A deep learning CNN approach with unified feature extraction for breast cancer detection and classification
Radiologists typically have a hard time to classify the breast cancer, which leads to unnecessary biopsies to remove suspicions, and this ends up in adding exorbitant expenses to an already burdened patient and health care system. As well as early detection and diagnosis can save the lives of cancer...
        Saved in:
      
    
          | Published in | I-manager's Journal on Image Processing Vol. 12; no. 2; p. 1 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Nagercoil
          iManager Publications
    
        01.06.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2349-4530 2349-6827  | 
| DOI | 10.26634/jip.12.2.21915 | 
Cover
| Abstract | Radiologists typically have a hard time to classify the breast cancer, which leads to unnecessary biopsies to remove suspicions, and this ends up in adding exorbitant expenses to an already burdened patient and health care system. As well as early detection and diagnosis can save the lives of cancer patients. In this paper, a computer-aided diagnosis (CAD) system based on hybrid intelligence framework using Gabor wavelet-based deep learning convolutional neural network (GW-DL-CNN) for the detection and classification of breast cancer in mammographic images is proposed. In addition, a machine learning framework with Gabor wavelet-based support vector machine (GW-SVM) also implemented. Both, GW-SVM and GW-DL-CNN models are proposed to help the radiologist in a much better way to detect and classify the breast cancer from mammographic images. Further, Chan-Vese (C-V) features-based level set segmentation also utilized for segmenting the objects without clearly defined boundaries in mammographic images. The unified features extracted from C-V and GW are fed into an architecture of DL-CNN to classify the type of breast cancer such as malignant, benign, or normal using fully complex valued relaxation network (FCRN) classifier. The proposed frameworks of GW-SVM, GW-DL-CNN with FCRN classifier is achieved the model accuracy of 98.6%, specificity of 98%, sensitivity of 98% and F1-Score is 97.08% respectively. | 
    
|---|---|
| AbstractList | Radiologists typically have a hard time to classify the breast cancer, which leads to unnecessary biopsies to remove suspicions, and this ends up in adding exorbitant expenses to an already burdened patient and health care system. As well as early detection and diagnosis can save the lives of cancer patients. In this paper, a computer-aided diagnosis (CAD) system based on hybrid intelligence framework using Gabor wavelet-based deep learning convolutional neural network (GW-DL-CNN) for the detection and classification of breast cancer in mammographic images is proposed. In addition, a machine learning framework with Gabor wavelet-based support vector machine (GW-SVM) also implemented. Both, GW-SVM and GW-DL-CNN models are proposed to help the radiologist in a much better way to detect and classify the breast cancer from mammographic images. Further, Chan-Vese (C-V) features-based level set segmentation also utilized for segmenting the objects without clearly defined boundaries in mammographic images. The unified features extracted from C-V and GW are fed into an architecture of DL-CNN to classify the type of breast cancer such as malignant, benign, or normal using fully complex valued relaxation network (FCRN) classifier. The proposed frameworks of GW-SVM, GW-DL-CNN with FCRN classifier is achieved the model accuracy of 98.6%, specificity of 98%, sensitivity of 98% and F1-Score is 97.08% respectively. | 
    
| Author | Tirumala, Rao S. N. Munaga, H. M. Krishna Prasad Ongole, Gandhi  | 
    
| Author_xml | – sequence: 1 givenname: Gandhi surname: Ongole fullname: Ongole, Gandhi – sequence: 2 givenname: Rao S. N. surname: Tirumala fullname: Tirumala, Rao S. N. – sequence: 3 givenname: H. M. Krishna Prasad surname: Munaga fullname: Munaga, H. M. Krishna Prasad  | 
    
| BookMark | eNotkE1PwzAMhiM0JMbYmWskzt2SOM3a4zTxJU3jsnuUpg7rGGlJWgH_noxO78GWP17Lzy2Z-NYjIfecLYRSIJfHpltwsUjiJc-vyFSALDNViNXkkssc2A2Zx3hkjIlSybLkU_KxpjViR09ogm_8O93sdtR0XWiNPdDvpj_QwTeuwZo6NP0QkOJPH4ztm9ZT1wZaBTSxp9Z4iyGZ9Tj2jK-pPZkY07Y159IduXbmFHF-iTOyf3rcb16y7dvz62a9zawq8qyqeYE5Z0wJJ1SdW1GBKixKgNyA4FKVAgqQVSHNyjLOAbjjzGFazo0QMCMPo2164mvA2OtjOwSfLmoQINgKisRiRpbjlA1tjAGd7kLzacKv5kz_M9WJqeZCJ52Zwh8M02s6 | 
    
| Cites_doi | 10.1016/j.compbiomed.2014.09.008 10.1109/ACCESS.2020.2993536 10.1109/ETCM.2017.8247515 10.1016/j.asoc.2019.105765 10.1016/j.procs.2017.11.219 10.1109/TKDE.2019.2891622 10.1155/2018/2362108 10.1109/ACCESS.2020.3004056 10.2991/aisr.k.200424.055 10.1109/RIVF48685.2020.9140744 10.1109/ACCESS.2020.3007336 10.4018/978-1-6684-7136-4.ch014 10.1063/1.5132474 10.1166/jmihi.2020.3086 10.1007/s00357-018-9297-3 10.1016/j.measurement.2019.05.083 10.1109/ACCESS.2020.2964276 10.1016/B978-0-12-815369-7.00005-7 10.1109/TMI.2019.2933656 10.22034/APJCP.2018.19.10.2917 10.1007/978-981-10-3274-5_12 10.1049/iet-ipr.2018.5953 10.23919/MIPRO.2018.8400053 10.1016/j.physa.2020.124591 10.3390/cancers11121901 10.1016/j.eswa.2018.11.008 10.1049/iet-cvi.2016.0425 10.1016/j.asoc.2019.105941 10.1109/ACCESS.2020.2978754 10.1109/TTHZ.2019.2962116 10.1109/ACCESS.2019.2962750  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2025 i-manager publications. All rights reserved. | 
    
| Copyright_xml | – notice: Copyright © 2025 i-manager publications. All rights reserved. | 
    
| DBID | AAYXX CITATION 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U  | 
    
| DOI | 10.26634/jip.12.2.21915 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2349-6827 | 
    
| ExternalDocumentID | 10_26634_jip_12_2_21915 | 
    
| GroupedDBID | 8FE 8FG AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQGLB PQQKQ PROAC PUEGO 3V. 7XB 8AL 8FK JQ2 M0N PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c685-bd18e510062f26d5c2b368ce4335a32146923834b84a7c011331f10fe6855a223 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2349-4530 | 
    
| IngestDate | Sat Aug 23 14:34:32 EDT 2025 Wed Oct 01 05:47:15 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c685-bd18e510062f26d5c2b368ce4335a32146923834b84a7c011331f10fe6855a223 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3232073845 | 
    
| PQPubID | 2042734 | 
    
| ParticipantIDs | proquest_journals_3232073845 crossref_primary_10_26634_jip_12_2_21915  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250601 | 
    
| PublicationDateYYYYMMDD | 2025-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2025 text: 20250601 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Nagercoil | 
    
| PublicationPlace_xml | – name: Nagercoil | 
    
| PublicationTitle | I-manager's Journal on Image Processing | 
    
| PublicationYear | 2025 | 
    
| Publisher | iManager Publications | 
    
| Publisher_xml | – name: iManager Publications | 
    
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref13 doi: 10.1016/j.compbiomed.2014.09.008 – ident: ref31 doi: 10.1109/ACCESS.2020.2993536 – ident: ref17 doi: 10.1109/ETCM.2017.8247515 – ident: ref4 doi: 10.1016/j.asoc.2019.105765 – ident: ref11 doi: 10.1016/j.procs.2017.11.219 – ident: ref9 doi: 10.1109/TKDE.2019.2891622 – ident: ref16 doi: 10.1155/2018/2362108 – ident: ref18 doi: 10.1109/ACCESS.2020.3004056 – ident: ref14 doi: 10.2991/aisr.k.200424.055 – ident: ref15 doi: 10.1109/RIVF48685.2020.9140744 – ident: ref10 doi: 10.1109/ACCESS.2020.3007336 – ident: ref12 doi: 10.4018/978-1-6684-7136-4.ch014 – ident: ref24 doi: 10.1063/1.5132474 – ident: ref8 doi: 10.1166/jmihi.2020.3086 – ident: ref19 doi: 10.1007/s00357-018-9297-3 – ident: ref26 doi: 10.1016/j.measurement.2019.05.083 – ident: ref29 doi: 10.1109/ACCESS.2020.2964276 – ident: ref21 doi: 10.1016/B978-0-12-815369-7.00005-7 – ident: ref25 doi: 10.1109/TMI.2019.2933656 – ident: ref2 doi: 10.22034/APJCP.2018.19.10.2917 – ident: ref22 doi: 10.1007/978-981-10-3274-5_12 – ident: ref7 doi: 10.1049/iet-ipr.2018.5953 – ident: ref3 doi: 10.23919/MIPRO.2018.8400053 – ident: ref1 doi: 10.1016/j.physa.2020.124591 – ident: ref30 doi: 10.3390/cancers11121901 – ident: ref23 doi: 10.1016/j.eswa.2018.11.008 – ident: ref6 doi: 10.1049/iet-cvi.2016.0425 – ident: ref28 doi: 10.1016/j.asoc.2019.105941 – ident: ref20 doi: 10.1109/ACCESS.2020.2978754 – ident: ref5 doi: 10.1109/TTHZ.2019.2962116 – ident: ref27 doi: 10.1109/ACCESS.2019.2962750  | 
    
| SSID | ssj0002964991 | 
    
| Score | 2.2954783 | 
    
| Snippet | Radiologists typically have a hard time to classify the breast cancer, which leads to unnecessary biopsies to remove suspicions, and this ends up in adding... | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Index Database  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Artificial neural networks Breast cancer Classification Deep learning Diagnosis Feature extraction Machine learning Medical imaging Morlet wavelet Support vector machines  | 
    
| Title | A deep learning CNN approach with unified feature extraction for breast cancer detection and classification | 
    
| URI | https://www.proquest.com/docview/3232073845 | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2349-6827 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002964991 issn: 2349-4530 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2349-6827 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002964991 issn: 2349-4530 databaseCode: 8FG dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60XryIouKjlj148LKY7MvNQaStrUUwiCh4C9lHRIUaawr-fGfyUHqRPS7Zw0xm5pvZnfkIOTUFD7mRBeMuEkw6LVkSacuci2xhtbuIHTY436V69iRvn9XzGkm7Xhh8Vtn5xNpR-w-HNfJzAaEffkcj1VX5yZA1Cm9XOwqNvKVW8Jf1iLF1ssFxMlaPbIwm6f3Db9UFLxmTmkaPC5kwqUTUzPuBOCXk-dtricVBWJDGqNVQteqp6_Az3SZbLW6kw0bRO2QtzHfJ-5Beh1DSdkjqCx2nKR22U8IpllgpYMoCUCZFqLdcBDr5rhZNLwMFuEpH-Ca9omPU_QIOq0Kzl889rfky8SVRrbw98jidPI5nrGVPYE4bxayPTQCDizQvuPbKcSu0cUEKoXJkJ9IA7YyQ1sj8woGVCxEXcVQE-FjlABr2SW_-MQ8HhCY-8t7oXAQ0easxZYMsh-fWB2W9OyRnnZyyspmRkUFuUYs0A5FmMc9goUgPSb-TY9Yay1f2p9qj_7ePySZH-t26CNInvWqxDCeACSo7IOtmejNo1f0DHzG1Mg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEA6iB72IoqKuujms4CXYnZeZwyDjODKu2oiM4C10Hi26MI5jD7o_bv_bVvVD8eJNcgzdh8qX1FeVVH2E_DIFj7mRBeM-EUx6LVkn0Y55n7jCaX-Ueixwvsr08Fb-vlN3c-RfWwuDzyrbM7E6qMOTxxz5oQDXD3A0Uh1PnhmqRuHtaiuhkTfSCqFbtRhrCjsu4t9XCOFeuuensN77nJ8NRv0ha1QGmNdGMRdSEwGYieYF10F57oQ2PkohVI4qPhookBHSGZkfedgNQqRFmhQRPlY5x74H4AEWpJAdiP0WTgbZ9c17kgfvNDuVah-HeSaVSOr2QuAWhTx8fJhgLhIGRE3qs2f87Bgqb3e2QpYbmkp7Na5WyVwcr5E_PXoa44Q2PVnvaT_LaK9pSk4xo0uBwhZAaikyy9k00sFbOa1LJyiwY3qCT-BL2keoTeFnZazn8nGglTwnPlyqsLJORt9hxg0yP34ax01COyEJwehcRDxhnMYIEYIqnrsQlQt-ixy0drKTuiWHhVCmMqkFk9qUWxho0i2y09rRNnvzxX4gafvr6Z9kcTi6urSX59nFD7LEUfm3yr_skPlyOou7QEdKt9csOiX2m2H2H6JT7VI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+CNN+Approach+with+Unified+Feature+Extraction+for+Breast+Cancer+Detection+and+Classification&rft.jtitle=I-manager%27s+Journal+on+Image+Processing&rft.au=Gandhi%2C+Ongole&rft.au=Tirumala+Rao+S.+N.&rft.au=Munaga+H.+M.+Krishna+Prasad&rft.date=2025-06-01&rft.pub=iManager+Publications&rft.issn=2349-4530&rft.eissn=2349-6827&rft.volume=12&rft.issue=2&rft_id=info:doi/10.26634%2Fjip.12.2.21915 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-4530&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-4530&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-4530&client=summon |