Swarm Learning for decentralized and confidential clinical machine learning

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine 1 , 2 . Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes 3 . However, there is an increasing divide between what is technic...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 594; no. 7862; pp. 265 - 270
Main Authors Warnat-Herresthal, Stefanie, Schultze, Hartmut, Shastry, Krishnaprasad Lingadahalli, Manamohan, Sathyanarayanan, Mukherjee, Saikat, Garg, Vishesh, Sarveswara, Ravi, Händler, Kristian, Pickkers, Peter, Aziz, N. Ahmad, Ktena, Sofia, Tran, Florian, Bitzer, Michael, Ossowski, Stephan, Casadei, Nicolas, Herr, Christian, Petersheim, Daniel, Behrends, Uta, Kern, Fabian, Fehlmann, Tobias, Schommers, Philipp, Lehmann, Clara, Augustin, Max, Rybniker, Jan, Altmüller, Janine, Mishra, Neha, Bernardes, Joana P., Krämer, Benjamin, Bonaguro, Lorenzo, Schulte-Schrepping, Jonas, De Domenico, Elena, Siever, Christian, Kraut, Michael, Desai, Milind, Monnet, Bruno, Saridaki, Maria, Siegel, Charles Martin, Drews, Anna, Nuesch-Germano, Melanie, Theis, Heidi, Heyckendorf, Jan, Schreiber, Stefan, Kim-Hellmuth, Sarah, Nattermann, Jacob, Skowasch, Dirk, Kurth, Ingo, Keller, Andreas, Bals, Robert, Nürnberg, Peter, Rieß, Olaf, Rosenstiel, Philip, Netea, Mihai G., Theis, Fabian, Mukherjee, Sach, Backes, Michael, Aschenbrenner, Anna C., Ulas, Thomas, Breteler, Monique M. B., Giamarellos-Bourboulis, Evangelos J., Kox, Matthijs, Becker, Matthias, Cheran, Sorin, Woodacre, Michael S., Goh, Eng Lim, Schultze, Joachim L.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.06.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-021-03583-3

Cover

Abstract Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine 1 , 2 . Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes 3 . However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation 4 , 5 . Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine. Swarm Learning is a decentralized machine learning approach that outperforms classifiers developed at individual sites for COVID-19 and other diseases while preserving confidentiality and privacy.
AbstractList Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine. Swarm Learning is a decentralized machine learning approach that outperforms classifiers developed at individual sites for COVID-19 and other diseases while preserving confidentiality and privacy.
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine.sup.1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes.sup.3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation.sup.4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning--a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine 1,2 . Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes 3 . However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation 4,5 . Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis oftheir blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine 1 , 2 . Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes 3 . However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation 4 , 5 . Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine. Swarm Learning is a decentralized machine learning approach that outperforms classifiers developed at individual sites for COVID-19 and other diseases while preserving confidentiality and privacy.
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine.sup.1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes.sup.3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation.sup.4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning--a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine. Swarm Learning is a decentralized machine learning approach that outperforms classifiers developed at individual sites for COVID-19 and other diseases while preserving confidentiality and privacy.
Audience Academic
Author Petersheim, Daniel
Mishra, Neha
Drews, Anna
Warnat-Herresthal, Stefanie
Ossowski, Stephan
Backes, Michael
Ulas, Thomas
Theis, Fabian
Bernardes, Joana P.
Fehlmann, Tobias
Altmüller, Janine
Monnet, Bruno
Goh, Eng Lim
Rybniker, Jan
Schreiber, Stefan
Krämer, Benjamin
Keller, Andreas
Schommers, Philipp
Augustin, Max
Ktena, Sofia
Cheran, Sorin
Lehmann, Clara
Woodacre, Michael S.
Garg, Vishesh
Kraut, Michael
Sarveswara, Ravi
Saridaki, Maria
Bonaguro, Lorenzo
Händler, Kristian
Rieß, Olaf
Casadei, Nicolas
Nuesch-Germano, Melanie
Mukherjee, Saikat
Kim-Hellmuth, Sarah
Bitzer, Michael
Mukherjee, Sach
Aziz, N. Ahmad
Tran, Florian
Schultze, Hartmut
Breteler, Monique M. B.
Siever, Christian
Schultze, Joachim L.
Shastry, Krishnaprasad Lingadahalli
Schulte-Schrepping, Jonas
Rosenstiel, Philip
Theis, Heidi
Bals, Robert
Desai, Milind
Becker, Matthias
Herr, Christian
Skowasch, Dirk
Nürnberg, Peter
Kox, Matthijs
De Domenico, Elena
Kurth, Ingo
Kern, Fabian
Behrends, Uta
Netea, Mihai G.
Giamarellos-Bourboulis, Evangelos J.
Pickkers, Peter
Siegel, Charles Martin
Manamo
Author_xml – sequence: 1
  givenname: Stefanie
  orcidid: 0000-0002-0890-5774
  surname: Warnat-Herresthal
  fullname: Warnat-Herresthal, Stefanie
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn
– sequence: 2
  givenname: Hartmut
  orcidid: 0000-0001-5008-7851
  surname: Schultze
  fullname: Schultze, Hartmut
  organization: Hewlett Packard Enterprise
– sequence: 3
  givenname: Krishnaprasad Lingadahalli
  surname: Shastry
  fullname: Shastry, Krishnaprasad Lingadahalli
  organization: Hewlett Packard Enterprise
– sequence: 4
  givenname: Sathyanarayanan
  orcidid: 0000-0002-3612-6276
  surname: Manamohan
  fullname: Manamohan, Sathyanarayanan
  organization: Hewlett Packard Enterprise
– sequence: 5
  givenname: Saikat
  surname: Mukherjee
  fullname: Mukherjee, Saikat
  organization: Hewlett Packard Enterprise
– sequence: 6
  givenname: Vishesh
  orcidid: 0000-0001-5133-5896
  surname: Garg
  fullname: Garg, Vishesh
  organization: Hewlett Packard Enterprise, Mesh Dynamics
– sequence: 7
  givenname: Ravi
  surname: Sarveswara
  fullname: Sarveswara, Ravi
  organization: Hewlett Packard Enterprise
– sequence: 8
  givenname: Kristian
  surname: Händler
  fullname: Händler, Kristian
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn
– sequence: 9
  givenname: Peter
  surname: Pickkers
  fullname: Pickkers, Peter
  organization: Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center
– sequence: 10
  givenname: N. Ahmad
  orcidid: 0000-0001-6184-458X
  surname: Aziz
  fullname: Aziz, N. Ahmad
  organization: Population Health Sciences, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Department of Neurology, Faculty of Medicine, University of Bonn
– sequence: 11
  givenname: Sofia
  surname: Ktena
  fullname: Ktena, Sofia
  organization: 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School
– sequence: 12
  givenname: Florian
  orcidid: 0000-0002-3735-9872
  surname: Tran
  fullname: Tran, Florian
  organization: Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein
– sequence: 13
  givenname: Michael
  surname: Bitzer
  fullname: Bitzer, Michael
  organization: Department of Internal Medicine I, University Hospital, University of Tübingen
– sequence: 14
  givenname: Stephan
  surname: Ossowski
  fullname: Ossowski, Stephan
  organization: Institute of Medical Genetics and Applied Genomics, University of Tübingen, NGS Competence Center Tübingen
– sequence: 15
  givenname: Nicolas
  orcidid: 0000-0003-2209-0580
  surname: Casadei
  fullname: Casadei, Nicolas
  organization: Institute of Medical Genetics and Applied Genomics, University of Tübingen, NGS Competence Center Tübingen
– sequence: 16
  givenname: Christian
  orcidid: 0000-0001-9422-6569
  surname: Herr
  fullname: Herr, Christian
  organization: Department of Internal Medicine V, Saarland University Hospital
– sequence: 17
  givenname: Daniel
  surname: Petersheim
  fullname: Petersheim, Daniel
  organization: Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich
– sequence: 18
  givenname: Uta
  surname: Behrends
  fullname: Behrends, Uta
  organization: Children’s Hospital, Medical Faculty, Technical University Munich
– sequence: 19
  givenname: Fabian
  orcidid: 0000-0002-8223-3750
  surname: Kern
  fullname: Kern, Fabian
  organization: Clinical Bioinformatics, Saarland University
– sequence: 20
  givenname: Tobias
  orcidid: 0000-0003-1967-2918
  surname: Fehlmann
  fullname: Fehlmann, Tobias
  organization: Clinical Bioinformatics, Saarland University
– sequence: 21
  givenname: Philipp
  surname: Schommers
  fullname: Schommers, Philipp
  organization: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne
– sequence: 22
  givenname: Clara
  surname: Lehmann
  fullname: Lehmann, Clara
  organization: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne
– sequence: 23
  givenname: Max
  orcidid: 0000-0002-2300-9337
  surname: Augustin
  fullname: Augustin, Max
  organization: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne
– sequence: 24
  givenname: Jan
  surname: Rybniker
  fullname: Rybniker, Jan
  organization: Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne
– sequence: 25
  givenname: Janine
  surname: Altmüller
  fullname: Altmüller, Janine
  organization: Cologne Center for Genomics, West German Genome Center, University of Cologne
– sequence: 26
  givenname: Neha
  surname: Mishra
  fullname: Mishra, Neha
  organization: Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein
– sequence: 27
  givenname: Joana P.
