最优权重组合模型和高光谱估算苹果叶片全磷含量

为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2 500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 34; no. 7; pp. 173 - 180
Main Author 冯海宽;杨福芹;李振海;杨贵军;郭建华;贺鹏;王衍安
Format Journal Article
LanguageChinese
Published 河南工程学院土木工程学院,郑州 451191%山东农业大学生命科学学院,泰安,271018 2016
北京市农业物联网工程技术研究中心,北京 100097%北京农业信息技术研究中心,北京 100097
国家农业信息化工程技术研究中心,北京 100097
北京市农业物联网工程技术研究中心,北京 100097
农业部农业信息技术重点实验室,北京 100097
北京农业信息技术研究中心,北京 100097
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.07.024

Cover

Abstract 为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2 500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数为自变量,构建了基于苹果叶片全磷含量的最优权重组合模型,实现了对苹果叶片全磷含量的高光谱估算。结果表明,最优权重组合模型无论是建模集还是验证集,其预测能力(R2=0.94)要优于该文中的6种统计方法(平均R2=0.82),研究结果为快速无损诊断苹果叶片的磷素状况提供新的技术途径。
AbstractList 为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2 500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数为自变量,构建了基于苹果叶片全磷含量的最优权重组合模型,实现了对苹果叶片全磷含量的高光谱估算。结果表明,最优权重组合模型无论是建模集还是验证集,其预测能力(R2=0.94)要优于该文中的6种统计方法(平均R2=0.82),研究结果为快速无损诊断苹果叶片的磷素状况提供新的技术途径。
S25; 为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1394和718 nm组合的比值指数为自变量,构建了基于苹果叶片全磷含量的最优权重组合模型,实现了对苹果叶片全磷含量的高光谱估算。结果表明,最优权重组合模型无论是建模集还是验证集,其预测能力(R2=0.94)要优于该文中的6种统计方法(平均 R2=0.82),研究结果为快速无损诊断苹果叶片的磷素状况提供新的技术途径。
Abstract_FL The phosphorus status is an important parameter for evaluating the growth status and predicting the production in apple trees. The objective of the study was to demonstrate the feasibility of remote sensing monitoring the apple leaf total phosphorus content and its expansibility in regional and annual level. Spectral reflectance of leaves and concurrent apple leaf phosphorus content parameters of samples were acquired in Xiazhai Village, Chaoquan District, Feicheng City, Shandong Province, China during the apple growth season from 2012 to 2013, and the optimal weight combination model was built using the Radial Basis Function (RBF) neural network. Leaf spectra and total phosphorus content of apples were measured at the fast-growing period of shoot, the time of blooming of vernal treetop, the fruit expansion period, the fruit maturity stage, and the color changing stage in the leaves. The paper was based on the apple whole stage. The leaf reflectance was measured and then the normalized difference spectral index (NDSI) and ratio spectral index (RSI) that were sensitive to total phosphorus content were built; the optimal weight combination model of the RBF was discussed and the hyperspectral estimation model for total phosphorus content in apple leaves was established. Firstly, We analyzed the correlation between the phosphorus content and the original spectrum, determined R553 and R722 as the diagnostic band of leaf phosphorus content, and constructed the estimation model of total phosphorus content. The coefficient of determination (R2), root mean square error (RMSE) and relative error (RE) were 0.69, 0.07 g/(100g), 0.2% and 0.80, 0.06 g/(100g), 0.2%, respectively; the NDSI and RSI was constructed referred to normalized difference vegetation index (NDVI) and ratio vegetation index (RVI). The sensitivity of hyperspectral vegetation indices NDSI(546, 521), NDSI(553, 518), RSI(543, 525) and RSI(1394, 718)to phosphorus content was determined by the contour map of combination range (400-2500 nm) with the leaf total phosphorus content. The estimated model was built based on the empirical statistical relationships between NDSI(546, 521), NDSI(553, 518), RSI(543, 525), RSI(1394, 718) and total phosphorus content, and the correspondingR2, RMSE and RE were 0.87, 0.05 g/(100g) and 0.3%, 0.86, 0.05 g/(100g) and 0.05%, 0.87, 0.05 g/(100g) and 0.2%, and 0.85, 0.05 g/(100g) and 0.2%, respectively. Lastly, the optimal weight combination model of RBF neural network was constructed; the goal and spread were calculated by iteration until the min (et) was minimal. The R553, R722, NDSI(546, 521), NDSI(553, 518), RSI(543, 525) and RSI(1394, 718)were considered as independent variables and the total phosphorus content was taken as dependent variable in the combination model. Gaussian function was used as radial basis function, which could get the optimal weight for every independent variable. The results indicated that the prediction of the optimal weight combination model of RBF neural network had a higher precision, compared to the mean of the 6 estimated models (traditional empirical statistical models), theR2 was increased from 0.82 to 0.94, and the RMSE was decreased from 0.06 to 0.05 g/(100g). The validation results also indicated that the estimation accuracy of the optimal weight combination model (R2=0.55 and RMSE=0.05 g/(100 g)) was higher than the empirical statistical relations (R2=0.38 and RMSE= 0.06 g/(100g)). The optimal weight combination model of RBF is a new technical method which can provide a rapid and nondestructive diagnosis of the phosphorus status of apple leaves.
