Dynamic instability during post-stroke hemiparetic walking

•We directly quantified walking stability in stroke survivors and healthy controls.•Stroke subjects had greater local and orbital instability but remained orbitally stable.•Stroke subjects had greater step width but similar lateral margins of stability (MOS).•Stroke subjects had greater variability...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 40; no. 3; pp. 457 - 463
Main Authors Kao, Pei-Chun, Dingwell, Jonathan B., Higginson, Jill S., Binder-Macleod, Stuart
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.07.2014
Subjects
Online AccessGet full text
ISSN0966-6362
1879-2219
1879-2219
DOI10.1016/j.gaitpost.2014.05.014

Cover

Abstract •We directly quantified walking stability in stroke survivors and healthy controls.•Stroke subjects had greater local and orbital instability but remained orbitally stable.•Stroke subjects had greater step width but similar lateral margins of stability (MOS).•Stroke subjects had greater variability in all MOS and step spatiotemporal measures.•Dynamic stability measures detect changes in walking stability associated with stroke. Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of walking instability for detecting which individuals will have increased risk of falls. The purposes of this study were to directly quantify walking stability in stroke survivors and neurologically intact controls and to determine which stability measures would reveal the changes in walking stability following stroke. This study thus provided an initial step to establish objective measures for identifying potential fallers. Nine post-stroke individuals and nine controls walked on a treadmill at four different speeds. We computed short-term local divergence exponent (LDE) and maximum Floquet multiplier (maxFM) of the trunk motion, average and variability of dynamic margins of stability (MOS) and step spatiotemporal measures. Post-stroke individuals demonstrated larger short-term LDE (p=0.002) and maxFM (p=0.041) in the mediolateral (ML) direction compared to the controls but remained orbitally stable (maxFM<1). In addition, post-stroke individuals walked with greater average step width (p=0.003) but similar average ML MOS (p=0.154) compared to the controls. Post-stroke individuals also exhibited greater variability in all MOS and step measures (all p<0.005). Our findings indicate that post-stroke individuals walked with greater local and orbital instability and gait variability than neurologically intact controls. The results suggest that short-term LDE of ML trunk motion and the variability of MOS and step spatiotemporal measures detect the changes in walking stability associated with stroke. These stability measures may have the potential for identifying those post-stroke individuals at increased risk of falls.
AbstractList Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of walking instability for detecting which individuals will have increased risk of falls. The purposes of this study were to directly quantify walking stability in stroke survivors and neurologically intact controls and to determine which stability measures would reveal the changes in walking stability following stroke. This study thus provided an initial step to establish objective measures for identifying potential fallers. Nine post-stroke individuals and nine controls walked on a treadmill at four different speeds. We computed short-term local divergence exponent (LDE) and maximum Floquet multiplier (maxFM) of the trunk motion, average and variability of dynamic margins of stability (MOS) and step spatiotemporal measures. Post-stroke individuals demonstrated larger short-term LDE (p = 0.002) and maxFM (p = 0.041) in the mediolateral (ML) direction compared to the controls but remained orbitally stable (maxFM < 1). In addition, post-stroke individuals walked with greater average step width (p = 0.003) but similar average ML MOS (p = 0.154) compared to the controls. Post-stroke individuals also exhibited greater variability in all MOS and step measures (all p < 0.005). Our findings indicate that post-stroke individuals walked with greater local and orbital instability and gait variability than neurologically intact controls. The results suggest that short-term LDE of ML trunk motion and the variability of MOS and step spatiotemporal measures detect the changes in walking stability associated with stroke. These stability measures may have the potential for identifying those post-stroke individuals at increased risk of falls.
•We directly quantified walking stability in stroke survivors and healthy controls.•Stroke subjects had greater local and orbital instability but remained orbitally stable.•Stroke subjects had greater step width but similar lateral margins of stability (MOS).•Stroke subjects had greater variability in all MOS and step spatiotemporal measures.•Dynamic stability measures detect changes in walking stability associated with stroke. Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of walking instability for detecting which individuals will have increased risk of falls. The purposes of this study were to directly quantify walking stability in stroke survivors and neurologically intact controls and to determine which stability measures would reveal the changes in walking stability following stroke. This study thus provided an initial step to establish objective measures for identifying potential fallers. Nine post-stroke individuals and nine controls walked on a treadmill at four different speeds. We computed short-term local divergence exponent (LDE) and maximum Floquet multiplier (maxFM) of the trunk motion, average and variability of dynamic margins of stability (MOS) and step spatiotemporal measures. Post-stroke individuals demonstrated larger short-term LDE (p=0.002) and maxFM (p=0.041) in the mediolateral (ML) direction compared to the controls but remained orbitally stable (maxFM<1). In addition, post-stroke individuals walked with greater average step width (p=0.003) but similar average ML MOS (p=0.154) compared to the controls. Post-stroke individuals also exhibited greater variability in all MOS and step measures (all p<0.005). Our findings indicate that post-stroke individuals walked with greater local and orbital instability and gait variability than neurologically intact controls. The results suggest that short-term LDE of ML trunk motion and the variability of MOS and step spatiotemporal measures detect the changes in walking stability associated with stroke. These stability measures may have the potential for identifying those post-stroke individuals at increased risk of falls.
Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of walking instability for detecting which individuals will have increased risk of falls. The purposes of this study were to directly quantify walking stability in stroke survivors and neurologically intact controls and to determine which stability measures would reveal the changes in walking stability following stroke. This study thus provided an initial step to establish objective measures for identifying potential fallers. Nine post-stroke individuals and nine controls walked on a treadmill at four different speeds. We computed short-term local divergence exponent (LDE) and maximum Floquet multiplier (maxFM) of the trunk motion, average and variability of dynamic margins of stability (MOS) and step spatiotemporal measures. Post-stroke individuals demonstrated larger short-term LDE (p = 0.002) and maxFM (p = 0.041) in the mediolateral (ML) direction compared to the controls but remained orbitally stable (maxFM < 1). In addition, post-stroke individuals walked with greater average step width (p = 0.003) but similar average ML MOS (p = 0.154) compared to the controls. Post-stroke individuals also exhibited greater variability in all MOS and step measures (all p < 0.005). Our findings indicate that post-stroke individuals walked with greater local and orbital instability and gait variability than neurologically intact controls. The results suggest that short-term LDE of ML trunk motion and the variability of MOS and step spatiotemporal measures detect the changes in walking stability associated with stroke. These stability measures may have the potential for identifying those post-stroke individuals at increased risk of falls.Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of walking instability for detecting which individuals will have increased risk of falls. The purposes of this study were to directly quantify walking stability in stroke survivors and neurologically intact controls and to determine which stability measures would reveal the changes in walking stability following stroke. This study thus provided an initial step to establish objective measures for identifying potential fallers. Nine post-stroke individuals and nine controls walked on a treadmill at four different speeds. We computed short-term local divergence exponent (LDE) and maximum Floquet multiplier (maxFM) of the trunk motion, average and variability of dynamic margins of stability (MOS) and step spatiotemporal measures. Post-stroke individuals demonstrated larger short-term LDE (p = 0.002) and maxFM (p = 0.041) in the mediolateral (ML) direction compared to the controls but remained orbitally stable (maxFM < 1). In addition, post-stroke individuals walked with greater average step width (p = 0.003) but similar average ML MOS (p = 0.154) compared to the controls. Post-stroke individuals also exhibited greater variability in all MOS and step measures (all p < 0.005). Our findings indicate that post-stroke individuals walked with greater local and orbital instability and gait variability than neurologically intact controls. The results suggest that short-term LDE of ML trunk motion and the variability of MOS and step spatiotemporal measures detect the changes in walking stability associated with stroke. These stability measures may have the potential for identifying those post-stroke individuals at increased risk of falls.
Highlights • We directly quantified walking stability in stroke survivors and healthy controls. • Stroke subjects had greater local and orbital instability but remained orbitally stable. • Stroke subjects had greater step width but similar lateral margins of stability (MOS). • Stroke subjects had greater variability in all MOS and step spatiotemporal measures. • Dynamic stability measures detect changes in walking stability associated with stroke.
Author Dingwell, Jonathan B.
Binder-Macleod, Stuart
Kao, Pei-Chun
Higginson, Jill S.
AuthorAffiliation a Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
b Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712, USA
c Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
AuthorAffiliation_xml – name: b Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712, USA
– name: a Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
– name: c Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
Author_xml – sequence: 1
  givenname: Pei-Chun
  surname: Kao
  fullname: Kao, Pei-Chun
  email: kaop@udel.edu
  organization: Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
– sequence: 2
  givenname: Jonathan B.
  surname: Dingwell
  fullname: Dingwell, Jonathan B.
  organization: Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712, USA
– sequence: 3
  givenname: Jill S.
  surname: Higginson
  fullname: Higginson, Jill S.
  organization: Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
– sequence: 4
  givenname: Stuart
  surname: Binder-Macleod
  fullname: Binder-Macleod, Stuart
  organization: Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24931112$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFr1DtkUuCx7GdBKGKqvyVKnEAzpbjTLbeZu3Fdor22-No2wp6YHuaw7z3m7HfnJAj5x0Scga0BAryzbpcaZu2PqaSUeAlFWUuz8gCmrotGIP2iCxoK2UhK8mOyUmMa0oprxr2ghwz3lYAwBbk7Yed0xtrltbFpDs72rRb9lOwbrWc6UVMwd_g8ho3dqsDpiz9rceb3H9Jng96jPjqrp6Sn58-_rj8Ulx9-_z18uKqMLKhqWBUYDPITgL2AzLD-4H1wwADR0lr0Ve0q2gjhrxrC4J1LTeMmr4yHWLX1HV1Ss733O3UbbA36FLQo9oGu9Fhp7y26t-Os9dq5W8VZwKk5Bnw-g4Q_K8JY1IbGw2Oo3bop6hA5inQ7GcdkApJgUnWtk-QcgFNW8NMPfv7BQ-r38eQBXIvMMHHGHB4kABVc95qre7zVnPeigqVSza-e2Q0Nulk_fwTdjxsf7-3Y87v1mJQ0Vh0Bnsb0CTVe3sYcf4IYUbrrMk3gjuMaz8Fl69DgYpMUfV9vsn5JIFTKris_g94ygZ_AKNC9ks
CitedBy_id crossref_primary_10_1371_journal_pone_0140317
crossref_primary_10_3233_NRE_220174
crossref_primary_10_1242_jeb_176719
crossref_primary_10_1016_j_jbiomech_2015_12_047
crossref_primary_10_1080_09638288_2022_2030417
crossref_primary_10_3389_fphys_2018_01101
crossref_primary_10_1016_j_clinbiomech_2020_105135
crossref_primary_10_1016_j_gaitpost_2017_08_004