  surname: Bernardes
  fullname: Bernardes, Joana P.
  organization: Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein
– sequence: 28
  givenname: Benjamin
  surname: Krämer
  fullname: Krämer, Benjamin
  organization: Clinical Infectious Diseases, Research Center Borstel and German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems
– sequence: 29
  givenname: Lorenzo
  orcidid: 0000-0001-9675-7208
  surname: Bonaguro
  fullname: Bonaguro, Lorenzo
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn
– sequence: 30
  givenname: Jonas
  surname: Schulte-Schrepping
  fullname: Schulte-Schrepping, Jonas
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn
– sequence: 31
  givenname: Elena
  orcidid: 0000-0003-0336-8284
  surname: De Domenico
  fullname: De Domenico, Elena
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn
– sequence: 32
  givenname: Christian
  orcidid: 0000-0002-2991-9307
  surname: Siever
  fullname: Siever, Christian
  organization: Hewlett Packard Enterprise
– sequence: 33
  givenname: Michael
  surname: Kraut
  fullname: Kraut, Michael
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn
– sequence: 34
  givenname: Milind
  surname: Desai
  fullname: Desai, Milind
  organization: Hewlett Packard Enterprise
– sequence: 35
  givenname: Bruno
  surname: Monnet
  fullname: Monnet, Bruno
  organization: Hewlett Packard Enterprise
– sequence: 36
  givenname: Maria
  surname: Saridaki
  fullname: Saridaki, Maria
  organization: 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School
– sequence: 37
  givenname: Charles Martin
  surname: Siegel
  fullname: Siegel, Charles Martin
  organization: Hewlett Packard Enterprise
– sequence: 38
  givenname: Anna
  surname: Drews
  fullname: Drews, Anna
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn
– sequence: 39
  givenname: Melanie
  surname: Nuesch-Germano
  fullname: Nuesch-Germano, Melanie
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn
– sequence: 40
  givenname: Heidi
  orcidid: 0000-0001-6339-2521
  surname: Theis
  fullname: Theis, Heidi
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn
– sequence: 41
  givenname: Jan
  surname: Heyckendorf
  fullname: Heyckendorf, Jan
  organization: Clinical Infectious Diseases, Research Center Borstel and German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems
– sequence: 42
  givenname: Stefan
  surname: Schreiber
  fullname: Schreiber, Stefan
  organization: Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein
– sequence: 43
  givenname: Sarah
  surname: Kim-Hellmuth
  fullname: Kim-Hellmuth, Sarah
  organization: Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich
– sequence: 45
  givenname: Jacob
  surname: Nattermann
  fullname: Nattermann, Jacob
  organization: Department of Internal Medicine I, University Hospital Bonn, German Center for Infection Research (DZIF)
– sequence: 46
  givenname: Dirk
  surname: Skowasch
  fullname: Skowasch, Dirk
  organization: Department of Internal Medicine II - Cardiology/Pneumology, University of Bonn
– sequence: 47
  givenname: Ingo
  orcidid: 0000-0002-5642-8378
  surname: Kurth
  fullname: Kurth, Ingo
  organization: Institute of Human Genetics, Medical Faculty, RWTH Aachen University
– sequence: 48
  givenname: Andreas
  orcidid: 0000-0002-5361-0895
  surname: Keller
  fullname: Keller, Andreas
  organization: Clinical Bioinformatics, Saarland University, Department of Neurology and Neurological Sciences, Stanford University School of Medicine
– sequence: 49
  givenname: Robert
  surname: Bals
  fullname: Bals, Robert
  organization: Department of Internal Medicine V, Saarland University Hospital
– sequence: 50
  givenname: Peter
  surname: Nürnberg
  fullname: Nürnberg, Peter
  organization: Cologne Center for Genomics, West German Genome Center, University of Cologne
– sequence: 51
  givenname: Olaf
  surname: Rieß
  fullname: Rieß, Olaf
  organization: Institute of Medical Genetics and Applied Genomics, University of Tübingen, NGS Competence Center Tübingen
– sequence: 52
  givenname: Philip
  surname: Rosenstiel
  fullname: Rosenstiel, Philip
  organization: Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein
– sequence: 53
  givenname: Mihai G.
  orcidid: 0000-0003-2421-6052
  surname: Netea
  fullname: Netea, Mihai G.
  organization: Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Immunology & Metabolism, Life and Medical Sciences (LIMES) Institute, University of Bonn
– sequence: 54
  givenname: Fabian
  orcidid: 0000-0002-2419-1943
  surname: Theis
  fullname: Theis, Fabian
  organization: Institute of Computational Biology, Helmholtz Center Munich (HMGU)
– sequence: 55
  givenname: Sach
  surname: Mukherjee
  fullname: Mukherjee, Sach
  organization: Statistics and Machine Learning, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
– sequence: 56
  givenname: Michael
  surname: Backes
  fullname: Backes, Michael
  organization: CISPA Helmholtz Center for Information Security
– sequence: 57
  givenname: Anna C.
  orcidid: 0000-0002-9429-5457
  surname: Aschenbrenner
  fullname: Aschenbrenner, Anna C.
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn, Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center
– sequence: 58
  givenname: Thomas
  orcidid: 0000-0002-9785-4197
  surname: Ulas
  fullname: Ulas, Thomas
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn
– sequence: 60
  givenname: Monique M. B.
  orcidid: 0000-0002-0626-9305
  surname: Breteler
  fullname: Breteler, Monique M. B.
  organization: Population Health Sciences, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn
– sequence: 61
  givenname: Evangelos J.
  orcidid: 0000-0003-4713-3911
  surname: Giamarellos-Bourboulis
  fullname: Giamarellos-Bourboulis, Evangelos J.
  organization: 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School
– sequence: 62
  givenname: Matthijs
  orcidid: 0000-0001-6537-6971
  surname: Kox
  fullname: Kox, Matthijs
  organization: Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center
– sequence: 63
  givenname: Matthias
  orcidid: 0000-0002-7120-4508
  surname: Becker
  fullname: Becker, Matthias
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn
– sequence: 64
  givenname: Sorin
  surname: Cheran
  fullname: Cheran, Sorin
  organization: Hewlett Packard Enterprise
– sequence: 65
  givenname: Michael S.
  surname: Woodacre
  fullname: Woodacre, Michael S.
  organization: Hewlett Packard Enterprise
– sequence: 66
  givenname: Eng Lim
  orcidid: 0000-0002-3449-9634
  surname: Goh
  fullname: Goh, Eng Lim
  organization: Hewlett Packard Enterprise
– sequence: 67
  givenname: Joachim L.
  orcidid: 0000-0003-2812-9853
  surname: Schultze
  fullname: Schultze, Joachim L.
  email: joachim.schultze@dzne.de
  organization: Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn
BookMark eNqNkktv1DAUhS1URKeFP8Aqgg0sUvyK42yQqopHxUhIFNbWHcdJXTn21E5ayq_Hw0SUqUYV8sLW9XfOtY99hA588AahlwSfEMzku8RJJUWJKSkxqyQr2RO0ILwWJReyPkALjKkssWTiEB2ldIUxrkjNn6FDxjHHVJAF-nJxC3Eolgait74vuhCL1mjjxwjO_jJtAb4tdPCdbXPRgiu0s97qvBhAX1pvCjeLn6OnHbhkXszzMfrx8cP3s8_l8uun87PTZamFZGPJGi47Q4FLrKXgXUMI8IpLKVpGKhDENBWnJB-RAjZYUyFXpF3VdQdcABh2jNjWd_JruLsF59Q62gHinSJYbaJR22hUjkb9iUaxrHq_Va2n1WDa-Yp_lQGs2t3x9lL14UZJIpsG19ngzWwQw_Vk0qgGm7RxDrwJU1K0YowR1pAqo68foFdhij6HkimOKyFwTe-pHpxR1nch99UbU3UqBK8pZWJDlXuo3niTD5k_RGdzeYd_tYfXa3ut_oVO9kB5tGaweq_r2x1BZkbzc-xhSkmdX3zbZemW1TGkFE33f88jH4i0HWG0YfMY1j0unf9Dyn18b-J92o-ofgPhqvya
CitedBy_id crossref_primary_10_1016_j_media_2022_102418
crossref_primary_10_1002_ksa_12657
crossref_primary_10_1016_j_autcon_2024_105669
crossref_primary_10_1093_bib_bbab498
crossref_primary_10_1016_j_immuno_2022_100016
crossref_primary_10_3389_frcmn_2022_907388
crossref_primary_10_21926_obm_genet_2404276
crossref_primary_10_1007_s11036_023_02236_1
crossref_primary_10_3390_electronics12204227
crossref_primary_10_1016_j_jss_2022_111357
crossref_primary_10_1016_j_scib_2025_01_041
crossref_primary_10_1109_TNNLS_2023_3333804
crossref_primary_10_1016_j_compeleceng_2025_110181
crossref_primary_10_3389_fmed_2021_747612
crossref_primary_10_1016_j_compmedimag_2024_102342
crossref_primary_10_1038_s42256_021_00364_5
crossref_primary_10_1109_TSP_2023_3241768
crossref_primary_10_1016_j_intonc_2024_11_003
crossref_primary_10_1016_j_autcon_2024_105556
crossref_primary_10_1097_PRS_0000000000010409
crossref_primary_10_1016_j_amjcard_2023_06_104
crossref_primary_10_1016_j_asoc_2025_112747
crossref_primary_10_2196_47540
crossref_primary_10_3390_cancers14092243
crossref_primary_10_1053_j_semnuclmed_2022_02_003
crossref_primary_10_1038_s42256_021_00399_8
crossref_primary_10_1109_JBHI_2022_3151741
crossref_primary_10_1002_ams2_944
crossref_primary_10_1093_jamia_ocac077
crossref_primary_10_1016_j_compbiomed_2024_109537
crossref_primary_10_1016_j_yamp_2021_07_005
crossref_primary_10_3390_electronics13163157
crossref_primary_10_1109_ACCESS_2023_3284976
crossref_primary_10_1093_database_baad045
crossref_primary_10_1109_JIOT_2024_3370964
crossref_primary_10_1177_20552076231171475
crossref_primary_10_1186_s12885_024_12456_7
crossref_primary_10_1016_j_neucom_2025_129731
crossref_primary_10_1016_j_iot_2023_100956
crossref_primary_10_1146_annurev_cancerbio_061521_092038
crossref_primary_10_2196_46547
crossref_primary_10_3390_app12094336
crossref_primary_10_1016_j_compeleceng_2025_110160
crossref_primary_10_1109_JIOT_2023_3247487
crossref_primary_10_1109_TSP_2023_3240652
crossref_primary_10_1016_j_comnet_2023_109657
crossref_primary_10_1146_annurev_genom_120921_103442
crossref_primary_10_1242_dmm_049376
crossref_primary_10_1109_ACCESS_2024_3422211
crossref_primary_10_1039_D2CS00725H
crossref_primary_10_1016_j_dcan_2024_08_009
crossref_primary_10_1016_j_drudis_2023_103820
crossref_primary_10_1038_s41591_022_01981_2
crossref_primary_10_1109_JIOT_2024_3377221
crossref_primary_10_1038_s43856_024_00722_5
crossref_primary_10_1109_MSEC_2022_3188365
crossref_primary_10_1109_TDSC_2024_3431542
crossref_primary_10_3390_diagnostics14151605
crossref_primary_10_1093_bioinformatics_btac616
crossref_primary_10_1007_s13042_023_01986_4
crossref_primary_10_1016_j_apenergy_2024_125053
crossref_primary_10_1109_TIP_2022_3226416
crossref_primary_10_1109_TCAD_2024_3388908
crossref_primary_10_3389_fpsyt_2022_993289
crossref_primary_10_1109_JIOT_2024_3495693
crossref_primary_10_1109_TMI_2023_3278528
crossref_primary_10_1360_SST_2021_0371
crossref_primary_10_1016_j_asoc_2024_111689
crossref_primary_10_1016_j_isci_2022_105534
crossref_primary_10_1016_j_xcrm_2024_101419
crossref_primary_10_1109_TII_2023_3264289
crossref_primary_10_3390_bioengineering11030219
crossref_primary_10_1148_rg_220107
crossref_primary_10_3390_electronics12041034
crossref_primary_10_1093_nar_gkad965
crossref_primary_10_1007_s40123_024_00981_4
crossref_primary_10_1016_j_esmoop_2023_101596
crossref_primary_10_1109_JIOT_2024_3507746
crossref_primary_10_1002_alr_22958
crossref_primary_10_3892_ijo_2023_5555
crossref_primary_10_1016_j_future_2024_06_035
crossref_primary_10_3389_fnins_2021_762458
crossref_primary_10_1038_s41598_021_99078_2
crossref_primary_10_3389_fnmol_2024_1414886
crossref_primary_10_1016_j_ebiom_2024_105006
crossref_primary_10_1146_annurev_pathmechdis_051222_113147
crossref_primary_10_1098_rsta_2020_0410
crossref_primary_10_1016_j_cels_2022_08_001
crossref_primary_10_1109_JIOT_2022_3232793
crossref_primary_10_1016_j_bspc_2023_105416
crossref_primary_10_1093_bib_bbad525
crossref_primary_10_1109_TII_2022_3173996
crossref_primary_10_1016_j_neucom_2024_128089
crossref_primary_10_1109_JSTSP_2022_3160268
crossref_primary_10_1109_TMC_2023_3290925
crossref_primary_10_1142_S0129065723500338
crossref_primary_10_1016_j_tre_2024_103795
crossref_primary_10_1109_TMC_2023_3330514
crossref_primary_10_1016_j_media_2025_103497
crossref_primary_10_1002_path_6088
crossref_primary_10_1007_s00105_021_04918_x
crossref_primary_10_1109_COMST_2023_3256323
crossref_primary_10_3390_math11214520
crossref_primary_10_1016_j_semcancer_2023_05_004
crossref_primary_10_1016_j_conengprac_2024_105951
crossref_primary_10_1016_j_jscai_2024_102047
crossref_primary_10_1109_TSMC_2022_3228849
crossref_primary_10_1016_j_smim_2023_101778
crossref_primary_10_1038_s43018_022_00436_4
crossref_primary_10_1038_s41598_024_83875_6
crossref_primary_10_1016_j_imed_2021_09_001
crossref_primary_10_1109_OJCS_2024_3356599
crossref_primary_10_1016_j_xcrm_2023_101213
crossref_primary_10_3390_bioengineering11100982
crossref_primary_10_2139_ssrn_4046679
crossref_primary_10_1038_s41746_023_00934_4
crossref_primary_10_1093_jamia_ocad211
crossref_primary_10_1080_28338073_2022_2162202
crossref_primary_10_1186_s13073_024_01315_6
crossref_primary_10_1016_j_patter_2022_100603
crossref_primary_10_1109_TBDATA_2022_3222971
crossref_primary_10_3390_electronics12051154
crossref_primary_10_1016_j_patter_2024_101028
crossref_primary_10_1016_j_asoc_2023_110844
crossref_primary_10_1109_TAI_2021_3133819
crossref_primary_10_1109_TWC_2023_3326438
crossref_primary_10_1109_ACCESS_2025_3531216
crossref_primary_10_1109_TITS_2024_3357138
crossref_primary_10_1145_3679013
crossref_primary_10_1007_s12083_023_01571_0
crossref_primary_10_1109_JSAC_2021_3126076
crossref_primary_10_3389_fimmu_2022_966329
crossref_primary_10_1007_s00417_023_06101_5
crossref_primary_10_1016_j_future_2023_03_036
crossref_primary_10_1016_j_future_2024_05_048
crossref_primary_10_1109_OJCOMS_2024_3506214
crossref_primary_10_1038_s41467_025_57427_z
crossref_primary_10_1109_JAS_2024_125079
crossref_primary_10_3390_jcm13051313
crossref_primary_10_7189_jogh_12_04047
crossref_primary_10_1021_jacs_2c06288
crossref_primary_10_1109_ACCESS_2022_3142899
crossref_primary_10_1109_ACCESS_2023_3246126
crossref_primary_10_1109_TNSE_2022_3206243
crossref_primary_10_1093_bioinformatics_btad531
crossref_primary_10_1109_OJCOMS_2024_3471621
crossref_primary_10_1007_s00778_024_00839_y
crossref_primary_10_1145_3563044
crossref_primary_10_1016_j_isatra_2023_03_034
crossref_primary_10_3390_ijms221910291
crossref_primary_10_1109_ACCESS_2021_3130610
crossref_primary_10_1007_s10489_025_06400_w
crossref_primary_10_1039_D3TB00842H
crossref_primary_10_1111_1759_7714_14333
crossref_primary_10_3389_fmed_2024_1487234
crossref_primary_10_1016_j_patter_2023_100913
crossref_primary_10_1007_s12170_023_00731_4
crossref_primary_10_1111_ddg_15113_g
crossref_primary_10_1002_aaai_12082
crossref_primary_10_1038_s43017_023_00452_7
crossref_primary_10_1016_j_dcan_2022_12_018
crossref_primary_10_1109_TNSE_2024_3409755
crossref_primary_10_1109_LCOMM_2023_3314662
crossref_primary_10_3389_frai_2022_962165
crossref_primary_10_1016_j_jiixd_2023_08_003
crossref_primary_10_1016_j_engappai_2024_108192
crossref_primary_10_1016_j_xcrm_2023_101379
crossref_primary_10_1007_s00068_025_02793_y
crossref_primary_10_1016_j_dcan_2023_07_009
crossref_primary_10_1016_j_dld_2023_08_048
crossref_primary_10_59400_be_v2i1_544
crossref_primary_10_1183_20734735_0169_2023
crossref_primary_10_1038_s41746_024_01005_y
crossref_primary_10_1007_s13167_024_00356_6
crossref_primary_10_3390_s22155544
crossref_primary_10_1007_s11654_024_00572_6
crossref_primary_10_1038_s41576_021_00428_7
crossref_primary_10_1109_TCSS_2024_3482723
crossref_primary_10_3390_electronics13193959
crossref_primary_10_1109_JIOT_2024_3370375
crossref_primary_10_1038_s41598_022_12497_7
crossref_primary_10_1109_TSUSC_2023_3279111
crossref_primary_10_3390_math10234499
crossref_primary_10_1109_ACCESS_2022_3202975
crossref_primary_10_1016_j_jisa_2023_103580
crossref_primary_10_1007_s12083_023_01526_5
crossref_primary_10_1109_TSG_2023_3313771
crossref_primary_10_1016_j_future_2024_107564
crossref_primary_10_1038_s43856_023_00425_3
crossref_primary_10_1097_NR9_0000000000000003
crossref_primary_10_1109_TII_2024_3485801
crossref_primary_10_2139_ssrn_4068313
crossref_primary_10_1038_s41418_022_00968_3
crossref_primary_10_1007_s10462_024_10873_5
crossref_primary_10_1007_s11432_023_3930_9
crossref_primary_10_2967_jnumed_121_263703
crossref_primary_10_1109_TNNLS_2023_3297103
crossref_primary_10_1016_j_compag_2023_107930
crossref_primary_10_1145_3626234
crossref_primary_10_1038_s41467_023_38569_4
crossref_primary_10_1038_s41467_022_29763_x
crossref_primary_10_1109_JIOT_2024_3407584
crossref_primary_10_1145_3615336
crossref_primary_10_1038_s41591_022_01768_5
crossref_primary_10_1016_j_bcra_2023_100185
crossref_primary_10_1016_j_hcc_2023_100128
crossref_primary_10_1016_j_jhep_2023_01_006
crossref_primary_10_1016_j_media_2023_103059
crossref_primary_10_1109_TC_2022_3169436
crossref_primary_10_3389_fmed_2023_1305415
crossref_primary_10_1016_j_bcra_2024_100244
crossref_primary_10_1038_s44359_024_00020_2
crossref_primary_10_1016_j_cjca_2024_07_003
crossref_primary_10_1042_ETLS20210246
crossref_primary_10_1109_ACCESS_2023_3343451
crossref_primary_10_1360_SST_2023_0351
crossref_primary_10_1038_s42256_021_00390_3
crossref_primary_10_1007_s11704_023_3282_7
crossref_primary_10_1016_j_cjca_2021_11_011
crossref_primary_10_1007_s00761_024_01482_6
crossref_primary_10_1109_TNNLS_2024_3354924
crossref_primary_10_1055_a_1423_8052
crossref_primary_10_2139_ssrn_4174576
crossref_primary_10_1109_TNSE_2024_3386623
crossref_primary_10_1186_s40779_024_00510_1
crossref_primary_10_3390_diagnostics12112835
crossref_primary_10_1145_3595185
crossref_primary_10_1038_s42255_022_00607_8
crossref_primary_10_1097_CCE_0000000000000659
crossref_primary_10_1016_j_preteyeres_2024_101290
crossref_primary_10_1007_s00779_024_01820_w
crossref_primary_10_1109_JIOT_2024_3486122
crossref_primary_10_1186_s13054_023_04762_6
crossref_primary_10_1016_S2589_7500_21_00210_7
crossref_primary_10_1111_ddg_15113
crossref_primary_10_1109_JSYST_2023_3290939
crossref_primary_10_1089_neu_2022_0201
crossref_primary_10_7554_eLife_78012
crossref_primary_10_1080_17460441_2022_2090540
crossref_primary_10_3389_fimmu_2024_1409555
crossref_primary_10_1109_TDSC_2024_3364060
crossref_primary_10_1016_j_compbiomed_2023_107861
crossref_primary_10_1016_j_future_2023_02_021
crossref_primary_10_1109_JIOT_2024_3417212
crossref_primary_10_1038_s41598_024_61371_1
crossref_primary_10_1093_brain_awac450
crossref_primary_10_1016_j_csbj_2024_08_024
crossref_primary_10_1002_acn3_52185
crossref_primary_10_1016_j_dcan_2023_10_004
crossref_primary_10_1007_s10120_022_01347_0
crossref_primary_10_1016_j_jii_2022_100405
crossref_primary_10_52825_ocp_v2i_161
crossref_primary_10_1109_COMST_2023_3329027
crossref_primary_10_1016_j_jpi_2023_100350
crossref_primary_10_1088_1361_6560_ac97d9
crossref_primary_10_3390_fi16080267
crossref_primary_10_1016_j_patter_2025_101175
crossref_primary_10_1016_j_cmpb_2023_107745
crossref_primary_10_1109_TITS_2023_3234444
crossref_primary_10_1371_journal_pgen_1010367
crossref_primary_10_1007_s11428_021_00817_w
crossref_primary_10_1016_j_iot_2023_100698
crossref_primary_10_1145_3704807
crossref_primary_10_1109_TPAMI_2024_3470072
crossref_primary_10_1109_ACCESS_2023_3307026
crossref_primary_10_1007_s10479_024_05965_y
crossref_primary_10_1109_TMC_2024_3488746
crossref_primary_10_1016_j_semradonc_2022_06_002
crossref_primary_10_1016_j_jmsy_2022_02_001
crossref_primary_10_1021_acs_bioconjchem_4c00406
crossref_primary_10_1109_JBHI_2024_3428512
crossref_primary_10_1109_TMI_2022_3220750
crossref_primary_10_1038_s41467_025_56510_9
crossref_primary_10_1109_TNSRE_2022_3161272
crossref_primary_10_1126_sciadv_adh8601
crossref_primary_10_1038_s41467_021_25972_y
crossref_primary_10_1109_MWC_015_2300107
crossref_primary_10_1109_TVT_2023_3247859
crossref_primary_10_1109_ACCESS_2023_3298371
crossref_primary_10_1109_JIOT_2022_3168066
crossref_primary_10_1109_JIOT_2022_3150789
crossref_primary_10_1109_TNNLS_2022_3160699
crossref_primary_10_1182_blood_2022015849
crossref_primary_10_1016_j_oret_2022_03_019
crossref_primary_10_1038_s41586_023_06221_2
crossref_primary_10_1097_ICU_0000000000000979
crossref_primary_10_1038_s41746_024_01293_4
crossref_primary_10_1007_s40747_023_01270_6
crossref_primary_10_3390_biomedinformatics3040058
crossref_primary_10_1109_TBDATA_2024_3362191
crossref_primary_10_1080_10543406_2025_2456174
crossref_primary_10_1016_j_procs_2021_12_272
crossref_primary_10_1007_s11427_022_2224_4
crossref_primary_10_1016_j_tig_2024_03_004
crossref_primary_10_3390_electronics11172638
crossref_primary_10_1109_TNNLS_2022_3216981
crossref_primary_10_1093_nar_gkae364
crossref_primary_10_1016_j_prmcm_2022_100124
crossref_primary_10_4103_tjo_TJO_D_23_00018
crossref_primary_10_1038_s41598_025_94501_4
crossref_primary_10_1038_s41698_024_00517_w
crossref_primary_10_1007_s10115_024_02117_3
crossref_primary_10_1109_ACCESS_2022_3141913
crossref_primary_10_2196_47254
crossref_primary_10_3389_ti_2023_11783
crossref_primary_10_1109_JIOT_2023_3285937
crossref_primary_10_1109_JIOT_2022_3201117
crossref_primary_10_1002_sim_10068
crossref_primary_10_1007_s11654_022_00461_w
crossref_primary_10_1053_j_semdp_2023_02_006
crossref_primary_10_1080_00051144_2023_2194097
crossref_primary_10_1109_TNSM_2024_3399534
crossref_primary_10_3390_biomedicines11082225
crossref_primary_10_1038_s41431_023_01403_y
crossref_primary_10_1016_j_scib_2023_03_043
crossref_primary_10_1016_j_neucom_2024_127464
crossref_primary_10_7759_cureus_67546
crossref_primary_10_1016_j_comnet_2023_110137
crossref_primary_10_1016_j_knosys_2024_112451
crossref_primary_10_1038_s41538_023_00220_3
crossref_primary_10_1038_s41746_024_01076_x
crossref_primary_10_1145_3501296
crossref_primary_10_3390_app12199901
crossref_primary_10_1007_s10586_022_03658_4
crossref_primary_10_1186_s40662_021_00273_z
crossref_primary_10_1109_TCOMM_2023_3288591
crossref_primary_10_1038_s12276_024_01243_w
crossref_primary_10_1016_j_xcrm_2022_100666
crossref_primary_10_1016_j_heliyon_2023_e18615
crossref_primary_10_1128_cmr_00227_21
crossref_primary_10_3390_s22239125
crossref_primary_10_1109_TPAMI_2024_3386985
crossref_primary_10_1109_TSP_2024_3450351
crossref_primary_10_3389_fonc_2023_1285775
crossref_primary_10_1038_s42256_021_00421_z
crossref_primary_10_1038_s41598_022_12833_x
crossref_primary_10_1016_j_eclinm_2022_101422
crossref_primary_10_1038_s41591_022_02155_w
crossref_primary_10_1001_jamadermatol_2023_5550
crossref_primary_10_1148_ryai_230514
crossref_primary_10_15252_emmm_202216061
crossref_primary_10_32604_cmes_2024_053462
crossref_primary_10_1016_j_sbi_2021_09_001
crossref_primary_10_1093_haschl_qxae068
crossref_primary_10_1016_j_iot_2023_100783
crossref_primary_10_1109_TEM_2023_3262678
crossref_primary_10_1016_j_ins_2023_119475
crossref_primary_10_1016_j_ailsci_2024_100098
crossref_primary_10_1016_j_xcrm_2022_100652
crossref_primary_10_1016_j_cmpb_2023_107906
crossref_primary_10_1016_j_inffus_2025_102953
crossref_primary_10_1109_TCE_2024_3371928
crossref_primary_10_1093_bioadv_vbac026
crossref_primary_10_1109_TPDS_2024_3501581
crossref_primary_10_1145_3691633
crossref_primary_10_1016_j_patter_2022_100487
crossref_primary_10_3390_app14125247
crossref_primary_10_1007_s00292_022_01141_w
crossref_primary_10_3390_electronics13204091
crossref_primary_10_1109_JAS_2024_124869
crossref_primary_10_3233_FC_221508
crossref_primary_10_1038_s41598_022_19426_8
crossref_primary_10_3389_fdgth_2022_845405
crossref_primary_10_1007_s11897_023_00606_0
crossref_primary_10_1093_bib_bbac373
crossref_primary_10_1016_j_semcancer_2023_02_006
crossref_primary_10_1007_s11280_022_01132_0
crossref_primary_10_1016_j_eswa_2024_125420
crossref_primary_10_1016_j_xcrm_2022_100794
crossref_primary_10_1109_COMST_2022_3218527
crossref_primary_10_1371_journal_pone_0292063
crossref_primary_10_1038_s41598_024_60915_9
crossref_primary_10_1146_annurev_genom_110122_084756
crossref_primary_10_1016_S2589_7500_22_00195_9
crossref_primary_10_1109_JAS_2023_123360
crossref_primary_10_3389_fddsv_2022_1013285
crossref_primary_10_1186_s42400_021_00105_6
crossref_primary_10_1038_s41467_023_43883_y
crossref_primary_10_1007_s10815_024_03148_z
crossref_primary_10_1007_s00105_021_04940_z
crossref_primary_10_1038_s41467_022_32020_w
crossref_primary_10_1007_s40747_024_01573_2
crossref_primary_10_1016_j_jacadv_2022_100153
crossref_primary_10_2196_49575
crossref_primary_10_3390_life14020262
crossref_primary_10_1016_j_neucom_2024_127276
crossref_primary_10_1038_s41467_023_38794_x
crossref_primary_10_1109_TCE_2024_3418963
crossref_primary_10_1167_iovs_65_6_21
crossref_primary_10_1016_j_tcb_2023_10_010
crossref_primary_10_1016_j_ophtha_2024_10_017
crossref_primary_10_1016_j_tbench_2022_100037
crossref_primary_10_1109_JIOT_2024_3448429
crossref_primary_10_1227_neu_0000000000002198
crossref_primary_10_1109_TMC_2023_3325334
crossref_primary_10_1038_s41577_022_00740_1
crossref_primary_10_1109_TIM_2023_3234035
crossref_primary_10_1186_s13059_023_03039_z
crossref_primary_10_1038_s41746_022_00611_y
crossref_primary_10_1016_j_engappai_2024_109972
crossref_primary_10_1093_database_baaf016
crossref_primary_10_1007_s42514_024_00199_7
crossref_primary_10_1109_TCE_2024_3479078
crossref_primary_10_1109_COMST_2023_3315746
crossref_primary_10_3233_FC_221514
crossref_primary_10_1049_blc2_12054
Cites_doi 10.1016/j.cell.2020.08.029
10.3390/computers8010003
10.1016/S0140-6736(15)01316-1
10.1038/nature15816
10.1056/NEJMcp2009575
10.1016/j.tube.2018.01.002
10.1001/jama.2019.19645
10.1161/CIRCRESAHA.117.310967
10.1007/s12027-020-00644-4
10.1126/science.368.6493.810
10.1038/s41467-019-11007-0
10.1126/science.aaw4399
10.1038/550S115a
10.1038/s41591-018-0307-0
10.1038/nature14539
10.1371/journal.pone.0218642
10.1038/s42256-020-0184-3
10.1038/ejhg.2014.196
10.1038/s41392-021-00568-6
10.1056/NEJMp1714229
10.1038/nature21056
10.1016/S0140-6736(18)30739-6
10.1038/s41591-018-0272-7
10.1056/NEJMra1615014
10.1056/NEJMra1814259
10.1017/S0020782900032873
10.1056/NEJMcp2009249
10.1038/s42256-020-0181-6
10.1016/j.cell.2020.08.001
10.1016/j.smim.2015.03.002
10.1038/s41591-019-0548-6
10.1038/s42256-020-0186-1
10.1186/s13073-020-00823-5
10.1038/s41591-020-0931-3
10.1016/j.isci.2019.100780
10.1109/ALLERTON.2015.7447103
10.1145/2976749.2978318
10.1109/CVPR.2017.369
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Jun 10, 2021
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jun 10, 2021
CorporateAuthor COVID-19 Aachen Study (COVAS)
Deutsche COVID-19 Omics Initiative (DeCOI)
CorporateAuthor_xml – name: Deutsche COVID-19 Omics Initiative (DeCOI)
– name: COVID-19 Aachen Study (COVAS)
DBID C6C
AAYXX
CITATION
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s41586-021-03583-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef


Agricultural Science Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 270
ExternalDocumentID 10.1038/s41586-021-03583-3
PMC8189907
A664722362
10_1038_s41586_021_03583_3
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAVBQ
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
TUS
ABUFD
AGSTI
ACMFV
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADTOC
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AFKWF
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESTFP
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
UBY
UHB
UNPAY
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
ID FETCH-LOGICAL-c683t-3948fe2a480c864f911a454886d315a61e954214042a0e0c268b1db77fa46aae3
IEDL.DBID UNPAY
ISSN 0028-0836
1476-4687
IngestDate Sun Oct 26 03:49:11 EDT 2025
Tue Sep 30 16:40:55 EDT 2025
Thu Oct 02 04:02:59 EDT 2025
Tue Oct 07 06:51:54 EDT 2025
Mon Oct 20 21:58:38 EDT 2025
Thu Jun 12 23:32:45 EDT 2025
Tue Jun 10 15:32:04 EDT 2025
Mon Oct 20 16:22:16 EDT 2025
Thu Oct 16 14:33:44 EDT 2025
Wed Oct 01 03:13:24 EDT 2025
Thu Apr 24 22:55:24 EDT 2025
Fri Feb 21 02:37:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7862
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c683t-3948fe2a480c864f911a454886d315a61e954214042a0e0c268b1db77fa46aae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7120-4508
0000-0001-5133-5896
0000-0002-2300-9337
0000-0002-9429-5457
0000-0002-5642-8378
0000-0002-3449-9634
0000-0002-3735-9872
0000-0002-8223-3750
0000-0003-4713-3911
0000-0003-2209-0580
0000-0001-6184-458X
0000-0003-1967-2918
0000-0003-0336-8284
0000-0002-2419-1943
0000-0001-6537-6971
0000-0002-0890-5774
0000-0002-2991-9307
0000-0002-9785-4197
0000-0001-9675-7208
0000-0001-9422-6569
0000-0002-5361-0895
0000-0002-0626-9305
0000-0003-2421-6052
0000-0001-5008-7851
0000-0001-6339-2521
0000-0002-3612-6276
0000-0003-2812-9853
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41586-021-03583-3.pdf
PMID 34040261
PQID 2540566072
PQPubID 40569
PageCount 6
ParticipantIDs unpaywall_primary_10_1038_s41586_021_03583_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8189907
proquest_miscellaneous_2533313915
proquest_journals_2540566072
gale_infotracmisc_A664722362
gale_infotracgeneralonefile_A664722362
gale_infotraccpiq_664722362
gale_infotracacademiconefile_A664722362
gale_incontextgauss_ISR_A664722362
crossref_primary_10_1038_s41586_021_03583_3
crossref_citationtrail_10_1038_s41586_021_03583_3
springer_journals_10_1038_s41586_021_03583_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-10
PublicationDateYYYYMMDD 2021-06-10
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Peiffer-Smadja (CR13) 2020; 2
Warnat-Herresthal (CR3) 2020; 23
(CR17) 1981; 20
Elshafeey (CR39) 2019; 10
Luengo-Oroz (CR12) 2020; 2
Esteva (CR37) 2017; 542
Salem, Taheri, Yuan (CR42) 2018; 8
Mei (CR15) 2020; 26
Price, Cohen (CR5) 2019; 25
Char, Shah, Magnus (CR23) 2018; 378
LeCun, Bengio, Hinton (CR18) 2015; 521
Ge (CR14) 2021; 6
CR32
Chaussabel (CR35) 2015; 27
Kaissis, Makowski, Rückert, Braren (CR19) 2020; 2
Aronson, Rehm (CR1) 2015; 526
He (CR8) 2019; 25
Kels (CR9) 2020; 323
Finlayson (CR24) 2019; 363
Corman (CR33) 2020; 25
Rajkomar, Dean, Kohane (CR20) 2019; 380
Cho (CR11) 2020; 368
Kaissis (CR38) 2019; 14
Savage (CR21) 2017; 550
Dove, Joly, Tassé, Knoppers (CR27) 2015; 23
Kędzior (CR43) 2021; 21
CR29
Haendel, Chute, Robinson (CR2) 2018; 379
CR28
Wiens (CR4) 2019; 25
Zhang (CR16) 2020; 182
Zak (CR31) 2016; 387
CR26
Aschenbrenner (CR34) 2021; 13
CR25
Leong (CR30) 2018; 109
Schulte-Schrepping (CR36) 2020; 182
CR41
CR40
Ping, Hermjakob, Polson, Benos, Wang (CR22) 2018; 122
Gandhi, Lynch, Del Rio (CR7) 2020; 383
Berlin, Gulick, Martinez (CR6) 2020; 383
McCall (CR10) 2018; 391
MA Haendel (3583_CR2) 2018; 379
K Zhang (3583_CR16) 2020; 182
DS Char (3583_CR23) 2018; 378
M Luengo-Oroz (3583_CR12) 2020; 2
ES Dove (3583_CR27) 2015; 23
3583_CR32
A Esteva (3583_CR37) 2017; 542
WN Price II (3583_CR5) 2019; 25
RT Gandhi (3583_CR7) 2020; 383
Y Ge (3583_CR14) 2021; 6
A Cho (3583_CR11) 2020; 368
G Kaissis (3583_CR38) 2019; 14
S Warnat-Herresthal (3583_CR3) 2020; 23
N Elshafeey (3583_CR39) 2019; 10
CG Kels (3583_CR9) 2020; 323
VM Corman (3583_CR33) 2020; 25
A Rajkomar (3583_CR20) 2019; 380
DA Berlin (3583_CR6) 2020; 383
N Savage (3583_CR21) 2017; 550
Y LeCun (3583_CR18) 2015; 521
SJ Aronson (3583_CR1) 2015; 526
GA Kaissis (3583_CR19) 2020; 2
SG Finlayson (3583_CR24) 2019; 363
3583_CR29
DE Zak (3583_CR31) 2016; 387
M Salem (3583_CR42) 2018; 8
3583_CR28
3583_CR25
3583_CR26
J Wiens (3583_CR4) 2019; 25
J He (3583_CR8) 2019; 25
P Ping (3583_CR22) 2018; 122
J Schulte-Schrepping (3583_CR36) 2020; 182
3583_CR41
Council of Europe (3583_CR17) 1981; 20
3583_CR40
S Leong (3583_CR30) 2018; 109
AC Aschenbrenner (3583_CR34) 2021; 13
N Peiffer-Smadja (3583_CR13) 2020; 2
X Mei (3583_CR15) 2020; 26
B McCall (3583_CR10) 2018; 391
M Kędzior (3583_CR43) 2021; 21
D Chaussabel (3583_CR35) 2015; 27
References_xml – volume: 182
  start-page: 1360
  year: 2020
  ident: CR16
  article-title: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.029
– volume: 8
  start-page: 3
  year: 2018
  ident: CR42
  article-title: Utilizing transfer learning and homomorphic encryption in a privacy preserving and secure biometric recognition system
  publication-title: Computers
  doi: 10.3390/computers8010003
– volume: 387
  start-page: 2312
  year: 2016
  end-page: 2322
  ident: CR31
  article-title: A blood RNA signature for tuberculosis disease risk: a prospective cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)01316-1
– volume: 526
  start-page: 336
  year: 2015
  end-page: 342
  ident: CR1
  article-title: Building the foundation for genomics in precision medicine
  publication-title: Nature
  doi: 10.1038/nature15816
– volume: 383
  start-page: 2451
  year: 2020
  end-page: 2460
  ident: CR6
  article-title: Severe Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcp2009575
– volume: 109
  start-page: 41
  year: 2018
  end-page: 51
  ident: CR30
  article-title: Existing blood transcriptional classifiers accurately discriminate active tuberculosis from latent infection in individuals from south India
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2018.01.002
– volume: 323
  start-page: 476
  year: 2020
  end-page: 477
  ident: CR9
  article-title: HIPAA in the era of data sharing
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2019.19645
– volume: 122
  start-page: 1290
  year: 2018
  end-page: 1301
  ident: CR22
  article-title: Biomedical informatics on the cloud: A treasure hunt for advancing cardiovascular medicine
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.310967
– volume: 21
  start-page: 533
  year: 2021
  end-page: 543
  ident: CR43
  article-title: The right to data protection and the COVID-19 pandemic: the European approach
  publication-title: ERA Forum
  doi: 10.1007/s12027-020-00644-4
– volume: 368
  start-page: 810
  year: 2020
  end-page: 811
  ident: CR11
  article-title: AI systems aim to sniff out coronavirus outbreaks
  publication-title: Science
  doi: 10.1126/science.368.6493.810
– volume: 10
  year: 2019
  ident: CR39
  article-title: Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11007-0
– volume: 363
  start-page: 1287
  year: 2019
  end-page: 1289
  ident: CR24
  article-title: Adversarial attacks on medical machine learning
  publication-title: Science
  doi: 10.1126/science.aaw4399
– volume: 550
  start-page: S115
  year: 2017
  end-page: S117
  ident: CR21
  article-title: Calculating disease
  publication-title: Nature
  doi: 10.1038/550S115a
– volume: 25
  start-page: 2000045
  year: 2020
  ident: CR33
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Euro Surveill.
– volume: 25
  start-page: 30
  year: 2019
  end-page: 36
  ident: CR8
  article-title: The practical implementation of artificial intelligence technologies in medicine
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0307-0
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR18
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR29
– volume: 14
  year: 2019
  ident: CR38
  article-title: A machine learning algorithm predicts molecular subtypes in pancreatic ductal adenocarcinoma with differential response to gemcitabine-based versus FOLFIRINOX chemotherapy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0218642
– volume: 2
  start-page: 295
  year: 2020
  end-page: 297
  ident: CR12
  article-title: Artificial intelligence cooperation to support the global response to COVID-19
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0184-3
– volume: 23
  start-page: 1271
  year: 2015
  end-page: 1278
  ident: CR27
  article-title: Genomic cloud computing: legal and ethical points to consider
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2014.196
– ident: CR40
– volume: 6
  start-page: 165
  year: 2021
  ident: CR14
  article-title: An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19
  publication-title: Signal Transduct. Target Ther.
  doi: 10.1038/s41392-021-00568-6
– ident: CR25
– volume: 378
  start-page: 981
  year: 2018
  end-page: 983
  ident: CR23
  article-title: Implementing machine learning in health care—addressing ethical challenges
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1714229
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: CR37
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 391
  start-page: 1249
  year: 2018
  end-page: 1250
  ident: CR10
  article-title: What does the GDPR mean for the medical community?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30739-6
– volume: 25
  start-page: 37
  year: 2019
  end-page: 43
  ident: CR5
  article-title: Privacy in the age of medical big data
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0272-7
– volume: 379
  start-page: 1452
  year: 2018
  end-page: 1462
  ident: CR2
  article-title: Classification, ontology, and precision medicine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1615014
– volume: 380
  start-page: 1347
  year: 2019
  end-page: 1358
  ident: CR20
  article-title: Machine learning in medicine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1814259
– volume: 20
  start-page: 317
  year: 1981
  end-page: 325
  ident: CR17
  article-title: Convention for the Protection of Individuals with Regard to Automatic Processing of Personal Data
  publication-title: Intl Legal Materials
  doi: 10.1017/S0020782900032873
– volume: 383
  start-page: 1757
  year: 2020
  end-page: 1766
  ident: CR7
  article-title: Mild or moderate Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcp2009249
– volume: 2
  start-page: 293
  year: 2020
  end-page: 294
  ident: CR13
  article-title: Machine learning for COVID-19 needs global collaboration and data-sharing
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0181-6
– volume: 182
  start-page: 1419
  year: 2020
  end-page: 1440.e23
  ident: CR36
  article-title: Severe COVID-19 is marked by a dysregulated myeloid cell compartment
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.001
– volume: 27
  start-page: 58
  year: 2015
  end-page: 66
  ident: CR35
  article-title: Assessment of immune status using blood transcriptomics and potential implications for global health
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2015.03.002
– volume: 25
  start-page: 1337
  year: 2019
  end-page: 1340
  ident: CR4
  article-title: Do no harm: a roadmap for responsible machine learning for health care
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0548-6
– ident: CR32
– volume: 2
  start-page: 305
  year: 2020
  end-page: 311
  ident: CR19
  article-title: Secure, privacy-preserving and federated machine learning in medical imaging
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0186-1
– volume: 13
  year: 2021
  ident: CR34
  article-title: Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients
  publication-title: Genome Med.
  doi: 10.1186/s13073-020-00823-5
– ident: CR28
– ident: CR41
– ident: CR26
– volume: 26
  start-page: 1224
  year: 2020
  end-page: 1228
  ident: CR15
  article-title: Artificial intelligence-enabled rapid diagnosis of patients with COVID-19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0931-3
– volume: 23
  start-page: 100780
  year: 2020
  ident: CR3
  article-title: Scalable prediction of acute myeloid leukemia using high-dimensional machine learning and blood transcriptomics
  publication-title: iScience
  doi: 10.1016/j.isci.2019.100780
– volume: 521
  start-page: 436
  year: 2015
  ident: 3583_CR18
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 363
  start-page: 1287
  year: 2019
  ident: 3583_CR24
  publication-title: Science
  doi: 10.1126/science.aaw4399
– ident: 3583_CR41
– volume: 380
  start-page: 1347
  year: 2019
  ident: 3583_CR20
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1814259
– volume: 2
  start-page: 305
  year: 2020
  ident: 3583_CR19
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0186-1
– volume: 27
  start-page: 58
  year: 2015
  ident: 3583_CR35
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2015.03.002
– volume: 25
  start-page: 30
  year: 2019
  ident: 3583_CR8
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0307-0
– volume: 2
  start-page: 293
  year: 2020
  ident: 3583_CR13
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0181-6
– volume: 323
  start-page: 476
  year: 2020
  ident: 3583_CR9
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2019.19645
– volume: 182
  start-page: 1419
  year: 2020
  ident: 3583_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.001
– volume: 25
  start-page: 1337
  year: 2019
  ident: 3583_CR4
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0548-6
– volume: 383
  start-page: 2451
  year: 2020
  ident: 3583_CR6
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcp2009575
– volume: 550
  start-page: S115
  year: 2017
  ident: 3583_CR21
  publication-title: Nature
  doi: 10.1038/550S115a
– volume: 368
  start-page: 810
  year: 2020
  ident: 3583_CR11
  publication-title: Science
  doi: 10.1126/science.368.6493.810
– volume: 26
  start-page: 1224
  year: 2020
  ident: 3583_CR15
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0931-3
– ident: 3583_CR29
– ident: 3583_CR26
  doi: 10.1109/ALLERTON.2015.7447103
– volume: 25
  start-page: 37
  year: 2019
  ident: 3583_CR5
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0272-7
– volume: 20
  start-page: 317
  year: 1981
  ident: 3583_CR17
  publication-title: Intl Legal Materials
  doi: 10.1017/S0020782900032873
– volume: 21
  start-page: 533
  year: 2021
  ident: 3583_CR43
  publication-title: ERA Forum
  doi: 10.1007/s12027-020-00644-4
– volume: 10
  year: 2019
  ident: 3583_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11007-0
– volume: 122
  start-page: 1290
  year: 2018
  ident: 3583_CR22
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.310967
– volume: 8
  start-page: 3
  year: 2018
  ident: 3583_CR42
  publication-title: Computers
  doi: 10.3390/computers8010003
– volume: 23
  start-page: 100780
  year: 2020
  ident: 3583_CR3
  publication-title: iScience
  doi: 10.1016/j.isci.2019.100780
– volume: 383
  start-page: 1757
  year: 2020
  ident: 3583_CR7
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcp2009249
– volume: 391
  start-page: 1249
  year: 2018
  ident: 3583_CR10
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30739-6
– volume: 379
  start-page: 1452
  year: 2018
  ident: 3583_CR2
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1615014
– ident: 3583_CR25
– volume: 6
  start-page: 165
  year: 2021
  ident: 3583_CR14
  publication-title: Signal Transduct. Target Ther.
  doi: 10.1038/s41392-021-00568-6
– volume: 378
  start-page: 981
  year: 2018
  ident: 3583_CR23
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1714229
– volume: 23
  start-page: 1271
  year: 2015
  ident: 3583_CR27
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/ejhg.2014.196
– ident: 3583_CR28
– volume: 2
  start-page: 295
  year: 2020
  ident: 3583_CR12
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0184-3
– volume: 542
  start-page: 115
  year: 2017
  ident: 3583_CR37
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: 3583_CR40
  doi: 10.1145/2976749.2978318
– volume: 182
  start-page: 1360
  year: 2020
  ident: 3583_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.029
– volume: 13
  year: 2021
  ident: 3583_CR34
  publication-title: Genome Med.
  doi: 10.1186/s13073-020-00823-5
– volume: 526
  start-page: 336
  year: 2015
  ident: 3583_CR1
  publication-title: Nature
  doi: 10.1038/nature15816
– volume: 25
  start-page: 2000045
  year: 2020
  ident: 3583_CR33
  publication-title: Euro Surveill.
– volume: 387
  start-page: 2312
  year: 2016
  ident: 3583_CR31
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)01316-1
– ident: 3583_CR32
  doi: 10.1109/CVPR.2017.369
– volume: 109
  start-page: 41
  year: 2018
  ident: 3583_CR30
  publication-title: Tuberculosis
  doi: 10.1016/j.tube.2018.01.002
– volume: 14
  year: 2019
  ident: 3583_CR38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0218642
SSID ssj0005174
Score 2.7403605
Snippet Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine 1 , 2 . Patients with leukaemia can be...
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine 1,2 . Patients with leukaemia can be...
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine.sup.1,2. Patients with leukaemia can be...
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be...
SourceID unpaywall
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 265
SubjectTerms 38
45/91
631/114/1305
631/114/2397
631/114/2413
692/53/2421
692/699/255/2514
Application programming interface
Artificial intelligence
Blockchain
Blood
Classifiers
Computer-aided medical diagnosis
Confidentiality
Coronaviruses
COVID-19
Cryptography
Datasets
Edge computing
Fault tolerance
Health aspects
Humanities and Social Sciences
Learning algorithms
Leukemia
Machine learning
Methods
multidisciplinary
Neural networks
Patients
Precision medicine
Privacy
Science
Science (multidisciplinary)
Tuberculosis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTgh4QGyACBvIIMQPbdGS2HWcB4QG2jRAVGhj0t4sx3ZKpS7tllYT_PX4UiddBqp46sNdYsV3Pp_r774DeGV47rLWBNFTsQ4Zy1goCl6EWS5sLFJhjcJq5G8DfnTKvpz1z9Zg0NTCIKyyiYl1oDYTjf-R7yWYWnAepcmH6UWIXaPwdrVpoaF8awXzvqYYuwXrCTJj9WD948Hg-_ES9HGDl9mX0URU7FVuKxMIyEWIUV_QkHa2qpsB-28QZXuTeg_uzMup-nWlxuNrm9XhA7jvs0yyv3CLDViz5SbcrtGeutqEDb-iK_LW006_ewhfT67U5TnxhKtD4rJZYqwfd_TbGqJKQ9zxuRjVxb3u_U1ZJTmvIZmW-B4Uw0dwenjw49NR6FsthJoLOgtpxkRhE8VEpAVnhQuBirnDjOCGxn3FY5v1WYJUPImKbKQTLvLY5GlaKMaVsvQx9MpJaZ8A6Yso0ypXLjMsGHbDcr-6EIU7mWlrYh5A3Myq1J6HHNthjGV9H06FXFhCOkvI2hKSBrDTPjNdsHCs1H6JxpJIb1Eifmao5lUlP58cy32OdPmJ27UDeOOViokbXitfjuA-AhmxOppbHU09HV3Ia9LXHelwYbZ_vWa7o-iWse6KG9eSPoxUcun0AbxoxfgkQuNKO5mjDqU0Rp7_ANKOS7ZThRTiXUk5-llTibt0zaUjaQC7jfMuB181wbutg_-HPZ6u_rQtuJvUq467nGAberPLuX3mMr1Z_twv3z-b1ksI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGEAIeEBsgygYKCPEhrqJt0jR9nE5MAwQPjEl7i9I0OU669Y71ThP89Ti5tFs3NMFTH-w4auzEjmL_DPCy5hVGrZnLnkp1zFjJYmG5jctKmFQUwtTKVSN_-coPjtin4_x4A0ZdLczg_d5Dd7foYoRLlHWpP7mgMb0BNwUaputXMObj84SOS5jLoUQGpby_KmPghi4fxlcTJPtX0rtwe9Us1K8zNZtdcET79-FeiCDJ3lrlW7Bhmm245TM5dbsNW2G3tuRNgJR--wA-H56p0xMSwFQnBCNVUpsw7_S3qYlqaoJXYzv1hbsovyuZJCc-3dKQ0F9i8hCO9j98Hx_EoY1CrLmgy5iWTFiTKSYSLTizeLwphhcVwWua5oqnpsxZ5mB2MpWYRGdcVGldFYVVjCtl6CPYbOaNeQwkF0mpVaUw6rPMdbrCr7bC4q1LmzrlEaTdqkodMMZdq4uZ9G_dVMi1JiRqQnpNSBrBu37MYo2wcS33C6cs6aArGpcbM1GrtpUfD7_JPe6g8DP0yBG8Dkx2jtNrFUoN8Ccc2tWAc2fAqRfTn_IC9dWAOlmr7W9idgeMuEX1kNyZlgxHRCszFytznhRIft6T3UiX9taY-crxUEpTh-EfQTEwyX6pHDz4kNJMf3iYcAzFMNQoIhh1xns--XULPOoN_B_08eT_pO_AnczvQo7-fxc2l6cr8xSjumX1zG_mP2IyPdU
  priority: 102
  providerName: Springer Nature
Title Swarm Learning for decentralized and confidential clinical machine learning
URI https://link.springer.com/article/10.1038/s41586-021-03583-3
https://www.proquest.com/docview/2540566072
https://www.proquest.com/docview/2533313915
https://pubmed.ncbi.nlm.nih.gov/PMC8189907
https://www.nature.com/articles/s41586-021-03583-3.pdf
UnpaywallVersion publishedVersion
Volume 594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: AFBBN
  dateStart: 20190103
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-4687
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8FG
  dateStart: 19900104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trRDjAdhgomxUASE-xDLy4TjuY6lWBohq2qhWnizHcUpFl5al1cT-es6uU5oxTewlUXQXRz7b57Pyu98BvExpglFroNFTvnQJaRGXZTRzWwlTPouZSoXORv7ao4d98nkQDdaAlrkwBrRvKC2Nmy7RYe8L3GiYhstqAFDEQhePgGm2DnUaYQxeg3q_d9T-vkq5bNKKYuoSymKbLeOF7JqGKjvSVb_8L1Zy-cP0Htyd51Px-0KMxyt7UvcBnJa9WUBRfu7PZ8m-vLxC9Hj77j6E-zZMddoLzU1YU_kW3DFwUVlswaZ1CYXzxvJWv30EX04uxPmZYxlbhw6Gw06qbI9Glyp1RJ46eP7ORiY7GNsv8zKdM4PpVI4tYjF8DP3uwbfOoWtrNbiSsnDmhi3CMhUIwjzJKMnQhwqCpyFG09CPBPVVKyKB5vIJhKc8GVCW-GkSx5kgVAgVbkMtn-TqCTgR81pSJAJDy4zoclp4lxnL8GgnVerTBvjleHFpicx1PY0xNz_UQ8YX1uNoPW6sx8MGvFu-M13QeNyo_UJPA675MXINwBmKeVHwTyfHvE01336A234DXlulbIKfl8LmM2AnNKVWRXOnoimno198RfqqIh0uhu26ZnYriugHZFVcTlpu_VDBAx2QU-rFKH6-FOs3NbYuV5O51gnD0NeFAhoQVyb70lSag7wqyUc_DBc5xnsYz8QN2CuXxd-P32TgveXS-Y_xeHo79R3YCMzKoRhk7EJtdj5XzzB0nCVNWI8HMV5Zx9fX7scm1D8c9I6O8alDO03rR_4ADnNniQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NITR4QGyACBsQED-GWLTEdh33AaEJmFq67YFtUt-M4zilUpd2S6tq_FH8jZxTp10GqnjZUx58sRXf-fw5vvsO4HXKE0StxEZPRTpgrMkCkfEsaCbCRCIWJlU2G_nwiLdO2bduo7sCv6tcGBtWWfnE0lGnQ23_ke8SCy04D2PyaXQe2KpR9na1KqExM4uOuZzika342P6C-n1DyP7Xk8-twFUVCDQXdBzQJhOZIYqJUAvOMlztiiFuFzylUUPxyDQbjFjWGaJCE2rCRRKlSRxninGlDMV-b8FtRtGX4PqJu_EipOQa67NL0gmp2C1woxQ23NcGMDUEDWhtI7y-Hfwdojm_p70Ha5N8pC6najC4shXuP4D7DsP6ezOjW4cVk2_AnTKWVBcbsO78ReFvO1Lr9w-hczxVF2e-o3Pt-YiV_dS4cfu_TOqrPPXxcJ71y9Rh7L9K2vTPyoBP47sKF71HcHojU_4YVvNhbp6A3xBhU6tEIe7MmK21hU-diQzPfdqkEfcgqmZVasdybottDGR5206FnGlCoiZkqQlJPfgwf2c04_hYKv3KKkta8ozcRuf01KQoZPv4u9zjloyfICbw4J0TyoY4vFYu2QE_wvJt1SQ3a5J61D-XV1rf1lp7M7X9q5utmiA6CV1vrkxLOidVyMWS8uDlvNm-aQPvcjOcWBlKaWSrCHgQ10xyPlWWoLzekvd_lkTlCAYR7MQe7FTGuxh82QTvzA38P_TxdPmnvYC11snhgTxoH3U24S4pVyBH9LEFq-OLiXmGmHKcPC8Xsg8_btpz_AEzVH-X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIb4eEBsgwgYExKdY1CZOHecBoYlRrRQmxJjUN-M4TqnUpd3Sqhp_Gn8dd6nTLgNVvOwpD77Yiu98Pse_-x3A85QnGLUGhJ7ytReGceiJjGdenAjji0iYVFE28pcDvn8Ufuq1emvwu8qFIVhl5RNLR52ONP0jbwQUWnDejIJGZmERX_fa78cnHlWQopvWqpzG3ES65myGx7fiXWcPdf0iCNofv3_Y92yFAU9zwSYei0ORmUCFoqkFDzNc-SrEGF7wlPktxX0Tt8KAGGgC1TRNHXCR-GkSRZkKuVKGYb9X4GrEWExwwqgXLeElFxigbcJOk4lGgZumIOgvgZlagnmstile3Br-hmsu7mxvwY1pPlZnMzUcntsW23fgto1n3d25AW7Amsk34VqJK9XFJmxY31G4ry3B9Zu70D2cqdNj11K79l2Mm93U2HEHv0zqqjx18aCeDco0Yuy_SuB0j0vwp3FttYv-PTi6lCm_D-v5KDcPwG2JZqxVojAGzUKqu4VPnYkMz4DapD53wK9mVWrLeE6FN4ayvHlnQs41IVETstSEZA68XbwznvN9rJR-RsqSRKSRk0n21bQoZOfwm9zlRMwfYHzgwCsrlI1weK1s4gN-BHFv1SS3apJ6PDiR51pf1lr7c7X9q5vtmiA6DF1vrkxLWodVyOXycuDpopneJBBebkZTkmGM-VRRwIGoZpKLqSKy8npLPvhZkpZjYIiBT-TATmW8y8FXTfDOwsD_Qx8PV3_aE7iOPkN-7hx0t-BmUC5AjoHINqxPTqfmEYaXk-RxuY5d-HHZjuMP6ImD2g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NTojxAGyACBsoIMQPsYwkdhz3sUJMA8SEGBXbk-U4dlfRpWVpNbG_nrPrlGZME3vKw10c-WyfPyvffQZ4UbICUWtq2VOJiijt0ogbZqJuwXXCc65LaauRv-yzvT79dJgdrgBramEcad9JWro03bDD3tW40XBLl7UEoIyTCI-ApbkBqyxDDN6B1f7-197RsuSyKyvKWUQZz321TEz4JQ21dqSLeflfruTih-ltuDWrJvL3mRyNlvak3bvwo-nNnIryc2c2LXbU-QWhx-t39x7c8TA17M0912FFVxtw09FFVb0B6z4l1OFrr1v95j58PjiTpyehV2wdhAiHw1L7Hg3PdRnKqgzx_G2GrjoY22_qMsMTx-nUob_EYvAA-rsfvr_fi_xdDZFinEwj0qXc6FRSHivOqMEcKimehjgrSZJJluhuRlOr5ZPKWMcqZbxIyiLPjaRMSk0eQqcaV_oRhBmPu0oWEqGlofY6LXwqww0e7ZQuExZA0oyXUF7I3N6nMRLuhzrhYh49gdETLnqCBPB28c5kLuNxpfdzOw2E1ceoLAFnIGd1LT4efBM9ZvX2U9z2A3jlncwYP6-kr2fATlhJrZbnZstTTYa_xJL1Zcs6mA_bZc1stRwxD6i2uZm0wuehWqQWkDMW52h-tjDbNy23rtLjmfUhhCT2ooAA8tZkX4TKapC3LdXw2GmRI95DPJMHsN0si78fvyrA24ul8x_j8fh67puwlrqVwxBkbEFnejrTTxA6TounPk_8AYBYYng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swarm+Learning+for+decentralized+and+confidential+clinical+machine+learning&rft.jtitle=Nature+%28London%29&rft.au=Warnat-Herresthal%2C+Stefanie&rft.au=Schultze%2C+Hartmut&rft.au=Shastry%2C+Krishnaprasad+Lingadahalli&rft.au=Manamohan%2C+Sathyanarayanan&rft.date=2021-06-10&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=594&rft.issue=7862&rft.spage=265&rft_id=info:doi/10.1038%2Fs41586-021-03583-3&rft.externalDBID=ISR&rft.externalDocID=A664722362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon