最优权重组合模型和高光谱估算苹果叶片全磷含量
为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2 500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553...
Saved in:
| Published in | 农业工程学报 Vol. 34; no. 7; pp. 173 - 180 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
河南工程学院土木工程学院,郑州 451191%山东农业大学生命科学学院,泰安,271018
2016
北京市农业物联网工程技术研究中心,北京 100097%北京农业信息技术研究中心,北京 100097 国家农业信息化工程技术研究中心,北京 100097 北京市农业物联网工程技术研究中心,北京 100097 农业部农业信息技术重点实验室,北京 100097 北京农业信息技术研究中心,北京 100097 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.11975/j.issn.1002-6819.2016.07.024 |
Cover
| Abstract | 为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2 500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数为自变量,构建了基于苹果叶片全磷含量的最优权重组合模型,实现了对苹果叶片全磷含量的高光谱估算。结果表明,最优权重组合模型无论是建模集还是验证集,其预测能力(R2=0.94)要优于该文中的6种统计方法(平均R2=0.82),研究结果为快速无损诊断苹果叶片的磷素状况提供新的技术途径。 |
|---|---|
| AbstractList | 为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2 500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数为自变量,构建了基于苹果叶片全磷含量的最优权重组合模型,实现了对苹果叶片全磷含量的高光谱估算。结果表明,最优权重组合模型无论是建模集还是验证集,其预测能力(R2=0.94)要优于该文中的6种统计方法(平均R2=0.82),研究结果为快速无损诊断苹果叶片的磷素状况提供新的技术途径。 S25; 为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1394和718 nm组合的比值指数为自变量,构建了基于苹果叶片全磷含量的最优权重组合模型,实现了对苹果叶片全磷含量的高光谱估算。结果表明,最优权重组合模型无论是建模集还是验证集,其预测能力(R2=0.94)要优于该文中的6种统计方法(平均 R2=0.82),研究结果为快速无损诊断苹果叶片的磷素状况提供新的技术途径。 |
| Abstract_FL | The phosphorus status is an important parameter for evaluating the growth status and predicting the production in apple trees. The objective of the study was to demonstrate the feasibility of remote sensing monitoring the apple leaf total phosphorus content and its expansibility in regional and annual level. Spectral reflectance of leaves and concurrent apple leaf phosphorus content parameters of samples were acquired in Xiazhai Village, Chaoquan District, Feicheng City, Shandong Province, China during the apple growth season from 2012 to 2013, and the optimal weight combination model was built using the Radial Basis Function (RBF) neural network. Leaf spectra and total phosphorus content of apples were measured at the fast-growing period of shoot, the time of blooming of vernal treetop, the fruit expansion period, the fruit maturity stage, and the color changing stage in the leaves. The paper was based on the apple whole stage. The leaf reflectance was measured and then the normalized difference spectral index (NDSI) and ratio spectral index (RSI) that were sensitive to total phosphorus content were built; the optimal weight combination model of the RBF was discussed and the hyperspectral estimation model for total phosphorus content in apple leaves was established. Firstly, We analyzed the correlation between the phosphorus content and the original spectrum, determined R553 and R722 as the diagnostic band of leaf phosphorus content, and constructed the estimation model of total phosphorus content. The coefficient of determination (R2), root mean square error (RMSE) and relative error (RE) were 0.69, 0.07 g/(100g), 0.2% and 0.80, 0.06 g/(100g), 0.2%, respectively; the NDSI and RSI was constructed referred to normalized difference vegetation index (NDVI) and ratio vegetation index (RVI). The sensitivity of hyperspectral vegetation indices NDSI(546, 521), NDSI(553, 518), RSI(543, 525) and RSI(1394, 718)to phosphorus content was determined by the contour map of combination range (400-2500 nm) with the leaf total phosphorus content. The estimated model was built based on the empirical statistical relationships between NDSI(546, 521), NDSI(553, 518), RSI(543, 525), RSI(1394, 718) and total phosphorus content, and the correspondingR2, RMSE