Author 冯海宽;杨福芹;李振海;杨贵军;郭建华;贺鹏;王衍安
AuthorAffiliation 北京农业信息技术研究中心;国家农业信息化工程技术研究中心;农业部农业信息技术重点实验室;北京市农业物联网工程技术研究中心;河南工程学院土木工程学院;山东农业大学生命科学学院
AuthorAffiliation_xml – name: 北京农业信息技术研究中心,北京 100097; 国家农业信息化工程技术研究中心,北京 100097; 农业部农业信息技术重点实验室,北京 100097; 北京市农业物联网工程技术研究中心,北京 100097%北京农业信息技术研究中心,北京 100097; 国家农业信息化工程技术研究中心,北京 100097; 农业部农业信息技术重点实验室,北京 100097; 北京市农业物联网工程技术研究中心,北京 100097; 河南工程学院土木工程学院,郑州 451191%山东农业大学生命科学学院,泰安,271018
Author_FL He Peng
Wang Yanan
Feng Haikuan
Li Zhenhai
Yang Fuqin
Guo Jianhua
Yang Guijun
Author_FL_xml – sequence: 1
  fullname: Feng Haikuan
– sequence: 2
  fullname: Yang Fuqin
– sequence: 3
  fullname: Li Zhenhai
– sequence: 4
  fullname: Yang Guijun
– sequence: 5
  fullname: Guo Jianhua
– sequence: 6
  fullname: He Peng
– sequence: 7
  fullname: Wang Yanan
Author_xml – sequence: 1
  fullname: 冯海宽;杨福芹;李振海;杨贵军;郭建华;贺鹏;王衍安
BookMark eNpFj01LAkEcxudgkJkfIzrEbv-ZnZ0ZjyW9gdDFu8y-2UqN5RLlLSgxsVC65MGE6CIIYZci8uO4u_ot2jDq9MDDj-fht4JSqqpchNYw6BjnuLlZ0f0gUDoGIBoTOKcTwEwHrgOhKZT-65dRNgh8C0xscACK02g76l9NJ73o6XrevI-_bsLubTR8Dgft8OFuPuqFjdZs_DadjOPXx1n7Mxr0w8573GqGjWH88hF2R_NmZxUtefI4cLO_mUHF3Z1ifl8rHO4d5LcKms0E1RzqMRe4YxBPeJSYjmDEzQFw6ghuSmJ4BIQtKRYumC61XOlxYpmMSZNLi4GRQeuL2QupPKnKpUr1vKaSw5Kql-1L60cZeCKckBsL0j6qqvKZn7CnNf9E1uolxoXIcSzMf_obuk1z8Q
ClassificationCodes S25
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.07.024
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Hyperspectral estimation of leaf total phosphorus content in apple tree based on optimal weights combination model
EndPage 180
ExternalDocumentID nygcxb201607024
678897185201607024
GrantInformation_xml – fundername: 国家高技术研究发展计划863课题。
  funderid: (2011AA100703)。
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c684-d4f6e07d32f8f425d862e90074d875a23f208ca418e05e4beaf72b566a57ab603
ISSN 1002-6819
IngestDate Thu May 29 04:04:19 EDT 2025
Wed Feb 14 10:17:01 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords models
RBF神经网络
spectrum analysis
optimal weight
RBF neural network
apple leaves

模型
光谱分析
最优权重
苹果叶片
phosphorus
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c684-d4f6e07d32f8f425d862e90074d875a23f208ca418e05e4beaf72b566a57ab603
Notes Feng Haikuan;Yang Fuqin;Li Zhenhai;Yang Guijun;Guo Jianhua;He Peng;Wang Yan’an;Beijing Research Center for Information Technology In Agriculture;National Engineering Research Center for Information Technology in Agriculture;Key Laboratory for Information Technologies in Agriculture, Ministry of Agriculture;Beijing Engineering Research Center of Agricultural Internet of Things;College of Civil Engineering, Henan Institute of Engineering;College of Life Science,Shandong Agricultural University
11-2047/S
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201607024
chongqing_primary_678897185201607024
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 河南工程学院土木工程学院,郑州 451191%山东农业大学生命科学学院,泰安,271018
北京市农业物联网工程技术研究中心,北京 100097%北京农业信息技术研究中心,北京 100097
国家农业信息化工程技术研究中心,北京 100097
北京市农业物联网工程技术研究中心,北京 100097
农业部农业信息技术重点实验室,北京 100097
北京农业信息技术研究中心,北京 100097
Publisher_xml – name: 北京市农业物联网工程技术研究中心,北京 100097%北京农业信息技术研究中心,北京 100097
– name: 北京农业信息技术研究中心,北京 100097
– name: 河南工程学院土木工程学院,郑州 451191%山东农业大学生命科学学院,泰安,271018
– name: 国家农业信息化工程技术研究中心,北京 100097
– name: 农业部农业信息技术重点实验室,北京 100097
– name: 北京市农业物联网工程技术研究中心,北京 100097
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.136374
Snippet 为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片...
S25; 为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 173
SubjectTerms 光谱分析;磷;模型;苹果叶片;最优权重;RBF神经网络
Title 最优权重组合模型和高光谱估算苹果叶片全磷含量
URI http://lib.cqvip.com/qk/90712X/201607/678897185201607024.html
https://d.wanfangdata.com.cn/periodical/nygcxb201607024
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_9ANGD-In1ix6a49T5TDLHZHeWouipQm_LfG5PW60taE-CllqqtHixh1oQL4WC1Isi9s_p7Lb_he9l0mlrRaqwDOG95L3f5M0mLyHvhZCxwk4Y92NucVEwy08L2wKCY6WenTsijdNQx8I8fMQmHvv3p4KpgcEHx04tzc8l4-nCH-NK_seqQAO7YpTsP1i2FgoEKIN94QkWhueZbEwjRsMGHlaIfKoaNBSa0qTCo1FIYZ0vmjTiVCkqfBoFNLSp0HWkoNLRlIgKpQsuFQ1sJZWWE1ABv5BGgiqbKseogDIIlBENObKgrQq10giRYKsWVQzrCA2gkgPqsJVHFTcwQItBeOJgoa6vXwrVCRpKpEArGWgJwqCVTSoZ6hUSWIdfjWktW8hRgdEGYFWTesr0jcHCECm-gcQ3qLki0lIbJ4ScaAv94SPdIFWaG2KXAygEC12iUQstDblVE4nVQBfoRSJHrtBcMIVoGqjVVUeHGzFVhKiZNXBaYcKM_dUfhh-bFZzqthbjYDjV1VWn566QB3ryQpnjtUw8flglmK2CzX9LDw7Ohgg5hsDrXIFQaZAMu7g5NUSGpWqq1pF37OAGQD18O3h1gnMUNu1iUgR2tPoMHA_vPqhPTOF5gUAfHjDIzhF6iPve31Bj2pLpmW7nKThjOjauW8TdzjE3bvISuWjWX6Oy-jNdJgML01fIBdmZNTlo8qtE9TZe7u2u9z6-Olh61__5ulx709v6VG6ulO_fHmyvl4vL-ztf93Z3-l8-7K_86G1ulKvf-stL5eJW__P3cm37YGn1GplsRZONCctcNWKlTPhW5hcst3nmuYUoYBbLYJ2fh-heZ7Cej12vcG0YuHxH5HaQ-0keF9xNYCUUBzxOmO1dJ0PdmW5-g4yyIgtgoMtiho5fwBNM2emyLLd9nntZMELG6s5oP6kyyrRPG3GEjJp-apsB51m7-6KTPk_qKjfPJukWOY_latvwNhmam53P74AjPZfcNR_IL7cyk-g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%9C%80%E4%BC%98%E6%9D%83%E9%87%8D%E7%BB%84%E5%90%88%E6%A8%A1%E5%9E%8B%E5%92%8C%E9%AB%98%E5%85%89%E8%B0%B1%E4%BC%B0%E7%AE%97%E8%8B%B9%E6%9E%9C%E5%8F%B6%E7%89%87%E5%85%A8%E7%A3%B7%E5%90%AB%E9%87%8F&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%86%AF%E6%B5%B7%E5%AE%BD%3B%E6%9D%A8%E7%A6%8F%E8%8A%B9%3B%E6%9D%8E%E6%8C%AF%E6%B5%B7%3B%E6%9D%A8%E8%B4%B5%E5%86%9B%3B%E9%83%AD%E5%BB%BA%E5%8D%8E%3B%E8%B4%BA%E9%B9%8F%3B%E7%8E%8B%E8%A1%8D%E5%AE%89&rft.date=2016&rft.issn=1002-6819&rft.issue=7&rft.spage=173&rft.epage=180&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.07.024&rft.externalDocID=678897185201607024
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg