A deep learning CNN approach with unified feature extraction for breast cancer detection and classification

Radiologists typically have a hard time to classify the breast cancer, which leads to unnecessary biopsies to remove suspicions, and this ends up in adding exorbitant expenses to an already burdened patient and health care system. As well as early detection and diagnosis can save the lives of cancer...

Full description

Saved in:
Bibliographic Details
Published inI-manager's Journal on Image Processing Vol. 12; no. 2; p. 1
Main Authors Ongole, Gandhi, Tirumala, Rao S. N., Munaga, H. M. Krishna Prasad
Format Journal Article
LanguageEnglish
Published Nagercoil iManager Publications 01.06.2025
Subjects
Online AccessGet full text
ISSN2349-4530
2349-6827
DOI10.26634/jip.12.2.21915

Cover

Abstract Radiologists typically have a hard time to classify the breast cancer, which leads to unnecessary biopsies to remove suspicions, and this ends up in adding exorbitant expenses to an already burdened patient and health care system. As well as early detection and diagnosis can save the lives of cancer patients. In this paper, a computer-aided diagnosis (CAD) system based on hybrid intelligence framework using Gabor wavelet-based deep learning convolutional neural network (GW-DL-CNN) for the detection and classification of breast cancer in mammographic images is proposed. In addition, a machine learning framework with Gabor wavelet-based support vector machine (GW-SVM) also implemented. Both, GW-SVM and GW-DL-CNN models are proposed to help the radiologist in a much better way to detect and classify the breast cancer from mammographic images. Further, Chan-Vese (C-V) features-based level set segmentation also utilized for segmenting the objects without clearly defined boundaries in mammographic images. The unified features extracted from C-V and GW are fed into an architecture of DL-CNN to classify the type of breast cancer such as malignant, benign, or normal using fully complex valued relaxation network (FCRN) classifier. The proposed frameworks of GW-SVM, GW-DL-CNN with FCRN classifier is achieved the model accuracy of 98.6%, specificity of 98%, sensitivity of 98% and F1-Score is 97.08% respectively.
AbstractList Radiologists typically have a hard time to classify the breast cancer, which leads to unnecessary biopsies to remove suspicions, and this ends up in adding exorbitant expenses to an already burdened patient and health care system. As well as early detection and diagnosis can save the lives of cancer patients. In this paper, a computer-aided diagnosis (CAD) system based on hybrid intelligence framework using Gabor wavelet-based deep learning convolutional neural network (GW-DL-CNN) for the detection and classification of breast cancer in mammographic images is proposed. In addition, a machine learning framework with Gabor wavelet-based support vector machine (GW-SVM) also implemented. Both, GW-SVM and GW-DL-CNN models are proposed to help the radiologist in a much better way to detect and classify the breast cancer from mammographic images. Further, Chan-Vese (C-V) features-based level set segmentation also utilized for segmenting the objects without clearly defined boundaries in mammographic images. The unified features extracted from C-V and GW are fed into an architecture of DL-CNN to classify the type of breast cancer such as malignant, benign, or normal using fully complex valued relaxation network (FCRN) classifier. The proposed frameworks of GW-SVM, GW-DL-CNN with FCRN classifier is achieved the model accuracy of 98.6%, specificity of 98%, sensitivity of 98% and F1-Score is 97.08% respectively.
Author Tirumala, Rao S. N.
Munaga, H. M. Krishna Prasad
Ongole, Gandhi
Author_xml – sequence: 1
  givenname: Gandhi
  surname: Ongole
  fullname: Ongole, Gandhi
– sequence: 2
  givenname: Rao S. N.
  surname: Tirumala
  fullname: Tirumala, Rao S. N.
– sequence: 3
  givenname: H. M. Krishna Prasad
  surname: Munaga
  fullname: Munaga, H. M. Krishna Prasad
BookMark eNotkE1PwzAMhiM0JMbYmWskzt2SOM3a4zTxJU3jsnuUpg7rGGlJWgH_noxO78GWP17Lzy2Z-NYjIfecLYRSIJfHpltwsUjiJc-vyFSALDNViNXkkssc2A2Zx3hkjIlSybLkU_KxpjViR09ogm_8O93sdtR0XWiNPdDvpj_QwTeuwZo6NP0QkOJPH4ztm9ZT1wZaBTSxp9Z4iyGZ9Tj2jK-pPZkY07Y159IduXbmFHF-iTOyf3rcb16y7dvz62a9zawq8qyqeYE5Z0wJJ1SdW1GBKixKgNyA4FKVAgqQVSHNyjLOAbjjzGFazo0QMCMPo2164mvA2OtjOwSfLmoQINgKisRiRpbjlA1tjAGd7kLzacKv5kz_M9WJqeZCJ52Zwh8M02s6
Cites_doi 10.1016/j.compbiomed.2014.09.008
10.1109/ACCESS.2020.2993536
10.1109/ETCM.2017.8247515
10.1016/j.asoc.2019.105765
10.1016/j.procs.2017.11.219
10.1109/TKDE.2019.2891622
10.1155/2018/2362108
10.1109/ACCESS.2020.3004056
10.2991/aisr.k.200424.055
10.1109/RIVF48685.2020.9140744
10.1109/ACCESS.2020.3007336
10.4018/978-1-6684-7136-4.ch014
10.1063/1.5132474
10.1166/jmihi.2020.3086
10.1007/s00357-018-9297-3
10.1016/j.measurement.2019.05.083
10.1109/ACCESS.2020.2964276
10.1016/B978-0-12-815369-7.00005-7
10.1109/TMI.2019.2933656
10.22034/APJCP.2018.19.10.2917
10.1007/978-981-10-3274-5_12
10.1049/iet-ipr.2018.5953
10.23919/MIPRO.2018.8400053
10.1016/j.physa.2020.124591
10.3390/cancers11121901
10.1016/j.eswa.2018.11.008
10.1049/iet-cvi.2016.0425
10.1016/j.asoc.2019.105941
10.1109/ACCESS.2020.2978754
10.1109/TTHZ.2019.2962116
10.1109/ACCESS.2019.2962750
ContentType Journal Article
Copyright Copyright © 2025 i-manager publications. All rights reserved.
Copyright_xml – notice: Copyright © 2025 i-manager publications. All rights reserved.
DBID AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.26634/jip.12.2.21915
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2349-6827
ExternalDocumentID 10_26634_jip_12_2_21915
GroupedDBID 8FE
8FG
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PUEGO
3V.
7XB
8AL
8FK
JQ2
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c685-bd18e510062f26d5c2b368ce4335a32146923834b84a7c011331f10fe6855a223
IEDL.DBID BENPR
ISSN 2349-4530
IngestDate Sat Aug 23 14:34:32 EDT 2025
Wed Oct 01 05:47:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c685-bd18e510062f26d5c2b368ce4335a32146923834b84a7c011331f10fe6855a223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3232073845
PQPubID 2042734
ParticipantIDs proquest_journals_3232073845
crossref_primary_10_26634_jip_12_2_21915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 20250601
  day: 01
PublicationDecade 2020
PublicationPlace Nagercoil
PublicationPlace_xml – name: Nagercoil
PublicationTitle I-manager's Journal on Image Processing
PublicationYear 2025
Publisher iManager Publications
Publisher_xml – name: iManager Publications
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1016/j.compbiomed.2014.09.008
– ident: ref31
  doi: 10.1109/ACCESS.2020.2993536
– ident: ref17
  doi: 10.1109/ETCM.2017.8247515
– ident: ref4
  doi: 10.1016/j.asoc.2019.105765
– ident: ref11
  doi: 10.1016/j.procs.2017.11.219
– ident: ref9
  doi: 10.1109/TKDE.2019.2891622
– ident: ref16
  doi: 10.1155/2018/2362108
– ident: ref18
  doi: 10.1109/ACCESS.2020.3004056
– ident: ref14
  doi: 10.2991/aisr.k.200424.055
– ident: ref15
  doi: 10.1109/RIVF48685.2020.9140744
– ident: ref10
  doi: 10.1109/ACCESS.2020.3007336
– ident: ref12
  doi: 10.4018/978-1-6684-7136-4.ch014
– ident: ref24
  doi: 10.1063/1.5132474
– ident: ref8
  doi: 10.1166/jmihi.2020.3086
– ident: ref19
  doi: 10.1007/s00357-018-9297-3
– ident: ref26
  doi: 10.1016/j.measurement.2019.05.083
– ident: ref29
  doi: 10.1109/ACCESS.2020.2964276
– ident: ref21
  doi: 10.1016/B978-0-12-815369-7.00005-7
– ident: ref25
  doi: 10.1109/TMI.2019.2933656
– ident: ref2
  doi: 10.22034/APJCP.2018.19.10.2917
– ident: ref22
  doi: 10.1007/978-981-10-3274-5_12
– ident: ref7
  doi: 10.1049/iet-ipr.2018.5953
– ident: ref3
  doi: 10.23919/MIPRO.2018.8400053
– ident: ref1
  doi: 10.1016/j.physa.2020.124591
– ident: ref30
  doi: 10.3390/cancers11121901
– ident: ref23
  doi: 10.1016/j.eswa.2018.11.008
– ident: ref6
  doi: 10.1049/iet-cvi.2016.0425
– ident: ref28
  doi: 10.1016/j.asoc.2019.105941
– ident: ref20
  doi: 10.1109/ACCESS.2020.2978754
– ident: ref5
  doi: 10.1109/TTHZ.2019.2962116
– ident: ref27
  doi: 10.1109/ACCESS.2019.2962750
SSID ssj0002964991
Score 2.2954783
Snippet Radiologists typically have a hard time to classify the breast cancer, which leads to unnecessary biopsies to remove suspicions, and this ends up in adding...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1
SubjectTerms Artificial neural networks
Breast cancer
Classification
Deep learning
Diagnosis
Feature extraction
Machine learning
Medical imaging
Morlet wavelet
Support vector machines
Title A deep learning CNN approach with unified feature extraction for breast cancer detection and classification
URI https://www.proquest.com/docview/3232073845
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2349-6827
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002964991
  issn: 2349-4530
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2349-6827
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002964991
  issn: 2349-4530
  databaseCode: 8FG
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60XryIouKjlj148LKY7MvNQaStrUUwiCh4C9lHRIUaawr-fGfyUHqRPS7Zw0xm5pvZnfkIOTUFD7mRBeMuEkw6LVkSacuci2xhtbuIHTY436V69iRvn9XzGkm7Xhh8Vtn5xNpR-w-HNfJzAaEffkcj1VX5yZA1Cm9XOwqNvKVW8Jf1iLF1ssFxMlaPbIwm6f3Db9UFLxmTmkaPC5kwqUTUzPuBOCXk-dtricVBWJDGqNVQteqp6_Az3SZbLW6kw0bRO2QtzHfJ-5Beh1DSdkjqCx2nKR22U8IpllgpYMoCUCZFqLdcBDr5rhZNLwMFuEpH-Ca9omPU_QIOq0Kzl889rfky8SVRrbw98jidPI5nrGVPYE4bxayPTQCDizQvuPbKcSu0cUEKoXJkJ9IA7YyQ1sj8woGVCxEXcVQE-FjlABr2SW_-MQ8HhCY-8t7oXAQ0easxZYMsh-fWB2W9OyRnnZyyspmRkUFuUYs0A5FmMc9goUgPSb-TY9Yay1f2p9qj_7ePySZH-t26CNInvWqxDCeACSo7IOtmejNo1f0DHzG1Mg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEA6iB72IoqKuujms4CXYnZeZwyDjODKu2oiM4C10Hi26MI5jD7o_bv_bVvVD8eJNcgzdh8qX1FeVVH2E_DIFj7mRBeM-EUx6LVkn0Y55n7jCaX-Ueixwvsr08Fb-vlN3c-RfWwuDzyrbM7E6qMOTxxz5oQDXD3A0Uh1PnhmqRuHtaiuhkTfSCqFbtRhrCjsu4t9XCOFeuuensN77nJ8NRv0ha1QGmNdGMRdSEwGYieYF10F57oQ2PkohVI4qPhookBHSGZkfedgNQqRFmhQRPlY5x74H4AEWpJAdiP0WTgbZ9c17kgfvNDuVah-HeSaVSOr2QuAWhTx8fJhgLhIGRE3qs2f87Bgqb3e2QpYbmkp7Na5WyVwcr5E_PXoa44Q2PVnvaT_LaK9pSk4xo0uBwhZAaikyy9k00sFbOa1LJyiwY3qCT-BL2keoTeFnZazn8nGglTwnPlyqsLJORt9hxg0yP34ax01COyEJwehcRDxhnMYIEYIqnrsQlQt-ixy0drKTuiWHhVCmMqkFk9qUWxho0i2y09rRNnvzxX4gafvr6Z9kcTi6urSX59nFD7LEUfm3yr_skPlyOou7QEdKt9csOiX2m2H2H6JT7VI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+CNN+Approach+with+Unified+Feature+Extraction+for+Breast+Cancer+Detection+and+Classification&rft.jtitle=I-manager%27s+Journal+on+Image+Processing&rft.au=Gandhi%2C+Ongole&rft.au=Tirumala+Rao+S.+N.&rft.au=Munaga+H.+M.+Krishna+Prasad&rft.date=2025-06-01&rft.pub=iManager+Publications&rft.issn=2349-4530&rft.eissn=2349-6827&rft.volume=12&rft.issue=2&rft_id=info:doi/10.26634%2Fjip.12.2.21915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-4530&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-4530&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-4530&client=summon