and RE were 0.87, 0.05 g/(100g) and 0.3%, 0.86, 0.05 g/(100g) and 0.05%, 0.87, 0.05 g/(100g) and 0.2%, and 0.85, 0.05 g/(100g) and 0.2%, respectively. Lastly, the optimal weight combination model of RBF neural network was constructed; the goal and spread were calculated by iteration until the min (et) was minimal. The R553, R722, NDSI(546, 521), NDSI(553, 518), RSI(543, 525) and RSI(1394, 718)were considered as independent variables and the total phosphorus content was taken as dependent variable in the combination model. Gaussian function was used as radial basis function, which could get the optimal weight for every independent variable. The results indicated that the prediction of the optimal weight combination model of RBF neural network had a higher precision, compared to the mean of the 6 estimated models (traditional empirical statistical models), theR2 was increased from 0.82 to 0.94, and the RMSE was decreased from 0.06 to 0.05 g/(100g). The validation results also indicated that the estimation accuracy of the optimal weight combination model (R2=0.55 and RMSE=0.05 g/(100 g)) was higher than the empirical statistical relations (R2=0.38 and RMSE= 0.06 g/(100g)). The optimal weight combination model of RBF is a new technical method which can provide a rapid and nondestructive diagnosis of the phosphorus status of apple leaves. |
| Author | 冯海宽;杨福芹;李振海;杨贵军;郭建华;贺鹏;王衍安 |
| AuthorAffiliation | 北京农业信息技术研究中心;国家农业信息化工程技术研究中心;农业部农业信息技术重点实验室;北京市农业物联网工程技术研究中心;河南工程学院土木工程学院;山东农业大学生命科学学院 |
| AuthorAffiliation_xml | – name: 北京农业信息技术研究中心,北京 100097; 国家农业信息化工程技术研究中心,北京 100097; 农业部农业信息技术重点实验室,北京 100097; 北京市农业物联网工程技术研究中心,北京 100097%北京农业信息技术研究中心,北京 100097; 国家农业信息化工程技术研究中心,北京 100097; 农业部农业信息技术重点实验室,北京 100097; 北京市农业物联网工程技术研究中心,北京 100097; 河南工程学院土木工程学院,郑州 451191%山东农业大学生命科学学院,泰安,271018 |
| Author_FL | He Peng Wang Yanan Feng Haikuan Li Zhenhai Yang Fuqin Guo Jianhua Yang Guijun |
| Author_FL_xml | – sequence: 1 fullname: Feng Haikuan – sequence: 2 fullname: Yang Fuqin – sequence: 3 fullname: Li Zhenhai – sequence: 4 fullname: Yang Guijun – sequence: 5 fullname: Guo Jianhua – sequence: 6 fullname: He Peng – sequence: 7 fullname: Wang Yanan |
| Author_xml | – sequence: 1 fullname: 冯海宽;杨福芹;李振海;杨贵军;郭建华;贺鹏;王衍安 |
| BookMark | eNpFj01LAkEcxudgkJkfIzrEbv-ZnZ0ZjyW9gdDFu8y-2UqN5RLlLSgxsVC65MGE6CIIYZci8uO4u_ot2jDq9MDDj-fht4JSqqpchNYw6BjnuLlZ0f0gUDoGIBoTOKcTwEwHrgOhKZT-65dRNgh8C0xscACK02g76l9NJ73o6XrevI-_bsLubTR8Dgft8OFuPuqFjdZs_DadjOPXx1n7Mxr0w8573GqGjWH88hF2R_NmZxUtefI4cLO_mUHF3Z1ifl8rHO4d5LcKms0E1RzqMRe4YxBPeJSYjmDEzQFw6ghuSmJ4BIQtKRYumC61XOlxYpmMSZNLi4GRQeuL2QupPKnKpUr1vKaSw5Kql-1L60cZeCKckBsL0j6qqvKZn7CnNf9E1uolxoXIcSzMf_obuk1z8Q |
| ClassificationCodes | S25 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.11975/j.issn.1002-6819.2016.07.024 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| DocumentTitle_FL | Hyperspectral estimation of leaf total phosphorus content in apple tree based on optimal weights combination model |
| EndPage | 180 |
| ExternalDocumentID | nygcxb201607024 678897185201607024 |
| GrantInformation_xml | – fundername: 国家高技术研究发展计划863课题。 funderid: (2011AA100703)。 |
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
| ID | FETCH-LOGICAL-c684-d4f6e07d32f8f425d862e90074d875a23f208ca418e05e4beaf72b566a57ab603 |
| ISSN | 1002-6819 |
| IngestDate | Thu May 29 04:04:19 EDT 2025 Wed Feb 14 10:17:01 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Keywords | models RBF神经网络 spectrum analysis optimal weight RBF neural network apple leaves 磷 模型 光谱分析 最优权重 苹果叶片 phosphorus |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c684-d4f6e07d32f8f425d862e90074d875a23f208ca418e05e4beaf72b566a57ab603 |
| Notes | Feng Haikuan;Yang Fuqin;Li Zhenhai;Yang Guijun;Guo Jianhua;He Peng;Wang Yan’an;Beijing Research Center for Information Technology In Agriculture;National Engineering Research Center for Information Technology in Agriculture;Key Laboratory for Information Technologies in Agriculture, Ministry of Agriculture;Beijing Engineering Research Center of Agricultural Internet of Things;College of Civil Engineering, Henan Institute of Engineering;College of Life Science,Shandong Agricultural University 11-2047/S |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_nygcxb201607024 chongqing_primary_678897185201607024 |
| PublicationCentury | 2000 |
| PublicationDate | 2016 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – year: 2016 text: 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | 农业工程学报 |
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationYear | 2016 |
| Publisher | 河南工程学院土木工程学院,郑州 451191%山东农业大学生命科学学院,泰安,271018 北京市农业物联网工程技术研究中心,北京 100097%北京农业信息技术研究中心,北京 100097 国家农业信息化工程技术研究中心,北京 100097 北京市农业物联网工程技术研究中心,北京 100097 农业部农业信息技术重点实验室,北京 100097 北京农业信息技术研究中心,北京 100097 |
| Publisher_xml | – name: 北京市农业物联网工程技术研究中心,北京 100097%北京农业信息技术研究中心,北京 100097 – name: 北京农业信息技术研究中心,北京 100097 – name: 河南工程学院土木工程学院,郑州 451191%山东农业大学生命科学学院,泰安,271018 – name: 国家农业信息化工程技术研究中心,北京 100097 – name: 农业部农业信息技术重点实验室,北京 100097 – name: 北京市农业物联网工程技术研究中心,北京 100097 |
| SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
| Score | 2.136374 |
| Snippet | 为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片... S25; 为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 173 |
| SubjectTerms | 光谱分析;磷;模型;苹果叶片;最优权重;RBF神经网络 |
| Title | 最优权重组合模型和高光谱估算苹果叶片全磷含量 |
| URI | http://lib.cqvip.com/qk/90712X/201607/678897185201607024.html https://d.wanfangdata.com.cn/periodical/nygcxb201607024 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_9ANGD-In1ix6a49T5TDLHZHeWouipQm_LfG5PW60taE-CllqqtHixh1oQL4WC1Isi9s_p7Lb_he9l0mlrRaqwDOG95L3f5M0mLyHvhZCxwk4Y92NucVEwy08L2wKCY6WenTsijdNQx8I8fMQmHvv3p4KpgcEHx04tzc8l4-nCH-NK_seqQAO7YpTsP1i2FgoEKIN94QkWhueZbEwjRsMGHlaIfKoaNBSa0qTCo1FIYZ0vmjTiVCkqfBoFNLSp0HWkoNLRlIgKpQsuFQ1sJZWWE1ABv5BGgiqbKseogDIIlBENObKgrQq10giRYKsWVQzrCA2gkgPqsJVHFTcwQItBeOJgoa6vXwrVCRpKpEArGWgJwqCVTSoZ6hUSWIdfjWktW8hRgdEGYFWTesr0jcHCECm-gcQ3qLki0lIbJ4ScaAv94SPdIFWaG2KXAygEC12iUQstDblVE4nVQBfoRSJHrtBcMIVoGqjVVUeHGzFVhKiZNXBaYcKM_dUfhh-bFZzqthbjYDjV1VWn566QB3ryQpnjtUw8flglmK2CzX9LDw7Ohgg5hsDrXIFQaZAMu7g5NUSGpWqq1pF37OAGQD18O3h1gnMUNu1iUgR2tPoMHA_vPqhPTOF5gUAfHjDIzhF6iPve31Bj2pLpmW7nKThjOjauW8TdzjE3bvISuWjWX6Oy-jNdJgML01fIBdmZNTlo8qtE9TZe7u2u9z6-Olh61__5ulx709v6VG6ulO_fHmyvl4vL-ztf93Z3-l8-7K_86G1ulKvf-stL5eJW__P3cm37YGn1GplsRZONCctcNWKlTPhW5hcst3nmuYUoYBbLYJ2fh-heZ7Cej12vcG0YuHxH5HaQ-0keF9xNYCUUBzxOmO1dJ0PdmW5-g4yyIgtgoMtiho5fwBNM2emyLLd9nntZMELG6s5oP6kyyrRPG3GEjJp-apsB51m7-6KTPk_qKjfPJukWOY_latvwNhmam53P74AjPZfcNR_IL7cyk-g |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%9C%80%E4%BC%98%E6%9D%83%E9%87%8D%E7%BB%84%E5%90%88%E6%A8%A1%E5%9E%8B%E5%92%8C%E9%AB%98%E5%85%89%E8%B0%B1%E4%BC%B0%E7%AE%97%E8%8B%B9%E6%9E%9C%E5%8F%B6%E7%89%87%E5%85%A8%E7%A3%B7%E5%90%AB%E9%87%8F&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%86%AF%E6%B5%B7%E5%AE%BD%3B%E6%9D%A8%E7%A6%8F%E8%8A%B9%3B%E6%9D%8E%E6%8C%AF%E6%B5%B7%3B%E6%9D%A8%E8%B4%B5%E5%86%9B%3B%E9%83%AD%E5%BB%BA%E5%8D%8E%3B%E8%B4%BA%E9%B9%8F%3B%E7%8E%8B%E8%A1%8D%E5%AE%89&rft.date=2016&rft.issn=1002-6819&rft.issue=7&rft.spage=173&rft.epage=180&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.07.024&rft.externalDocID=678897185201607024 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |