural processes for visual motion information
  publication-title: Prog. Neurobiol.
– volume: 8
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib0045
  article-title: Misconceptions in the use of the general linear model applied to functional MRI: A tutorial for junior neuro-imagers
  publication-title: Front. Neurosci.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0054
  article-title: Spatial confluence of psychological and anatomical network constructs in the human brain revealed by a mass meta-analysis of fMRI activation
  publication-title: Sci. Rep.
– volume: 31
  start-page: 732
  year: 2006
  end-page: 744
  ident: bib0015
  article-title: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function
  publication-title: Neuroimage
– year: 2002
  ident: bib0042
  article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– volume: 13
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0053
  article-title: MEG source imaging and group analysis using VBMEG
  publication-title: Front. Neurosci.
– volume: 87
  start-page: S132
  year: 2020
  end-page: S133
  ident: bib0016
  article-title: What is the test-retest reliability of common task-fMRI measures? New Empirical Evidence and a Meta-Analysis
  publication-title: Biol. Psychiatry
– volume: 18
  start-page: 89
  year: 2000
  end-page: 94
  ident: bib0004
  article-title: Comparison of two exploratory data analysis methods for fMRI: Fuzzy clustering vs. principal component analysis
  publication-title: Magn. Reson. Imaging
– volume: 9
  start-page: 1
  year: 2020
  end-page: 34
  ident: bib0014
  article-title: Neuroquery, comprehensive meta-analysis of human brain mapping
  publication-title: Elife
– volume: 555
  start-page: 657
  year: 2018
  end-page: 661
  ident: bib0007
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
– volume: 18
  start-page: 49
  year: 1994
  end-page: 65
  ident: bib0044
  article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
  publication-title: Int. J. Psychophysiol.
– volume: 117
  start-page: 439
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118034_bib0011
  article-title: A symmetric multivariate leakage correction for MEG connectomes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.03.071
– volume: 19
  start-page: 1273
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118034_bib0019
  article-title: Dynamic causal modelling
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00202-7
– volume: 60
  start-page: 305
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118034_bib0040
  article-title: Performance evaluation of the champagne source reconstruction algorithm on simulated and real M/EEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.027
– volume: 2
  start-page: 150001
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118034_bib0059
  article-title: A multi-subject, multi-modal human neuroimaging dataset
  publication-title: Sci. data
  doi: 10.1038/sdata.2015.1
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118034_bib0061
  article-title: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0077089
– volume: 18
  start-page: 14
  year: 2001
  ident: 10.1016/j.neuroimage.2021.118034_bib0003
  article-title: Electromagnetic brain mapping
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.962275
– volume: 8
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118034_bib0045
  article-title: Misconceptions in the use of the general linear model applied to functional MRI: A tutorial for junior neuro-imagers
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2014.00001
– volume: 225
  start-page: 117411
  year: 2021
  ident: 10.1016/j.neuroimage.2021.118034_bib0010
  article-title: Robust estimation of noise for electromagnetic brain imaging with the champagne algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117411
– volume: 105
  start-page: 408
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118034_bib0021
  article-title: MEG source reconstruction based on identification of directed source interactions on whole-brain anatomical networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.066
– volume: 25
  start-page: 1263
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118034_bib0022
  article-title: Contrast-to-noise ratio (CNR) as a quality parameter in fMRI
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20935
– volume: 18
  start-page: 89
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118034_bib0004
  article-title: Comparison of two exploratory data analysis methods for fMRI: Fuzzy clustering vs. principal component analysis
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(99)00102-2
– volume: 18
  start-page: 49
  year: 1994
  ident: 10.1016/j.neuroimage.2021.118034_bib0044
  article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(84)90014-X
– ident: 10.1016/j.neuroimage.2021.118034_bib0055
  doi: 10.1101/2020.03.19.998641
– volume: 52–54
  start-page: 151
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118034_bib0008
  article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a nonlinear model of neuronal dynamics
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00740-3
– ident: 10.1016/j.neuroimage.2021.118034_bib0060
  doi: 10.1109/10.142641
– volume: 13
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118034_bib0017
  article-title: Evaluation of resting spatio-temporal dynamics of a neural mass model using resting fMRI connectivity and EEG microstates
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2019.00091
– volume: 45
  start-page: S210
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118034_bib0058
  article-title: Evaluating the consistency and specificity of neuroimaging data using meta-analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.061
– volume: 23
  start-page: 4022
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118034_bib0034
  article-title: Behavioral interpretations of intrinsic connectivity networks
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_00077
– volume: 80
  start-page: 219
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118034_bib0033
  article-title: Magnetoencephalography: in search of neural processes for visual motion information
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2006.10.001
– volume: 12
  start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118034_bib0032
  article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00530
– volume: 20
  start-page: 327
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118034_bib0002
  article-title: Magnetoencephalography for brain electrophysiology and imaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4504
– year: 2006
  ident: 10.1016/j.neuroimage.2021.118034_bib0006
– volume: 63
  start-page: 910
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118034_bib0009
  article-title: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.048
– volume: 52
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118034_bib0012
  article-title: NUTMEG: a neuromagnetic source reconstruction toolbox
  publication-title: Neurol. Clin. Neurophysiol.
– ident: 10.1016/j.neuroimage.2021.118034_bib0031
  doi: 10.1016/j.neuroimage.2020.116995
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118034_bib0039
  article-title: Large-scale brain network associated with creative insight: combined voxel-based morphometry and resting-state functional connectivity analyses
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24981-0
– volume: 32
  start-page: 35
  year: 1994
  ident: 10.1016/j.neuroimage.2021.118034_bib0027
  article-title: Interpreting magnetic fields of the brain: minimum norm estimates
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02512476
– volume: 20
  start-page: 171
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118034_bib0028
  article-title: Electrophysiological source imaging: a noninvasive window to brain dynamics
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-062117-120853
– volume: 173
  start-page: 632
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118034_bib0041
  article-title: Ghost interactions in MEG/EEG source space: a note of caution on inter-areal coupling measures
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.02.032
– ident: 10.1016/j.neuroimage.2021.118034_bib0043
– volume: 65
  start-page: 349
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118034_bib0025
  article-title: Good practice for conducting and reporting MEG research
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.001
– volume: 44
  start-page: 947
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118034_bib0062
  article-title: A unified bayesian framework for MEG/EEG source imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.059
– start-page: 3959
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118034_bib0005
  article-title: Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118034_bib0030
  article-title: A tool for functional brain imaging with lifespan compliance
  publication-title: Nat. Commun.
– volume: 2011
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118034_bib0052
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/879716
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118034_bib0064
  article-title: Information spreading by a combination of MEG source estimation and multivariate pattern classification
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0198806
– volume: 3
  start-page: 167
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118034_bib0024
  article-title: The functional neuroanatomy of human face perception
  publication-title: Annu. Rev. Vis. Sci.
  doi: 10.1146/annurev-vision-102016-061214
– volume: 27
  start-page: 1110
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118034_bib0056
  article-title: Optimizing ICA in fMRI using information on spatial regularities of the sources
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2009.05.036
– volume: 26
  start-page: 55
  year: 2000
  ident: 10.1016/j.neuroimage.2021.118034_bib0013
  article-title: Dynamic statistical parametric mapping : Combining fMRI and MEG for high-resolution imaging of cortical activity
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81138-1
– volume: 31
  start-page: 140
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118034_bib0001
  article-title: Cancellation of EEG and MEG signals generated by extended and distributed sources
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20851
– volume: 7
  start-page: 555
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118034_bib0023
  article-title: The fusiform face area subserves face perception, not generic within-category identification
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1224
– volume: 62
  start-page: 2222
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118034_bib0057
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 31
  start-page: 732
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118034_bib0015
  article-title: A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.016
– volume: 65
  start-page: 413
  year: 1993
  ident: 10.1016/j.neuroimage.2021.118034_bib0026
  article-title: Magnetoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 1426
  start-page: 5
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118034_bib0046
  article-title: Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.13596
– volume: 25
  start-page: 1056
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118034_bib0049
  article-title: Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.11.051
– volume: 8
  start-page: 665
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118034_bib0065
  article-title: Large-scale automated synthesis of human functional neuroimaging data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1635
– volume: 27
  start-page: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118034_bib0037
  article-title: Distributed current estimates using cortical orientation constraints
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20155
– volume: 13
  start-page: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118034_bib0053
  article-title: MEG source imaging and group analysis using VBMEG
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00241
– volume: 49
  start-page: 641
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118034_bib0063
  article-title: Robust bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.083
– volume: 597
  start-page: 4309
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118034_bib0036
  article-title: Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum
  publication-title: J. Physiol.
  doi: 10.1113/JP277899
– volume: 555
  start-page: 657
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118034_bib0007
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
  doi: 10.1038/nature26147
– volume: 31
  start-page: 1512
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118034_bib0029
  article-title: A parametric empirical bayesian framework for fMRI-constrained MEG/EEG source reconstruction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20956
– year: 2002
  ident: 10.1016/j.neuroimage.2021.118034_bib0042
  article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– volume: 100
  start-page: 9440
  year: 2003
  ident: 10.1016/j.neuroimage.2021.118034_bib0051
  article-title: Statistical significance for genomewide studies
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1530509100
– volume: 42
  start-page: 1397
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118034_bib0066
  article-title: Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.06.013
– volume: 87
  start-page: S132
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118034_bib0016
  article-title: What is the test-retest reliability of common task-fMRI measures? New Empirical Evidence and a Meta-Analysis
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2020.02.356
– year: 2015
  ident: 10.1016/j.neuroimage.2021.118034_bib0048
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118034_bib0050
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0905267106
– volume: 9
  start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118034_bib0014
  article-title: Neuroquery, comprehensive meta-analysis of human brain mapping
  publication-title: Elife
  doi: 10.7554/eLife.53385
– year: 1996
  ident: 10.1016/j.neuroimage.2021.118034_bib0038
– volume: 9
  start-page: 795
  year: 1999
  ident: 10.1016/j.neuroimage.2021.118034_bib0035
  article-title: A coupled ordinary differential equation lattice model for the simulation of epileptic seizures
  publication-title: Chaos
  doi: 10.1063/1.166453
– volume: 23
  start-page: 806
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118034_bib0047
  article-title: Hierarchical bayesian estimation for MEG inverse problem
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.06.037
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118034_bib0054
  article-title: Spatial confluence of psychological and anatomical network constructs in the human brain revealed by a mass meta-analysis of fMRI activation
  publication-title: Sci. Rep.
  doi: 10.1038/srep44259
– ident: 10.1016/j.neuroimage.2021.118034_bib0018
  doi: 10.1016/j.neuroimage.2007.09.048
– volume: 2
  start-page: 189
  year: 1994
  ident: 10.1016/j.neuroimage.2021.118034_bib0020
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
SSID ssj0009148
Score 2.4200513
Snippet Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields...
SourceID doaj
unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118034
SubjectTerms Bayesian analysis
fMRI
Functional magnetic resonance imaging
Hierarchical Bayesian method
Magnetic fields
Magnetoencephalography
Mathematical models
MEG inverse problem
Meta-analysis
Noise
Pattern recognition
Random variables
Source reconstruction
Systematic review
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiDeBgozENRDHjh2LE0UtBWk5ICr1Zo1faKttdlW2Qvx7xrETWnFgDxzjeKzo83g8Y0--IeR1qn0Dsve1j7qtheO-ti7GWnHfBd-oxPmUsi2-yOMT8fm0O71S6ivlhGV64AzcWxaCClqgn9944UFaJ1W0GnQI2NzbZH2bXk_B1ES3i15-ydvJ2VwjO-TyHNcoxoQte5OYz7i4thmNnP3X9qS_fc475NblsIFfP2G1urIPHd0jd4sDSd_nD79PboThAbm5KFfkD8nB4vAjdZl1ieajeTpGvTNTLE257t8p0POwhRoKKwmNi6-f6OZiub54RE6ODr99OK5LoYTayb7b1kLKyGOrLA_MK48xAIPAobXoqwEwgERcxpRzWjHQLgL0jPfALJMgRRP5Y7I3rIfwlFBout7LkfhMCG4VAo7PGJdJFrgOuiJqQsy4wiKeilmszJQudmb-YG0S1iZjXRE2S24yk8YOMgdpUub-iQt7bEANMUVDzL80pCJ6mlIz_W6KBhIHWu7wAe9m2eKSZFdjR-n9SYNMMQ0_DEbkHceJ0bwir-bXuKjTTQ0MYX2Z-uAAaBo1q8iTrHkzBulMQbeyq0g7q-LOgD77H4A-J7fTkDkNcp_sofqGF-iabe3LcRX-BiyBN4k
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OPfDjQfw6r3pKBF-rmyZNGkTElT1PYRc5PLi3Mk3SY2WvXff2EP97kybtegiyj00zIUxmJjPJ5DcAr33tGxSFSU2tspRrZtJK13UqmcmtGUuP-eSzLebi5Ix_Pc_P92Dev4XxaZW9TewMtWm1PyN_6wKZnDnfQ7EPq5-prxrlb1f7EhoYSyuY9x3E2C3Yzzwy1gj2J9P5t9MtDC_l4XFcztKCUhVze0LGV4cgubh0euzixoy-8ehojN_YsDpc_xv71r9-6T24c92s8PcvXC7_2quOH8D96GSSj0EqHsKebR7B7Vm8Rn8Mk9n0M9EBmYmE43vSRcYDmizx-fAXBMml3WCKEbmE1LPTL2S1XrTrJ3B2PP3-6SSNxRRSLYp8k3IhalZnsmKWGmlcnEDRMswqx1NEiujBzajUWkmKSteIBWUF0ooKFHxcswMYNW1jD4HgOC-M6MDROGeVRFG5bxe7CWqZsioB2XOs1BFp3Be8WJZ9StmPcsvr0vO6DLxOgA6Uq4C2sQPNxC_K0N_jZXcN7fqijOpXUmulVdxFi2PDjZuwFrKuFCprXXNRJaD6JS37J6nOiLqBFjtM4N1AG92W4I7sSH3US1AZzcdVuRX2BF4Nv53i-9scbGx77fu4AZz5VDSBp0HyBh74cweViTyBbBDFnRn67P8zeg53feeQBHkEIyeY9oVzzDbVy6htfwCJpDYG
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToLxwPcgMJCReE0Vx4kdi6cNbQykToCoNJ6sc-ygQpdWoxWCv55zvqAgocJjHJ9ln8_2ne_8O4BnIfcNysLFrtJpnJXCxbasqlgJl3uXqID5FKItzuTpNHt9np_vQNK_hdnw3zdxWA2u4-yCVhdZcykfB8wykV2BXZmT9j2C3enZm8MPjVMzF3HBm1wePAkpCHPVB-_8ramNE6kB7t84mP5UPK_DtXW9xG9fcT7_5TA6uQlv-2G0MSifx-uVHZfff0N4_Jdx3oIbnWbKDltRug07vr4DVyed7_0uHE2OX7KyhXNi7Z0_a8zpAYKWhSD6jwzZhV9hjB3cCasm716x5eVscXkPpifH71-cxl0GhriURb6KMykrUaXKCs-dcmRccPQCU0tKICJHDIhoXJWlVhx1WSEWXBTILZcos6QS-zCqF7V_AAyTvHCyQVTLMmEVSkvfZPBJ7oX2OgLVz4IpO3jykCVjbvo4tE_mJ4tMYJFpWRQBHyiXLUTHFjRHYaKH-gFkuymgOTHdmjXce-V1RiZm4jJHHS6lqqxG7T0VFzYC3YuJ6d-x0s5LDc226MDzgbbTdVodZkvqg14qTbfnfDFk6ueCJkaLCJ4Ov2m3CC4grP1iHepQA7Tnah7B_VaaBx6EywqdyjyCdBDvrRn68H-IHsFe-GrjKQ9gROLqH5OOt7JPumX9A2FQSqA
  priority: 102
  providerName: Unpaywall
Title MEG current source reconstruction using a meta-analysis fMRI prior
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921003116
https://dx.doi.org/10.1016/j.neuroimage.2021.118034
https://www.ncbi.nlm.nih.gov/pubmed/33839265
https://www.proquest.com/docview/2545356693
https://www.proquest.com/docview/2511896391
https://doi.org/10.1016/j.neuroimage.2021.118034
https://doaj.org/article/1ee7e946190d4da6bc67fb9a9eee948b
UnpaywallVersion publishedVersion
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBelg30cxj47d13QYFc3kSVLFjslJV26kVC6BbKTeLbl4pE6IUspu-xv35Mtuwu7BHaxkSwJ-enpfUhPPxHywd19AzLJw7zQUSgynodpVhSh4nls84FymE8u2mImJ3PxeREvDshZexbGhVV62d_I9Fpa-5y-p2Z_XZb9r2gZoLpxeF6OM5mD3RZCuVsMTn_fh3loJprjcDEPXWkfzdPEeNWYkeUNzlz0FCN26vDQuNhRUTWS_46m-tcSfUIe3VZr-HUHy-Vf2un8GXnqzUo6bHr-nBzY6gV5OPUb5y_JaDr-RLMGi4k2C_a09oU7_FjqIuCvKdAbu4UQPFYJLaZXF3S9KVebV2R-Pv52Ngn99QlhJpN4GwopC15EKuWW5SpHz4CB5RClaMEBMAAHZ8ZUlmnFQGcFQMJ4AixlEqQYFPw1OaxWlX1DKAziJJc1HJoQPFUgU0yjtyaZ5drqgKiWYibz2OLuioulaYPIfph7WhtHa9PQOiCsq7lu8DX2qDNyg9KVdwjZdcZqc208ixhmrbJaoH84yEWOHc6kKlIN2lrMTtKA6HZITXsIFcUmNlTu0YGPXd0dZt2z9knLQcYLjJ8G_fSY48BoHpD33Wec6m7_Biq7unVlsAEUmJoF5KjhvI4GbqVBRzIOSNSx4t4EPf6v_3lLHrtUExV5Qg6Rb-07tNS2aa-eivhUC9UjD4YXXyYzfI_Gs8urXr36gan57HL4_Q-7MkFK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTWLwgPhPYECQ4DGsjh0nFpoQhY6WrRWaNmlv5hI7U1HXlm7TtC_HZ-OcOCkTEurLHpP4HOt8Pt_5zr8DeOtq36DMTGRKFUei4CbKi7KMUm4Sazqpw3xy2RYj2T8S346T4zX43dyFcWmVjU6sFLWZFe6MfJscmYST7aH4x_mvyFWNctHVpoQG-tIKZqeCGPMXO_bs1SW5cGc7gy803-_ieLd3-Lkf-SoDUSGz5DwSUpa8jNOcW2ZSQwY0Q8sxzulniAzRoX6xtChUylAVJWLGeIYsZxKl6JSc-r0FG4ILRc7fRrc3-n6whP1lor6Ml_AoY0z5XKI6w6xCrByfkt4gPzVm7x0aGxfXNsiqjsC1ffJfO_gubF5M53h1iZPJX3vj7n24543a8FMthQ9gzU4fwu2hD9s_gu6w9zUsaiSosA4XhJUn3qLXhi7__iTE8NSeY4QeKSUshweDcL4YzxaP4ehG2PoE1qezqX0GIXaSzMgKjE0Inqcoc3omX1Eyy5VVAaQNx3Thkc1dgY2JblLYfuolr7Xjta55HQBrKec1uscKNF03KW17h89dvZgtTrRf7ppZm1olyDvtGGFowIVMy1yhspZeZ3kAqplS3VyBJaVNHY1XGMCHltabSbX5syL1ViNB2qurM71cXAG8aT-TonHRI5za2YVrQx2QulYsgKe15LU8cOccKpZJAHEriisz9Pn_R_QaNvuHw329PxjtvYA7jrBOwNyCdRJS-5KMwvP8lV95Ify46cX-B6SRcv4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQ14QPwnMMBI8BhWx4kdCyHE2MbK6IQQk_pmLrEzFXVt6TpN-2p8Os5xkjIhob7sMYnPsc535zv7_DuAV772DcrcxrbSSZyWwsZFWVWxEjZztqc85pPPtjiU-0fp52E2XIPf7V0Yn1bZ2sTaUNtp6ffItyiQyQT5HlpsVU1axNedvfezX7GvIOVPWttyGkFEDtzFOYVvp-_6OzTXr5Nkb_f7x_24qTAQlzLPFnEqZSWqRBXCcassOc8cncCkoB8hckSP-MVVWWrFUZcVYs5FjrzgEmXaqwT1ew2uKyG0TydUQ7UE_OVpuIaXiTjnXDdZRCG3rMaqHJ2QxaAINeFvPA6bSC8tjXUFgUsr5L8e8C24cTaZ4cU5jsd_rYp7d-B2486yD0H-7sKam9yDjUFzYH8ftge7n1gZMKBYOChgdQze4dYyn3l_zJCduAXG2GCksGrwrc9m89F0_gCOroSpD2F9Mp24x8Cwl-VW1jBsaSoKhbKgZ4oSJXdCOx2BajlmygbT3JfWGJs2ee2nWfLaeF6bwOsIeEc5C7geK9Bs-0np2ntk7vrFdH5sGkU33DnldEpxac-mlgZcSlUVGrVz9DovItDtlJr28iuZa-potMIA3na0jYMUHJ8VqTdbCTKNoTo1S7WK4GX3mUyMPzfCiZue-TbUARlqzSN4FCSv44Hf4dCJzCJIOlFcmaFP_j-iF7BBKm6-9A8PnsJNTxcyLzdhnWTUPSNvcFE8r9WOwY-r1vM_dUpwmA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToLxwPcgMJCReE0Vx4kdi6cNbQykToCoNJ6sc-ygQpdWoxWCv55zvqAgocJjHJ9ln8_2ne_8O4BnIfcNysLFrtJpnJXCxbasqlgJl3uXqID5FKItzuTpNHt9np_vQNK_hdnw3zdxWA2u4-yCVhdZcykfB8wykV2BXZmT9j2C3enZm8MPjVMzF3HBm1wePAkpCHPVB-_8ramNE6kB7t84mP5UPK_DtXW9xG9fcT7_5TA6uQlv-2G0MSifx-uVHZfff0N4_Jdx3oIbnWbKDltRug07vr4DVyed7_0uHE2OX7KyhXNi7Z0_a8zpAYKWhSD6jwzZhV9hjB3cCasm716x5eVscXkPpifH71-cxl0GhriURb6KMykrUaXKCs-dcmRccPQCU0tKICJHDIhoXJWlVhx1WSEWXBTILZcos6QS-zCqF7V_AAyTvHCyQVTLMmEVSkvfZPBJ7oX2OgLVz4IpO3jykCVjbvo4tE_mJ4tMYJFpWRQBHyiXLUTHFjRHYaKH-gFkuymgOTHdmjXce-V1RiZm4jJHHS6lqqxG7T0VFzYC3YuJ6d-x0s5LDc226MDzgbbTdVodZkvqg14qTbfnfDFk6ueCJkaLCJ4Ov2m3CC4grP1iHepQA7Tnah7B_VaaBx6EywqdyjyCdBDvrRn68H-IHsFe-GrjKQ9gROLqH5OOt7JPumX9A2FQSqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEG+current+source+reconstruction+using+a+meta-analysis+fMRI+prior&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Suzuki%2C+Keita&rft.au=Yamashita%2C+Okito&rft.date=2021-08-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=236&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118034&rft.externalDocID=S1053811921003116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon