Dynamic instability during post-stroke hemiparetic walking
•We directly quantified walking stability in stroke survivors and healthy controls.•Stroke subjects had greater local and orbital instability but remained orbitally stable.•Stroke subjects had greater step width but similar lateral margins of stability (MOS).•Stroke subjects had greater variability...
Saved in:
Published in | Gait & posture Vol. 40; no. 3; pp. 457 - 463 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.07.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0966-6362 1879-2219 1879-2219 |
DOI | 10.1016/j.gaitpost.2014.05.014 |
Cover
Abstract | •We directly quantified walking stability in stroke survivors and healthy controls.•Stroke subjects had greater local and orbital instability but remained orbitally stable.•Stroke subjects had greater step width but similar lateral margins of stability (MOS).•Stroke subjects had greater variability in all MOS and step spatiotemporal measures.•Dynamic stability measures detect changes in walking stability associated with stroke.
Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of walking instability for detecting which individuals will have increased risk of falls. The purposes of this study were to directly quantify walking stability in stroke survivors and neurologically intact controls and to determine which stability measures would reveal the changes in walking stability following stroke. This study thus provided an initial step to establish objective measures for identifying potential fallers. Nine post-stroke individuals and nine controls walked on a treadmill at four different speeds. We computed short-term local divergence exponent (LDE) and maximum Floquet multiplier (maxFM) of the trunk motion, average and variability of dynamic margins of stability (MOS) and step spatiotemporal measures. Post-stroke individuals demonstrated larger short-term LDE (p=0.002) and maxFM (p=0.041) in the mediolateral (ML) direction compared to the controls but remained orbitally stable (maxFM<1). In addition, post-stroke individuals walked with greater average step width (p=0.003) but similar average ML MOS (p=0.154) compared to the controls. Post-stroke individuals also exhibited greater variability in all MOS and step measures (all p<0.005). Our findings indicate that post-stroke individuals walked with greater local and orbital instability and gait variability than neurologically intact controls. The results suggest that short-term LDE of ML trunk motion and the variability of MOS and step spatiotemporal measures detect the changes in walking stability associated with stroke. These stability measures may have the potential for identifying those post-stroke individuals at increased risk of falls. |
---|---|
AbstractList | Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of walking instability for detecting which individuals will have increased risk of falls. The purposes of this study were to directly quantify walking stability in stroke survivors and neurologically intact controls and to determine which stability measures would reveal the changes in walking stability following stroke. This study thus provided an initial step to establish objective measures for identifying potential fallers. Nine post-stroke individuals and nine controls walked on a treadmill at four different speeds. We computed short-term local divergence exponent (LDE) and maximum Floquet multiplier (maxFM) of the trunk motion, average and variability of dynamic margins of stability (MOS) and step spatiotemporal measures. Post-stroke individuals demonstrated larger short-term LDE (p = 0.002) and maxFM (p = 0.041) in the mediolateral (ML) direction compared to the controls but remained orbitally stable (maxFM < 1). In addition, post-stroke individuals walked with greater average step width (p = 0.003) but similar average ML MOS (p = 0.154) compared to the controls. Post-stroke individuals also exhibited greater variability in all MOS and step measures (all p < 0.005). Our findings indicate that post-stroke individuals walked with greater local and orbital instability and gait variability than neurologically intact controls. The results suggest that short-term LDE of ML trunk motion and the variability of MOS and step spatiotemporal measures detect the changes in walking stability associated with stroke. These stability measures may have the potential for identifying those post-stroke individuals at increased risk of falls. •We directly quantified walking stability in stroke survivors and healthy controls.•Stroke subjects had greater local and orbital instability but remained orbitally stable.•Stroke subjects had greater step width but similar lateral margins of stability (MOS).•Stroke subjects had greater variability in all MOS and step spatiotemporal measures.•Dynamic stability measures detect changes in walking stability associated with stroke. Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of walking instability for detecting which individuals will have increased risk of falls. The purposes of this study were to directly quantify walking stability in stroke survivors and neurologically intact controls and to determine which stability measures would reveal the changes in walking stability following stroke. This study thus provided an initial step to establish objective measures for identifying potential fallers. Nine post-stroke individuals and nine controls walked on a treadmill at four different speeds. We computed short-term local divergence exponent (LDE) and maximum Floquet multiplier (maxFM) of the trunk motion, average and variability of dynamic margins of stability (MOS) and step spatiotemporal measures. Post-stroke individuals demonstrated larger short-term LDE (p=0.002) and maxFM (p=0.041) in the mediolateral (ML) direction compared to the controls but remained orbitally stable (maxFM<1). In addition, post-stroke individuals walked with greater average step width (p=0.003) but similar average ML MOS (p=0.154) compared to the controls. Post-stroke individuals also exhibited greater variability in all MOS and step measures (all p<0.005). Our findings indicate that post-stroke individuals walked with greater local and orbital instability and gait variability than neurologically intact controls. The results suggest that short-term LDE of ML trunk motion and the variability of MOS and step spatiotemporal measures detect the changes in walking stability associated with stroke. These stability measures may have the potential for identifying those post-stroke individuals at increased risk of falls. Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of walking instability for detecting which individuals will have increased risk of falls. The purposes of this study were to directly quantify walking stability in stroke survivors and neurologically intact controls and to determine which stability measures would reveal the changes in walking stability following stroke. This study thus provided an initial step to establish objective measures for identifying potential fallers. Nine post-stroke individuals and nine controls walked on a treadmill at four different speeds. We computed short-term local divergence exponent (LDE) and maximum Floquet multiplier (maxFM) of the trunk motion, average and variability of dynamic margins of stability (MOS) and step spatiotemporal measures. Post-stroke individuals demonstrated larger short-term LDE (p = 0.002) and maxFM (p = 0.041) in the mediolateral (ML) direction compared to the controls but remained orbitally stable (maxFM < 1). In addition, post-stroke individuals walked with greater average step width (p = 0.003) but similar average ML MOS (p = 0.154) compared to the controls. Post-stroke individuals also exhibited greater variability in all MOS and step measures (all p < 0.005). Our findings indicate that post-stroke individuals walked with greater local and orbital instability and gait variability than neurologically intact controls. The results suggest that short-term LDE of ML trunk motion and the variability of MOS and step spatiotemporal measures detect the changes in walking stability associated with stroke. These stability measures may have the potential for identifying those post-stroke individuals at increased risk of falls.Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of walking instability for detecting which individuals will have increased risk of falls. The purposes of this study were to directly quantify walking stability in stroke survivors and neurologically intact controls and to determine which stability measures would reveal the changes in walking stability following stroke. This study thus provided an initial step to establish objective measures for identifying potential fallers. Nine post-stroke individuals and nine controls walked on a treadmill at four different speeds. We computed short-term local divergence exponent (LDE) and maximum Floquet multiplier (maxFM) of the trunk motion, average and variability of dynamic margins of stability (MOS) and step spatiotemporal measures. Post-stroke individuals demonstrated larger short-term LDE (p = 0.002) and maxFM (p = 0.041) in the mediolateral (ML) direction compared to the controls but remained orbitally stable (maxFM < 1). In addition, post-stroke individuals walked with greater average step width (p = 0.003) but similar average ML MOS (p = 0.154) compared to the controls. Post-stroke individuals also exhibited greater variability in all MOS and step measures (all p < 0.005). Our findings indicate that post-stroke individuals walked with greater local and orbital instability and gait variability than neurologically intact controls. The results suggest that short-term LDE of ML trunk motion and the variability of MOS and step spatiotemporal measures detect the changes in walking stability associated with stroke. These stability measures may have the potential for identifying those post-stroke individuals at increased risk of falls. Highlights • We directly quantified walking stability in stroke survivors and healthy controls. • Stroke subjects had greater local and orbital instability but remained orbitally stable. • Stroke subjects had greater step width but similar lateral margins of stability (MOS). • Stroke subjects had greater variability in all MOS and step spatiotemporal measures. • Dynamic stability measures detect changes in walking stability associated with stroke. |
Author | Dingwell, Jonathan B. Binder-Macleod, Stuart Kao, Pei-Chun Higginson, Jill S. |
AuthorAffiliation | a Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA b Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712, USA c Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA |
AuthorAffiliation_xml | – name: b Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712, USA – name: a Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA – name: c Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA |
Author_xml | – sequence: 1 givenname: Pei-Chun surname: Kao fullname: Kao, Pei-Chun email: kaop@udel.edu organization: Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA – sequence: 2 givenname: Jonathan B. surname: Dingwell fullname: Dingwell, Jonathan B. organization: Department of Kinesiology & Health Education, University of Texas, Austin, TX 78712, USA – sequence: 3 givenname: Jill S. surname: Higginson fullname: Higginson, Jill S. organization: Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA – sequence: 4 givenname: Stuart surname: Binder-Macleod fullname: Binder-Macleod, Stuart organization: Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24931112$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFr1DtkUuCx7GdBKGKqvyVKnEAzpbjTLbeZu3Fdor22-No2wp6YHuaw7z3m7HfnJAj5x0Scga0BAryzbpcaZu2PqaSUeAlFWUuz8gCmrotGIP2iCxoK2UhK8mOyUmMa0oprxr2ghwz3lYAwBbk7Yed0xtrltbFpDs72rRb9lOwbrWc6UVMwd_g8ho3dqsDpiz9rceb3H9Jng96jPjqrp6Sn58-_rj8Ulx9-_z18uKqMLKhqWBUYDPITgL2AzLD-4H1wwADR0lr0Ve0q2gjhrxrC4J1LTeMmr4yHWLX1HV1Ss733O3UbbA36FLQo9oGu9Fhp7y26t-Os9dq5W8VZwKk5Bnw-g4Q_K8JY1IbGw2Oo3bop6hA5inQ7GcdkApJgUnWtk-QcgFNW8NMPfv7BQ-r38eQBXIvMMHHGHB4kABVc95qre7zVnPeigqVSza-e2Q0Nulk_fwTdjxsf7-3Y87v1mJQ0Vh0Bnsb0CTVe3sYcf4IYUbrrMk3gjuMaz8Fl69DgYpMUfV9vsn5JIFTKris_g94ygZ_AKNC9ks |
CitedBy_id | crossref_primary_10_1371_journal_pone_0140317 crossref_primary_10_3233_NRE_220174 crossref_primary_10_1242_jeb_176719 crossref_primary_10_1016_j_jbiomech_2015_12_047 crossref_primary_10_1080_09638288_2022_2030417 crossref_primary_10_3389_fphys_2018_01101 crossref_primary_10_1016_j_clinbiomech_2020_105135 crossref_primary_10_1016_j_gaitpost_2017_08_004 crossref_primary_10_1016_j_clinbiomech_2017_07_015 crossref_primary_10_3389_fneur_2021_667340 crossref_primary_10_1155_np_8737366 crossref_primary_10_1016_j_jbiomech_2017_08_023 crossref_primary_10_1016_j_jelekin_2018_04_008 crossref_primary_10_1371_journal_pone_0305564 crossref_primary_10_1186_s12984_015_0007_7 crossref_primary_10_1115_1_4042170 crossref_primary_10_1186_s12984_020_00702_5 crossref_primary_10_3389_fnbot_2023_1151623 crossref_primary_10_3233_RNN_170799 crossref_primary_10_7717_peerj_16919 crossref_primary_10_1186_s12891_021_04466_4 crossref_primary_10_1186_s12984_016_0176_z crossref_primary_10_1007_s12311_016_0760_6 crossref_primary_10_1016_j_jns_2019_04_035 crossref_primary_10_1016_j_gaitpost_2024_03_003 crossref_primary_10_3390_biomechanics1010009 crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_08_035 crossref_primary_10_1016_j_gaitpost_2019_01_007 crossref_primary_10_1016_j_pmr_2015_06_006 crossref_primary_10_1016_j_humov_2023_103158 crossref_primary_10_1186_s12984_017_0265_7 crossref_primary_10_1186_s12984_022_01040_4 crossref_primary_10_1186_s12984_022_01088_2 crossref_primary_10_23736_S1973_9087_21_07048_9 crossref_primary_10_1589_rika_36_73 crossref_primary_10_1038_s41598_018_22676_0 crossref_primary_10_1080_02699052_2017_1283061 crossref_primary_10_1016_j_arrct_2021_100156 crossref_primary_10_1016_j_gaitpost_2022_12_017 crossref_primary_10_1371_journal_pone_0208120 crossref_primary_10_1080_00222895_2023_2216150 crossref_primary_10_1109_RBME_2023_3279655 crossref_primary_10_1123_mc_2018_0098 crossref_primary_10_1016_j_clinbiomech_2023_106005 crossref_primary_10_1016_j_gaitpost_2022_10_013 crossref_primary_10_1016_j_gaitpost_2014_09_024 crossref_primary_10_1016_j_gaitpost_2019_03_003 crossref_primary_10_1038_s41598_020_68905_3 crossref_primary_10_1016_j_clinbiomech_2022_105595 crossref_primary_10_5334_pb_1033 crossref_primary_10_1007_s00221_021_06117_5 crossref_primary_10_1016_j_humov_2017_11_005 crossref_primary_10_1186_s12984_020_00747_6 crossref_primary_10_1016_j_jbiomech_2017_02_010 crossref_primary_10_1080_09638288_2017_1417496 crossref_primary_10_1080_10749357_2019_1642653 crossref_primary_10_3390_s22228656 crossref_primary_10_1371_journal_pone_0129821 crossref_primary_10_1109_TASE_2020_3010415 crossref_primary_10_2147_JPR_S310775 crossref_primary_10_3390_jcm11020425 crossref_primary_10_1097_NPT_0000000000000431 crossref_primary_10_1016_j_clinbiomech_2017_01_018 crossref_primary_10_1016_j_gaitpost_2017_03_004 crossref_primary_10_3389_fnhum_2018_00251 crossref_primary_10_1016_j_gaitpost_2024_01_014 crossref_primary_10_1016_j_gaitpost_2019_06_006 crossref_primary_10_1016_j_clinbiomech_2024_106377 crossref_primary_10_14474_ptrs_2019_8_3_141 crossref_primary_10_3233_NRE_161421 crossref_primary_10_3390_s24186012 crossref_primary_10_1016_j_humov_2018_01_012 crossref_primary_10_1109_TNSRE_2020_3038173 crossref_primary_10_3390_s24072338 crossref_primary_10_1016_j_jbiomech_2017_12_019 crossref_primary_10_1186_s12984_024_01479_7 crossref_primary_10_1371_journal_pone_0315368 crossref_primary_10_1016_j_medengphy_2019_07_018 crossref_primary_10_1016_j_gaitpost_2021_03_031 crossref_primary_10_1589_jpts_36_87 crossref_primary_10_1016_j_jbiomech_2021_110486 crossref_primary_10_1016_j_jbiomech_2014_11_048 crossref_primary_10_1123_japa_2016_0264 crossref_primary_10_1007_s00415_021_10944_5 crossref_primary_10_1097_NPT_0000000000000368 crossref_primary_10_1186_s12938_023_01068_0 crossref_primary_10_3389_fnagi_2018_00435 |
Cites_doi | 10.2105/AJPH.2012.300677 10.1016/j.apmr.2005.12.027 10.1016/j.gaitpost.2012.02.020 10.1111/j.1532-5415.2011.03408.x 10.1111/j.1532-5415.1997.tb00946.x 10.1016/j.jbiomech.2011.03.003 10.1016/j.jbiomech.2004.03.025 10.1016/j.jbiomech.2010.11.007 10.1016/j.clinph.2006.12.013 10.1111/j.1532-5415.2011.03834.x 10.1016/j.gaitpost.2012.05.016 10.1016/j.gaitpost.2011.02.017 10.1016/j.jbiomech.2011.12.027 10.1016/j.jbiomech.2004.12.014 10.1016/j.gaitpost.2006.03.003 10.1115/1.2746383 10.1177/1545968309343215 10.1016/j.gaitpost.2005.11.004 10.1098/rsif.2012.0999 10.1115/1.2895701 10.1093/ptj/85.2.150 10.1161/hs0202.102375 10.1016/j.gaitpost.2008.10.061 10.2522/ptj.20070205 10.1242/jeb.042572 10.1111/j.1747-4949.2012.00796.x 10.1682/JRRD.2007.09.0145 10.1016/j.jneumeth.2008.12.015 10.1016/j.jbiomech.2006.08.006 10.1016/j.jbiomech.2008.08.002 10.1016/j.jbiomech.2012.05.039 10.1016/j.medengphy.2011.07.024 10.1016/j.gaitpost.2011.11.010 10.1016/j.gaitpost.2010.01.002 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved. 2014 Elsevier B.V. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. – notice: 2014 Elsevier B.V. All rights reserved. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TS 5PM |
DOI | 10.1016/j.gaitpost.2014.05.014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Physical Education Index PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Physical Education Index |
DatabaseTitleList | Physical Education Index MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1879-2219 |
EndPage | 463 |
ExternalDocumentID | PMC4251664 24931112 10_1016_j_gaitpost_2014_05_014 S0966636214005463 1_s2_0_S0966636214005463 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM103333 – fundername: NIGMS NIH HHS grantid: P30 GM103333 – fundername: NICHD NIH HHS grantid: R01 HD038582 – fundername: NICHD NIH HHS grantid: HD038582 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29H 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UPT UV1 WH7 WUQ YRY Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG YCJ AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX ACLOT CITATION ~HD CGR CUY CVF ECM EIF NPM 7X8 7TS 5PM |
ID | FETCH-LOGICAL-c680t-205e8f6b61edfe2c4df2dff1f4e6075d30b3085f9669152b94c20cd3cbeeb8773 |
IEDL.DBID | .~1 |
ISSN | 0966-6362 1879-2219 |
IngestDate | Tue Sep 30 16:43:16 EDT 2025 Sat Sep 27 22:22:40 EDT 2025 Sat Sep 27 20:06:17 EDT 2025 Wed Oct 01 14:56:05 EDT 2025 Thu Apr 03 07:05:08 EDT 2025 Wed Oct 01 04:25:22 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Fri Feb 23 02:33:12 EST 2024 Sun Feb 23 10:18:54 EST 2025 Tue Aug 26 16:33:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Stroke Gait Margins of stability Dynamic stability Non-linear dynamics |
Language | English |
License | Copyright © 2014 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c680t-205e8f6b61edfe2c4df2dff1f4e6075d30b3085f9669152b94c20cd3cbeeb8773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4251664 |
PMID | 24931112 |
PQID | 1545189717 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4251664 proquest_miscellaneous_1677318877 proquest_miscellaneous_1560126299 proquest_miscellaneous_1545189717 pubmed_primary_24931112 crossref_primary_10_1016_j_gaitpost_2014_05_014 crossref_citationtrail_10_1016_j_gaitpost_2014_05_014 elsevier_sciencedirect_doi_10_1016_j_gaitpost_2014_05_014 elsevier_clinicalkeyesjournals_1_s2_0_S0966636214005463 elsevier_clinicalkey_doi_10_1016_j_gaitpost_2014_05_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Gait & posture |
PublicationTitleAlternate | Gait Posture |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kelsey, Procter-Gray, Hannan, Li (bib0055) 2012; 102 Dingwell, Kang (bib0030) 2007; 129 Bruijn, Meijer, Beek, van Dieen (bib0070) 2013; 10 van Schooten, Sloot, Bruijn, Kingma, Meijer, Pijnappels (bib0075) 2011; 33 Hurmuzlu, Basdogan (bib0155) 1994; 116 McAndrew Young, Dingwell (bib0120) 2012; 36 McAndrew, Wilken, Dingwell (bib0065) 2011; 44 Hof, Vermerris, Gjaltema (bib0105) 2010; 213 Harris, Eng, Marigold, Tokuno, Louis (bib0005) 2005; 85 England, Granata (bib0150) 2007; 25 Kang, Dingwell (bib0170) 2006; 24 McAndrew Young, Wilken, Dingwell (bib0115) 2012; 45 Dingwell, Kang, Marin (bib0140) 2007; 40 Batchelor, Mackintosh, Said, Hill (bib0015) 2012; 7 Jorgensen, Engstad, Jacobsen (bib0010) 2002; 33 Weerdesteyn, de Niet, van Duijnhoven, Geurts (bib0020) 2008; 45 Maki (bib0125) 1997; 45 Balasubramanian, Neptune, Kautz (bib0130) 2009; 29 Blum, Korner-Bitensky (bib0040) 2008; 88 Hof, Gazendam, Sinke (bib0100) 2005; 38 Bruijn, van Dieen, Meijer, Beek (bib0165) 2009; 178 Quach, Galica, Jones, Procter-Gray, Manor, Hannan (bib0050) 2011; 59 Roos, Dingwell (bib0090) 2011; 44 Rosenblatt, Grabiner (bib0110) 2010; 31 McAndrew Young, Dingwell (bib0160) 2012; 35 Belgen, Beninato, Sullivan, Narielwalla (bib0025) 2006; 87 Kelsey, Procter-Gray, Berry, Hannan, Kiel, Lipsitz (bib0060) 2012; 60 Bowden, Clark, Kautz (bib0045) 24 2010 Bruijn, Bregman, Meijer, Beek, van Dieen (bib0095) 2012; 34 Kang, Dingwell (bib0145) 2008; 41 Toebes, Hoozemans, Furrer, Dekker, van Dieen (bib0085) 2012; 36 Dingwell, Marin (bib0135) 2006; 39 Lamontagne, Stephenson, Fung (bib0035) 2007; 118 Sinitksi, Terry, Wilken, Dingwell (bib0080) 2012; 45 Batchelor (10.1016/j.gaitpost.2014.05.014_bib0015) 2012; 7 Hurmuzlu (10.1016/j.gaitpost.2014.05.014_bib0155) 1994; 116 Kelsey (10.1016/j.gaitpost.2014.05.014_bib0055) 2012; 102 Roos (10.1016/j.gaitpost.2014.05.014_bib0090) 2011; 44 Weerdesteyn (10.1016/j.gaitpost.2014.05.014_bib0020) 2008; 45 Hof (10.1016/j.gaitpost.2014.05.014_bib0100) 2005; 38 Dingwell (10.1016/j.gaitpost.2014.05.014_bib0030) 2007; 129 Harris (10.1016/j.gaitpost.2014.05.014_bib0005) 2005; 85 Hof (10.1016/j.gaitpost.2014.05.014_bib0105) 2010; 213 Rosenblatt (10.1016/j.gaitpost.2014.05.014_bib0110) 2010; 31 Belgen (10.1016/j.gaitpost.2014.05.014_bib0025) 2006; 87 Maki (10.1016/j.gaitpost.2014.05.014_bib0125) 1997; 45 Bowden (10.1016/j.gaitpost.2014.05.014_bib0045) 2010 Kelsey (10.1016/j.gaitpost.2014.05.014_bib0060) 2012; 60 Bruijn (10.1016/j.gaitpost.2014.05.014_bib0165) 2009; 178 Lamontagne (10.1016/j.gaitpost.2014.05.014_bib0035) 2007; 118 Kang (10.1016/j.gaitpost.2014.05.014_bib0145) 2008; 41 van Schooten (10.1016/j.gaitpost.2014.05.014_bib0075) 2011; 33 Toebes (10.1016/j.gaitpost.2014.05.014_bib0085) 2012; 36 Bruijn (10.1016/j.gaitpost.2014.05.014_bib0070) 2013; 10 McAndrew Young (10.1016/j.gaitpost.2014.05.014_bib0120) 2012; 36 McAndrew Young (10.1016/j.gaitpost.2014.05.014_bib0115) 2012; 45 Blum (10.1016/j.gaitpost.2014.05.014_bib0040) 2008; 88 Quach (10.1016/j.gaitpost.2014.05.014_bib0050) 2011; 59 Kang (10.1016/j.gaitpost.2014.05.014_bib0170) 2006; 24 McAndrew (10.1016/j.gaitpost.2014.05.014_bib0065) 2011; 44 Dingwell (10.1016/j.gaitpost.2014.05.014_bib0140) 2007; 40 McAndrew Young (10.1016/j.gaitpost.2014.05.014_bib0160) 2012; 35 Jorgensen (10.1016/j.gaitpost.2014.05.014_bib0010) 2002; 33 Sinitksi (10.1016/j.gaitpost.2014.05.014_bib0080) 2012; 45 England (10.1016/j.gaitpost.2014.05.014_bib0150) 2007; 25 Bruijn (10.1016/j.gaitpost.2014.05.014_bib0095) 2012; 34 Balasubramanian (10.1016/j.gaitpost.2014.05.014_bib0130) 2009; 29 Dingwell (10.1016/j.gaitpost.2014.05.014_bib0135) 2006; 39 17307395 - Clin Neurophysiol. 2007 Apr;118(4):717-29 19135478 - J Neurosci Methods. 2009 Apr 15;178(2):327-33 16571397 - Arch Phys Med Rehabil. 2006 Apr;87(4):554-61 22748312 - Gait Posture. 2012 Jul;36(3):527-31 15679466 - Phys Ther. 2005 Feb;85(2):150-8 16413784 - Gait Posture. 2006 Nov;24(3):386-90 17655480 - J Biomech Eng. 2007 Aug;129(4):586-93 22172233 - Gait Posture. 2012 Mar;35(3):472-7 22472707 - Gait Posture. 2012 Jun;36(2):219-24 19794132 - Neurorehabil Neural Repair. 2010 May;24(4):328-37 22326059 - J Biomech. 2012 Apr 5;45(6):1053-9 22749389 - J Biomech. 2012 Aug 9;45(12):2084-91 22283236 - J Am Geriatr Soc. 2012 Mar;60(3):517-24 21094944 - J Biomech. 2011 Feb 24;44(4):644-9 22494388 - Int J Stroke. 2012 Aug;7(6):482-90 18292215 - Phys Ther. 2008 May;88(5):559-66 21440895 - J Biomech. 2011 May 17;44(8):1514-20 19056272 - Gait Posture. 2009 Apr;29(3):408-14 8189711 - J Biomech Eng. 1994 Feb;116(1):30-6 16621565 - Gait Posture. 2007 Feb;25(2):172-8 20639427 - J Exp Biol. 2010 Aug 1;213(Pt 15):2655-64 21856204 - Med Eng Phys. 2012 May;34(4):428-36 9063277 - J Am Geriatr Soc. 1997 Mar;45(3):313-20 19235120 - J Rehabil Res Dev. 2008;45(8):1195-213 20129786 - Gait Posture. 2010 Mar;31(3):380-4 16389084 - J Biomech. 2006;39(3):444-52 11823667 - Stroke. 2002 Feb;33(2):542-7 21435878 - Gait Posture. 2011 Apr;33(4):656-60 15519333 - J Biomech. 2005 Jan;38(1):1-8 17055516 - J Biomech. 2007;40(8):1723-30 22994167 - Am J Public Health. 2012 Nov;102(11):2149-56 23516062 - J R Soc Interface. 2013 Jun 6;10(83):20120999 18790480 - J Biomech. 2008 Oct 20;41(14):2899-905 21649615 - J Am Geriatr Soc. 2011 Jun;59(6):1069-73 |
References_xml | – volume: 44 start-page: 1514 year: 2011 end-page: 1520 ident: bib0090 article-title: Influence of simulated neuromuscular noise on the dynamic stability and fall risk of a 3D dynamic walking model publication-title: J Biomech – volume: 40 start-page: 1723 year: 2007 end-page: 1730 ident: bib0140 article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking publication-title: J Biomech – volume: 36 start-page: 527 year: 2012 end-page: 531 ident: bib0085 article-title: Local dynamic stability and variability of gait are associated with fall history in elderly subjects publication-title: Gait Posture – volume: 88 start-page: 559 year: 2008 end-page: 566 ident: bib0040 article-title: Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review publication-title: Phys Ther – volume: 36 start-page: 219 year: 2012 end-page: 224 ident: bib0120 article-title: Voluntary changes in step width and step length during human walking affect dynamic margins of stability publication-title: Gait Posture – volume: 38 start-page: 1 year: 2005 end-page: 8 ident: bib0100 article-title: The condition for dynamic stability publication-title: J Biomech – volume: 25 start-page: 172 year: 2007 end-page: 178 ident: bib0150 article-title: The influence of gait speed on local dynamic stability of walking publication-title: Gait Posture – volume: 45 start-page: 313 year: 1997 end-page: 320 ident: bib0125 article-title: Gait changes in older adults: predictors of falls or indicators of fear publication-title: J Am Geriatr Soc – volume: 102 start-page: 2149 year: 2012 end-page: 2156 ident: bib0055 article-title: Heterogeneity of falls among older adults: implications for public health prevention publication-title: Am J Public Health – volume: 33 start-page: 542 year: 2002 end-page: 547 ident: bib0010 article-title: Higher incidence of falls in long-term stroke survivors than in population controls: depressive symptoms predict falls after stroke publication-title: Stroke – volume: 35 start-page: 472 year: 2012 end-page: 477 ident: bib0160 article-title: Voluntarily changing step length or step width affects dynamic stability of human walking publication-title: Gait Posture – volume: 29 start-page: 408 year: 2009 end-page: 414 ident: bib0130 article-title: Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke publication-title: Gait Posture – volume: 60 start-page: 517 year: 2012 end-page: 524 ident: bib0060 article-title: Reevaluating the implications of recurrent falls in older adults: location changes the inference publication-title: J Am Geriatr Soc – volume: 178 start-page: 327 year: 2009 end-page: 333 ident: bib0165 article-title: Statistical precision and sensitivity of measures of dynamic gait stability publication-title: J Neurosci Methods – volume: 45 start-page: 1195 year: 2008 end-page: 1213 ident: bib0020 article-title: Falls in individuals with stroke publication-title: J Rehabil Res Dev – volume: 33 start-page: 656 year: 2011 end-page: 660 ident: bib0075 article-title: Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait publication-title: Gait Posture – volume: 45 start-page: 2084 year: 2012 end-page: 2091 ident: bib0080 article-title: Effects of perturbation magnitude on dynamic stability when walking in destabilizing environments publication-title: J Biomech – volume: 44 start-page: 644 year: 2011 end-page: 649 ident: bib0065 article-title: Dynamic stability of human walking in visually and mechanically destabilizing environments publication-title: J Biomech – volume: 7 start-page: 482 year: 2012 end-page: 490 ident: bib0015 article-title: Falls after stroke publication-title: Int J Stroke – volume: 10 start-page: 20120999 year: 2013 ident: bib0070 article-title: Assessing the stability of human locomotion: a review of current measures publication-title: J R Soc Interface – volume: 41 start-page: 2899 year: 2008 end-page: 2905 ident: bib0145 article-title: Effects of walking speed, strength and range of motion on gait stability in healthy older adults publication-title: J Biomech – start-page: 328 year: 24 2010 end-page: 337 ident: bib0045 article-title: Evaluation of abnormal synergy patterns poststroke: relationship of the Fugl-Meyer Assessment to hemiparetic locomotion publication-title: Neurorehabil Neural Repair – volume: 59 start-page: 1069 year: 2011 end-page: 1073 ident: bib0050 article-title: The nonlinear relationship between gait speed and falls: the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly of Boston Study publication-title: J Am Geriatr Soc – volume: 213 start-page: 2655 year: 2010 end-page: 2664 ident: bib0105 article-title: Balance responses to lateral perturbations in human treadmill walking publication-title: J Exp Biol – volume: 129 start-page: 586 year: 2007 end-page: 593 ident: bib0030 article-title: Differences between local and orbital dynamic stability during human walking publication-title: J Biomech Eng – volume: 85 start-page: 150 year: 2005 end-page: 158 ident: bib0005 article-title: Relationship of balance and mobility to fall incidence in people with chronic stroke publication-title: Phys Ther – volume: 118 start-page: 717 year: 2007 end-page: 729 ident: bib0035 article-title: Physiological evaluation of gait disturbances post stroke publication-title: Clin Neurophysiol – volume: 31 start-page: 380 year: 2010 end-page: 384 ident: bib0110 article-title: Measures of frontal plane stability during treadmill and overground walking publication-title: Gait Posture – volume: 116 start-page: 30 year: 1994 end-page: 36 ident: bib0155 article-title: On the measurement of dynamic stability of human locomotion publication-title: J Biomech Eng – volume: 24 start-page: 386 year: 2006 end-page: 390 ident: bib0170 article-title: Intra-session reliability of local dynamic stability of walking publication-title: Gait Posture – volume: 45 start-page: 1053 year: 2012 end-page: 1059 ident: bib0115 article-title: Dynamic margins of stability during human walking in destabilizing environments publication-title: J Biomech – volume: 39 start-page: 444 year: 2006 end-page: 452 ident: bib0135 article-title: Kinematic variability and local dynamic stability of upper body motions when walking at different speeds publication-title: J Biomech – volume: 87 start-page: 554 year: 2006 end-page: 561 ident: bib0025 article-title: The association of balance capacity and falls self-efficacy with history of falling in community-dwelling people with chronic stroke publication-title: Arch Phys Med Rehabil – volume: 34 start-page: 428 year: 2012 end-page: 436 ident: bib0095 article-title: Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach publication-title: Med Eng Phys – volume: 102 start-page: 2149 year: 2012 ident: 10.1016/j.gaitpost.2014.05.014_bib0055 article-title: Heterogeneity of falls among older adults: implications for public health prevention publication-title: Am J Public Health doi: 10.2105/AJPH.2012.300677 – volume: 87 start-page: 554 year: 2006 ident: 10.1016/j.gaitpost.2014.05.014_bib0025 article-title: The association of balance capacity and falls self-efficacy with history of falling in community-dwelling people with chronic stroke publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2005.12.027 – volume: 36 start-page: 219 year: 2012 ident: 10.1016/j.gaitpost.2014.05.014_bib0120 article-title: Voluntary changes in step width and step length during human walking affect dynamic margins of stability publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.02.020 – volume: 59 start-page: 1069 year: 2011 ident: 10.1016/j.gaitpost.2014.05.014_bib0050 article-title: The nonlinear relationship between gait speed and falls: the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly of Boston Study publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.2011.03408.x – volume: 45 start-page: 313 year: 1997 ident: 10.1016/j.gaitpost.2014.05.014_bib0125 article-title: Gait changes in older adults: predictors of falls or indicators of fear publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.1997.tb00946.x – volume: 44 start-page: 1514 year: 2011 ident: 10.1016/j.gaitpost.2014.05.014_bib0090 article-title: Influence of simulated neuromuscular noise on the dynamic stability and fall risk of a 3D dynamic walking model publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.03.003 – volume: 38 start-page: 1 year: 2005 ident: 10.1016/j.gaitpost.2014.05.014_bib0100 article-title: The condition for dynamic stability publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.03.025 – volume: 44 start-page: 644 year: 2011 ident: 10.1016/j.gaitpost.2014.05.014_bib0065 article-title: Dynamic stability of human walking in visually and mechanically destabilizing environments publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.11.007 – volume: 118 start-page: 717 year: 2007 ident: 10.1016/j.gaitpost.2014.05.014_bib0035 article-title: Physiological evaluation of gait disturbances post stroke publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.12.013 – volume: 60 start-page: 517 year: 2012 ident: 10.1016/j.gaitpost.2014.05.014_bib0060 article-title: Reevaluating the implications of recurrent falls in older adults: location changes the inference publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.2011.03834.x – volume: 36 start-page: 527 year: 2012 ident: 10.1016/j.gaitpost.2014.05.014_bib0085 article-title: Local dynamic stability and variability of gait are associated with fall history in elderly subjects publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.05.016 – volume: 33 start-page: 656 year: 2011 ident: 10.1016/j.gaitpost.2014.05.014_bib0075 article-title: Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.02.017 – volume: 45 start-page: 1053 year: 2012 ident: 10.1016/j.gaitpost.2014.05.014_bib0115 article-title: Dynamic margins of stability during human walking in destabilizing environments publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.12.027 – volume: 39 start-page: 444 year: 2006 ident: 10.1016/j.gaitpost.2014.05.014_bib0135 article-title: Kinematic variability and local dynamic stability of upper body motions when walking at different speeds publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.12.014 – volume: 25 start-page: 172 year: 2007 ident: 10.1016/j.gaitpost.2014.05.014_bib0150 article-title: The influence of gait speed on local dynamic stability of walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.03.003 – volume: 129 start-page: 586 year: 2007 ident: 10.1016/j.gaitpost.2014.05.014_bib0030 article-title: Differences between local and orbital dynamic stability during human walking publication-title: J Biomech Eng doi: 10.1115/1.2746383 – start-page: 328 year: 2010 ident: 10.1016/j.gaitpost.2014.05.014_bib0045 article-title: Evaluation of abnormal synergy patterns poststroke: relationship of the Fugl-Meyer Assessment to hemiparetic locomotion publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968309343215 – volume: 24 start-page: 386 year: 2006 ident: 10.1016/j.gaitpost.2014.05.014_bib0170 article-title: Intra-session reliability of local dynamic stability of walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.11.004 – volume: 10 start-page: 20120999 year: 2013 ident: 10.1016/j.gaitpost.2014.05.014_bib0070 article-title: Assessing the stability of human locomotion: a review of current measures publication-title: J R Soc Interface doi: 10.1098/rsif.2012.0999 – volume: 116 start-page: 30 year: 1994 ident: 10.1016/j.gaitpost.2014.05.014_bib0155 article-title: On the measurement of dynamic stability of human locomotion publication-title: J Biomech Eng doi: 10.1115/1.2895701 – volume: 85 start-page: 150 year: 2005 ident: 10.1016/j.gaitpost.2014.05.014_bib0005 article-title: Relationship of balance and mobility to fall incidence in people with chronic stroke publication-title: Phys Ther doi: 10.1093/ptj/85.2.150 – volume: 33 start-page: 542 year: 2002 ident: 10.1016/j.gaitpost.2014.05.014_bib0010 article-title: Higher incidence of falls in long-term stroke survivors than in population controls: depressive symptoms predict falls after stroke publication-title: Stroke doi: 10.1161/hs0202.102375 – volume: 29 start-page: 408 year: 2009 ident: 10.1016/j.gaitpost.2014.05.014_bib0130 article-title: Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.10.061 – volume: 88 start-page: 559 year: 2008 ident: 10.1016/j.gaitpost.2014.05.014_bib0040 article-title: Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review publication-title: Phys Ther doi: 10.2522/ptj.20070205 – volume: 213 start-page: 2655 year: 2010 ident: 10.1016/j.gaitpost.2014.05.014_bib0105 article-title: Balance responses to lateral perturbations in human treadmill walking publication-title: J Exp Biol doi: 10.1242/jeb.042572 – volume: 7 start-page: 482 year: 2012 ident: 10.1016/j.gaitpost.2014.05.014_bib0015 article-title: Falls after stroke publication-title: Int J Stroke doi: 10.1111/j.1747-4949.2012.00796.x – volume: 45 start-page: 1195 year: 2008 ident: 10.1016/j.gaitpost.2014.05.014_bib0020 article-title: Falls in individuals with stroke publication-title: J Rehabil Res Dev doi: 10.1682/JRRD.2007.09.0145 – volume: 178 start-page: 327 year: 2009 ident: 10.1016/j.gaitpost.2014.05.014_bib0165 article-title: Statistical precision and sensitivity of measures of dynamic gait stability publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2008.12.015 – volume: 40 start-page: 1723 year: 2007 ident: 10.1016/j.gaitpost.2014.05.014_bib0140 article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.08.006 – volume: 41 start-page: 2899 year: 2008 ident: 10.1016/j.gaitpost.2014.05.014_bib0145 article-title: Effects of walking speed, strength and range of motion on gait stability in healthy older adults publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.08.002 – volume: 45 start-page: 2084 year: 2012 ident: 10.1016/j.gaitpost.2014.05.014_bib0080 article-title: Effects of perturbation magnitude on dynamic stability when walking in destabilizing environments publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.05.039 – volume: 34 start-page: 428 year: 2012 ident: 10.1016/j.gaitpost.2014.05.014_bib0095 article-title: Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2011.07.024 – volume: 35 start-page: 472 year: 2012 ident: 10.1016/j.gaitpost.2014.05.014_bib0160 article-title: Voluntarily changing step length or step width affects dynamic stability of human walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.11.010 – volume: 31 start-page: 380 year: 2010 ident: 10.1016/j.gaitpost.2014.05.014_bib0110 article-title: Measures of frontal plane stability during treadmill and overground walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2010.01.002 – reference: 9063277 - J Am Geriatr Soc. 1997 Mar;45(3):313-20 – reference: 17307395 - Clin Neurophysiol. 2007 Apr;118(4):717-29 – reference: 21856204 - Med Eng Phys. 2012 May;34(4):428-36 – reference: 8189711 - J Biomech Eng. 1994 Feb;116(1):30-6 – reference: 16389084 - J Biomech. 2006;39(3):444-52 – reference: 19135478 - J Neurosci Methods. 2009 Apr 15;178(2):327-33 – reference: 22494388 - Int J Stroke. 2012 Aug;7(6):482-90 – reference: 18790480 - J Biomech. 2008 Oct 20;41(14):2899-905 – reference: 20129786 - Gait Posture. 2010 Mar;31(3):380-4 – reference: 16621565 - Gait Posture. 2007 Feb;25(2):172-8 – reference: 18292215 - Phys Ther. 2008 May;88(5):559-66 – reference: 21435878 - Gait Posture. 2011 Apr;33(4):656-60 – reference: 22472707 - Gait Posture. 2012 Jun;36(2):219-24 – reference: 15679466 - Phys Ther. 2005 Feb;85(2):150-8 – reference: 19056272 - Gait Posture. 2009 Apr;29(3):408-14 – reference: 22283236 - J Am Geriatr Soc. 2012 Mar;60(3):517-24 – reference: 17055516 - J Biomech. 2007;40(8):1723-30 – reference: 21440895 - J Biomech. 2011 May 17;44(8):1514-20 – reference: 22994167 - Am J Public Health. 2012 Nov;102(11):2149-56 – reference: 11823667 - Stroke. 2002 Feb;33(2):542-7 – reference: 15519333 - J Biomech. 2005 Jan;38(1):1-8 – reference: 19235120 - J Rehabil Res Dev. 2008;45(8):1195-213 – reference: 16413784 - Gait Posture. 2006 Nov;24(3):386-90 – reference: 21649615 - J Am Geriatr Soc. 2011 Jun;59(6):1069-73 – reference: 22172233 - Gait Posture. 2012 Mar;35(3):472-7 – reference: 19794132 - Neurorehabil Neural Repair. 2010 May;24(4):328-37 – reference: 17655480 - J Biomech Eng. 2007 Aug;129(4):586-93 – reference: 21094944 - J Biomech. 2011 Feb 24;44(4):644-9 – reference: 22326059 - J Biomech. 2012 Apr 5;45(6):1053-9 – reference: 22748312 - Gait Posture. 2012 Jul;36(3):527-31 – reference: 16571397 - Arch Phys Med Rehabil. 2006 Apr;87(4):554-61 – reference: 20639427 - J Exp Biol. 2010 Aug 1;213(Pt 15):2655-64 – reference: 22749389 - J Biomech. 2012 Aug 9;45(12):2084-91 – reference: 23516062 - J R Soc Interface. 2013 Jun 6;10(83):20120999 |
SSID | ssj0004382 |
Score | 2.4233215 |
Snippet | •We directly quantified walking stability in stroke survivors and healthy controls.•Stroke subjects had greater local and orbital instability but remained... Highlights • We directly quantified walking stability in stroke survivors and healthy controls. • Stroke subjects had greater local and orbital instability but... Falls and fall-related injuries cause extremely costly and potentially fatal health problems in people post-stroke. However, there is no global indicator of... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 457 |
SubjectTerms | Adult Aged Biomechanical Phenomena - physiology Case-Control Studies Dynamic stability Exercise Test Female Gait Gait Disorders, Neurologic - physiopathology Hemiplegia - physiopathology Humans Male Margins of stability Middle Aged Non-linear dynamics Orthopedics Postural Balance - physiology Risk Factors Stroke Stroke - physiopathology Walking - physiology |
Title | Dynamic instability during post-stroke hemiparetic walking |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0966636214005463 https://www.clinicalkey.es/playcontent/1-s2.0-S0966636214005463 https://dx.doi.org/10.1016/j.gaitpost.2014.05.014 https://www.ncbi.nlm.nih.gov/pubmed/24931112 https://www.proquest.com/docview/1545189717 https://www.proquest.com/docview/1560126299 https://www.proquest.com/docview/1677318877 https://pubmed.ncbi.nlm.nih.gov/PMC4251664 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 0966-6362 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 0966-6362 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 0966-6362 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 0966-6362 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 0966-6362 databaseCode: AKRWK dateStart: 19930301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKlVcKgp9LKXIlarewsaJ43W4rbZF2wcI8ZC4WXFit6E0uyJZVXvpb-9MHlsWVIrKKUpiJ85knvY3Y4C3MU0r2UR6XESJhxZfeiqJMGo1FrkldlGc0HzHwaEcn4lP59H5Coy6XBiCVba6v9HptbZur_Rbavaned4_QecbzaUMMETwqag7ZbALSbC-3V9_YB600FXX28NRUOtrWcIXu1-TvJpOSsJUctFU8BR_M1C3HdCbOMprhml_HZ60HiUbNoN-Ciu22IDNYYHR9I85e8dqjGc9eb4Bjw_apfRN2Hvf7EXPcnIQa4jsnDVJi4wG65XV1eS7ZVRQgFDq-HT2M7mkmfVncLb_4XQ09tqNFLxUKr9CSYisctJIbjNng1RkLsic405YiS5DFvomRNfLIY1itOcmFmngp1mYGmuNGgzC57BaTAr7EligMqu4oyLuShgVGd8lMU-zDD0xqmbXg6ijnk7bKuO02cWl7uBkF7qjuiaqaz_SeOhBf9Fv2tTZ-GePQfdzdJdFinpPoyn4v562bMW31FyXgfb1LRbrQbzoucSl93rrm46DNIowrcskhZ3M8G1IO65iDKzvaoORcyDRebijjcRfxdFq4HNeNJy5oCVG2SGatQC_fYlnFw2ozPjynSL_VpcbR62OIiy2HvDtr2CNzhqY8zasVlcz-xqducrs1NK6A4-Go-MvR3T8-Hl8-BuOBUzN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgJeEGx8lE8jId5C48RxHd6qwdSxtS9s0t6sOLFHxkirJRPaf89d4pSViYHgKVLiS5zLffzOuTsDvElpWclmMuAiyQL0-DJQWYJRq7EoLalL0ozWO2ZzOT0Sn46T4w3Y6WthKK3S2_7OprfW2p8ZeW6OlmU5-ozgG92ljDBECKmp-y3YFAna5AFsTvb2p_Of5ZFxu2cUjQ-I4Eqh8Om7k6xsloua0iq56Jp4it_5qOsY9NdUyiu-afc-3POgkk26eT-ADVttwfakwoD62yV7y9o0z3b9fAtuz_zf9G14_6Hbjp6VhBHbLNlL1tUtMppsUDfni6-WUU8BSlTHu7Pv2Rktrj-Eo92PhzvTwO-lEORShQ0qQ2KVk0ZyWzgb5aJwUeEcd8JKRA1FHJoY0ZdDHqXo0k0q8ijMizg31ho1HsePYFAtKvsEWKQKq7ijPu5KGJWY0GUpz4sCwRg1tBtC0nNP577ROO13cab7jLJT3XNdE9d1mGg8DGG0olt2rTb-SDHuP47uC0nR9Gn0Bv9GaWuvwbXmuo50qK9J2RDSFeWaoP7VU1_3EqRRi-nXTFbZxQU-DXnHVYqx9U1jMHiOJOKHG8ZI_FQcHQfe53EnmSteYqAdo2eL8N3XZHY1gDqNr1-pyi9tx3E07KjF4ul_vPsruDM9nB3og735_jO4S1e6rOfnMGjOL-wLxHaNeel19wdCj03j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+instability+during+post-stroke+hemiparetic+walking&rft.jtitle=Gait+%26+posture&rft.au=Kao%2C+Pei-Chun&rft.au=Dingwell%2C+Jonathan+B&rft.au=Higginson%2C+Jill+S&rft.au=Binder-Macleod%2C+Stuart&rft.date=2014-07-01&rft.eissn=1879-2219&rft.volume=40&rft.issue=3&rft.spage=457&rft_id=info:doi/10.1016%2Fj.gaitpost.2014.05.014&rft_id=info%3Apmid%2F24931112&rft.externalDocID=24931112 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09666362%2FS0966636214X00081%2Fcov150h.gif |