crossref_primary_10_1016_j_clinbiomech_2017_07_015
crossref_primary_10_3389_fneur_2021_667340
crossref_primary_10_1155_np_8737366
crossref_primary_10_1016_j_jbiomech_2017_08_023
crossref_primary_10_1016_j_jelekin_2018_04_008
crossref_primary_10_1371_journal_pone_0305564
crossref_primary_10_1186_s12984_015_0007_7
crossref_primary_10_1115_1_4042170
crossref_primary_10_1186_s12984_020_00702_5
crossref_primary_10_3389_fnbot_2023_1151623
crossref_primary_10_3233_RNN_170799
crossref_primary_10_7717_peerj_16919
crossref_primary_10_1186_s12891_021_04466_4
crossref_primary_10_1186_s12984_016_0176_z
crossref_primary_10_1007_s12311_016_0760_6
crossref_primary_10_1016_j_jns_2019_04_035
crossref_primary_10_1016_j_gaitpost_2024_03_003
crossref_primary_10_3390_biomechanics1010009
crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_08_035
crossref_primary_10_1016_j_gaitpost_2019_01_007
crossref_primary_10_1016_j_pmr_2015_06_006
crossref_primary_10_1016_j_humov_2023_103158
crossref_primary_10_1186_s12984_017_0265_7
crossref_primary_10_1186_s12984_022_01040_4
crossref_primary_10_1186_s12984_022_01088_2
crossref_primary_10_23736_S1973_9087_21_07048_9
crossref_primary_10_1589_rika_36_73
crossref_primary_10_1038_s41598_018_22676_0
crossref_primary_10_1080_02699052_2017_1283061
crossref_primary_10_1016_j_arrct_2021_100156
crossref_primary_10_1016_j_gaitpost_2022_12_017
crossref_primary_10_1371_journal_pone_0208120
crossref_primary_10_1080_00222895_2023_2216150
crossref_primary_10_1109_RBME_2023_3279655
crossref_primary_10_1123_mc_2018_0098
crossref_primary_10_1016_j_clinbiomech_2023_106005
crossref_primary_10_1016_j_gaitpost_2022_10_013
crossref_primary_10_1016_j_gaitpost_2014_09_024
crossref_primary_10_1016_j_gaitpost_2019_03_003
crossref_primary_10_1038_s41598_020_68905_3
crossref_primary_10_1016_j_clinbiomech_2022_105595
crossref_primary_10_5334_pb_1033
crossref_primary_10_1007_s00221_021_06117_5
crossref_primary_10_1016_j_humov_2017_11_005
crossref_primary_10_1186_s12984_020_00747_6
crossref_primary_10_1016_j_jbiomech_2017_02_010
crossref_primary_10_1080_09638288_2017_1417496
crossref_primary_10_1080_10749357_2019_1642653
crossref_primary_10_3390_s22228656
crossref_primary_10_1371_journal_pone_0129821
crossref_primary_10_1109_TASE_2020_3010415
crossref_primary_10_2147_JPR_S310775
crossref_primary_10_3390_jcm11020425
crossref_primary_10_1097_NPT_0000000000000431
crossref_primary_10_1016_j_clinbiomech_2017_01_018
crossref_primary_10_1016_j_gaitpost_2017_03_004
crossref_primary_10_3389_fnhum_2018_00251
crossref_primary_10_1016_j_gaitpost_2024_01_014
crossref_primary_10_1016_j_gaitpost_2019_06_006
crossref_primary_10_1016_j_clinbiomech_2024_106377
crossref_primary_10_14474_ptrs_2019_8_3_141
crossref_primary_10_3233_NRE_161421
crossref_primary_10_3390_s24186012
crossref_primary_10_1016_j_humov_2018_01_012
crossref_primary_10_1109_TNSRE_2020_3038173
crossref_primary_10_3390_s24072338
crossref_primary_10_1016_j_jbiomech_2017_12_019
crossref_primary_10_1186_s12984_024_01479_7
crossref_primary_10_1371_journal_pone_0315368
crossref_primary_10_1016_j_medengphy_2019_07_018
crossref_primary_10_1016_j_gaitpost_2021_03_031
crossref_primary_10_1589_jpts_36_87
crossref_primary_10_1016_j_jbiomech_2021_110486
crossref_primary_10_1016_j_jbiomech_2014_11_048
crossref_primary_10_1123_japa_2016_0264
crossref_primary_10_1007_s00415_021_10944_5
crossref_primary_10_1097_NPT_0000000000000368
crossref_primary_10_1186_s12938_023_01068_0
crossref_primary_10_3389_fnagi_2018_00435
Cites_doi 10.2105/AJPH.2012.300677
10.1016/j.apmr.2005.12.027
10.1016/j.gaitpost.2012.02.020
10.1111/j.1532-5415.2011.03408.x
10.1111/j.1532-5415.1997.tb00946.x
10.1016/j.jbiomech.2011.03.003
10.1016/j.jbiomech.2004.03.025
10.1016/j.jbiomech.2010.11.007
10.1016/j.clinph.2006.12.013
10.1111/j.1532-5415.2011.03834.x
10.1016/j.gaitpost.2012.05.016
10.1016/j.gaitpost.2011.02.017
10.1016/j.jbiomech.2011.12.027
10.1016/j.jbiomech.2004.12.014
10.1016/j.gaitpost.2006.03.003
10.1115/1.2746383
10.1177/1545968309343215
10.1016/j.gaitpost.2005.11.004
10.1098/rsif.2012.0999
10.1115/1.2895701
10.1093/ptj/85.2.150
10.1161/hs0202.102375
10.1016/j.gaitpost.2008.10.061
10.2522/ptj.20070205
10.1242/jeb.042572
10.1111/j.1747-4949.2012.00796.x
10.1682/JRRD.2007.09.0145
10.1016/j.jneumeth.2008.12.015
10.1016/j.jbiomech.2006.08.006
10.1016/j.jbiomech.2008.08.002
10.1016/j.jbiomech.2012.05.039
10.1016/j.medengphy.2011.07.024
10.1016/j.gaitpost.2011.11.010
10.1016/j.gaitpost.2010.01.002
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Elsevier B.V.
Copyright © 2014 Elsevier B.V. All rights reserved.
2014 Elsevier B.V. All rights reserved. 2014
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
– notice: 2014 Elsevier B.V. All rights reserved. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
5PM
DOI 10.1016/j.gaitpost.2014.05.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Physical Education Index
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Physical Education Index
DatabaseTitleList Physical Education Index
MEDLINE

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-2219
EndPage 463
ExternalDocumentID PMC4251664
24931112
10_1016_j_gaitpost_2014_05_014
S0966636214005463
1_s2_0_S0966636214005463
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM103333
– fundername: NIGMS NIH HHS
  grantid: P30 GM103333
– fundername: NICHD NIH HHS
  grantid: R01 HD038582
– fundername: NICHD NIH HHS
  grantid: HD038582
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UPT
UV1
WH7
WUQ
YRY
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
ACLOT
CITATION
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TS
5PM
ID FETCH-LOGICAL-c680t-205e8f6b61edfe2c4df2dff1f4e6075d30b3085f9669152b94c20cd3cbeeb8773
IEDL.DBID .~1
ISSN 0966-6362
1879-2219
IngestDate Tue Sep 30 16:43:16 EDT 2025
Sat Sep 27 22:22:40 EDT 2025
Sat Sep 27 20:06:17 EDT 2025
Wed Oct 01 14:56:05 EDT 2025
Thu Apr 03 07:05:08 EDT 2025
Wed Oct 01 04:25:22 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Fri Feb 23 02:33:12 EST 2024
Sun Feb 23 10:18:54 EST 2025
Tue Aug 26 16:33:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Stroke
Gait
Margins of stability
Dynamic stability
Non-linear dynamics
Language English
License Copyright © 2014 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c680t-205e8f6b61edfe2c4df2dff1f4e6075d30b3085f9669152b94c20cd3cbeeb8773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4251664
PMID 24931112
PQID 1545189717
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4251664
proquest_miscellaneous_1677318877
proquest_miscellaneous_1560126299
proquest_miscellaneous_1545189717
pubmed_primary_24931112
crossref_primary_10_1016_j_gaitpost_2014_05_014
crossref_citationtrail_10_1016_j_gaitpost_2014_05_014
elsevier_sciencedirect_doi_10_1016_j_gaitpost_2014_05_014
elsevier_clinicalkeyesjournals_1_s2_0_S0966636214005463
elsevier_clinicalkey_doi_10_1016_j_gaitpost_2014_05_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Gait & posture
PublicationTitleAlternate Gait Posture
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kelsey, Procter-Gray, Hannan, Li (bib0055) 2012; 102
Dingwell, Kang (bib0030) 2007; 129
Bruijn, Meijer, Beek, van Dieen (bib0070) 2013; 10
van Schooten, Sloot, Bruijn, Kingma, Meijer, Pijnappels (bib0075) 2011; 33
Hurmuzlu, Basdogan (bib0155) 1994; 116
McAndrew Young, Dingwell (bib0120) 2012; 36
McAndrew, Wilken, Dingwell (bib0065) 2011; 44
Hof, Vermerris, Gjaltema (bib0105) 2010; 213
Harris, Eng, Marigold, Tokuno, Louis (bib0005) 2005; 85
England, Granata (bib0150) 2007; 25
Kang, Dingwell (bib0170) 2006; 24
McAndrew Young, Wilken, Dingwell (bib0115) 2012; 45
Dingwell, Kang, Marin (bib0140) 2007; 40
Batchelor, Mackintosh, Said, Hill (bib0015) 2012; 7
Jorgensen, Engstad, Jacobsen (bib0010) 2002; 33
Weerdesteyn, de Niet, van Duijnhoven, Geurts (bib0020) 2008; 45
Maki (bib0125) 1997; 45
Balasubramanian, Neptune, Kautz (bib0130) 2009; 29
Blum, Korner-Bitensky (bib0040) 2008; 88
Hof, Gazendam, Sinke (bib0100) 2005; 38
Bruijn, van Dieen, Meijer, Beek (bib0165) 2009; 178
Quach, Galica, Jones, Procter-Gray, Manor, Hannan (bib0050) 2011; 59
Roos, Dingwell (bib0090) 2011; 44
Rosenblatt, Grabiner (bib0110) 2010; 31
McAndrew Young, Dingwell (bib0160) 2012; 35
Belgen, Beninato, Sullivan, Narielwalla (bib0025) 2006; 87
Kelsey, Procter-Gray, Berry, Hannan, Kiel, Lipsitz (bib0060) 2012; 60
Bowden, Clark, Kautz (bib0045) 24 2010
Bruijn, Bregman, Meijer, Beek, van Dieen (bib0095) 2012; 34
Kang, Dingwell (bib0145) 2008; 41
Toebes, Hoozemans, Furrer, Dekker, van Dieen (bib0085) 2012; 36
Dingwell, Marin (bib0135) 2006; 39
Lamontagne, Stephenson, Fung (bib0035) 2007; 118
Sinitksi, Terry, Wilken, Dingwell (bib0080) 2012; 45
Batchelor (10.1016/j.gaitpost.2014.05.014_bib0015) 2012; 7
Hurmuzlu (10.1016/j.gaitpost.2014.05.014_bib0155) 1994; 116
Kelsey (10.1016/j.gaitpost.2014.05.014_bib0055) 2012; 102
Roos (10.1016/j.gaitpost.2014.05.014_bib0090) 2011; 44
Weerdesteyn (10.1016/j.gaitpost.2014.05.014_bib0020) 2008; 45
Hof (10.1016/j.gaitpost.2014.05.014_bib0100) 2005; 38
Dingwell (10.1016/j.gaitpost.2014.05.014_bib0030) 2007; 129
Harris (10.1016/j.gaitpost.2014.05.014_bib0005) 2005; 85
Hof (10.1016/j.gaitpost.2014.05.014_bib0105) 2010; 213
Rosenblatt (10.1016/j.gaitpost.2014.05.014_bib0110) 2010; 31
Belgen (10.1016/j.gaitpost.2014.05.014_bib0025) 2006; 87
Maki (10.1016/j.gaitpost.2014.05.014_bib0125) 1997; 45
Bowden (10.1016/j.gaitpost.2014.05.014_bib0045) 2010
Kelsey (10.1016/j.gaitpost.2014.05.014_bib0060) 2012; 60
Bruijn (10.1016/j.gaitpost.2014.05.014_bib0165) 2009; 178
Lamontagne (10.1016/j.gaitpost.2014.05.014_bib0035) 2007; 118
Kang (10.1016/j.gaitpost.2014.05.014_bib0145) 2008; 41
van Schooten (10.1016/j.gaitpost.2014.05.014_bib0075) 2011; 33
Toebes (10.1016/j.gaitpost.2014.05.014_bib0085) 2012; 36
Bruijn (10.1016/j.gaitpost.2014.05.014_bib0070) 2013; 10
McAndrew Young (10.1016/j.gaitpost.2014.05.014_bib0120) 2012; 36
McAndrew Young (10.1016/j.gaitpost.2014.05.014_bib0115) 2012; 45
Blum (10.1016/j.gaitpost.2014.05.014_bib0040) 2008; 88
Quach (10.1016/j.gaitpost.2014.05.014_bib0050) 2011; 59
Kang (10.1016/j.gaitpost.2014.05.014_bib0170) 2006; 24
McAndrew (10.1016/j.gaitpost.2014.05.014_bib0065) 2011; 44
Dingwell (10.1016/j.gaitpost.2014.05.014_bib0140) 2007; 40
McAndrew Young (10.1016/j.gaitpost.2014.05.014_bib0160) 2012; 35
Jorgensen (10.1016/j.gaitpost.2014.05.014_bib0010) 2002; 33
Sinitksi (10.1016/j.gaitpost.2014.05.014_bib0080) 2012; 45
England (10.1016/j.gaitpost.2014.05.014_bib0150) 2007; 25
Bruijn (10.1016/j.gaitpost.2014.05.014_bib0095) 2012; 34
Balasubramanian (10.1016/j.gaitpost.2014.05.014_bib0130) 2009; 29
Dingwell (10.1016/j.gaitpost.2014.05.014_bib0135) 2006; 39
17307395 - Clin Neurophysiol. 2007 Apr;118(4):717-29
19135478 - J Neurosci Methods. 2009 Apr 15;178(2):327-33
16571397 - Arch Phys Med Rehabil. 2006 Apr;87(4):554-61
22748312 - Gait Posture. 2012 Jul;36(3):527-31
15679466 - Phys Ther. 2005 Feb;85(2):150-8
16413784 - Gait Posture. 2006 Nov;24(3):386-90
17655480 - J Biomech Eng. 2007 Aug;129(4):586-93
22172233 - Gait Posture. 2012 Mar;35(3):472-7
22472707 - Gait Posture. 2012 Jun;36(2):219-24
19794132 - Neurorehabil Neural Repair. 2010 May;24(4):328-37
22326059 - J Biomech. 2012 Apr 5;45(6):1053-9
22749389 - J Biomech. 2012 Aug 9;45(12):2084-91
22283236 - J Am Geriatr Soc. 2012 Mar;60(3):517-24
21094944 - J Biomech. 2011 Feb 24;44(4):644-9
22494388 - Int J Stroke. 2012 Aug;7(6):482-90
18292215 - Phys Ther. 2008 May;88(5):559-66
21440895 - J Biomech. 2011 May 17;44(8):1514-20
19056272 - Gait Posture. 2009 Apr;29(3):408-14
8189711 - J Biomech Eng. 1994 Feb;116(1):30-6
16621565 - Gait Posture. 2007 Feb;25(2):172-8
20639427 - J Exp Biol. 2010 Aug 1;213(Pt 15):2655-64
21856204 - Med Eng Phys. 2012 May;34(4):428-36
9063277 - J Am Geriatr Soc. 1997 Mar;45(3):313-20
19235120 - J Rehabil Res Dev. 2008;45(8):1195-213
20129786 - Gait Posture. 2010 Mar;31(3):380-4
16389084 - J Biomech. 2006;39(3):444-52
11823667 - Stroke. 2002 Feb;33(2):542-7
21435878 - Gait Posture. 2011 Apr;33(4):656-60
15519333 - J Biomech. 2005 Jan;38(1):1-8
17055516 - J Biomech. 2007;40(8):1723-30
22994167 - Am J Public Health. 2012 Nov;102(11):2149-56
23516062 - J R Soc Interface. 2013 Jun 6;10(83):20120999
18790480 - J Biomech. 2008 Oct 20;41(14):2899-905
21649615 - J Am Geriatr Soc. 2011 Jun;59(6):1069-73
References_xml – volume: 44
  start-page: 1514
  year: 2011
  end-page: 1520
  ident: bib0090
  article-title: Influence of simulated neuromuscular noise on the dynamic stability and fall risk of a 3D dynamic walking model
  publication-title: J Biomech
– volume: 40
  start-page: 1723
  year: 2007
  end-page: 1730
  ident: bib0140
  article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking
  publication-title: J Biomech
– volume: 36
  start-page: 527
  year: 2012
  end-page: 531
  ident: bib0085
  article-title: Local dynamic stability and variability of gait are associated with fall history in elderly subjects
  publication-title: Gait Posture
– volume: 88
  start-page: 559
  year: 2008
  end-page: 566
  ident: bib0040
  article-title: Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review
  publication-title: Phys Ther
– volume: 36
  start-page: 219
  year: 2012
  end-page: 224
  ident: bib0120
  article-title: Voluntary changes in step width and step length during human walking affect dynamic margins of stability
  publication-title: Gait Posture
– volume: 38
  start-page: 1
  year: 2005
  end-page: 8
  ident: bib0100
  article-title: The condition for dynamic stability
  publication-title: J Biomech
– volume: 25
  start-page: 172
  year: 2007
  end-page: 178
  ident: bib0150
  article-title: The influence of gait speed on local dynamic stability of walking
  publication-title: Gait Posture
– volume: 45
  start-page: 313
  year: 1997
  end-page: 320
  ident: bib0125
  article-title: Gait changes in older adults: predictors of falls or indicators of fear
  publication-title: J Am Geriatr Soc
– volume: 102
  start-page: 2149
  year: 2012
  end-page: 2156
  ident: bib0055
  article-title: Heterogeneity of falls among older adults: implications for public health prevention
  publication-title: Am J Public Health
– volume: 33
  start-page: 542
  year: 2002
  end-page: 547
  ident: bib0010
  article-title: Higher incidence of falls in long-term stroke survivors than in population controls: depressive symptoms predict falls after stroke
  publication-title: Stroke
– volume: 35
  start-page: 472
  year: 2012
  end-page: 477
  ident: bib0160
  article-title: Voluntarily changing step length or step width affects dynamic stability of human walking
  publication-title: Gait Posture
– volume: 29
  start-page: 408
  year: 2009
  end-page: 414
  ident: bib0130
  article-title: Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke
  publication-title: Gait Posture
– volume: 60
  start-page: 517
  year: 2012
  end-page: 524
  ident: bib0060
  article-title: Reevaluating the implications of recurrent falls in older adults: location changes the inference
  publication-title: J Am Geriatr Soc
– volume: 178
  start-page: 327
  year: 2009
  end-page: 333
  ident: bib0165
  article-title: Statistical precision and sensitivity of measures of dynamic gait stability
  publication-title: J Neurosci Methods
– volume: 45
  start-page: 1195
  year: 2008
  end-page: 1213
  ident: bib0020
  article-title: Falls in individuals with stroke
  publication-title: J Rehabil Res Dev
– volume: 33
  start-page: 656
  year: 2011
  end-page: 660
  ident: bib0075
  article-title: Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait
  publication-title: Gait Posture
– volume: 45
  start-page: 2084
  year: 2012
  end-page: 2091
  ident: bib0080
  article-title: Effects of perturbation magnitude on dynamic stability when walking in destabilizing environments
  publication-title: J Biomech
– volume: 44
  start-page: 644
  year: 2011
  end-page: 649
  ident: bib0065
  article-title: Dynamic stability of human walking in visually and mechanically destabilizing environments
  publication-title: J Biomech
– volume: 7
  start-page: 482
  year: 2012
  end-page: 490
  ident: bib0015
  article-title: Falls after stroke
  publication-title: Int J Stroke
– volume: 10
  start-page: 20120999
  year: 2013
  ident: bib0070
  article-title: Assessing the stability of human locomotion: a review of current measures
  publication-title: J R Soc Interface
– volume: 41
  start-page: 2899
  year: 2008
  end-page: 2905
  ident: bib0145
  article-title: Effects of walking speed, strength and range of motion on gait stability in healthy older adults
  publication-title: J Biomech
– start-page: 328
  year: 24 2010
  end-page: 337
  ident: bib0045
  article-title: Evaluation of abnormal synergy patterns poststroke: relationship of the Fugl-Meyer Assessment to hemiparetic locomotion
  publication-title: Neurorehabil Neural Repair
– volume: 59
  start-page: 1069
  year: 2011
  end-page: 1073
  ident: bib0050
  article-title: The nonlinear relationship between gait speed and falls: the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly of Boston Study
  publication-title: J Am Geriatr Soc
– volume: 213
  start-page: 2655
  year: 2010
  end-page: 2664
  ident: bib0105
  article-title: Balance responses to lateral perturbations in human treadmill walking
  publication-title: J Exp Biol
– volume: 129
  start-page: 586
  year: 2007
  end-page: 593
  ident: bib0030
  article-title: Differences between local and orbital dynamic stability during human walking
  publication-title: J Biomech Eng
– volume: 85
  start-page: 150
  year: 2005
  end-page: 158
  ident: bib0005
  article-title: Relationship of balance and mobility to fall incidence in people with chronic stroke
  publication-title: Phys Ther
– volume: 118
  start-page: 717
  year: 2007
  end-page: 729
  ident: bib0035
  article-title: Physiological evaluation of gait disturbances post stroke
  publication-title: Clin Neurophysiol
– volume: 31
  start-page: 380
  year: 2010
  end-page: 384
  ident: bib0110
  article-title: Measures of frontal plane stability during treadmill and overground walking
  publication-title: Gait Posture
– volume: 116
  start-page: 30
  year: 1994
  end-page: 36
  ident: bib0155
  article-title: On the measurement of dynamic stability of human locomotion
  publication-title: J Biomech Eng
– volume: 24
  start-page: 386
  year: 2006
  end-page: 390
  ident: bib0170
  article-title: Intra-session reliability of local dynamic stability of walking
  publication-title: Gait Posture
– volume: 45
  start-page: 1053
  year: 2012
  end-page: 1059
  ident: bib0115
  article-title: Dynamic margins of stability during human walking in destabilizing environments
  publication-title: J Biomech
– volume: 39
  start-page: 444
  year: 2006
  end-page: 452
  ident: bib0135
  article-title: Kinematic variability and local dynamic stability of upper body motions when walking at different speeds
  publication-title: J Biomech
– volume: 87
  start-page: 554
  year: 2006
  end-page: 561
  ident: bib0025
  article-title: The association of balance capacity and falls self-efficacy with history of falling in community-dwelling people with chronic stroke
  publication-title: Arch Phys Med Rehabil
– volume: 34
  start-page: 428
  year: 2012
  end-page: 436
  ident: bib0095
  article-title: Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach
  publication-title: Med Eng Phys
– volume: 102
  start-page: 2149
  year: 2012
  ident: 10.1016/j.gaitpost.2014.05.014_bib0055
  article-title: Heterogeneity of falls among older adults: implications for public health prevention
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.2012.300677
– volume: 87
  start-page: 554
  year: 2006
  ident: 10.1016/j.gaitpost.2014.05.014_bib0025
  article-title: The association of balance capacity and falls self-efficacy with history of falling in community-dwelling people with chronic stroke
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2005.12.027
– volume: 36
  start-page: 219
  year: 2012
  ident: 10.1016/j.gaitpost.2014.05.014_bib0120
  article-title: Voluntary changes in step width and step length during human walking affect dynamic margins of stability
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.02.020
– volume: 59
  start-page: 1069
  year: 2011
  ident: 10.1016/j.gaitpost.2014.05.014_bib0050
  article-title: The nonlinear relationship between gait speed and falls: the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly of Boston Study
  publication-title: J Am Geriatr Soc
  doi: 10.1111/j.1532-5415.2011.03408.x
– volume: 45
  start-page: 313
  year: 1997
  ident: 10.1016/j.gaitpost.2014.05.014_bib0125
  article-title: Gait changes in older adults: predictors of falls or indicators of fear
  publication-title: J Am Geriatr Soc
  doi: 10.1111/j.1532-5415.1997.tb00946.x
– volume: 44
  start-page: 1514
  year: 2011
  ident: 10.1016/j.gaitpost.2014.05.014_bib0090
  article-title: Influence of simulated neuromuscular noise on the dynamic stability and fall risk of a 3D dynamic walking model
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.03.003
– volume: 38
  start-page: 1
  year: 2005
  ident: 10.1016/j.gaitpost.2014.05.014_bib0100
  article-title: The condition for dynamic stability
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2004.03.025
– volume: 44
  start-page: 644
  year: 2011
  ident: 10.1016/j.gaitpost.2014.05.014_bib0065
  article-title: Dynamic stability of human walking in visually and mechanically destabilizing environments
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.11.007
– volume: 118
  start-page: 717
  year: 2007
  ident: 10.1016/j.gaitpost.2014.05.014_bib0035
  article-title: Physiological evaluation of gait disturbances post stroke
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.12.013
– volume: 60
  start-page: 517
  year: 2012
  ident: 10.1016/j.gaitpost.2014.05.014_bib0060
  article-title: Reevaluating the implications of recurrent falls in older adults: location changes the inference
  publication-title: J Am Geriatr Soc
  doi: 10.1111/j.1532-5415.2011.03834.x
– volume: 36
  start-page: 527
  year: 2012
  ident: 10.1016/j.gaitpost.2014.05.014_bib0085
  article-title: Local dynamic stability and variability of gait are associated with fall history in elderly subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.05.016
– volume: 33
  start-page: 656
  year: 2011
  ident: 10.1016/j.gaitpost.2014.05.014_bib0075
  article-title: Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.02.017
– volume: 45
  start-page: 1053
  year: 2012
  ident: 10.1016/j.gaitpost.2014.05.014_bib0115
  article-title: Dynamic margins of stability during human walking in destabilizing environments
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.12.027
– volume: 39
  start-page: 444
  year: 2006
  ident: 10.1016/j.gaitpost.2014.05.014_bib0135
  article-title: Kinematic variability and local dynamic stability of upper body motions when walking at different speeds
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2004.12.014
– volume: 25
  start-page: 172
  year: 2007
  ident: 10.1016/j.gaitpost.2014.05.014_bib0150
  article-title: The influence of gait speed on local dynamic stability of walking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.03.003
– volume: 129
  start-page: 586
  year: 2007
  ident: 10.1016/j.gaitpost.2014.05.014_bib0030
  article-title: Differences between local and orbital dynamic stability during human walking
  publication-title: J Biomech Eng
  doi: 10.1115/1.2746383
– start-page: 328
  year: 2010
  ident: 10.1016/j.gaitpost.2014.05.014_bib0045
  article-title: Evaluation of abnormal synergy patterns poststroke: relationship of the Fugl-Meyer Assessment to hemiparetic locomotion
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968309343215
– volume: 24
  start-page: 386
  year: 2006
  ident: 10.1016/j.gaitpost.2014.05.014_bib0170
  article-title: Intra-session reliability of local dynamic stability of walking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.11.004
– volume: 10
  start-page: 20120999
  year: 2013
  ident: 10.1016/j.gaitpost.2014.05.014_bib0070
  article-title: Assessing the stability of human locomotion: a review of current measures
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2012.0999
– volume: 116
  start-page: 30
  year: 1994
  ident: 10.1016/j.gaitpost.2014.05.014_bib0155
  article-title: On the measurement of dynamic stability of human locomotion
  publication-title: J Biomech Eng
  doi: 10.1115/1.2895701
– volume: 85
  start-page: 150
  year: 2005
  ident: 10.1016/j.gaitpost.2014.05.014_bib0005
  article-title: Relationship of balance and mobility to fall incidence in people with chronic stroke
  publication-title: Phys Ther
  doi: 10.1093/ptj/85.2.150
– volume: 33
  start-page: 542
  year: 2002
  ident: 10.1016/j.gaitpost.2014.05.014_bib0010
  article-title: Higher incidence of falls in long-term stroke survivors than in population controls: depressive symptoms predict falls after stroke
  publication-title: Stroke
  doi: 10.1161/hs0202.102375
– volume: 29
  start-page: 408
  year: 2009
  ident: 10.1016/j.gaitpost.2014.05.014_bib0130
  article-title: Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.10.061
– volume: 88
  start-page: 559
  year: 2008
  ident: 10.1016/j.gaitpost.2014.05.014_bib0040
  article-title: Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review
  publication-title: Phys Ther
  doi: 10.2522/ptj.20070205
– volume: 213
  start-page: 2655
  year: 2010
  ident: 10.1016/j.gaitpost.2014.05.014_bib0105
  article-title: Balance responses to lateral perturbations in human treadmill walking
  publication-title: J Exp Biol
  doi: 10.1242/jeb.042572
– volume: 7
  start-page: 482
  year: 2012
  ident: 10.1016/j.gaitpost.2014.05.014_bib0015
  article-title: Falls after stroke
  publication-title: Int J Stroke
  doi: 10.1111/j.1747-4949.2012.00796.x
– volume: 45
  start-page: 1195
  year: 2008
  ident: 10.1016/j.gaitpost.2014.05.014_bib0020
  article-title: Falls in individuals with stroke
  publication-title: J Rehabil Res Dev
  doi: 10.1682/JRRD.2007.09.0145
– volume: 178
  start-page: 327
  year: 2009
  ident: 10.1016/j.gaitpost.2014.05.014_bib0165
  article-title: Statistical precision and sensitivity of measures of dynamic gait stability
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2008.12.015
– volume: 40
  start-page: 1723
  year: 2007
  ident: 10.1016/j.gaitpost.2014.05.014_bib0140
  article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.08.006
– volume: 41
  start-page: 2899
  year: 2008
  ident: 10.1016/j.gaitpost.2014.05.014_bib0145
  article-title: Effects of walking speed, strength and range of motion on gait stability in healthy older adults
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.08.002
– volume: 45
  start-page: 2084
  year: 2012
  ident: 10.1016/j.gaitpost.2014.05.014_bib0080
  article-title: Effects of perturbation magnitude on dynamic stability when walking in destabilizing environments
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2012.05.039
– volume: 34
  start-page: 428
  year: 2012
  ident: 10.1016/j.gaitpost.2014.05.014_bib0095
  article-title: Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2011.07.024
– volume: 35
  start-page: 472
  year: 2012
  ident: 10.1016/j.gaitpost.2014.05.014_bib0160
  article-title: Voluntarily changing step length or step width affects dynamic stability of human walking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.11.010
– volume: 31
  start-page: 380
  year: 2010
  ident: 10.1016/j.gaitpost.2014.05.014_bib0110
  article-title: Measures of frontal plane stability during treadmill and overground walking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.01.002
– reference: 9063277 - J Am Geriatr Soc. 1997 Mar;45(3):313-20
– reference: 17307395 - Clin Neurophysiol. 2007 Apr;118(4):717-29
– reference: 21856204 - Med Eng Phys. 2012 May;34(4):428-36
– reference: 8189711 - J Biomech Eng. 1994 Feb;116(1):30-6
– reference: 16389084 - J Biomech. 2006;39(3):444-52
– reference: 19135478 - J Neurosci Methods. 2009 Apr 15;178(2):327-33
– reference: 22494388 - Int J Stroke. 2012 Aug;7(6):482-90
– reference: 18790480 - J Biomech. 2008 Oct 20;41(14):2899-905
– reference: 20129786 - Gait Posture. 2010 Mar;31(3):380-4
– reference: 16621565 - Gait Posture. 2007 Feb;25(2):172-8
– reference: 18292215 - Phys Ther. 2008 May;88(5):559-66
– reference: 21435878 - Gait Posture. 2011 Apr;33(4):656-60
– reference: 22472707 - Gait Posture. 2012 Jun;36(2):219-24
– reference: 15679466 - Phys Ther. 2005 Feb;85(2):150-8
– reference: 19056272 - Gait Posture. 2009 Apr;29(3):408-14
– reference: 22283236 - J Am Geriatr Soc. 2012 Mar;60(3):517-24
– reference: 17055516 - J Biomech. 2007;40(8):1723-30
– reference: 21440895 - J Biomech. 2011 May 17;44(8):1514-20
– reference: 22994167 - Am J Public Health. 2012 Nov;102(11):2149-56
– reference: 11823667 - Stroke. 2002 Feb;33(2):542-7
– reference: 15519333 - J Biomech. 2005 Jan;38(1):1-8
– reference: 19235120 - J Rehabil Res Dev. 2008;45(8):1195-213
– reference: 16413784 - Gait Posture. 2006 Nov;24(3):386-90
– reference: 21649615 - J Am Geriatr Soc. 2011 Jun;59(6):1069-73
– reference: 22172233 - Gait Posture. 2012 Mar;35(3):472-7
– reference: 19794132 - Neurorehabil Neural Repair. 2010 May;24(4):328-37
– reference: 17655480 - J Biomech Eng. 2007 Aug;129(4):586-93
– reference: 21094944 - J Biomech. 2011 Feb 24;44(4):644-9
– reference: 22326059 - J Biomech. 2012 Apr 5;45(6):1053-9
– reference: 22748312 - Gait Posture. 2012 Jul;36(3):527-31
– reference: 16571397 - Arch Phys Med Rehabil. 2006 Apr;87(4):554-61
– reference: 20639427 - J Exp Biol. 2010 Aug 1;213(Pt 15):2655-64
– reference: 22749389 - J Biomech. 2012 Aug 9;45(12):2084-91
– reference: 23516062 - J R Soc Interface. 2013 Jun 6;10(83):20120999
SSID ssj0004382
Score 2.4233215
Snippet •We directly quantified walking stability in stroke survivors and healthy controls.•Stroke subjects had greater local and orbital instability but remained...
Highlights • We directly quantified walking stability in stroke survivors and healthy controls. • Stroke subjects had greater local and orbital instability but...
Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 457
SubjectTerms Adult
Aged
Biomechanical Phenomena - physiology
Case-Control Studies
Dynamic stability
Exercise Test
Female
Gait
Gait Disorders, Neurologic - physiopathology
Hemiplegia - physiopathology
Humans
Male
Margins of stability
Middle Aged
Non-linear dynamics
Orthopedics
Postural Balance - physiology
Risk Factors
Stroke
Stroke - physiopathology
Walking - physiology
Title Dynamic instability during post-stroke hemiparetic walking
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0966636214005463
https://www.clinicalkey.es/playcontent/1-s2.0-S0966636214005463
https://dx.doi.org/10.1016/j.gaitpost.2014.05.014
https://www.ncbi.nlm.nih.gov/pubmed/24931112
https://www.proquest.com/docview/1545189717
https://www.proquest.com/docview/1560126299
https://www.proquest.com/docview/1677318877
https://pubmed.ncbi.nlm.nih.gov/PMC4251664
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: AKRWK
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKlVcKgp9LKXIlarewsaJ43W4rbZF2wcI8ZC4WXFit6E0uyJZVXvpb-9MHlsWVIrKKUpiJ85knvY3Y4C3MU0r2UR6XESJhxZfeiqJMGo1FrkldlGc0HzHwaEcn4lP59H5Coy6XBiCVba6v9HptbZur_Rbavaned4_QecbzaUMMETwqag7ZbALSbC-3V9_YB600FXX28NRUOtrWcIXu1-TvJpOSsJUctFU8BR_M1C3HdCbOMprhml_HZ60HiUbNoN-Ciu22IDNYYHR9I85e8dqjGc9eb4Bjw_apfRN2Hvf7EXPcnIQa4jsnDVJi4wG65XV1eS7ZVRQgFDq-HT2M7mkmfVncLb_4XQ09tqNFLxUKr9CSYisctJIbjNng1RkLsic405YiS5DFvomRNfLIY1itOcmFmngp1mYGmuNGgzC57BaTAr7EligMqu4oyLuShgVGd8lMU-zDD0xqmbXg6ijnk7bKuO02cWl7uBkF7qjuiaqaz_SeOhBf9Fv2tTZ-GePQfdzdJdFinpPoyn4v562bMW31FyXgfb1LRbrQbzoucSl93rrm46DNIowrcskhZ3M8G1IO65iDKzvaoORcyDRebijjcRfxdFq4HNeNJy5oCVG2SGatQC_fYlnFw2ozPjynSL_VpcbR62OIiy2HvDtr2CNzhqY8zasVlcz-xqducrs1NK6A4-Go-MvR3T8-Hl8-BuOBUzN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgJeEGx8lE8jId5C48RxHd6qwdSxtS9s0t6sOLFHxkirJRPaf89d4pSViYHgKVLiS5zLffzOuTsDvElpWclmMuAiyQL0-DJQWYJRq7EoLalL0ozWO2ZzOT0Sn46T4w3Y6WthKK3S2_7OprfW2p8ZeW6OlmU5-ozgG92ljDBECKmp-y3YFAna5AFsTvb2p_Of5ZFxu2cUjQ-I4Eqh8Om7k6xsloua0iq56Jp4it_5qOsY9NdUyiu-afc-3POgkk26eT-ADVttwfakwoD62yV7y9o0z3b9fAtuz_zf9G14_6Hbjp6VhBHbLNlL1tUtMppsUDfni6-WUU8BSlTHu7Pv2Rktrj-Eo92PhzvTwO-lEORShQ0qQ2KVk0ZyWzgb5aJwUeEcd8JKRA1FHJoY0ZdDHqXo0k0q8ijMizg31ho1HsePYFAtKvsEWKQKq7ijPu5KGJWY0GUpz4sCwRg1tBtC0nNP577ROO13cab7jLJT3XNdE9d1mGg8DGG0olt2rTb-SDHuP47uC0nR9Gn0Bv9GaWuvwbXmuo50qK9J2RDSFeWaoP7VU1_3EqRRi-nXTFbZxQU-DXnHVYqx9U1jMHiOJOKHG8ZI_FQcHQfe53EnmSteYqAdo2eL8N3XZHY1gDqNr1-pyi9tx3E07KjF4ul_vPsruDM9nB3og735_jO4S1e6rOfnMGjOL-wLxHaNeel19wdCj03j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+instability+during+post-stroke+hemiparetic+walking&rft.jtitle=Gait+%26+posture&rft.au=Kao%2C+Pei-Chun&rft.au=Dingwell%2C+Jonathan+B&rft.au=Higginson%2C+Jill+S&rft.au=Binder-Macleod%2C+Stuart&rft.date=2014-07-01&rft.eissn=1879-2219&rft.volume=40&rft.issue=3&rft.spage=457&rft_id=info:doi/10.1016%2Fj.gaitpost.2014.05.014&rft_id=info%3Apmid%2F24931112&rft.externalDocID=24931112
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09666362%2FS0966636214X00081%2Fcov150h.gif