CosinorPy: a python package for cosinor-based rhythmometry
Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages...
Saved in:
| Published in | BMC bioinformatics Vol. 21; no. 1; pp. 1 - 12 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
29.10.2020
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-020-03830-w |
Cover
| Abstract | Background
Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats.
Results
We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats.
Conclusion
CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from
https://github.com/mmoskon/CosinorPy
. CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. |
|---|---|
| AbstractList | Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy. CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. Abstract Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from Keywords: Cosinor, Rhythmicity analysis, Circadian analysis, Regression, Python Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy. CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats.BACKGROUNDEven though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats.We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats.RESULTSWe present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats.CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1.CONCLUSIONCosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. |
| ArticleNumber | 485 |
| Audience | Academic |
| Author | Moškon, Miha |
| Author_xml | – sequence: 1 fullname: Moskon, Miha |
| BookMark | eNqNkktv3CAUhVGVqkmm_QNdWeqmXTgFYzDOolI06mOkSK36WKNrDB5SG6Zgdzr_vkw8ajpRFVUsQJfvnAsHztGJ804j9JzgC0IEfx1JIVid4wLnmAqK8-0jdEbKiuQFwezkr_UpOo_xBmNSCcyeoFNKSUFKSs7Q5dJH63z4tLvMINvsxrV32QbUd-h0ZnzI1LyfNxB1m4V1IgY_6DHsnqLHBvqonx3mBfr27u3X5Yf8-uP71fLqOldclGNelW3FTMsIFKLkNW60akwLWBdKida0DZQEDK1U3RhS1Y2oK64B0pKBqWhBF2g1-7YebuQm2AHCTnqw8rbgQychjFb1WioDlNWVMQpMujsWjDe45W1qwEEbnrzo7DW5Dey20Pd_DAmW-1TlnKpMqcrbVOU2qd7Mqs3UDLpV2o0B-qOjHO84u5ad_ymrdBhMWTJ4eTAI_sek4ygHG5Xue3DaT1EWJeNl6pveZIFe3ENv_BRcCjhRnAhG6kLcUR2ka1tnfOqr9qbyipeYYloLkqiLf1BptHqwKn0mY1P9SPDqSJCYUf8aO5hilKsvn4_ZYmZV8DEGbf4vSXFPpOwIo_X73Gz_sPTwdDH1cZ0Od8E8oPoNTDP4OA |
| CitedBy_id | crossref_primary_10_1109_JBHI_2024_3471254 crossref_primary_10_3390_antiox12081606 crossref_primary_10_1093_brain_awae065 crossref_primary_10_1111_jsr_13935 crossref_primary_10_1109_JBHI_2024_3509630 crossref_primary_10_1021_acs_jafc_3c06683 crossref_primary_10_3390_pathophysiology31010010 crossref_primary_10_1109_OJEMB_2023_3261223 crossref_primary_10_1113_JP286449 crossref_primary_10_1038_s44323_024_00020_2 crossref_primary_10_1016_j_cmpb_2021_106292 crossref_primary_10_1007_s00521_024_10316_w crossref_primary_10_1016_j_smhl_2022_100344 crossref_primary_10_3168_jds_2021_20691 crossref_primary_10_1111_febs_16095 crossref_primary_10_1016_j_nbscr_2024_100106 crossref_primary_10_3390_microorganisms9040869 crossref_primary_10_1007_s10928_021_09748_x crossref_primary_10_3389_fpls_2024_1481682 crossref_primary_10_1177_07487304211054408 crossref_primary_10_2147_NSS_S377762 crossref_primary_10_3390_app122211794 crossref_primary_10_1016_j_iot_2024_101475 crossref_primary_10_1111_apha_14005 crossref_primary_10_1016_j_jneumeth_2024_110245 crossref_primary_10_1038_s41598_024_67767_3 crossref_primary_10_1038_s41598_024_54490_2 crossref_primary_10_1161_JAHA_123_031627 crossref_primary_10_3390_s23208544 crossref_primary_10_1007_s00420_024_02060_4 crossref_primary_10_1073_pnas_2214636120 crossref_primary_10_3390_clockssleep5030033 crossref_primary_10_1126_scitranslmed_adg8464 crossref_primary_10_2196_51540 crossref_primary_10_29169_1927_5951_2021_11_01 crossref_primary_10_1111_pce_15466 crossref_primary_10_3390_nu14040774 crossref_primary_10_1016_j_ejsobi_2024_103687 crossref_primary_10_3390_nu14112246 crossref_primary_10_1080_07420528_2024_2414045 crossref_primary_10_1038_s42003_024_06769_3 crossref_primary_10_1016_j_jocs_2022_101758 crossref_primary_10_1016_j_smallrumres_2021_106394 crossref_primary_10_1098_rspb_2021_1626 crossref_primary_10_1186_s10020_021_00361_9 crossref_primary_10_3390_ijerph20010764 crossref_primary_10_1016_j_compenvurbsys_2022_101805 crossref_primary_10_1016_j_smhl_2024_100459 crossref_primary_10_1038_s41591_024_03125_0 crossref_primary_10_1016_j_scitotenv_2024_171905 |
| Cites_doi | 10.1371/journal.pcbi.1004094 10.1073/pnas.1619320114 10.1073/pnas.1909557116 10.1073/pnas.1408886111 10.1177/0748730417728663 10.1177/0748730410379711 10.1093/bioinformatics/btz834 10.1007/978-1-62703-637-5_19 10.1080/09291010600903692 10.1016/j.jsmc.2015.08.007 10.1093/bioinformatics/btz730 10.3389/fphys.2019.00682 10.1177/0748730418789536 10.1177/0748730418813785 10.1177/0748730414553029 10.15280/jlm.2019.9.1.1 10.1097/ALN.0000000000000596 10.1126/scitranslmed.aat8806 10.1186/1742-4682-11-16 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-020-03830-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_cfa3597ffcaf4710856b0d6d1af6aef6 10.1186/s12859-020-03830-w PMC7597035 A640303981 10_1186_s12859_020_03830_w |
| GeographicLocations | Slovenia |
| GeographicLocations_xml | – name: Slovenia |
| GrantInformation_xml | – fundername: Javna Agencija za Raziskovalno Dejavnost RS grantid: P2-0359; J1-9176 funderid: http://dx.doi.org/10.13039/501100004329 – fundername: Javna Agencija za Raziskovalno Dejavnost RS grantid: J5-1798 funderid: http://dx.doi.org/10.13039/501100004329 – fundername: ; grantid: P2-0359; J1-9176 – fundername: ; grantid: J5-1798 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c684t-74d75fd51a284690becbfda0e2cc8dfdba41af37c9bf179b8976eaa1795af7323 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:53:39 EDT 2025 Sun Oct 26 04:16:42 EDT 2025 Tue Sep 30 16:23:17 EDT 2025 Fri Sep 05 14:50:30 EDT 2025 Tue Oct 07 05:21:16 EDT 2025 Mon Oct 20 21:59:22 EDT 2025 Mon Oct 20 16:08:50 EDT 2025 Thu Oct 16 13:59:01 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Wed Oct 01 04:15:35 EDT 2025 Sat Sep 06 07:27:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Rhythmicity analysis Regression Circadian analysis Cosinor Python |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c684t-74d75fd51a284690becbfda0e2cc8dfdba41af37c9bf179b8976eaa1795af7323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4600-1730 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-020-03830-w |
| PMID | 33121431 |
| PQID | 2461851928 |
| PQPubID | 44065 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cfa3597ffcaf4710856b0d6d1af6aef6 unpaywall_primary_10_1186_s12859_020_03830_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_7597035 proquest_miscellaneous_2456412814 proquest_journals_2461851928 gale_infotracmisc_A640303981 gale_infotracacademiconefile_A640303981 gale_incontextgauss_ISR_A640303981 crossref_primary_10_1186_s12859_020_03830_w crossref_citationtrail_10_1186_s12859_020_03830_w springer_journals_10_1186_s12859_020_03830_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-29 |
| PublicationDateYYYYMMDD | 2020-10-29 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | R Zhang (3830_CR2) 2014; 111 ME Hughes (3830_CR20) 2017; 32 R Parsons (3830_CR23) 2020; 36 R Refinetti (3830_CR14) 2007; 38 3830_CR12 TS Andreani (3830_CR3) 2015; 10 C Bingham (3830_CR19) 1982; 9 AL Hutchison (3830_CR8) 2015; 11 PF Thaben (3830_CR10) 2014; 29 MD Ruben (3830_CR13) 2019; 116 G Cornelissen (3830_CR15) 2014; 11 3830_CR21 J Brainard (3830_CR4) 2015; 122 Y Xie (3830_CR5) 2019; 10 RC Anafi (3830_CR11) 2017; 114 A Seifalian (3830_CR6) 2019; 9 3830_CR1 3830_CR16 3830_CR17 3830_CR18 AL Hutchison (3830_CR9) 2018; 33 JM Singer (3830_CR22) 2019; 34 ME Hughes (3830_CR7) 2010; 25 |
| References_xml | – volume: 11 start-page: e1004094 issue: 3 year: 2015 ident: 3830_CR8 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004094 – volume: 114 start-page: 5312 issue: 20 year: 2017 ident: 3830_CR11 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1619320114 – volume: 116 start-page: 20953 issue: 42 year: 2019 ident: 3830_CR13 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1909557116 – volume: 111 start-page: 16219 issue: 45 year: 2014 ident: 3830_CR2 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1408886111 – volume: 32 start-page: 380 issue: 5 year: 2017 ident: 3830_CR20 publication-title: J Biol Rhythms doi: 10.1177/0748730417728663 – volume: 25 start-page: 372 issue: 5 year: 2010 ident: 3830_CR7 publication-title: J Biol Rhythms doi: 10.1177/0748730410379711 – ident: 3830_CR18 doi: 10.1093/bioinformatics/btz834 – ident: 3830_CR1 doi: 10.1007/978-1-62703-637-5_19 – volume: 9 start-page: 397 issue: 4 year: 1982 ident: 3830_CR19 publication-title: Chronobiologia. – volume: 38 start-page: 275 issue: 4 year: 2007 ident: 3830_CR14 publication-title: Biol Rhythm Res doi: 10.1080/09291010600903692 – volume: 10 start-page: 413 issue: 4 year: 2015 ident: 3830_CR3 publication-title: Sleep Med Clin doi: 10.1016/j.jsmc.2015.08.007 – volume: 36 start-page: 1208 issue: 4 year: 2020 ident: 3830_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz730 – volume: 10 start-page: 682 year: 2019 ident: 3830_CR5 publication-title: Frontin Physiol doi: 10.3389/fphys.2019.00682 – ident: 3830_CR17 – volume: 33 start-page: 339 issue: 4 year: 2018 ident: 3830_CR9 publication-title: J Biol Rhythms doi: 10.1177/0748730418789536 – volume: 34 start-page: 5 issue: 1 year: 2019 ident: 3830_CR22 publication-title: J Biol Rhythms doi: 10.1177/0748730418813785 – ident: 3830_CR16 – ident: 3830_CR21 – volume: 29 start-page: 391 issue: 6 year: 2014 ident: 3830_CR10 publication-title: J Biol Rhythms doi: 10.1177/0748730414553029 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 3830_CR6 publication-title: J Lifestyle Med doi: 10.15280/jlm.2019.9.1.1 – volume: 122 start-page: 1170 issue: 5 year: 2015 ident: 3830_CR4 publication-title: Anesthesiol doi: 10.1097/ALN.0000000000000596 – ident: 3830_CR12 doi: 10.1126/scitranslmed.aat8806 – volume: 11 start-page: 16 issue: 1 year: 2014 ident: 3830_CR15 publication-title: Theoret Biol Med Modell doi: 10.1186/1742-4682-11-16 |
| SSID | ssj0017805 |
| Score | 2.5516531 |
| Snippet | Background
Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical... Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric... Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical... Abstract Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years,... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Analysis and modelling of complex systems Applications software Bioinformatics Biological analysis Biological research Biomedical and Life Sciences Chronobiology Circadian analysis Circadian rhythm Circadian rhythms Computational biology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Computer programs Cosinor Data analysis Design of experiments Life Sciences Methods Microarrays Python Python (Programming language) Regression Regression analysis Regression models Rhythmicity analysis Rhythms Software Software packages Statistical analysis Time series |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yGOqDbH5g55Qqgg-urB9J2u5tDscUFFEHewsnabKN3bWX23u59L_3nH5tZTB98K00py35nZPz0SS_MPaeQyIjqXlgbQIB1zoLIMIqRYvU0A8sMBHtd_72XZ6c8q9n4uzWUV-0JqyjB-6A2zcOEkx6nTPg0JFihiB1WMgiAifBupZsO8zyoZjq5w-IqX_YIpPJ_ToinraASqUQS7IwWE_CUMvWf9cn310nOU6WPmYPV-UcmjXMZrfi0fEWe9Inkv5h14Ft9sCWT9lmd7Rk84wdHFX1ZVktfjQHPvjzhigCfKyPr9B_-Jio-qZrDyiMFf7iAiWuq2u7XDTP2enx599HJ0F_TkJgZMaXQcqLVLhCRICxBqtdVIt2BYQ2NiYrXKGBI1pJanLtcPzpDFMQC4CXAlyaxMkLtlFWpX3JfMy1nRAQgnAJB5uC5FZofCkVrVqCx6IBNmV6EnE6y2Km2mIik6qDWiHUqoVarT32cXxm3lFo3Cv9ibQxShL9dXsDjUL1RqH-ZhQee0e6VERwUdIKmnNY1bX68uunOpQc_VqSZ5HHPvRCrsI-GOg3JCASxIk1kdydSOIINNPmwWRU7wFqRTx9mM3mceaxt2MzPUmr2kpbrUhGSE5Tmdxj6cTUJt2ftpSXFy0LeIoAhInw2N5glDcfvw_evdFw_0EbO_9DG6_Yo5iGHkb8ON9lG8vFyr7GVG6p37Sj9g8mlUVk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_qFVE_iE-MVoki-MGG5rHZ5AoibWmpgkepFvptmd3stsVrct6D4_57Z3JJaigUv4XsbMLOznMfvwH4KDCRkdQisDbBQGidBxhRlqLTzPACFpqI7zv_GMnjM_H9PD3fgFF7F4aPVbY2sTbURWV4jXyHcc8oOhjG-dfJn4CrRvHualtCA5vSCsWXGmLsHmzGjIw1gM39w9HJabevwAj-7dWZXO7MIsZvCziFCilVC4Nlzz3VKP63bfXt85PdJuojeLAoJ7ha4nj8j586egKPmwDT31tLxFPYsOUzuL8uObl6DrsH1eyqrKYnq10f_cmKoQN8ypt_k13xKYD1zbo9YPdW-NNLoriuru18unoBZ0eHvw6Og6Z-QmBkLuZBJoosdUUaIfkgyoJpurQrMLSxMXnhCo0iQpdkZqgd6aXOKTSxiPSYosuSOHkJg7Iq7SvwKQZ3aYohpi4RaDOUwqaaPsrJrJboQdSyTZkGXJxrXIxVnWTkUq1ZrYjVqma1WnrwueszWUNr3Em9z7PRUTIsdv2iml6oRsuUcZhQhuScQUdel8JJqcNCFjRMidZJDz7wXCoGvij5ZM0FLmYz9e3nqdqTguxdMswjDz41RK6iMRhsLioQJxgrq0e51aMkzTT95lZkVGMZZupGjj143zVzTz7tVtpqwTSpFLzFKTzIeqLWG36_pby6rNHBM2JAmKQebLdCefPzu9i73Qnuf8zG67uH9gYexqxU5OPj4RYM5tOFfUvB21y_azTyL5FzQcs priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0RNQH8ROrp1QRfPDK9SNJu_d2Lh6noIh6cG9hkiaeuNcu-8HS_96ZtluvnBz6VppJSuYjM9NJfgF4LTBTiTIici7DSBhTRJhQlmJkbvkHFtqEzzt_-qyOT8THU3naw-TwWZiL9fukUPvLhBHWIk5yYkqm4mhzHW6Qk1JtYVZNh4oBY_NvD8X8td_I8bT4_JdX4cs7I4fy6B24ta7m2GxwNrvggY7uwd0-dAwPO1nfh2uuegA3u8skm4dwMK0p768XX5qDEMN5w6AAIWXEv2jFCCk0DW3XHrHjKsPFGVGc1-dutWgewcnR--_T46i_GSGyqhCrKBdlLn0pEyTvQvktCcL4EmOXWluUvjQoEvRZbifGk8WZgoIOh0iPEn2epdlj2Knqyj2BkKJrLyXGKH0m0OWohJOGBuU01SgMINmyTdseNpxvr5jpNn0olO5YrYnVumW13gTwdugz70AzrqR-x9IYKBnwun1BeqB7-9HWY0a5j_cWPflTChSViUtV0jQVOq8CeMWy1AxpUfGemR-4Xi71h29f9aEStJJlkyIJ4E1P5Guag8X-CAJxglGwRpS7I0qyOTtu3qqM7m1-qRmZj-LXSVoE8HJo5p68j61y9ZpppBJcvBQB5CNVG01_3FL9PGtxv3NiQJzJAPa2Svnn41exd29Q3H-QxtP_G_0Z3E7ZyMibp5Nd2Fkt1u45hWkr86K1z9_DUjSZ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44HOIwEABIfHA0iWN7aR7KxPTQGKqgErjyTo78Va1S0rTqip_Ped8lIWhCSTeovic1Oe78_0a388ArxmGIhCKeWkaoseUij0MCKUoHmn7BxbqwNY7fzoRxyP28ZSfbsGwqYVRF1qN85o01BIVdy-XoU_L2E0XerI_S0zl8rHYLwLLw-ZZKOQT5PK91Q3YFpyy8w5sj06Gg29lkVEUeIRweFM788eOrfWppPG_GqyvbqDcfEW9A7eW2QzXK5xOLy1UR_fgezPEan_KpLtcqK7-8Rv74__UwX24W2e17qAywwewlWYP4WZ1zuX6ERwc5sU4y-fD9YGL7mxt-QpcAusTCmYuvd_VVbtn19TEnZ-TxAX9lsV8vQOjo_dfD4-9-tAGT4uYLbyIJRE3CQ-QFj6C3mQjyiTopz2t48QkClmAJox0XxkKBiqmfChFpEuOJgp74WPoZHmWPgGXEn_DOfrITcgwjVCwlCt6qEXQSqADQTNVUteM5vZgjakskU0sZKUTSTqRpU7kyoG3mz6zis_jWul31gI2kpaLu7yRz89k7dpSGwwJlhmj0ZCJUQ4rlJ-IhIYpMDXCgVfWfqRl28jsdp4zXBaF_PDlsxwIRkE27MeBA29qIZPbucW6OoI0YQm6WpK7LUkKB7rd3JiprMNRIS1pIKXW_V7swMtNs-1pt9hlab60Mlww-12VORC1zLs1_HZLNj4vKckjUoAfcgf2Gkf49fLr1Lu3cZa_mI2n_yb-DG73rDdQotHr70JnMV-mzymDXKgXdVD4CS04a34 priority: 102 providerName: Unpaywall |
| Title | CosinorPy: a python package for cosinor-based rhythmometry |
| URI | https://link.springer.com/article/10.1186/s12859-020-03830-w https://www.proquest.com/docview/2461851928 https://www.proquest.com/docview/2456412814 https://pubmed.ncbi.nlm.nih.gov/PMC7597035 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-020-03830-w https://doaj.org/article/cfa3597ffcaf4710856b0d6d1af6aef6 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (PMC) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9YGx7GPtk3rrgjcEeVm92LMlOYYw0NOsCDaFdoH0SJ1lqy1I7cxIy__c7OXY601L6kgTf2UH3obuzpN8R8pFCyAMuqad1CB6VMvYgwCpFskjZF1igAnve-WjID8d0cMpON0jd7qgS4OzW0s72kxrnky9__xTf0eG_lQ4f86-zwKKwebYQ8rHg8r3lJtnGSNWxrRyO6PWqgsXvL08bRYGHpQ6rD9Hc-oxGoCrx_G_O2jd3Uq6XUx-Th4t0CsUSJpP_Ilb_KXlSpZpud2Ubz8iGTp-TB6vmk8ULstfLZpdplo-KPRfcaWFBBFysoH_jDONiKuuqFd2zgS5x8wvkuMqu9DwvXpJx_-BX79CrOil4isd07kU0iZhJWAAYjbAeRsVJk4Cv20rFiUkk0ABMGKmONOihMsYkRQPgTwYmCtvhK7KVZql-TVzMxg1j4AMzIQUdAaeaSXyoLWslB4cEtdiEqmDGbbeLiSjLjZiLlagFilqUohZLh3xe3zNdgWzcyb1vtbHmtADZ5YUsPxeVvwllIMRayRgFBtWNiSWXfsITHCYHbbhDPlhdCguBkdo9NuewmM3Ez5Nj0eUUZ76wEwcO-VQxmQzHoKA6soCSsKhZDc6dBif6qGqSa5MRtYkLi-SH-W6nHTvk_Zps77T73lKdLSwP49QudlKHRA1Tawy_SUkvL0qc8AgF4IfMIbu1UV7_-V3i3V0b7j208ebeMnpLHrWtf2Hgb3d2yNY8X-h3mNHNZYtsRqcRfsb9Hy2y3e0OTgb4vX8wHB3j1R7vtcp3Ja3SnZEyHo66Z_8AgPhNCQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamITR4QFxFYEBAIB5YtFwcJ52E0BhMLbsIwSb1zTtx7G2iS0rTqsqf4jdyTm4jmjTxsreqPmnl43P7Yvs7jL3lEAhPJNzROgCHJ0nsgIcoJQkjRS-wQHl03_ngUAyP-bdxOF5hf9q7MHSsso2JVaBOc0XvyDeJ9wyrg4Eff5r-dqhrFO2uti00arPY0-USIVvxcfQF1_ed7-9-PdoZOk1XAUeJmM-diKdRaNLQA4zMiA1xEolJwdW-UnFq0gS4ByaI1CAxaK1JjAlbA-DHEEwUENEBhvxbPMBYgv4TjTuA51F_gPZiTiw2C4_Y4RwCaC4CQddZ9pJf1SPgaia4ejqz26K9y9YW2RTKJUwm_2TB3fvsXlO-2tu1vT1gKzp7yG7XDS3LR2xrJy_Os3z2vdyywZ6WRExgIyr_hVHLxvLYVvW4Q8kztWdnKHGRX-j5rHzMjm9Ej0_YapZn-imzscI3YQguhCbgoCMQXIcJ_ihB5USAxbxWbVI11OXUQWMiKwgTC1mrWqKqZaVqubTYh-6ZaU3cca30Z1qNTpJIt6sv8tmpbHxYKgMB4i9jFBjM6VisisRNRYrTFKCNsNgbWktJtBoZnds5hUVRyNHPH3JbcIymwSD2LPa-ETI5zkFBcw0CNUFMXD3J9Z4k-r3qD7cmI5u4U8hLL7HY626YnqSzdJnOFyQTCk4bqNxiUc_UetPvj2TnZxX3eIQKcIPQYhutUV7--XXq3egM9z9W49n1U3vF1oZHB_tyf3S495zd8cnBsJrwB-tsdT5b6BdYJs6Tl5Vv2uzkpoPBX4olekQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagiOsBcYpAgYCQeKBRc9hOtm9lYdVyVBVQqW_W2LHbim2y2uxqtf-emVw0KqrgLYrHjjye8cxkPJ8Ze8shkZHUPLA2gYBrnQUQYZSiRWroBxaYiOqdvx3IvSP--VgcX6jir0-7dynJpqaBUJqKxfYsd42KZ3K7igh3LaDQJ8QQKwxW19kNjtaN7jAYy3GfRyDE_q5U5q_9BuaoRu2_vDdfPi_ZJ03vstvLYgbrFUynF-zS5D671zqU_m4jAQ_YNVs8ZDebKybXj9jOuKzOinJ-uN7xwZ-tCSrAxzj5F-4jPjqsvmnaAzJnuT8_RYrz8twu5uvH7Gjy6ed4L2jvSwiMzPgiSHmeCpeLCNDmYNSLy6NdDqGNjclyl2vgEbgkNSPtUA91hq6IBcBHAS5N4uQJ2yjKwj5lPvrcTggIQbiEg01Bcis0DkrBq5bgsahjmzItmDjdaTFVdVCRSdWwWiGrVc1qtfLY-77PrIHSuJL6A61GT0kw2PWLcn6iWq1SxkGCEZFzBhxaWXQfpQ5zmeM0JVgnPfaG1lIR0EVBJ2lOYFlVav_Hd7UrOe5vySiLPPauJXIlzsFAW5iAnCBsrAHl5oASNdEMmzuRUe1OUCnC60OvdhRnHnvdN1NPOt1W2HJJNEJySmlyj6UDURtMf9hSnJ3WaOApMiBMhMe2OqH88_Gr2LvVC-4_rMaz_xv9Fbt1-HGivu4ffHnO7sSkb2ju49Em21jMl_YF-nEL_bJW1d89Hz_P |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44HOIwEABIfHA0iWN7aR7KxPTQGKqgErjyTo78Va1S0rTqip_Ped8lIWhCSTeovic1Oe78_0a388ArxmGIhCKeWkaoseUij0MCKUoHmn7BxbqwNY7fzoRxyP28ZSfbsGwqYVRF1qN85o01BIVdy-XoU_L2E0XerI_S0zl8rHYLwLLw-ZZKOQT5PK91Q3YFpyy8w5sj06Gg29lkVEUeIRweFM788eOrfWppPG_GqyvbqDcfEW9A7eW2QzXK5xOLy1UR_fgezPEan_KpLtcqK7-8Rv74__UwX24W2e17qAywwewlWYP4WZ1zuX6ERwc5sU4y-fD9YGL7mxt-QpcAusTCmYuvd_VVbtn19TEnZ-TxAX9lsV8vQOjo_dfD4-9-tAGT4uYLbyIJRE3CQ-QFj6C3mQjyiTopz2t48QkClmAJox0XxkKBiqmfChFpEuOJgp74WPoZHmWPgGXEn_DOfrITcgwjVCwlCt6qEXQSqADQTNVUteM5vZgjakskU0sZKUTSTqRpU7kyoG3mz6zis_jWul31gI2kpaLu7yRz89k7dpSGwwJlhmj0ZCJUQ4rlJ-IhIYpMDXCgVfWfqRl28jsdp4zXBaF_PDlsxwIRkE27MeBA29qIZPbucW6OoI0YQm6WpK7LUkKB7rd3JiprMNRIS1pIKXW_V7swMtNs-1pt9hlab60Mlww-12VORC1zLs1_HZLNj4vKckjUoAfcgf2Gkf49fLr1Lu3cZa_mI2n_yb-DG73rDdQotHr70JnMV-mzymDXKgXdVD4CS04a34 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CosinorPy%3A+a+python+package+for+cosinor-based+rhythmometry&rft.jtitle=BMC+bioinformatics&rft.au=Moskon%2C+Miha&rft.date=2020-10-29&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-020-03830-w&rft.externalDocID=A640303981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |