Deregulation of sphingolipid metabolism in Alzheimer's disease
Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingom...
Saved in:
Published in | Neurobiology of aging Vol. 31; no. 3; pp. 398 - 408 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Inc
01.03.2010
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0197-4580 1558-1497 1558-1497 |
DOI | 10.1016/j.neurobiolaging.2008.05.010 |
Cover
Abstract | Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingomyelinase (ASM) and acid ceramidase (AC) expression in AD, leading to a reduction in sphingomyelin and elevation of ceramide. More sphingosine also was found in the AD brains, although sphingosine-1-phosphate (S1P) levels were reduced. Notably, significant correlations were observed between the brain ASM and S1P levels and the levels of amyloid beta (Aβ) peptide and hyperphosphorylated tau protein. Based on these findings, neuronal cell cultures were treated with Aβ oligomers, which were found to activate ASM, increase ceramide, and induce apoptosis. Pre-treatment of the neurons with purified, recombinant AC prevented the cells from undergoing Aβ-induced apoptosis. We propose that ASM activation is an important pathological event leading to AD, perhaps due to Aβ deposition. The downstream consequences of ASM activation are elevated ceramide, activation of ceramidases, and production of sphingosine. The reduced levels of S1P in the AD brain, together with elevated ceramide, likely contribute to the disease pathogenesis. |
---|---|
AbstractList | Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingomyelinase (ASM) and acid ceramidase (AC) expression in AD, leading to a reduction in sphingomyelin and elevation of ceramide. More sphingosine also was found in the AD brains, although sphingosine-1-phosphate (S1P) levels were reduced. Notably, significant correlations were observed between the brain ASM and S1P levels and the levels of amyloid beta (Ab) peptide and hyperphosphorylated tau protein. Based on these findings, neuronal cell cultures were treated with Ab oligomers, which were found to activate ASM, increase ceramide, and induce apoptosis. Pre-treatment of the neurons with purified, recombinant AC prevented the cells from undergoing Ab-induced apoptosis. We propose that ASM activation is an important pathological event leading to AD, perhaps due to Ab deposition. The downstream consequences of ASM activation are elevated ceramide, activation of ceramidases, and production of sphingosine. The reduced levels of S1P in the AD brain, together with elevated ceramide, likely contribute to the disease pathogenesis. Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingomyelinase (ASM) and acid ceramidase (AC) expression in AD, leading to a reduction in sphingomyelin and elevation of ceramide. More sphingosine also was found in the AD brains, although sphingosine-1-phosphate (S1P) levels were reduced. Notably, significant correlations were observed between the brain ASM and S1P levels and the levels of amyloid beta (Abeta) peptide and hyperphosphorylated tau protein. Based on these findings, neuronal cell cultures were treated with Abeta oligomers, which were found to activate ASM, increase ceramide, and induce apoptosis. Pre-treatment of the neurons with purified, recombinant AC prevented the cells from undergoing Abeta-induced apoptosis. We propose that ASM activation is an important pathological event leading to AD, perhaps due to Abeta deposition. The downstream consequences of ASM activation are elevated ceramide, activation of ceramidases, and production of sphingosine. The reduced levels of S1P in the AD brain, together with elevated ceramide, likely contribute to the disease pathogenesis.Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingomyelinase (ASM) and acid ceramidase (AC) expression in AD, leading to a reduction in sphingomyelin and elevation of ceramide. More sphingosine also was found in the AD brains, although sphingosine-1-phosphate (S1P) levels were reduced. Notably, significant correlations were observed between the brain ASM and S1P levels and the levels of amyloid beta (Abeta) peptide and hyperphosphorylated tau protein. Based on these findings, neuronal cell cultures were treated with Abeta oligomers, which were found to activate ASM, increase ceramide, and induce apoptosis. Pre-treatment of the neurons with purified, recombinant AC prevented the cells from undergoing Abeta-induced apoptosis. We propose that ASM activation is an important pathological event leading to AD, perhaps due to Abeta deposition. The downstream consequences of ASM activation are elevated ceramide, activation of ceramidases, and production of sphingosine. The reduced levels of S1P in the AD brain, together with elevated ceramide, likely contribute to the disease pathogenesis. Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingomyelinase (ASM) and acid ceramidase (AC) expression in AD, leading to a reduction in sphingomyelin and elevation of ceramide. More sphingosine also was found in the AD brains, although sphingosine-1-phosphate (S1P) levels were reduced. Notably, significant correlations were observed between the brain ASM and S1P levels and the levels of amyloid beta (Aβ) peptide and hyperphosphorylated tau protein. Based on these findings, neuronal cell cultures were treated with Aβ oligomers, which were found to activate ASM, increase ceramide, and induce apoptosis. Pre-treatment of the neurons with purified, recombinant AC prevented the cells from undergoing Aβ-induced apoptosis. We propose that ASM activation is an important pathological event leading to AD, perhaps due to Aβ deposition. The downstream consequences of ASM activation are elevated ceramide, activation of ceramidases, and production of sphingosine. The reduced levels of S1P in the AD brain, together with elevated ceramide, likely contribute to the disease pathogenesis. Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingomyelinase (ASM) and acid ceramidase (AC) expression in AD, leading to a reduction in sphingomyelin and elevation of ceramide. More sphingosine also was found in the AD brains, although sphingosine-1-phosphate (S1P) levels were reduced. Notably, significant correlations were observed between the brain ASM and S1P levels and the levels of amyloid beta (Abeta) peptide and hyperphosphorylated tau protein. Based on these findings, neuronal cell cultures were treated with Abeta oligomers, which were found to activate ASM, increase ceramide, and induce apoptosis. Pre-treatment of the neurons with purified, recombinant AC prevented the cells from undergoing Abeta-induced apoptosis. We propose that ASM activation is an important pathological event leading to AD, perhaps due to Abeta deposition. The downstream consequences of ASM activation are elevated ceramide, activation of ceramidases, and production of sphingosine. The reduced levels of S1P in the AD brain, together with elevated ceramide, likely contribute to the disease pathogenesis. Abstract Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingomyelinase (ASM) and acid ceramidase (AC) expression in AD, leading to a reduction in sphingomyelin and elevation of ceramide. More sphingosine also was found in the AD brains, although sphingosine-1-phosphate (S1P) levels were reduced. Notably, significant correlations were observed between the brain ASM and S1P levels and the levels of amyloid beta (Aβ) peptide and hyperphosphorylated tau protein. Based on these findings, neuronal cell cultures were treated with Aβ oligomers, which were found to activate ASM, increase ceramide, and induce apoptosis. Pre-treatment of the neurons with purified, recombinant AC prevented the cells from undergoing Aβ-induced apoptosis. We propose that ASM activation is an important pathological event leading to AD, perhaps due to Aβ deposition. The downstream consequences of ASM activation are elevated ceramide, activation of ceramidases, and production of sphingosine. The reduced levels of S1P in the AD brain, together with elevated ceramide, likely contribute to the disease pathogenesis. Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid hydrolases were analyzed in brain samples from AD patients and age-matched normal individuals. We found a pattern of elevated acid sphingomyelinase (ASM) and acid ceramidase (AC) expression in AD, leading to a reduction in sphingomyelin and elevation of ceramide. More sphingosine also was found in the AD brains, although sphingosine-1-phosphate (S1P) levels were reduced. Notably, significant correlations were observed between the brain ASM and S1P levels and the levels of amyloid beta peptide (Aβ) and phosphorylated tau protein. Based on these findings, neuronal cell cultures were treated with Aβ oligomers, which were found to activate ASM, increase ceramide, and induce apoptosis. Pre-treatment of the neurons with purified, recombinant AC prevented the cells from undergoing Aβ-induced apoptosis. We propose that ASM activation is an important pathological event leading to AD, perhaps due to Aβ deposition. The downstream consequences of ASM activation are elevated ceramide, activation of ceramidases, and production of sphingosine. The reduced levels of S1P in the AD brain, together with elevated ceramide, likely contribute to the disease pathogenesis. |
Author | He, Xingxuan Gong, Cheng-Xin Schuchman, Edward H. Li, Bin Huang, Yu |
AuthorAffiliation | b Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10214 USA a Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York, USA |
AuthorAffiliation_xml | – name: b Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10214 USA – name: a Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York, USA |
Author_xml | – sequence: 1 givenname: Xingxuan surname: He fullname: He, Xingxuan organization: Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA – sequence: 2 givenname: Yu surname: Huang fullname: Huang, Yu organization: Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10214, USA – sequence: 3 givenname: Bin surname: Li fullname: Li, Bin organization: Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10214, USA – sequence: 4 givenname: Cheng-Xin surname: Gong fullname: Gong, Cheng-Xin organization: Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10214, USA – sequence: 5 givenname: Edward H. surname: Schuchman fullname: Schuchman, Edward H. email: Edward.Schuchman@mssm.edu organization: Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22611852$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18547682$$D View this record in MEDLINE/PubMed |
BookMark | eNqNklFv0zAQxy00xLrCV0B5APaUck5ix5FQpbExQJrEA_Bsuc6ldXHszk4mjU-PS0vFJoEq2fJJ97-f7vy_M3LivENCXlGYUaD87XrmcAx-YbxVS-OWswJAzIDNgMITMqGMiZxWTX1CJkCbOq-YgFNyFuMaAOqq5s_IKRUsBaKYkPkVBlyOVg3Gu8x3WdysEtRbszFt1uOgFimOfWZcdmF_rtD0GM5j1pqIKuJz8rRTNuKL_Tsl368_fLv8lN98-fj58uIm11yUQ85FW5dagKbIBQAvKmgUZ4J1rGE1NooKrSiUqitFypZNp7hugdcN6rqCrpyS-Y67GRc9thrdEJSVm2B6Fe6lV0Y-zDizkkt_JwtRNHUiTsn5HhD87YhxkL2JGq1VDv0YZV2WgjcV50n55r_Kghai5OlOycu_ezo08-dzk-D1XqCiVrYLymkTD7qi4DRpt7r3O50OPsaAndRm-G1IGsVYSUFunZdr-dB5uXVeApPJ-QR59why6Oe48utdOSYX7wwGGbVBp7E1AfUgW2-OBc0fgbQ1zqT5f-A9xrUfg0ubIqmMhQT5dbuj2xWFdCiDKgGu_g04vo9f-fcAjA |
CODEN | NEAGDO |
CitedBy_id | crossref_primary_10_1002_biof_1004 crossref_primary_10_1002_cbf_3789 crossref_primary_10_1016_j_bbalip_2016_04_020 crossref_primary_10_1002_glia_23558 crossref_primary_10_1016_j_biochi_2016_08_014 crossref_primary_10_1096_fj_202001599R crossref_primary_10_1016_j_bbalip_2013_10_015 crossref_primary_10_4103_1673_5374_358607 crossref_primary_10_1016_j_ebiom_2015_11_002 crossref_primary_10_3389_fnmol_2017_00063 crossref_primary_10_3233_JAD_180412 crossref_primary_10_1007_s12031_013_9979_6 crossref_primary_10_1016_j_pharep_2015_12_008 crossref_primary_10_1016_j_jchromb_2023_123987 crossref_primary_10_3389_fnagi_2024_1368839 crossref_primary_10_1523_JNEUROSCI_0524_19_2019 crossref_primary_10_1097_YCO_0000000000000303 crossref_primary_10_1002_advs_202307598 crossref_primary_10_1016_j_nbd_2023_105987 crossref_primary_10_1523_JNEUROSCI_2808_12_2012 crossref_primary_10_1186_1476_511X_12_98 crossref_primary_10_1016_j_archger_2013_12_005 crossref_primary_10_1007_s12035_015_9355_3 crossref_primary_10_1021_acs_analchem_6b01022 crossref_primary_10_1111_jcmm_16456 crossref_primary_10_3390_antiox11050829 crossref_primary_10_3390_cells8121573 crossref_primary_10_1016_j_ddtec_2015_03_002 crossref_primary_10_1186_1744_9081_6_52 crossref_primary_10_1371_journal_pone_0125597 crossref_primary_10_1016_j_neurobiolaging_2013_02_001 crossref_primary_10_1016_j_neuropharm_2018_02_023 crossref_primary_10_1007_s00213_017_4805_4 crossref_primary_10_1007_s12035_014_8661_5 crossref_primary_10_1098_rsob_170069 crossref_primary_10_3233_JAD_170035 crossref_primary_10_1016_j_neurobiolaging_2010_04_001 crossref_primary_10_1371_journal_pone_0062715 crossref_primary_10_1007_s00018_012_1038_x crossref_primary_10_1016_j_pmu_2014_03_003 crossref_primary_10_1186_alzrt103 crossref_primary_10_1039_D0SC04366D crossref_primary_10_1126_sciadv_adc9317 crossref_primary_10_3389_fphar_2019_00807 crossref_primary_10_1016_j_bpj_2024_05_012 crossref_primary_10_1002_psp4_12351 crossref_primary_10_3390_jcm8070971 crossref_primary_10_1038_s41598_020_76335_4 crossref_primary_10_1039_C4MB00747F crossref_primary_10_5551_jat_32383 crossref_primary_10_3389_fimmu_2020_620348 crossref_primary_10_1021_ac5009964 crossref_primary_10_3389_fnagi_2022_1066578 crossref_primary_10_1038_s41598_021_94706_3 crossref_primary_10_3389_fcell_2020_592159 crossref_primary_10_1016_j_plipres_2011_06_001 crossref_primary_10_1111_jnc_14225 crossref_primary_10_1016_j_colsurfa_2016_04_027 crossref_primary_10_1016_j_jbior_2018_09_013 crossref_primary_10_1038_s41380_019_0508_z crossref_primary_10_1111_jnc_14917 crossref_primary_10_3389_fradi_2022_782864 crossref_primary_10_3389_fphar_2023_1196413 crossref_primary_10_1016_j_jalz_2017_01_008 crossref_primary_10_1016_j_biopha_2022_113240 crossref_primary_10_3390_pharmaceutics14102066 crossref_primary_10_3233_JAD_161231 crossref_primary_10_1002_jnr_24048 crossref_primary_10_1016_j_nbd_2025_106852 crossref_primary_10_32604_biocell_2022_017248 crossref_primary_10_1038_s41598_021_93498_w crossref_primary_10_1111_j_1471_4159_2010_06779_x crossref_primary_10_1002_alz_12961 crossref_primary_10_1186_2051_5960_2_9 crossref_primary_10_1016_j_jalz_2010_03_014 crossref_primary_10_1371_journal_pone_0182194 crossref_primary_10_1111_febs_16344 crossref_primary_10_1186_1750_1326_8_34 crossref_primary_10_1186_s12943_018_0803_3 crossref_primary_10_3390_nu13072185 crossref_primary_10_1038_s12276_024_01176_4 crossref_primary_10_1016_j_nbd_2014_01_010 crossref_primary_10_18632_oncotarget_6333 crossref_primary_10_5012_bkcs_2014_35_8_2385 crossref_primary_10_1007_s12035_013_8606_4 crossref_primary_10_1186_s13024_025_00803_6 crossref_primary_10_1093_advances_nmaa024 crossref_primary_10_1186_s13195_017_0277_3 crossref_primary_10_3233_JAD_160172 crossref_primary_10_1016_j_neuropharm_2017_01_003 crossref_primary_10_1371_journal_pone_0313507 crossref_primary_10_5812_jrps_148544 crossref_primary_10_1186_s13073_015_0258_8 crossref_primary_10_3389_fnmol_2020_00058 crossref_primary_10_1186_s13195_021_00780_0 crossref_primary_10_3390_cells9061515 crossref_primary_10_1038_s41598_017_05709_y crossref_primary_10_1042_CS20200844 crossref_primary_10_3389_fnagi_2022_951146 crossref_primary_10_3390_biomedicines13020416 crossref_primary_10_1194_jlr_R076331 crossref_primary_10_3390_cells11132123 crossref_primary_10_2217_clp_12_91 crossref_primary_10_1111_bph_13726 crossref_primary_10_1007_s11064_020_03011_4 crossref_primary_10_1016_j_brainres_2010_11_013 crossref_primary_10_3389_fnins_2021_778822 crossref_primary_10_3390_ijms23042295 crossref_primary_10_3233_JAD_150916 crossref_primary_10_1016_j_nbd_2016_03_011 crossref_primary_10_1007_s00232_017_0008_5 crossref_primary_10_1016_j_neurobiolaging_2014_05_019 crossref_primary_10_1080_1061186X_2019_1584808 crossref_primary_10_1523_JNEUROSCI_3883_11_2011 crossref_primary_10_1128_MCB_00529_17 crossref_primary_10_18097_pbmc20135901025 crossref_primary_10_1016_j_neurobiolaging_2013_08_016 crossref_primary_10_1021_jacs_8b11687 crossref_primary_10_1155_2015_346783 crossref_primary_10_1016_j_bbalip_2012_07_015 crossref_primary_10_1021_pr300666p crossref_primary_10_3390_ijms23158082 crossref_primary_10_1089_cmb_2020_0556 crossref_primary_10_1002_syn_22196 crossref_primary_10_3389_fcell_2021_633657 crossref_primary_10_3233_JAD_141899 crossref_primary_10_1128_mbio_02681_24 crossref_primary_10_14348_molcells_2015_0117 crossref_primary_10_1016_j_lfs_2024_122668 crossref_primary_10_1016_j_neurobiolaging_2016_04_008 crossref_primary_10_3390_ijerph16111995 crossref_primary_10_3389_fneur_2020_00437 crossref_primary_10_1186_s13195_024_01601_w crossref_primary_10_1212_WNL_0b013e318264e380 crossref_primary_10_3389_fnmol_2018_00206 crossref_primary_10_1016_j_plipres_2012_07_001 crossref_primary_10_1097_MOL_0000000000000804 crossref_primary_10_3390_ijms23116235 crossref_primary_10_3233_JAD_240787 crossref_primary_10_1134_S1990750813020029 crossref_primary_10_1007_s11064_011_0532_0 crossref_primary_10_1007_s12640_017_9798_6 crossref_primary_10_3233_JAD_190926 crossref_primary_10_3390_ijms22126277 crossref_primary_10_1038_s41467_024_49589_z crossref_primary_10_3390_molecules22101692 crossref_primary_10_1007_s11064_011_0692_y crossref_primary_10_1177_1533317514523487 crossref_primary_10_1186_s40478_018_0527_z crossref_primary_10_1155_2013_178910 crossref_primary_10_1016_j_febslet_2010_02_026 crossref_primary_10_1007_BF03210850 crossref_primary_10_3233_JAD_171054 crossref_primary_10_3390_ijms24054960 crossref_primary_10_1155_2018_3646725 crossref_primary_10_1002_bmc_4037 crossref_primary_10_1155_2011_342576 crossref_primary_10_1016_j_expneurol_2020_113321 crossref_primary_10_1038_s41598_024_51463_3 crossref_primary_10_1038_srep19332 crossref_primary_10_1002_cbin_11522 crossref_primary_10_1051_ocl_2018027 crossref_primary_10_2217_clp_12_59 crossref_primary_10_1016_j_bbamem_2017_05_009 crossref_primary_10_3389_fendo_2023_1243132 crossref_primary_10_1016_j_pharep_2018_05_002 crossref_primary_10_1080_10799893_2017_1358282 crossref_primary_10_1017_S1462399410001602 crossref_primary_10_1111_j_1471_4159_2011_07351_x crossref_primary_10_1128_mBio_00455_20 crossref_primary_10_1016_j_biopha_2021_112057 crossref_primary_10_1371_journal_pone_0148431 crossref_primary_10_1016_j_plipres_2022_101162 crossref_primary_10_1111_j_1742_4658_2012_08575_x crossref_primary_10_3233_JAD_160739 crossref_primary_10_1016_j_expneurol_2018_09_012 crossref_primary_10_1007_s10495_015_1101_9 crossref_primary_10_1016_j_mcn_2017_04_010 crossref_primary_10_1186_s13195_024_01585_7 crossref_primary_10_1007_s12017_019_08558_2 crossref_primary_10_1038_cdd_2011_7 crossref_primary_10_3390_genes9040174 crossref_primary_10_1039_D0MO00186D crossref_primary_10_3945_jn_110_137638 crossref_primary_10_1002_pmic_202300063 crossref_primary_10_2217_clp_11_74 crossref_primary_10_1007_s11064_014_1290_6 crossref_primary_10_1016_j_csbj_2020_06_001 crossref_primary_10_1038_s41598_018_31756_0 crossref_primary_10_1155_2013_814390 crossref_primary_10_1017_cjn_2015_19 crossref_primary_10_1371_journal_pone_0023852 crossref_primary_10_1523_JNEUROSCI_0515_23_2023 crossref_primary_10_1007_s11596_013_1136_5 crossref_primary_10_1016_j_addr_2020_04_009 crossref_primary_10_3233_JAD_200871 crossref_primary_10_3390_ijms23042300 crossref_primary_10_1007_s10719_022_10066_8 crossref_primary_10_1007_s00221_011_2975_6 crossref_primary_10_1016_j_ijbiomac_2023_124859 crossref_primary_10_1016_j_plipres_2010_02_004 crossref_primary_10_3389_fvets_2023_1298132 crossref_primary_10_1515_tjb_2020_0134 crossref_primary_10_3389_fgene_2017_00132 crossref_primary_10_1016_j_biochi_2009_03_004 crossref_primary_10_1021_acschemneuro_8b00121 crossref_primary_10_1016_j_neulet_2018_05_017 crossref_primary_10_3389_fphar_2014_00165 crossref_primary_10_2174_1567205016666190503145207 crossref_primary_10_1111_acel_13555 crossref_primary_10_1186_s12974_018_1380_5 crossref_primary_10_3390_ijms20040874 crossref_primary_10_1007_s12035_014_8807_5 crossref_primary_10_1017_S0007114515000926 crossref_primary_10_2147_DDDT_S357061 crossref_primary_10_3390_medicina58040493 crossref_primary_10_1007_s12017_010_8121_y crossref_primary_10_1002_prot_26508 crossref_primary_10_1016_j_jep_2020_113283 crossref_primary_10_1007_s12031_014_0423_3 crossref_primary_10_3390_molecules23061324 crossref_primary_10_1007_s12035_018_1286_3 crossref_primary_10_1016_j_addr_2019_12_003 crossref_primary_10_1111_bpa_13202 crossref_primary_10_1007_s12035_013_8622_4 crossref_primary_10_1007_s12017_020_08632_0 crossref_primary_10_1016_j_expneurol_2024_114825 crossref_primary_10_3389_fnmol_2017_00211 crossref_primary_10_1016_j_jnutbio_2019_01_015 crossref_primary_10_3233_JAD_231239 crossref_primary_10_1002_macp_202400531 crossref_primary_10_1080_10408398_2018_1529653 crossref_primary_10_1007_s11064_010_0380_3 crossref_primary_10_1038_s41598_019_47287_1 crossref_primary_10_2217_bmm_13_59 crossref_primary_10_3389_fnagi_2020_555850 crossref_primary_10_1038_s41467_019_10584_4 crossref_primary_10_1016_j_talanta_2014_07_075 crossref_primary_10_3390_brainsci14030269 crossref_primary_10_1111_obr_12475 crossref_primary_10_1016_j_brainres_2022_148171 crossref_primary_10_4155_bio_13_346 crossref_primary_10_1016_j_dadm_2019_07_002 crossref_primary_10_1002_jcp_22571 crossref_primary_10_1016_j_prostaglandins_2020_106484 crossref_primary_10_3389_fendo_2023_1224318 crossref_primary_10_1038_npp_2013_167 crossref_primary_10_1002_brb3_517 crossref_primary_10_1002_2211_5463_13661 crossref_primary_10_1111_febs_15540 crossref_primary_10_3233_JAD_231485 crossref_primary_10_1517_14728222_2015_1071794 crossref_primary_10_1016_j_jss_2018_06_019 crossref_primary_10_1080_1028415X_2020_1831262 crossref_primary_10_1016_j_nbd_2024_106713 crossref_primary_10_3390_ijms23147806 crossref_primary_10_15252_embj_201796797 crossref_primary_10_1371_journal_pone_0064050 crossref_primary_10_1016_j_nbd_2020_105062 crossref_primary_10_1016_j_bbalip_2013_08_002 crossref_primary_10_3389_fnmol_2022_1078854 crossref_primary_10_1111_jnc_15170 crossref_primary_10_1021_acschemneuro_6b00391 crossref_primary_10_1371_journal_pone_0137193 crossref_primary_10_3390_cells11162574 crossref_primary_10_1371_journal_pgen_1005591 crossref_primary_10_1016_j_brainres_2015_07_055 crossref_primary_10_1021_acs_analchem_9b00803 crossref_primary_10_1371_journal_pone_0215435 crossref_primary_10_1042_BJ20150448 crossref_primary_10_3233_JAD_201504 crossref_primary_10_1016_j_trsl_2023_05_003 crossref_primary_10_1016_j_jlr_2024_100510 crossref_primary_10_1002_jev2_12089 crossref_primary_10_1038_nutd_2014_38 crossref_primary_10_1186_s12918_015_0176_9 crossref_primary_10_1016_j_bbr_2013_06_016 crossref_primary_10_1084_jem_20132451 crossref_primary_10_1371_journal_pmed_1002482 crossref_primary_10_18632_oncotarget_16370 crossref_primary_10_3390_ijms22115793 crossref_primary_10_1042_BST20140311 crossref_primary_10_3390_membranes11120919 crossref_primary_10_3390_ijms21041505 crossref_primary_10_3390_ijms25105184 crossref_primary_10_1007_s12017_021_08644_4 crossref_primary_10_3389_fnins_2019_00103 crossref_primary_10_1016_j_phrs_2015_11_006 crossref_primary_10_3164_jcbn_23_97 crossref_primary_10_1111_febs_16579 crossref_primary_10_1007_s11427_022_2276_6 crossref_primary_10_1378_chest_13_0967 crossref_primary_10_1039_D3AY00899A crossref_primary_10_3390_cells10102591 crossref_primary_10_1016_j_neulet_2012_04_019 crossref_primary_10_1016_j_jbc_2022_102411 crossref_primary_10_3390_ijms20153810 crossref_primary_10_1186_2051_5960_2_12 crossref_primary_10_1016_j_arr_2013_12_007 crossref_primary_10_1016_j_neurobiolaging_2012_05_017 crossref_primary_10_1042_BSR20182144 crossref_primary_10_3389_fnins_2024_1430465 crossref_primary_10_1016_j_biopha_2025_117969 crossref_primary_10_1186_s13041_020_0565_x crossref_primary_10_1038_s41598_018_21497_5 crossref_primary_10_3389_fnins_2018_00249 crossref_primary_10_1021_acs_jproteome_8b00816 crossref_primary_10_1038_nrn3012 crossref_primary_10_1039_C5MB00138B crossref_primary_10_1089_neu_2019_6436 crossref_primary_10_1111_jfbc_14303 crossref_primary_10_1016_j_jchromb_2015_01_016 crossref_primary_10_1016_j_biopha_2023_116071 crossref_primary_10_2217_nmt_11_87 crossref_primary_10_1002_eji_201142079 crossref_primary_10_1002_glia_24665 crossref_primary_10_3389_fgene_2020_565479 crossref_primary_10_1002_ana_25573 crossref_primary_10_1007_s12035_023_03793_y crossref_primary_10_3389_fbioe_2025_1548051 crossref_primary_10_3233_JAD_231318 crossref_primary_10_4061_2011_695413 crossref_primary_10_1371_journal_pbio_3002607 crossref_primary_10_1371_journal_pone_0062912 crossref_primary_10_1038_tp_2011_55 crossref_primary_10_1111_bpa_12655 crossref_primary_10_1021_jacs_0c06652 crossref_primary_10_1016_j_bbrc_2018_04_075 crossref_primary_10_1016_j_biochi_2017_03_019 crossref_primary_10_1016_j_neuroscience_2018_11_031 crossref_primary_10_1007_s13738_014_0491_x crossref_primary_10_1016_j_brainresbull_2023_110702 crossref_primary_10_1007_s10068_010_0122_y crossref_primary_10_1016_j_neuroscience_2023_08_033 crossref_primary_10_3233_JAD_200964 crossref_primary_10_3389_fphar_2022_1076960 crossref_primary_10_3390_ijms14011310 crossref_primary_10_3389_fphar_2024_1362464 crossref_primary_10_1038_nchembio_1663 crossref_primary_10_3389_fncel_2014_00283 crossref_primary_10_1002_1873_3468_13863 crossref_primary_10_1590_1678_4324_2016150572 crossref_primary_10_3390_cells12121623 crossref_primary_10_1007_s12035_018_1448_3 crossref_primary_10_1111_j_1471_4159_2010_07033_x crossref_primary_10_1016_j_chembiol_2023_10_021 crossref_primary_10_1016_j_ebiom_2023_104820 crossref_primary_10_1016_j_mce_2013_06_012 crossref_primary_10_1186_s40478_023_01633_7 crossref_primary_10_1016_j_jchromb_2020_122346 crossref_primary_10_1016_j_tcb_2018_09_004 crossref_primary_10_3390_ijms20235937 crossref_primary_10_1007_s00216_015_8585_6 crossref_primary_10_1007_s12264_013_1410_3 crossref_primary_10_3390_ijms222010907 crossref_primary_10_1007_s12272_019_01114_3 crossref_primary_10_3233_JAD_190408 crossref_primary_10_1038_s41598_017_05948_z crossref_primary_10_3389_fnagi_2022_838223 crossref_primary_10_1002_biot_200800322 crossref_primary_10_3389_fimmu_2017_00597 crossref_primary_10_1016_j_bbamem_2017_07_001 crossref_primary_10_3389_fncel_2018_00103 crossref_primary_10_1016_j_neubiorev_2015_10_010 crossref_primary_10_3390_ijms24119558 |
Cites_doi | 10.1074/jbc.274.51.36616 10.1074/jbc.275.5.3462 10.1016/j.nbd.2006.02.010 10.1046/j.1471-4159.2002.00997.x 10.1042/bst0320144 10.1074/jbc.M404635200 10.1016/S1043-6618(03)00052-5 10.1111/j.1471-4159.2007.04715.x 10.1016/S0003-2697(02)00629-2 10.1074/jbc.M300466200 10.1016/S0014-5793(03)00197-2 10.1111/j.1471-4159.2006.03774.x 10.1074/jbc.M301936200 10.1074/jbc.M309832200 10.1023/A:1011603916962 10.1016/j.neurobiolaging.2006.05.036 10.1016/j.neuroscience.2004.08.056 10.1016/j.nbd.2004.12.013 10.1006/abio.2001.5108 10.1038/381800a0 10.1016/S0014-5793(02)03482-8 10.1096/fj.04-2903fje 10.1016/S0047-6374(00)00128-7 10.4049/jimmunol.173.6.3783 10.1084/jem.180.4.1547 10.1016/S0014-5793(98)00198-7 10.1016/S0092-8674(00)80748-5 10.1083/jcb.200307017 10.1002/jnr.21268 10.1042/0264-6021:3380161 10.1042/BJ20050700 10.1016/j.bbamcr.2005.09.001 10.1016/0165-5728(95)00145-X 10.1007/s11064-007-9297-x 10.1111/j.1460-9568.2004.03852.x 10.1111/j.1471-4159.1992.tb10994.x 10.1111/j.1471-4159.2005.03217.x 10.1038/sj.leu.2402611 10.1017/S1041610296002736 10.1111/j.1460-9568.2007.05797.x 10.1016/j.freeradbiomed.2004.12.019 10.1038/nm0896-850 10.1006/abio.1999.4284 10.18388/abp.2000_3991 10.1074/jbc.M414525200 10.1002/jnr.10355 10.1073/pnas.0305799101 10.1016/j.freeradbiomed.2004.04.007 10.1146/annurev.physiol.60.1.643 10.1096/fj.03-0372fje 10.1016/S1043-6618(03)00046-X 10.1006/exnr.1995.1025 10.1016/j.ab.2005.01.058 10.1074/jbc.273.5.2738 |
ContentType | Journal Article |
Copyright | 2008 Elsevier Inc. Elsevier Inc. 2015 INIST-CNRS Copyright 2008 Elsevier Inc. All rights reserved. Copyright 2008 Elsevier Inc. All rights reserved. 2008 Elsevier Inc. All rights reserved. 2008 |
Copyright_xml | – notice: 2008 Elsevier Inc. – notice: Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright 2008 Elsevier Inc. All rights reserved. – notice: Copyright 2008 Elsevier Inc. All rights reserved. – notice: 2008 Elsevier Inc. All rights reserved. 2008 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1016/j.neurobiolaging.2008.05.010 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1558-1497 |
EndPage | 408 |
ExternalDocumentID | PMC2829762 18547682 22611852 10_1016_j_neurobiolaging_2008_05_010 S0197458008001504 1_s2_0_S0197458008001504 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R56 DK054830 – fundername: NIA NIH HHS grantid: AG027429 – fundername: NIDDK NIH HHS grantid: DK54830 – fundername: NIDDK NIH HHS grantid: R01 DK054830 – fundername: NICHD NIH HHS grantid: HD28607 – fundername: NIA NIH HHS grantid: R01 AG027429 – fundername: NICHD NIH HHS grantid: R37 HD028607 – fundername: NICHD NIH HHS grantid: R01 HD028607 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JO AABNK AADFP AAEDT AAEDW AAGJA AAGUQ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABGSF ABIVO ABJNI ABLJU ABMAC ABMZM ABOYX ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ACXNI ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LX8 M29 M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OD~ OKEIE OO0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SNS SPCBC SSB SSH SSN SSU SSY SSZ T5K WUQ Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AADPK AAIAV ABLVK ABYKQ AFYLN AJBFU DOVZS EFLBG LCYCR AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK ACLOT ~HD 7X8 5PM |
ID | FETCH-LOGICAL-c683t-68d73c80c1e680062409a6585f5957e9a18ca103af3806239fa6cd0679ec740f3 |
IEDL.DBID | .~1 |
ISSN | 0197-4580 1558-1497 |
IngestDate | Thu Aug 21 18:25:48 EDT 2025 Sun Sep 28 06:21:00 EDT 2025 Sun Sep 28 10:02:42 EDT 2025 Mon Jul 21 05:35:50 EDT 2025 Mon Jul 21 09:14:31 EDT 2025 Tue Jul 01 01:27:58 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Fri Feb 23 02:27:30 EST 2024 Sun Feb 23 10:19:35 EST 2025 Tue Aug 26 16:32:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Neurons Ceramidases Sphingosine-1-phosphate Human brain Sphingomyelin Ceramide Sphingomyelinases Alzheimer's disease Human Nervous system diseases Senescence Enzyme Alzheimer disease Central nervous system Metabolism Ceramidase Cerebral disorder Encephalon Neuron Central nervous system disease Hydrolases Degenerative disease |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright 2008 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c683t-68d73c80c1e680062409a6585f5957e9a18ca103af3806239fa6cd0679ec740f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18547682 |
PQID | 21283628 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2829762 proquest_miscellaneous_733869466 proquest_miscellaneous_21283628 pubmed_primary_18547682 pascalfrancis_primary_22611852 crossref_citationtrail_10_1016_j_neurobiolaging_2008_05_010 crossref_primary_10_1016_j_neurobiolaging_2008_05_010 elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2008_05_010 elsevier_clinicalkeyesjournals_1_s2_0_S0197458008001504 elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2008_05_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-03-01 |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Neurobiology of aging |
PublicationTitleAlternate | Neurobiol Aging |
PublicationYear | 2010 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Soderberg, Edlund, Alafuzoff, Kristensson, Dallner (bib47) 1992; 59 Goni, Alonso (bib16) 2002; 531 Zeng, Lee, Chen, Chen, Hsu, Xu (bib56) 2005; 94 Okino, Ichinose, Omori, Imayama, Nakamura, Ito (bib38) 1999; 274 Sponne, Fifre, Koziel, Oster, Olivier, Pillot (bib49) 2004; 18 Gottfries, Karlsson, Svennerholm (bib17) 1996; 8 Lee, Xu, Lee, Ku, Han, Yang, Chen, Hsu (bib34) 2004; 164 Cutler, Kelly, Storie, Pedersen, Tammara, Hatanpaa, Troncoso, Mattson (bib10) 2004; 101 Chen, Lee, Zeng, Chen, Hsu, Xu (bib6) 2006; 97 Satoi, Tomimoto, Ohtani, Kitano, Kondo, Watanabe, Oka, Akiguchi, Furuya, Hirabayashi, Okazaki (bib43) 2005; 130 Cheng, Xu, McKeel, Han (bib7) 2003; 49 Han, Holtzman, McKeel, Kelley, Morris (bib19) 2002; 82 Fiebich, Lieb, Berger, Bauer (bib13) 1995; 63 Schissel, Jiang, Tweedie-Hardman, Jeong, Camejo, Najib, Rapp, Williams, Tabas (bib45) 1998; 273 Chen, Tung, Li, Iqbal, Grundke-Iqbal (bib5) 2007; 28 Cifone, De Maria, Roncaioli, Rippo, Azuma, Lanier, Santoni, Testi (bib8) 1994; 180 Sawamura, Ko, Yu, Zou, Hanada, Suzuki, Gong, Yanagisawa, Michikawa (bib44) 2004; 279 Smale, Nichols, Brady, Finch, Horton (bib46) 1995; 133 Yankner, Lu, Loerch (bib55) 2007; 27 Jana, Pahan (bib29) 2004; 279 Ju, Chen, Liu, Yang (bib31) 2005; 38 Gulbins (bib18) 2003; 47 Katsel, Li, Haroutunian (bib32) 2007; 32 Sweeney, Inokuchi, Igarashi (bib50) 1998; 425 He, Dagan, Gatt, Schuchman (bib23) 2005; 340 Gervais, Xu, Robertson, Vaillancourt, Zhu, Huang, LeBlanc, Smith, Rigby, Shearman, Clarke, Zheng, Van Der Ploeg, Ruffolo, Thornberry, Xanthoudakis, Zamboni, Roy, Nicholson (bib14) 1999; 97 Joseph, Denisova, Bielinski, Fisher, Shukitt-Hale (bib30) 2000; 116 Tamboli, Prager, Barth, Heneka, Sandhoff, Walter (bib51) 2005; 280 Farooqui, Horrocks, Farooqui (bib12) 2007; 85 Gomez-Munoz, Kong, Salh, Steinbrecher (bib15) 2003; 539 Pettegrew, Panchalingam, Hamilton, McClure (bib41) 2001; 26 Ayasolla, Khan, Singh, Singh (bib2) 2004; 37 He, Okino, Dhami, Dagan, Gatt, Schulze, Sandhoff, Schuchman (bib25) 2003; 278 Patil, Melrose, Chan (bib39) 2007; 26 White, Manelli, Holmberg, Van Eldik, Ladu (bib53) 2005; 18 Bollinger, Teichgraber, Gulbins (bib3) 2005; 1746 Cuvillier, Pirianov, Kleuser, Vanek, Coso, Gutkind, Spiegel (bib11) 1996; 381 He, Li, Park, Dagan, Gatt, Schuchman (bib24) 1999; 274 Alessenko, Bugrova, Dudnik (bib1) 2004; 32 Morishima-Kawashima, Ihara (bib37) 2002; 70 Hartmann, Kuchenbecker, Grimm (bib20) 2007; 103 He, Chen, Gatt, Schuchman (bib22) 2001; 293 Huang, Tanimukai, Liu, Iqbal, Grundke-Iqbal, Gong (bib27) 2004; 20 Buchet, Pikula (bib4) 2000; 47 He, Chen, Dagan, Gatt, Schuchman (bib21) 2003; 314 Perez, Jurisicova, Matikainen, Moriyama, Kim, Takai, Pru, Kolesnick, Tilly (bib40) 2005; 19 Lepine, Lakatos, Courageot, Le Stunff, Sulpice, Giraud (bib35) 2004; 173 Hung, Chang, Chuang (bib28) 1999; 338 Kolesnick, Kronke (bib33) 1998; 60 Malaplate-Armand, Florent-Bechard, Youssef, Koziel, Sponne, Kriem, Leininger-Muller, Olivier, Oster, Pillot (bib36) 2006; 23 Hla (bib26) 2003; 47 Costantini, Weindruch, Della Valle, Puglielli (bib9) 2005; 391 Spiegel, Kolesnick (bib48) 2002; 16 Yankner (bib54) 1996; 2 Tani, Okino, Mitsutake, Tanigawa, Izu, Ito (bib52) 2000; 275 Puglielli, Ellis, Saunders, Kovacs (bib42) 2003; 278 Hartmann (10.1016/j.neurobiolaging.2008.05.010_bib20) 2007; 103 He (10.1016/j.neurobiolaging.2008.05.010_bib23) 2005; 340 White (10.1016/j.neurobiolaging.2008.05.010_bib53) 2005; 18 Satoi (10.1016/j.neurobiolaging.2008.05.010_bib43) 2005; 130 Ju (10.1016/j.neurobiolaging.2008.05.010_bib31) 2005; 38 Costantini (10.1016/j.neurobiolaging.2008.05.010_bib9) 2005; 391 Buchet (10.1016/j.neurobiolaging.2008.05.010_bib4) 2000; 47 Jana (10.1016/j.neurobiolaging.2008.05.010_bib29) 2004; 279 Gottfries (10.1016/j.neurobiolaging.2008.05.010_bib17) 1996; 8 Morishima-Kawashima (10.1016/j.neurobiolaging.2008.05.010_bib37) 2002; 70 Patil (10.1016/j.neurobiolaging.2008.05.010_bib39) 2007; 26 Sweeney (10.1016/j.neurobiolaging.2008.05.010_bib50) 1998; 425 Hla (10.1016/j.neurobiolaging.2008.05.010_bib26) 2003; 47 Yankner (10.1016/j.neurobiolaging.2008.05.010_bib54) 1996; 2 Pettegrew (10.1016/j.neurobiolaging.2008.05.010_bib41) 2001; 26 Cheng (10.1016/j.neurobiolaging.2008.05.010_bib7) 2003; 49 Alessenko (10.1016/j.neurobiolaging.2008.05.010_bib1) 2004; 32 He (10.1016/j.neurobiolaging.2008.05.010_bib22) 2001; 293 Soderberg (10.1016/j.neurobiolaging.2008.05.010_bib47) 1992; 59 Yankner (10.1016/j.neurobiolaging.2008.05.010_bib55) 2007; 27 Ayasolla (10.1016/j.neurobiolaging.2008.05.010_bib2) 2004; 37 Kolesnick (10.1016/j.neurobiolaging.2008.05.010_bib33) 1998; 60 Puglielli (10.1016/j.neurobiolaging.2008.05.010_bib42) 2003; 278 Okino (10.1016/j.neurobiolaging.2008.05.010_bib38) 1999; 274 Farooqui (10.1016/j.neurobiolaging.2008.05.010_bib12) 2007; 85 Huang (10.1016/j.neurobiolaging.2008.05.010_bib27) 2004; 20 Gomez-Munoz (10.1016/j.neurobiolaging.2008.05.010_bib15) 2003; 539 Malaplate-Armand (10.1016/j.neurobiolaging.2008.05.010_bib36) 2006; 23 Bollinger (10.1016/j.neurobiolaging.2008.05.010_bib3) 2005; 1746 Hung (10.1016/j.neurobiolaging.2008.05.010_bib28) 1999; 338 Joseph (10.1016/j.neurobiolaging.2008.05.010_bib30) 2000; 116 He (10.1016/j.neurobiolaging.2008.05.010_bib25) 2003; 278 Smale (10.1016/j.neurobiolaging.2008.05.010_bib46) 1995; 133 Cifone (10.1016/j.neurobiolaging.2008.05.010_bib8) 1994; 180 Sponne (10.1016/j.neurobiolaging.2008.05.010_bib49) 2004; 18 Katsel (10.1016/j.neurobiolaging.2008.05.010_bib32) 2007; 32 Tani (10.1016/j.neurobiolaging.2008.05.010_bib52) 2000; 275 Cutler (10.1016/j.neurobiolaging.2008.05.010_bib10) 2004; 101 Perez (10.1016/j.neurobiolaging.2008.05.010_bib40) 2005; 19 Cuvillier (10.1016/j.neurobiolaging.2008.05.010_bib11) 1996; 381 Zeng (10.1016/j.neurobiolaging.2008.05.010_bib56) 2005; 94 Sawamura (10.1016/j.neurobiolaging.2008.05.010_bib44) 2004; 279 Lepine (10.1016/j.neurobiolaging.2008.05.010_bib35) 2004; 173 Spiegel (10.1016/j.neurobiolaging.2008.05.010_bib48) 2002; 16 Lee (10.1016/j.neurobiolaging.2008.05.010_bib34) 2004; 164 Goni (10.1016/j.neurobiolaging.2008.05.010_bib16) 2002; 531 Chen (10.1016/j.neurobiolaging.2008.05.010_bib6) 2006; 97 Gulbins (10.1016/j.neurobiolaging.2008.05.010_bib18) 2003; 47 Chen (10.1016/j.neurobiolaging.2008.05.010_bib5) 2007; 28 Han (10.1016/j.neurobiolaging.2008.05.010_bib19) 2002; 82 Gervais (10.1016/j.neurobiolaging.2008.05.010_bib14) 1999; 97 Tamboli (10.1016/j.neurobiolaging.2008.05.010_bib51) 2005; 280 Fiebich (10.1016/j.neurobiolaging.2008.05.010_bib13) 1995; 63 He (10.1016/j.neurobiolaging.2008.05.010_bib21) 2003; 314 Schissel (10.1016/j.neurobiolaging.2008.05.010_bib45) 1998; 273 He (10.1016/j.neurobiolaging.2008.05.010_bib24) 1999; 274 |
References_xml | – volume: 59 start-page: 1646 year: 1992 end-page: 1653 ident: bib47 article-title: Lipid composition in different regions of the brain in Alzheimer's disease/senile dementia of Alzheimer's type publication-title: J. Neurochem. – volume: 70 start-page: 392 year: 2002 end-page: 401 ident: bib37 article-title: Alzheimer's disease: beta-Amyloid protein and tau publication-title: J. Neurosci. Res. – volume: 60 start-page: 643 year: 1998 end-page: 665 ident: bib33 article-title: Regulation of ceramide production and apoptosis publication-title: Annu. Rev. Physiol. – volume: 18 start-page: 459 year: 2005 end-page: 465 ident: bib53 article-title: Differential effects of oligomeric and fibrillar amyloid-beta 1-42 on astrocyte-mediated inflammation publication-title: Neurobiol. Dis. – volume: 275 start-page: 3462 year: 2000 end-page: 3468 ident: bib52 article-title: Purification and characterization of a neutral ceramidase from mouse liver. A single protein catalyzes the reversible reaction in which ceramide is both hydrolyzed and synthesized publication-title: J. Biol. Chem. – volume: 82 start-page: 809 year: 2002 end-page: 818 ident: bib19 article-title: Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis publication-title: J. Neurochem. – volume: 425 start-page: 61 year: 1998 end-page: 65 ident: bib50 article-title: Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide publication-title: FEBS Lett. – volume: 47 start-page: 725 year: 2000 end-page: 733 ident: bib4 article-title: Alzheimer's disease: its origin at the membrane, evidence and questions publication-title: Acta Biochim. Pol. – volume: 273 start-page: 2738 year: 1998 end-page: 2746 ident: bib45 article-title: Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development publication-title: J. Biol. Chem. – volume: 38 start-page: 938 year: 2005 end-page: 949 ident: bib31 article-title: Protective effects of S-nitrosoglutathione against amyloid beta-peptide neurotoxicity publication-title: Free Radic. Biol. Med. – volume: 28 start-page: 1148 year: 2007 end-page: 1162 ident: bib5 article-title: Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis publication-title: Neurobiol. Aging – volume: 274 start-page: 36616 year: 1999 end-page: 36622 ident: bib38 article-title: Molecular cloning, sequencing, and expression of the gene encoding alkaline ceramidase from Pseudomonas aeruginosa. Cloning of a ceramidase homologue from Mycobacterium tuberculosis publication-title: J. Biol. Chem. – volume: 85 start-page: 1834 year: 2007 end-page: 1850 ident: bib12 article-title: Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide publication-title: J. Neurosci. Res. – volume: 26 start-page: 2131 year: 2007 end-page: 2141 ident: bib39 article-title: Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons publication-title: Eur. J. Neurosci. – volume: 278 start-page: 19777 year: 2003 end-page: 19783 ident: bib42 article-title: Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis publication-title: J. Biol. Chem. – volume: 49 start-page: 809 year: 2003 end-page: 818 ident: bib7 article-title: Specificity and potential mechanism of sulfatide deficiency in Alzheimer's disease: an electrospray ionization mass spectrometric study publication-title: Cell. Mol. Biol. (Noisy-le-grand) – volume: 1746 start-page: 284 year: 2005 end-page: 294 ident: bib3 article-title: Ceramide-enriched membrane domains publication-title: Biochim. Biophys. Acta – volume: 103 start-page: 159 year: 2007 end-page: 170 ident: bib20 article-title: Alzheimer's disease: the lipid connection publication-title: J. Neurochem. – volume: 314 start-page: 116 year: 2003 end-page: 120 ident: bib21 article-title: A fluorescence-based, high-performance liquid chromatographic assay to determine acid sphingomyelinase activity and diagnose types A and B Niemann-Pick disease publication-title: Anal. Biochem. – volume: 63 start-page: 207 year: 1995 end-page: 211 ident: bib13 article-title: Stimulation of the sphingomyelin pathway induces interleukin-6 gene expression in human astrocytoma cells publication-title: J. Neuroimmunol. – volume: 47 start-page: 393 year: 2003 end-page: 399 ident: bib18 article-title: Regulation of death receptor signaling and apoptosis by ceramide publication-title: Pharmacol. Res. – volume: 274 start-page: 264 year: 1999 end-page: 269 ident: bib24 article-title: A fluorescence-based high-performance liquid chromatographic assay to determine acid ceramidase activity publication-title: Anal. Biochem. – volume: 280 start-page: 28110 year: 2005 end-page: 28117 ident: bib51 article-title: Inhibition of glycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein and amyloid beta-peptide publication-title: J. Biol. Chem. – volume: 279 start-page: 51451 year: 2004 end-page: 51459 ident: bib29 article-title: Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer's disease publication-title: J. Biol. Chem. – volume: 539 start-page: 56 year: 2003 end-page: 60 ident: bib15 article-title: Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages publication-title: FEBS Lett. – volume: 2 start-page: 850 year: 1996 end-page: 852 ident: bib54 article-title: New clues to Alzheimer's disease: unraveling the roles of amyloid and tau publication-title: Nat. Med. – volume: 180 start-page: 1547 year: 1994 end-page: 1552 ident: bib8 article-title: Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase publication-title: J. Exp. Med. – volume: 279 start-page: 11984 year: 2004 end-page: 11991 ident: bib44 article-title: Modulation of amyloid precursor protein cleavage by cellular sphingolipids publication-title: J. Biol. Chem. – volume: 20 start-page: 3489 year: 2004 end-page: 3497 ident: bib27 article-title: Elevation of the level and activity of acid ceramidase in Alzheimer's disease brain publication-title: Eur. J. Neurosci. – volume: 173 start-page: 3783 year: 2004 end-page: 3790 ident: bib35 article-title: Sphingosine contributes to glucocorticoid-induced apoptosis of thymocytes independently of the mitochondrial pathway publication-title: J. Immunol. – volume: 37 start-page: 325 year: 2004 end-page: 338 ident: bib2 article-title: Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E publication-title: Free Radic. Biol. Med. – volume: 116 start-page: 141 year: 2000 end-page: 153 ident: bib30 article-title: Oxidative stress protection and vulnerability in aging: putative nutritional implications for intervention publication-title: Mech. Ageing Dev. – volume: 338 start-page: 161 year: 1999 end-page: 166 ident: bib28 article-title: Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells publication-title: Biochem. J. – volume: 293 start-page: 204 year: 2001 end-page: 211 ident: bib22 article-title: An enzymatic assay for quantifying sphingomyelin in tissues and plasma from humans and mice with Niemann-Pick disease publication-title: Anal. Biochem. – volume: 278 start-page: 32978 year: 2003 end-page: 32986 ident: bib25 article-title: Purification and characterization of recombinant, human acid ceramidase. Catalytic reactions and interactions with acid sphingomyelinase publication-title: J. Biol. Chem. – volume: 164 start-page: 123 year: 2004 end-page: 131 ident: bib34 article-title: Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway publication-title: J. Cell Biol. – volume: 381 start-page: 800 year: 1996 end-page: 803 ident: bib11 article-title: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate publication-title: Nature – volume: 32 start-page: 845 year: 2007 end-page: 856 ident: bib32 article-title: Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer's disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer's disease? publication-title: Neurochem. Res. – volume: 19 start-page: 860 year: 2005 end-page: 862 ident: bib40 article-title: A central role for ceramide in the age-related acceleration of apoptosis in the female germline publication-title: FASEB J. – volume: 340 start-page: 113 year: 2005 end-page: 122 ident: bib23 article-title: Simultaneous quantitative analysis of ceramide and sphingosine in mouse blood by naphthalene-2, 3-dicarboxyaldehyde derivatization after hydrolysis with ceramidase publication-title: Anal. Biochem. – volume: 94 start-page: 703 year: 2005 end-page: 712 ident: bib56 article-title: Amyloid-beta peptide enhances tumor necrosis factor-alpha-induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes publication-title: J. Neurochem. – volume: 130 start-page: 657 year: 2005 end-page: 666 ident: bib43 article-title: Astroglial expression of ceramide in Alzheimer's disease brains: a role during neuronal apoptosis publication-title: Neuroscience – volume: 47 start-page: 401 year: 2003 end-page: 407 ident: bib26 article-title: Signaling and biological actions of sphingosine 1-phosphate publication-title: Pharmacol. Res. – volume: 16 start-page: 1596 year: 2002 end-page: 1602 ident: bib48 article-title: Sphingosine 1-phosphate as a therapeutic agent publication-title: Leukemia – volume: 23 start-page: 178 year: 2006 end-page: 189 ident: bib36 article-title: Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA(2)-dependent sphingomyelinase-ceramide pathway publication-title: Neurobiol. Dis. – volume: 97 start-page: 631 year: 2006 end-page: 640 ident: bib6 article-title: Amyloid beta peptide increases DP5 expression via activation of neutral sphingomyelinase and JNK in oligodendrocytes publication-title: J. Neurochem. – volume: 18 start-page: 836 year: 2004 end-page: 838 ident: bib49 article-title: Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of amyloid-beta peptide publication-title: FASEB J. – volume: 133 start-page: 225 year: 1995 end-page: 230 ident: bib46 article-title: Evidence for apoptotic cell death in Alzheimer's disease publication-title: Exp. Neurol. – volume: 531 start-page: 38 year: 2002 end-page: 46 ident: bib16 article-title: Sphingomyelinases: enzymology and membrane activity publication-title: FEBS Lett. – volume: 32 start-page: 144 year: 2004 end-page: 146 ident: bib1 article-title: Connection of lipid peroxide oxidation with the sphingomyelin pathway in the development of Alzheimer's disease publication-title: Biochem. Soc. Trans. – volume: 101 start-page: 2070 year: 2004 end-page: 2075 ident: bib10 article-title: Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 27 start-page: 41 year: 2007 end-page: 66 ident: bib55 article-title: The aging brain publication-title: Annu. Rev. Pathol. – volume: 97 start-page: 395 year: 1999 end-page: 406 ident: bib14 article-title: Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation publication-title: Cell – volume: 26 start-page: 771 year: 2001 end-page: 782 ident: bib41 article-title: Brain membrane phospholipid alterations in Alzheimer's disease publication-title: Neurochem. Res. – volume: 8 start-page: 365 year: 1996 end-page: 372 ident: bib17 article-title: Membrane components separate early-onset Alzheimer's disease from senile dementia of the Alzheimer type publication-title: Int. Psychogeriatr. – volume: 391 start-page: 59 year: 2005 end-page: 67 ident: bib9 article-title: A TrkA-to-p75NTR molecular switch activates amyloid beta-peptide generation during aging publication-title: Biochem. J. – volume: 274 start-page: 36616 year: 1999 ident: 10.1016/j.neurobiolaging.2008.05.010_bib38 article-title: Molecular cloning, sequencing, and expression of the gene encoding alkaline ceramidase from Pseudomonas aeruginosa. Cloning of a ceramidase homologue from Mycobacterium tuberculosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.51.36616 – volume: 275 start-page: 3462 year: 2000 ident: 10.1016/j.neurobiolaging.2008.05.010_bib52 article-title: Purification and characterization of a neutral ceramidase from mouse liver. A single protein catalyzes the reversible reaction in which ceramide is both hydrolyzed and synthesized publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.5.3462 – volume: 23 start-page: 178 year: 2006 ident: 10.1016/j.neurobiolaging.2008.05.010_bib36 article-title: Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA(2)-dependent sphingomyelinase-ceramide pathway publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2006.02.010 – volume: 82 start-page: 809 year: 2002 ident: 10.1016/j.neurobiolaging.2008.05.010_bib19 article-title: Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2002.00997.x – volume: 32 start-page: 144 year: 2004 ident: 10.1016/j.neurobiolaging.2008.05.010_bib1 article-title: Connection of lipid peroxide oxidation with the sphingomyelin pathway in the development of Alzheimer's disease publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0320144 – volume: 279 start-page: 51451 year: 2004 ident: 10.1016/j.neurobiolaging.2008.05.010_bib29 article-title: Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer's disease publication-title: J. Biol. Chem. doi: 10.1074/jbc.M404635200 – volume: 47 start-page: 393 year: 2003 ident: 10.1016/j.neurobiolaging.2008.05.010_bib18 article-title: Regulation of death receptor signaling and apoptosis by ceramide publication-title: Pharmacol. Res. doi: 10.1016/S1043-6618(03)00052-5 – volume: 103 start-page: 159 issue: Suppl. 1 year: 2007 ident: 10.1016/j.neurobiolaging.2008.05.010_bib20 article-title: Alzheimer's disease: the lipid connection publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2007.04715.x – volume: 314 start-page: 116 year: 2003 ident: 10.1016/j.neurobiolaging.2008.05.010_bib21 article-title: A fluorescence-based, high-performance liquid chromatographic assay to determine acid sphingomyelinase activity and diagnose types A and B Niemann-Pick disease publication-title: Anal. Biochem. doi: 10.1016/S0003-2697(02)00629-2 – volume: 278 start-page: 19777 year: 2003 ident: 10.1016/j.neurobiolaging.2008.05.010_bib42 article-title: Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M300466200 – volume: 539 start-page: 56 year: 2003 ident: 10.1016/j.neurobiolaging.2008.05.010_bib15 article-title: Sphingosine-1-phosphate inhibits acid sphingomyelinase and blocks apoptosis in macrophages publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)00197-2 – volume: 97 start-page: 631 year: 2006 ident: 10.1016/j.neurobiolaging.2008.05.010_bib6 article-title: Amyloid beta peptide increases DP5 expression via activation of neutral sphingomyelinase and JNK in oligodendrocytes publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2006.03774.x – volume: 278 start-page: 32978 year: 2003 ident: 10.1016/j.neurobiolaging.2008.05.010_bib25 article-title: Purification and characterization of recombinant, human acid ceramidase. Catalytic reactions and interactions with acid sphingomyelinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301936200 – volume: 27 start-page: 41 year: 2007 ident: 10.1016/j.neurobiolaging.2008.05.010_bib55 article-title: The aging brain publication-title: Annu. Rev. Pathol. – volume: 279 start-page: 11984 year: 2004 ident: 10.1016/j.neurobiolaging.2008.05.010_bib44 article-title: Modulation of amyloid precursor protein cleavage by cellular sphingolipids publication-title: J. Biol. Chem. doi: 10.1074/jbc.M309832200 – volume: 26 start-page: 771 year: 2001 ident: 10.1016/j.neurobiolaging.2008.05.010_bib41 article-title: Brain membrane phospholipid alterations in Alzheimer's disease publication-title: Neurochem. Res. doi: 10.1023/A:1011603916962 – volume: 28 start-page: 1148 year: 2007 ident: 10.1016/j.neurobiolaging.2008.05.010_bib5 article-title: Trophic factors counteract elevated FGF-2-induced inhibition of adult neurogenesis publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.05.036 – volume: 130 start-page: 657 year: 2005 ident: 10.1016/j.neurobiolaging.2008.05.010_bib43 article-title: Astroglial expression of ceramide in Alzheimer's disease brains: a role during neuronal apoptosis publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.08.056 – volume: 18 start-page: 459 year: 2005 ident: 10.1016/j.neurobiolaging.2008.05.010_bib53 article-title: Differential effects of oligomeric and fibrillar amyloid-beta 1-42 on astrocyte-mediated inflammation publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2004.12.013 – volume: 293 start-page: 204 year: 2001 ident: 10.1016/j.neurobiolaging.2008.05.010_bib22 article-title: An enzymatic assay for quantifying sphingomyelin in tissues and plasma from humans and mice with Niemann-Pick disease publication-title: Anal. Biochem. doi: 10.1006/abio.2001.5108 – volume: 381 start-page: 800 year: 1996 ident: 10.1016/j.neurobiolaging.2008.05.010_bib11 article-title: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate publication-title: Nature doi: 10.1038/381800a0 – volume: 531 start-page: 38 year: 2002 ident: 10.1016/j.neurobiolaging.2008.05.010_bib16 article-title: Sphingomyelinases: enzymology and membrane activity publication-title: FEBS Lett. doi: 10.1016/S0014-5793(02)03482-8 – volume: 19 start-page: 860 year: 2005 ident: 10.1016/j.neurobiolaging.2008.05.010_bib40 article-title: A central role for ceramide in the age-related acceleration of apoptosis in the female germline publication-title: FASEB J. doi: 10.1096/fj.04-2903fje – volume: 116 start-page: 141 year: 2000 ident: 10.1016/j.neurobiolaging.2008.05.010_bib30 article-title: Oxidative stress protection and vulnerability in aging: putative nutritional implications for intervention publication-title: Mech. Ageing Dev. doi: 10.1016/S0047-6374(00)00128-7 – volume: 173 start-page: 3783 year: 2004 ident: 10.1016/j.neurobiolaging.2008.05.010_bib35 article-title: Sphingosine contributes to glucocorticoid-induced apoptosis of thymocytes independently of the mitochondrial pathway publication-title: J. Immunol. doi: 10.4049/jimmunol.173.6.3783 – volume: 180 start-page: 1547 year: 1994 ident: 10.1016/j.neurobiolaging.2008.05.010_bib8 article-title: Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase publication-title: J. Exp. Med. doi: 10.1084/jem.180.4.1547 – volume: 425 start-page: 61 year: 1998 ident: 10.1016/j.neurobiolaging.2008.05.010_bib50 article-title: Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)00198-7 – volume: 97 start-page: 395 year: 1999 ident: 10.1016/j.neurobiolaging.2008.05.010_bib14 article-title: Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-beta precursor protein and amyloidogenic A beta peptide formation publication-title: Cell doi: 10.1016/S0092-8674(00)80748-5 – volume: 164 start-page: 123 year: 2004 ident: 10.1016/j.neurobiolaging.2008.05.010_bib34 article-title: Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway publication-title: J. Cell Biol. doi: 10.1083/jcb.200307017 – volume: 85 start-page: 1834 year: 2007 ident: 10.1016/j.neurobiolaging.2008.05.010_bib12 article-title: Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21268 – volume: 338 start-page: 161 issue: Pt 1 year: 1999 ident: 10.1016/j.neurobiolaging.2008.05.010_bib28 article-title: Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells publication-title: Biochem. J. doi: 10.1042/0264-6021:3380161 – volume: 391 start-page: 59 year: 2005 ident: 10.1016/j.neurobiolaging.2008.05.010_bib9 article-title: A TrkA-to-p75NTR molecular switch activates amyloid beta-peptide generation during aging publication-title: Biochem. J. doi: 10.1042/BJ20050700 – volume: 1746 start-page: 284 year: 2005 ident: 10.1016/j.neurobiolaging.2008.05.010_bib3 article-title: Ceramide-enriched membrane domains publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2005.09.001 – volume: 63 start-page: 207 year: 1995 ident: 10.1016/j.neurobiolaging.2008.05.010_bib13 article-title: Stimulation of the sphingomyelin pathway induces interleukin-6 gene expression in human astrocytoma cells publication-title: J. Neuroimmunol. doi: 10.1016/0165-5728(95)00145-X – volume: 32 start-page: 845 year: 2007 ident: 10.1016/j.neurobiolaging.2008.05.010_bib32 article-title: Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer's disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer's disease? publication-title: Neurochem. Res. doi: 10.1007/s11064-007-9297-x – volume: 20 start-page: 3489 year: 2004 ident: 10.1016/j.neurobiolaging.2008.05.010_bib27 article-title: Elevation of the level and activity of acid ceramidase in Alzheimer's disease brain publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2004.03852.x – volume: 59 start-page: 1646 year: 1992 ident: 10.1016/j.neurobiolaging.2008.05.010_bib47 article-title: Lipid composition in different regions of the brain in Alzheimer's disease/senile dementia of Alzheimer's type publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1992.tb10994.x – volume: 94 start-page: 703 year: 2005 ident: 10.1016/j.neurobiolaging.2008.05.010_bib56 article-title: Amyloid-beta peptide enhances tumor necrosis factor-alpha-induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2005.03217.x – volume: 16 start-page: 1596 year: 2002 ident: 10.1016/j.neurobiolaging.2008.05.010_bib48 article-title: Sphingosine 1-phosphate as a therapeutic agent publication-title: Leukemia doi: 10.1038/sj.leu.2402611 – volume: 8 start-page: 365 year: 1996 ident: 10.1016/j.neurobiolaging.2008.05.010_bib17 article-title: Membrane components separate early-onset Alzheimer's disease from senile dementia of the Alzheimer type publication-title: Int. Psychogeriatr. doi: 10.1017/S1041610296002736 – volume: 26 start-page: 2131 year: 2007 ident: 10.1016/j.neurobiolaging.2008.05.010_bib39 article-title: Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2007.05797.x – volume: 49 start-page: 809 year: 2003 ident: 10.1016/j.neurobiolaging.2008.05.010_bib7 article-title: Specificity and potential mechanism of sulfatide deficiency in Alzheimer's disease: an electrospray ionization mass spectrometric study publication-title: Cell. Mol. Biol. (Noisy-le-grand) – volume: 38 start-page: 938 year: 2005 ident: 10.1016/j.neurobiolaging.2008.05.010_bib31 article-title: Protective effects of S-nitrosoglutathione against amyloid beta-peptide neurotoxicity publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.12.019 – volume: 2 start-page: 850 year: 1996 ident: 10.1016/j.neurobiolaging.2008.05.010_bib54 article-title: New clues to Alzheimer's disease: unraveling the roles of amyloid and tau publication-title: Nat. Med. doi: 10.1038/nm0896-850 – volume: 274 start-page: 264 year: 1999 ident: 10.1016/j.neurobiolaging.2008.05.010_bib24 article-title: A fluorescence-based high-performance liquid chromatographic assay to determine acid ceramidase activity publication-title: Anal. Biochem. doi: 10.1006/abio.1999.4284 – volume: 47 start-page: 725 year: 2000 ident: 10.1016/j.neurobiolaging.2008.05.010_bib4 article-title: Alzheimer's disease: its origin at the membrane, evidence and questions publication-title: Acta Biochim. Pol. doi: 10.18388/abp.2000_3991 – volume: 280 start-page: 28110 year: 2005 ident: 10.1016/j.neurobiolaging.2008.05.010_bib51 article-title: Inhibition of glycosphingolipid biosynthesis reduces secretion of the beta-amyloid precursor protein and amyloid beta-peptide publication-title: J. Biol. Chem. doi: 10.1074/jbc.M414525200 – volume: 70 start-page: 392 year: 2002 ident: 10.1016/j.neurobiolaging.2008.05.010_bib37 article-title: Alzheimer's disease: beta-Amyloid protein and tau publication-title: J. Neurosci. Res. doi: 10.1002/jnr.10355 – volume: 101 start-page: 2070 year: 2004 ident: 10.1016/j.neurobiolaging.2008.05.010_bib10 article-title: Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0305799101 – volume: 37 start-page: 325 year: 2004 ident: 10.1016/j.neurobiolaging.2008.05.010_bib2 article-title: Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.04.007 – volume: 60 start-page: 643 year: 1998 ident: 10.1016/j.neurobiolaging.2008.05.010_bib33 article-title: Regulation of ceramide production and apoptosis publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.60.1.643 – volume: 18 start-page: 836 year: 2004 ident: 10.1016/j.neurobiolaging.2008.05.010_bib49 article-title: Membrane cholesterol interferes with neuronal apoptosis induced by soluble oligomers but not fibrils of amyloid-beta peptide publication-title: FASEB J. doi: 10.1096/fj.03-0372fje – volume: 47 start-page: 401 year: 2003 ident: 10.1016/j.neurobiolaging.2008.05.010_bib26 article-title: Signaling and biological actions of sphingosine 1-phosphate publication-title: Pharmacol. Res. doi: 10.1016/S1043-6618(03)00046-X – volume: 133 start-page: 225 year: 1995 ident: 10.1016/j.neurobiolaging.2008.05.010_bib46 article-title: Evidence for apoptotic cell death in Alzheimer's disease publication-title: Exp. Neurol. doi: 10.1006/exnr.1995.1025 – volume: 340 start-page: 113 year: 2005 ident: 10.1016/j.neurobiolaging.2008.05.010_bib23 article-title: Simultaneous quantitative analysis of ceramide and sphingosine in mouse blood by naphthalene-2, 3-dicarboxyaldehyde derivatization after hydrolysis with ceramidase publication-title: Anal. Biochem. doi: 10.1016/j.ab.2005.01.058 – volume: 273 start-page: 2738 year: 1998 ident: 10.1016/j.neurobiolaging.2008.05.010_bib45 article-title: Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.5.2738 |
SSID | ssj0007476 |
Score | 2.5050619 |
Snippet | Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and sphingolipid... Abstract Abnormal sphingolipid metabolism has been previously reported in Alzheimer's disease (AD). To extend these findings, several sphingolipids and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 398 |
SubjectTerms | Acid Ceramidase - metabolism Aged Alzheimer Disease - metabolism Alzheimer's disease Amyloid beta-Peptides - metabolism Animals Apoptosis - physiology Biological and medical sciences Brain - metabolism Cells, Cultured Ceramidases Ceramide Ceramides - metabolism Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Development. Senescence. Regeneration. Transplantation Fundamental and applied biological sciences. Psychology Human brain Humans Internal Medicine Lysophospholipids - metabolism Medical sciences Neurology Neurons Neurons - metabolism Phosphorylation Rats Sphingolipids - metabolism Sphingomyelin Sphingomyelin Phosphodiesterase - metabolism Sphingomyelinases Sphingomyelins - metabolism Sphingosine - analogs & derivatives Sphingosine - metabolism Sphingosine-1-phosphate tau Proteins - metabolism Vertebrates: nervous system and sense organs |
Title | Deregulation of sphingolipid metabolism in Alzheimer's disease |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0197458008001504 https://www.clinicalkey.es/playcontent/1-s2.0-S0197458008001504 https://dx.doi.org/10.1016/j.neurobiolaging.2008.05.010 https://www.ncbi.nlm.nih.gov/pubmed/18547682 https://www.proquest.com/docview/21283628 https://www.proquest.com/docview/733869466 https://pubmed.ncbi.nlm.nih.gov/PMC2829762 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1558-1497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007476 issn: 0197-4580 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1558-1497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007476 issn: 0197-4580 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1558-1497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007476 issn: 0197-4580 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1558-1497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007476 issn: 0197-4580 databaseCode: AKRWK dateStart: 19800601 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5NQ0JICAEDFn4UP0zwFJrMduwIAaoGUwFpLzBpb5bj2FpQm1ZN9wAP_O2cE6clsElDvDa5VD6fz9_Z390BHDDmssOCFjHGyGXMSlzpkqUs1nmpU6dLLYqWbXGSTU_ZpzN-tgNHfS6Mp1UG39_59NZbh1_GQZvjZVWNvyA4EYzLFvMgrPE1QX31L7TpVz-3NA-Ey1mXMu3re8vkJhxsOV5tzUhf7ajtCBSYlb6OZ3LVNnV7qRtUnuu6XlwGS_9kV_62XR3fhTsBZ5JJN5R7sGPr-7A3qTHGnn8nL0jL_GyP1Pfg7Xu76lrS4ySRhSPN0p9LLWbVsirJ3K7RUGZVMydVTSazH-e2mtvVy4aEy50HcHr84evRNA59FWKTSbqOM1kKamRiUptJn0SJMZ5GJMIdz7mwuU6l0WlCtaMSn9Lc6cyU_sTJGsESRx_Cbr2o7T4QQwvHrdA8c4YVOcVgpXS5YcIKDARzGcHrXo3KhKLjvvfFTPXssm9qOAmhLyZXOAkR8I30siu-cU25N_2MqT7BFF2iwl3imvLiMnnbhPXdqFQ1hypRf9lgBO82kgMz_of_Hg1MbDNwxMmpz3SP4Hlvcwpdgb_f0bVdXDQKUYhEPIJKJ1e8ISiVme8oEMGjzki3epUcV4rEz4uB-W5e8HXIh0_q6rytR-4v43FPffzfY38Ctzpyhqf4PYXd9erCPkPMty5G7aIewY3Jx8_Tk1-Yblsu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTgIkhIAxKD82P0zwFDWZ7dgRAlQNpo6NvrBJe7OcxNaC2jRqugf46zknTkdgk4Z4bXKpfD6fv7O_uwPYY8zG-ylNA4yR84DluNIli1igk1xHVudapA3bYhpPztiXc36-AQddLoyjVXrf3_r0xlv7X0Zem6OqKEbfEJwIxmWDeRDWsDuwyTj65AFsjo-OJ9O1Q0bEHLdZ067Etwzvwt4VzaspG-kKHjVNgTy50pXyDG_aqR5Uukb92bbxxXXI9E-C5W871uEjeOihJhm3o3kMG6Z8AlvjEsPs-Q_yhjTkz-ZUfQs-fDLLtis9zhNZWFJX7mhqMSuqIidzs0JbmRX1nBQlGc9-XphibpZva-Lvd57C2eHn04NJ4FsrBFks6SqIZS5oJsMsMrF0eZQY5mkEI9zyhAuT6EhmOgqptlTiU5pYHWe5O3QymWChpdswKBeleQ4ko6nlRmge24ylCcV4JbdJxoQRGAsmcgjvOjWqzNcdd-0vZqojmH1X_UnwrTG5wkkYAl9LV239jVvKve9mTHU5pugVFW4Ut5QX18mb2i_xWkWq3leh-ssMh_BxLdmz5H_4752eia0HjlA5csnuQ9jtbE6hN3BXPLo0i8taIRCRCElQ6eSGNwSlMnZNBYbwrDXSK71KjitF4udFz3zXL7hS5P0nZXHRlCR39_G4rb7477Hvwr3J6dcTdXI0PX4J91uuhmP8vYLBanlpXiMEXKU7fon_AivmXdk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deregulation+of+sphingolipid+metabolism+in+Alzheimer%27s+disease&rft.jtitle=Neurobiology+of+aging&rft.au=He%2C+Xingxuan&rft.au=Huang%2C+Yu&rft.au=Li%2C+Bin&rft.au=Gong%2C+Cheng-Xin&rft.date=2010-03-01&rft.pub=Elsevier+Inc&rft.issn=0197-4580&rft.volume=31&rft.issue=3&rft.spage=398&rft.epage=408&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2008.05.010&rft.externalDocID=S0197458008001504 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01974580%2FS0197458009X00151%2Fcov150h.gif |