CosinorPy: a python package for cosinor-based rhythmometry

Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 21; no. 1; pp. 1 - 12
Main Author Moskon, Miha
Format Journal Article
LanguageEnglish
Published London BioMed Central 29.10.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-020-03830-w

Cover

Abstract Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1.
AbstractList Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy. CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1.
Abstract Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1.
Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1.
Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from Keywords: Cosinor, Rhythmicity analysis, Circadian analysis, Regression, Python
Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy. CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1.
Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats.BACKGROUNDEven though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats.We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats.RESULTSWe present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats.CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1.CONCLUSIONCosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy . CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1.
ArticleNumber 485
Audience Academic
Author Moškon, Miha
Author_xml – sequence: 1
  fullname: Moskon, Miha
BookMark eNqNkktv3CAUhVGVqkmm_QNdWeqmXTgFYzDOolI06mOkSK36WKNrDB5SG6Zgdzr_vkw8ajpRFVUsQJfvnAsHztGJ804j9JzgC0IEfx1JIVid4wLnmAqK8-0jdEbKiuQFwezkr_UpOo_xBmNSCcyeoFNKSUFKSs7Q5dJH63z4tLvMINvsxrV32QbUd-h0ZnzI1LyfNxB1m4V1IgY_6DHsnqLHBvqonx3mBfr27u3X5Yf8-uP71fLqOldclGNelW3FTMsIFKLkNW60akwLWBdKida0DZQEDK1U3RhS1Y2oK64B0pKBqWhBF2g1-7YebuQm2AHCTnqw8rbgQychjFb1WioDlNWVMQpMujsWjDe45W1qwEEbnrzo7DW5Dey20Pd_DAmW-1TlnKpMqcrbVOU2qd7Mqs3UDLpV2o0B-qOjHO84u5ad_ymrdBhMWTJ4eTAI_sek4ygHG5Xue3DaT1EWJeNl6pveZIFe3ENv_BRcCjhRnAhG6kLcUR2ka1tnfOqr9qbyipeYYloLkqiLf1BptHqwKn0mY1P9SPDqSJCYUf8aO5hilKsvn4_ZYmZV8DEGbf4vSXFPpOwIo_X73Gz_sPTwdDH1cZ0Od8E8oPoNTDP4OA
CitedBy_id crossref_primary_10_1109_JBHI_2024_3471254
crossref_primary_10_3390_antiox12081606
crossref_primary_10_1093_brain_awae065
crossref_primary_10_1111_jsr_13935
crossref_primary_10_1109_JBHI_2024_3509630
crossref_primary_10_1021_acs_jafc_3c06683
crossref_primary_10_3390_pathophysiology31010010
crossref_primary_10_1109_OJEMB_2023_3261223
crossref_primary_10_1113_JP286449
crossref_primary_10_1038_s44323_024_00020_2
crossref_primary_10_1016_j_cmpb_2021_106292
crossref_primary_10_1007_s00521_024_10316_w
crossref_primary_10_1016_j_smhl_2022_100344
crossref_primary_10_3168_jds_2021_20691
crossref_primary_10_1111_febs_16095
crossref_primary_10_1016_j_nbscr_2024_100106
crossref_primary_10_3390_microorganisms9040869
crossref_primary_10_1007_s10928_021_09748_x
crossref_primary_10_3389_fpls_2024_1481682
crossref_primary_10_1177_07487304211054408
crossref_primary_10_2147_NSS_S377762
crossref_primary_10_3390_app122211794
crossref_primary_10_1016_j_iot_2024_101475
crossref_primary_10_1111_apha_14005
crossref_primary_10_1016_j_jneumeth_2024_110245
crossref_primary_10_1038_s41598_024_67767_3
crossref_primary_10_1038_s41598_024_54490_2
crossref_primary_10_1161_JAHA_123_031627
crossref_primary_10_3390_s23208544
crossref_primary_10_1007_s00420_024_02060_4
crossref_primary_10_1073_pnas_2214636120
crossref_primary_10_3390_clockssleep5030033
crossref_primary_10_1126_scitranslmed_adg8464
crossref_primary_10_2196_51540
crossref_primary_10_29169_1927_5951_2021_11_01
crossref_primary_10_1111_pce_15466
crossref_primary_10_3390_nu14040774
crossref_primary_10_1016_j_ejsobi_2024_103687
crossref_primary_10_3390_nu14112246
crossref_primary_10_1080_07420528_2024_2414045
crossref_primary_10_1038_s42003_024_06769_3
crossref_primary_10_1016_j_jocs_2022_101758
crossref_primary_10_1016_j_smallrumres_2021_106394
crossref_primary_10_1098_rspb_2021_1626
crossref_primary_10_1186_s10020_021_00361_9
crossref_primary_10_3390_ijerph20010764
crossref_primary_10_1016_j_compenvurbsys_2022_101805
crossref_primary_10_1016_j_smhl_2024_100459
crossref_primary_10_1038_s41591_024_03125_0
crossref_primary_10_1016_j_scitotenv_2024_171905
Cites_doi 10.1371/journal.pcbi.1004094
10.1073/pnas.1619320114
10.1073/pnas.1909557116
10.1073/pnas.1408886111
10.1177/0748730417728663
10.1177/0748730410379711
10.1093/bioinformatics/btz834
10.1007/978-1-62703-637-5_19
10.1080/09291010600903692
10.1016/j.jsmc.2015.08.007
10.1093/bioinformatics/btz730
10.3389/fphys.2019.00682
10.1177/0748730418789536
10.1177/0748730418813785
10.1177/0748730414553029
10.15280/jlm.2019.9.1.1
10.1097/ALN.0000000000000596
10.1126/scitranslmed.aat8806
10.1186/1742-4682-11-16
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-020-03830-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList




Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 12
ExternalDocumentID oai_doaj_org_article_cfa3597ffcaf4710856b0d6d1af6aef6
10.1186/s12859-020-03830-w
PMC7597035
A640303981
10_1186_s12859_020_03830_w
GeographicLocations Slovenia
GeographicLocations_xml – name: Slovenia
GrantInformation_xml – fundername: Javna Agencija za Raziskovalno Dejavnost RS
  grantid: P2-0359; J1-9176
  funderid: http://dx.doi.org/10.13039/501100004329
– fundername: Javna Agencija za Raziskovalno Dejavnost RS
  grantid: J5-1798
  funderid: http://dx.doi.org/10.13039/501100004329
– fundername: ;
  grantid: P2-0359; J1-9176
– fundername: ;
  grantid: J5-1798
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c684t-74d75fd51a284690becbfda0e2cc8dfdba41af37c9bf179b8976eaa1795af7323
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:53:39 EDT 2025
Sun Oct 26 04:16:42 EDT 2025
Tue Sep 30 16:23:17 EDT 2025
Fri Sep 05 14:50:30 EDT 2025
Tue Oct 07 05:21:16 EDT 2025
Mon Oct 20 21:59:22 EDT 2025
Mon Oct 20 16:08:50 EDT 2025
Thu Oct 16 13:59:01 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Wed Oct 01 04:15:35 EDT 2025
Sat Sep 06 07:27:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rhythmicity analysis
Regression
Circadian analysis
Cosinor
Python
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c684t-74d75fd51a284690becbfda0e2cc8dfdba41af37c9bf179b8976eaa1795af7323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4600-1730
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-020-03830-w
PMID 33121431
PQID 2461851928
PQPubID 44065
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_cfa3597ffcaf4710856b0d6d1af6aef6
unpaywall_primary_10_1186_s12859_020_03830_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7597035
proquest_miscellaneous_2456412814
proquest_journals_2461851928
gale_infotracmisc_A640303981
gale_infotracacademiconefile_A640303981
gale_incontextgauss_ISR_A640303981
crossref_primary_10_1186_s12859_020_03830_w
crossref_citationtrail_10_1186_s12859_020_03830_w
springer_journals_10_1186_s12859_020_03830_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-29
PublicationDateYYYYMMDD 2020-10-29
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References R Zhang (3830_CR2) 2014; 111
ME Hughes (3830_CR20) 2017; 32
R Parsons (3830_CR23) 2020; 36
R Refinetti (3830_CR14) 2007; 38
3830_CR12
TS Andreani (3830_CR3) 2015; 10
C Bingham (3830_CR19) 1982; 9
AL Hutchison (3830_CR8) 2015; 11
PF Thaben (3830_CR10) 2014; 29
MD Ruben (3830_CR13) 2019; 116
G Cornelissen (3830_CR15) 2014; 11
3830_CR21
J Brainard (3830_CR4) 2015; 122
Y Xie (3830_CR5) 2019; 10
RC Anafi (3830_CR11) 2017; 114
A Seifalian (3830_CR6) 2019; 9
3830_CR1
3830_CR16
3830_CR17
3830_CR18
AL Hutchison (3830_CR9) 2018; 33
JM Singer (3830_CR22) 2019; 34
ME Hughes (3830_CR7) 2010; 25
References_xml – volume: 11
  start-page: e1004094
  issue: 3
  year: 2015
  ident: 3830_CR8
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004094
– volume: 114
  start-page: 5312
  issue: 20
  year: 2017
  ident: 3830_CR11
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1619320114
– volume: 116
  start-page: 20953
  issue: 42
  year: 2019
  ident: 3830_CR13
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1909557116
– volume: 111
  start-page: 16219
  issue: 45
  year: 2014
  ident: 3830_CR2
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1408886111
– volume: 32
  start-page: 380
  issue: 5
  year: 2017
  ident: 3830_CR20
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730417728663
– volume: 25
  start-page: 372
  issue: 5
  year: 2010
  ident: 3830_CR7
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730410379711
– ident: 3830_CR18
  doi: 10.1093/bioinformatics/btz834
– ident: 3830_CR1
  doi: 10.1007/978-1-62703-637-5_19
– volume: 9
  start-page: 397
  issue: 4
  year: 1982
  ident: 3830_CR19
  publication-title: Chronobiologia.
– volume: 38
  start-page: 275
  issue: 4
  year: 2007
  ident: 3830_CR14
  publication-title: Biol Rhythm Res
  doi: 10.1080/09291010600903692
– volume: 10
  start-page: 413
  issue: 4
  year: 2015
  ident: 3830_CR3
  publication-title: Sleep Med Clin
  doi: 10.1016/j.jsmc.2015.08.007
– volume: 36
  start-page: 1208
  issue: 4
  year: 2020
  ident: 3830_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz730
– volume: 10
  start-page: 682
  year: 2019
  ident: 3830_CR5
  publication-title: Frontin Physiol
  doi: 10.3389/fphys.2019.00682
– ident: 3830_CR17
– volume: 33
  start-page: 339
  issue: 4
  year: 2018
  ident: 3830_CR9
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730418789536
– volume: 34
  start-page: 5
  issue: 1
  year: 2019
  ident: 3830_CR22
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730418813785
– ident: 3830_CR16
– ident: 3830_CR21
– volume: 29
  start-page: 391
  issue: 6
  year: 2014
  ident: 3830_CR10
  publication-title: J Biol Rhythms
  doi: 10.1177/0748730414553029
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 3830_CR6
  publication-title: J Lifestyle Med
  doi: 10.15280/jlm.2019.9.1.1
– volume: 122
  start-page: 1170
  issue: 5
  year: 2015
  ident: 3830_CR4
  publication-title: Anesthesiol
  doi: 10.1097/ALN.0000000000000596
– ident: 3830_CR12
  doi: 10.1126/scitranslmed.aat8806
– volume: 11
  start-page: 16
  issue: 1
  year: 2014
  ident: 3830_CR15
  publication-title: Theoret Biol Med Modell
  doi: 10.1186/1742-4682-11-16
SSID ssj0017805
Score 2.5516531
Snippet Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical...
Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric...
Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical...
Abstract Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years,...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis and modelling of complex systems
Applications software
Bioinformatics
Biological analysis
Biological research
Biomedical and Life Sciences
Chronobiology
Circadian analysis
Circadian rhythm
Circadian rhythms
Computational biology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Computer programs
Cosinor
Data analysis
Design of experiments
Life Sciences
Methods
Microarrays
Python
Python (Programming language)
Regression
Regression analysis
Regression models
Rhythmicity analysis
Rhythms
Software
Software packages
Statistical analysis
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yGOqDbH5g55Qqgg-urB9J2u5tDscUFFEHewsnabKN3bWX23u59L_3nH5tZTB98K00py35nZPz0SS_MPaeQyIjqXlgbQIB1zoLIMIqRYvU0A8sMBHtd_72XZ6c8q9n4uzWUV-0JqyjB-6A2zcOEkx6nTPg0JFihiB1WMgiAifBupZsO8zyoZjq5w-IqX_YIpPJ_ToinraASqUQS7IwWE_CUMvWf9cn310nOU6WPmYPV-UcmjXMZrfi0fEWe9Inkv5h14Ft9sCWT9lmd7Rk84wdHFX1ZVktfjQHPvjzhigCfKyPr9B_-Jio-qZrDyiMFf7iAiWuq2u7XDTP2enx599HJ0F_TkJgZMaXQcqLVLhCRICxBqtdVIt2BYQ2NiYrXKGBI1pJanLtcPzpDFMQC4CXAlyaxMkLtlFWpX3JfMy1nRAQgnAJB5uC5FZofCkVrVqCx6IBNmV6EnE6y2Km2mIik6qDWiHUqoVarT32cXxm3lFo3Cv9ibQxShL9dXsDjUL1RqH-ZhQee0e6VERwUdIKmnNY1bX68uunOpQc_VqSZ5HHPvRCrsI-GOg3JCASxIk1kdydSOIINNPmwWRU7wFqRTx9mM3mceaxt2MzPUmr2kpbrUhGSE5Tmdxj6cTUJt2ftpSXFy0LeIoAhInw2N5glDcfvw_evdFw_0EbO_9DG6_Yo5iGHkb8ON9lG8vFyr7GVG6p37Sj9g8mlUVk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_qFVE_iE-MVoki-MGG5rHZ5AoibWmpgkepFvptmd3stsVrct6D4_57Z3JJaigUv4XsbMLOznMfvwH4KDCRkdQisDbBQGidBxhRlqLTzPACFpqI7zv_GMnjM_H9PD3fgFF7F4aPVbY2sTbURWV4jXyHcc8oOhjG-dfJn4CrRvHualtCA5vSCsWXGmLsHmzGjIw1gM39w9HJabevwAj-7dWZXO7MIsZvCziFCilVC4Nlzz3VKP63bfXt85PdJuojeLAoJ7ha4nj8j586egKPmwDT31tLxFPYsOUzuL8uObl6DrsH1eyqrKYnq10f_cmKoQN8ypt_k13xKYD1zbo9YPdW-NNLoriuru18unoBZ0eHvw6Og6Z-QmBkLuZBJoosdUUaIfkgyoJpurQrMLSxMXnhCo0iQpdkZqgd6aXOKTSxiPSYosuSOHkJg7Iq7SvwKQZ3aYohpi4RaDOUwqaaPsrJrJboQdSyTZkGXJxrXIxVnWTkUq1ZrYjVqma1WnrwueszWUNr3Em9z7PRUTIsdv2iml6oRsuUcZhQhuScQUdel8JJqcNCFjRMidZJDz7wXCoGvij5ZM0FLmYz9e3nqdqTguxdMswjDz41RK6iMRhsLioQJxgrq0e51aMkzTT95lZkVGMZZupGjj143zVzTz7tVtpqwTSpFLzFKTzIeqLWG36_pby6rNHBM2JAmKQebLdCefPzu9i73Qnuf8zG67uH9gYexqxU5OPj4RYM5tOFfUvB21y_azTyL5FzQcs
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0RNQH8ROrp1QRfPDK9SNJu_d2Lh6noIh6cG9hkiaeuNcu-8HS_96ZtluvnBz6VppJSuYjM9NJfgF4LTBTiTIici7DSBhTRJhQlmJkbvkHFtqEzzt_-qyOT8THU3naw-TwWZiL9fukUPvLhBHWIk5yYkqm4mhzHW6Qk1JtYVZNh4oBY_NvD8X8td_I8bT4_JdX4cs7I4fy6B24ta7m2GxwNrvggY7uwd0-dAwPO1nfh2uuegA3u8skm4dwMK0p768XX5qDEMN5w6AAIWXEv2jFCCk0DW3XHrHjKsPFGVGc1-dutWgewcnR--_T46i_GSGyqhCrKBdlLn0pEyTvQvktCcL4EmOXWluUvjQoEvRZbifGk8WZgoIOh0iPEn2epdlj2Knqyj2BkKJrLyXGKH0m0OWohJOGBuU01SgMINmyTdseNpxvr5jpNn0olO5YrYnVumW13gTwdugz70AzrqR-x9IYKBnwun1BeqB7-9HWY0a5j_cWPflTChSViUtV0jQVOq8CeMWy1AxpUfGemR-4Xi71h29f9aEStJJlkyIJ4E1P5Guag8X-CAJxglGwRpS7I0qyOTtu3qqM7m1-qRmZj-LXSVoE8HJo5p68j61y9ZpppBJcvBQB5CNVG01_3FL9PGtxv3NiQJzJAPa2Svnn41exd29Q3H-QxtP_G_0Z3E7ZyMibp5Nd2Fkt1u45hWkr86K1z9_DUjSZ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44HOIwEABIfHA0iWN7aR7KxPTQGKqgErjyTo78Va1S0rTqip_Ped8lIWhCSTeovic1Oe78_0a388ArxmGIhCKeWkaoseUij0MCKUoHmn7BxbqwNY7fzoRxyP28ZSfbsGwqYVRF1qN85o01BIVdy-XoU_L2E0XerI_S0zl8rHYLwLLw-ZZKOQT5PK91Q3YFpyy8w5sj06Gg29lkVEUeIRweFM788eOrfWppPG_GqyvbqDcfEW9A7eW2QzXK5xOLy1UR_fgezPEan_KpLtcqK7-8Rv74__UwX24W2e17qAywwewlWYP4WZ1zuX6ERwc5sU4y-fD9YGL7mxt-QpcAusTCmYuvd_VVbtn19TEnZ-TxAX9lsV8vQOjo_dfD4-9-tAGT4uYLbyIJRE3CQ-QFj6C3mQjyiTopz2t48QkClmAJox0XxkKBiqmfChFpEuOJgp74WPoZHmWPgGXEn_DOfrITcgwjVCwlCt6qEXQSqADQTNVUteM5vZgjakskU0sZKUTSTqRpU7kyoG3mz6zis_jWul31gI2kpaLu7yRz89k7dpSGwwJlhmj0ZCJUQ4rlJ-IhIYpMDXCgVfWfqRl28jsdp4zXBaF_PDlsxwIRkE27MeBA29qIZPbucW6OoI0YQm6WpK7LUkKB7rd3JiprMNRIS1pIKXW_V7swMtNs-1pt9hlab60Mlww-12VORC1zLs1_HZLNj4vKckjUoAfcgf2Gkf49fLr1Lu3cZa_mI2n_yb-DG73rDdQotHr70JnMV-mzymDXKgXdVD4CS04a34
  priority: 102
  providerName: Unpaywall
Title CosinorPy: a python package for cosinor-based rhythmometry
URI https://link.springer.com/article/10.1186/s12859-020-03830-w
https://www.proquest.com/docview/2461851928
https://www.proquest.com/docview/2456412814
https://pubmed.ncbi.nlm.nih.gov/PMC7597035
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-020-03830-w
https://doaj.org/article/cfa3597ffcaf4710856b0d6d1af6aef6
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (PMC)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9YGx7GPtk3rrgjcEeVm92LMlOYYw0NOsCDaFdoH0SJ1lqy1I7cxIy__c7OXY601L6kgTf2UH3obuzpN8R8pFCyAMuqad1CB6VMvYgwCpFskjZF1igAnve-WjID8d0cMpON0jd7qgS4OzW0s72kxrnky9__xTf0eG_lQ4f86-zwKKwebYQ8rHg8r3lJtnGSNWxrRyO6PWqgsXvL08bRYGHpQ6rD9Hc-oxGoCrx_G_O2jd3Uq6XUx-Th4t0CsUSJpP_Ilb_KXlSpZpud2Ubz8iGTp-TB6vmk8ULstfLZpdplo-KPRfcaWFBBFysoH_jDONiKuuqFd2zgS5x8wvkuMqu9DwvXpJx_-BX79CrOil4isd07kU0iZhJWAAYjbAeRsVJk4Cv20rFiUkk0ABMGKmONOihMsYkRQPgTwYmCtvhK7KVZql-TVzMxg1j4AMzIQUdAaeaSXyoLWslB4cEtdiEqmDGbbeLiSjLjZiLlagFilqUohZLh3xe3zNdgWzcyb1vtbHmtADZ5YUsPxeVvwllIMRayRgFBtWNiSWXfsITHCYHbbhDPlhdCguBkdo9NuewmM3Ez5Nj0eUUZ76wEwcO-VQxmQzHoKA6soCSsKhZDc6dBif6qGqSa5MRtYkLi-SH-W6nHTvk_Zps77T73lKdLSwP49QudlKHRA1Tawy_SUkvL0qc8AgF4IfMIbu1UV7_-V3i3V0b7j208ebeMnpLHrWtf2Hgb3d2yNY8X-h3mNHNZYtsRqcRfsb9Hy2y3e0OTgb4vX8wHB3j1R7vtcp3Ja3SnZEyHo66Z_8AgPhNCQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamITR4QFxFYEBAIB5YtFwcJ52E0BhMLbsIwSb1zTtx7G2iS0rTqsqf4jdyTm4jmjTxsreqPmnl43P7Yvs7jL3lEAhPJNzROgCHJ0nsgIcoJQkjRS-wQHl03_ngUAyP-bdxOF5hf9q7MHSsso2JVaBOc0XvyDeJ9wyrg4Eff5r-dqhrFO2uti00arPY0-USIVvxcfQF1_ed7-9-PdoZOk1XAUeJmM-diKdRaNLQA4zMiA1xEolJwdW-UnFq0gS4ByaI1CAxaK1JjAlbA-DHEEwUENEBhvxbPMBYgv4TjTuA51F_gPZiTiw2C4_Y4RwCaC4CQddZ9pJf1SPgaia4ejqz26K9y9YW2RTKJUwm_2TB3fvsXlO-2tu1vT1gKzp7yG7XDS3LR2xrJy_Os3z2vdyywZ6WRExgIyr_hVHLxvLYVvW4Q8kztWdnKHGRX-j5rHzMjm9Ej0_YapZn-imzscI3YQguhCbgoCMQXIcJ_ihB5USAxbxWbVI11OXUQWMiKwgTC1mrWqKqZaVqubTYh-6ZaU3cca30Z1qNTpJIt6sv8tmpbHxYKgMB4i9jFBjM6VisisRNRYrTFKCNsNgbWktJtBoZnds5hUVRyNHPH3JbcIymwSD2LPa-ETI5zkFBcw0CNUFMXD3J9Z4k-r3qD7cmI5u4U8hLL7HY626YnqSzdJnOFyQTCk4bqNxiUc_UetPvj2TnZxX3eIQKcIPQYhutUV7--XXq3egM9z9W49n1U3vF1oZHB_tyf3S495zd8cnBsJrwB-tsdT5b6BdYJs6Tl5Vv2uzkpoPBX4olekQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELagiOsBcYpAgYCQeKBRc9hOtm9lYdVyVBVQqW_W2LHbim2y2uxqtf-emVw0KqrgLYrHjjye8cxkPJ8Ze8shkZHUPLA2gYBrnQUQYZSiRWroBxaYiOqdvx3IvSP--VgcX6jir0-7dynJpqaBUJqKxfYsd42KZ3K7igh3LaDQJ8QQKwxW19kNjtaN7jAYy3GfRyDE_q5U5q_9BuaoRu2_vDdfPi_ZJ03vstvLYgbrFUynF-zS5D671zqU_m4jAQ_YNVs8ZDebKybXj9jOuKzOinJ-uN7xwZ-tCSrAxzj5F-4jPjqsvmnaAzJnuT8_RYrz8twu5uvH7Gjy6ed4L2jvSwiMzPgiSHmeCpeLCNDmYNSLy6NdDqGNjclyl2vgEbgkNSPtUA91hq6IBcBHAS5N4uQJ2yjKwj5lPvrcTggIQbiEg01Bcis0DkrBq5bgsahjmzItmDjdaTFVdVCRSdWwWiGrVc1qtfLY-77PrIHSuJL6A61GT0kw2PWLcn6iWq1SxkGCEZFzBhxaWXQfpQ5zmeM0JVgnPfaG1lIR0EVBJ2lOYFlVav_Hd7UrOe5vySiLPPauJXIlzsFAW5iAnCBsrAHl5oASNdEMmzuRUe1OUCnC60OvdhRnHnvdN1NPOt1W2HJJNEJySmlyj6UDURtMf9hSnJ3WaOApMiBMhMe2OqH88_Gr2LvVC-4_rMaz_xv9Fbt1-HGivu4ffHnO7sSkb2ju49Em21jMl_YF-nEL_bJW1d89Hz_P
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44HOIwEABIfHA0iWN7aR7KxPTQGKqgErjyTo78Va1S0rTqip_Ped8lIWhCSTeovic1Oe78_0a388ArxmGIhCKeWkaoseUij0MCKUoHmn7BxbqwNY7fzoRxyP28ZSfbsGwqYVRF1qN85o01BIVdy-XoU_L2E0XerI_S0zl8rHYLwLLw-ZZKOQT5PK91Q3YFpyy8w5sj06Gg29lkVEUeIRweFM788eOrfWppPG_GqyvbqDcfEW9A7eW2QzXK5xOLy1UR_fgezPEan_KpLtcqK7-8Rv74__UwX24W2e17qAywwewlWYP4WZ1zuX6ERwc5sU4y-fD9YGL7mxt-QpcAusTCmYuvd_VVbtn19TEnZ-TxAX9lsV8vQOjo_dfD4-9-tAGT4uYLbyIJRE3CQ-QFj6C3mQjyiTopz2t48QkClmAJox0XxkKBiqmfChFpEuOJgp74WPoZHmWPgGXEn_DOfrITcgwjVCwlCt6qEXQSqADQTNVUteM5vZgjakskU0sZKUTSTqRpU7kyoG3mz6zis_jWul31gI2kpaLu7yRz89k7dpSGwwJlhmj0ZCJUQ4rlJ-IhIYpMDXCgVfWfqRl28jsdp4zXBaF_PDlsxwIRkE27MeBA29qIZPbucW6OoI0YQm6WpK7LUkKB7rd3JiprMNRIS1pIKXW_V7swMtNs-1pt9hlab60Mlww-12VORC1zLs1_HZLNj4vKckjUoAfcgf2Gkf49fLr1Lu3cZa_mI2n_yb-DG73rDdQotHr70JnMV-mzymDXKgXdVD4CS04a34
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CosinorPy%3A+a+python+package+for+cosinor-based+rhythmometry&rft.jtitle=BMC+bioinformatics&rft.au=Moskon%2C+Miha&rft.date=2020-10-29&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-020-03830-w&rft.externalDocID=A640303981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon