Nonisothermal crystallization kinetics of poly(lactide)-effect of plasticizers and nucleating agent
Poly(lactide), a bio‐based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization kinetics to promote crystallinity under nonisothermal polymer processing conditions by means of compounding with nucleating agents and plasticiz...
Saved in:
Published in | Polymer engineering and science Vol. 53; no. 5; pp. 1085 - 1098 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2013
Wiley Society of Plastics Engineers, Inc Blackwell Publishing Ltd Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0032-3888 1548-2634 |
DOI | 10.1002/pen.23357 |
Cover
Abstract | Poly(lactide), a bio‐based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization kinetics to promote crystallinity under nonisothermal polymer processing conditions by means of compounding with nucleating agents and plasticizers. The nonisothermal crystallization kinetics of neat and formulated poly(L,D‐lactide) (PDLLA) from the melt with talc and polyethylene glycol (PEG) or acetyl tributyl citrate (ATBC) were studied with the help of the Avrami–Jeziorny and Liu–Mo analysis. Talc showed to be a moderately efficient nucleating agent, as it causes only small increase of crystallization kinetics and shows no effect on the crystallization activation energy. A synergistic effect with plasticizers was observed, expanding the crystallization window significantly. PEG was found to be a more efficient plasticizer than ATBC but causes large decrease in the molecular weight average of PDLLA upon thermal treatment. The talc/ATBC system is efficient starting with an ATBC concentration of 9 wt%. The acceleration observed was a crystallization half‐time decrease of 30% compared to neat PLA and reaching maximum crystallization enthalpies even at cooling rate of 25°C min−1. The ATBC/talc system can be recommended as an efficient system for acceleration of nonisothermal crystallization kinetics of PDLLA. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers |
---|---|
AbstractList | Poly(lactide), a bio-based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization kinetics to promote crystallinity under nonisothermal polymer processing conditions by means of compounding with nucleating agents and plasticizers. The nonisothermal crystallization kinetics of neat and formulated poly(^sub l,d^-lactide) (PDLLA) from the melt with talc and polyethylene glycol (PEG) or acetyl tributyl citrate (ATBC) were studied with the help of the Avrami-Jeziorny and Liu-Mo analysis. Talc showed to be a moderately efficient nucleating agent, as it causes only small increase of crystallization kinetics and shows no effect on the crystallization activation energy. A synergistic effect with plasticizers was observed, expanding the crystallization window significantly. PEG was found to be a more efficient plasticizer than ATBC but causes large decrease in the molecular weight average of PDLLA upon thermal treatment. The talc/ATBC system is efficient starting with an ATBC concentration of 9 wt%. The acceleration observed was a crystallization half-time decrease of 30% compared to neat PLA and reaching maximum crystallization enthalpies even at cooling rate of 25°C min^sup -1^. The ATBC/talc system can be recommended as an efficient system for acceleration of nonisothermal crystallization kinetics of PDLLA. [PUBLICATION ABSTRACT] Poly(lactide), a bio-based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization kinetics to promote crystallinity under nonisothermal polymer processing conditions by means of compounding with nucleating agents and plasticizers. The nonisothermal crystallization kinetics of neat and formulated poly( sigma ub l,d approximately lactide) (PDLLA) from the melt with talc and polyethylene glycol (PEG) or acetyl tributyl citrate (ATBC) were studied with the help of the Avrami-Jeziorny and Liu-Mo analysis. Talc showed to be a moderately efficient nucleating agent, as it causes only small increase of crystallization kinetics and shows no effect on the crystallization activation energy. A synergistic effect with plasticizers was observed, expanding the crystallization window significantly. PEG was found to be a more efficient plasticizer than ATBC but causes large decrease in the molecular weight average of PDLLA upon thermal treatment. The talc/ATBC system is efficient starting with an ATBC concentration of 9 wt%. The acceleration observed was a crystallization half-time decrease of 30% compared to neat PLA and reaching maximum crystallization enthalpies even at cooling rate of 25 degree C min sigma up -1 greater than or equal to The ATBC/talc system can be recommended as an efficient system for acceleration of nonisothermal crystallization kinetics of PDLLA. [PUBLICATIONABSTRACT] Poly(lactide), a bio‐based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization kinetics to promote crystallinity under nonisothermal polymer processing conditions by means of compounding with nucleating agents and plasticizers. The nonisothermal crystallization kinetics of neat and formulated poly(L,D‐lactide) (PDLLA) from the melt with talc and polyethylene glycol (PEG) or acetyl tributyl citrate (ATBC) were studied with the help of the Avrami–Jeziorny and Liu–Mo analysis. Talc showed to be a moderately efficient nucleating agent, as it causes only small increase of crystallization kinetics and shows no effect on the crystallization activation energy. A synergistic effect with plasticizers was observed, expanding the crystallization window significantly. PEG was found to be a more efficient plasticizer than ATBC but causes large decrease in the molecular weight average of PDLLA upon thermal treatment. The talc/ATBC system is efficient starting with an ATBC concentration of 9 wt%. The acceleration observed was a crystallization half‐time decrease of 30% compared to neat PLA and reaching maximum crystallization enthalpies even at cooling rate of 25°C min−1. The ATBC/talc system can be recommended as an efficient system for acceleration of nonisothermal crystallization kinetics of PDLLA. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers Poly(lactide), a bio-based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization kinetics to promote crystallinity under nonisothermal polymer processing conditions by means of compounding with nucleating agents and plasticizers. The nonisothermal crystallization kinetics of neat and formulated poly(L,D-lactide) (PDLLA) from the melt with talc and polyethylene glycol (PEG) or acetyl tributyl citrate (ATBC) were studied with the help of the Avrami--Jeziorny and Liu-Mo analysis. Talc showed to be a moderately efficient nucleating agent, as it causes only small increase of crystallization kinetics and shows no effect on the crystallization activation energy. A synergistic effect with plasticizers was observed, expanding the crystallization window significantly. PEG was found to be a more efficient plasticizer than ATBC but causes large decrease in the molecular weight average of PDLLA upon thermal treatment. The talc/ATBC system is efficient starting with an ATBC concentration of 9 wt%. The acceleration observed was a crystallization halftime decrease of 30% compared to neat PLA and reaching maximum crystallization enthalpies even at cooling rate of 25°C [min.sup.-1]. The ATBC/talc system can be recommended as an efficient system for acceleration of nonisothermal crystallization kinetics of PDLLA. POLYM. ENG. SCI., 53: 1085-1098, 2013. © 2012 Society of Plastics Engineers Poly(lactide), a bio-based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization kinetics to promote crystallinity under nonisothermal polymer processing conditions by means of compounding with nucleating agents and plasticizers. The nonisothermal crystallization kinetics of neat and formulated poly(L,D-lactide) (PDLLA) from the melt with talc and polyethylene glycol (PEG) or acetyl tributyl citrate (ATBC) were studied with the help of the AvramiJeziorny and LiuMo analysis. Talc showed to be a moderately efficient nucleating agent, as it causes only small increase of crystallization kinetics and shows no effect on the crystallization activation energy. A synergistic effect with plasticizers was observed, expanding the crystallization window significantly. PEG was found to be a more efficient plasticizer than ATBC but causes large decrease in the molecular weight average of PDLLA upon thermal treatment. The talc/ATBC system is efficient starting with an ATBC concentration of 9 wt%. The acceleration observed was a crystallization half-time decrease of 30% compared to neat PLA and reaching maximum crystallization enthalpies even at cooling rate of 25 degrees C min1. The ATBC/talc system can be recommended as an efficient system for acceleration of nonisothermal crystallization kinetics of PDLLA. POLYM. ENG. SCI., 2013. (c) 2012 Society of Plastics Engineers Poly(lactide), a bio‐based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization kinetics to promote crystallinity under nonisothermal polymer processing conditions by means of compounding with nucleating agents and plasticizers. The nonisothermal crystallization kinetics of neat and formulated poly( L,D ‐lactide) (PDLLA) from the melt with talc and polyethylene glycol (PEG) or acetyl tributyl citrate (ATBC) were studied with the help of the Avrami–Jeziorny and Liu–Mo analysis. Talc showed to be a moderately efficient nucleating agent, as it causes only small increase of crystallization kinetics and shows no effect on the crystallization activation energy. A synergistic effect with plasticizers was observed, expanding the crystallization window significantly. PEG was found to be a more efficient plasticizer than ATBC but causes large decrease in the molecular weight average of PDLLA upon thermal treatment. The talc/ATBC system is efficient starting with an ATBC concentration of 9 wt%. The acceleration observed was a crystallization half‐time decrease of 30% compared to neat PLA and reaching maximum crystallization enthalpies even at cooling rate of 25°C min −1 . The ATBC/talc system can be recommended as an efficient system for acceleration of nonisothermal crystallization kinetics of PDLLA. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers |
Audience | Academic |
Author | Courgneau, Cécile Domenek, Sandra Ducruet, Violette Avérous, Luc Grenet, Jean |
Author_xml | – sequence: 1 givenname: Cécile surname: Courgneau fullname: Courgneau, Cécile organization: INRA, UMR 1145 Ingénierie procédés Aliments, 1 avenue des Olympiades, F 91300 Massy, France – sequence: 2 givenname: Violette surname: Ducruet fullname: Ducruet, Violette organization: INRA, UMR 1145 Ingénierie procédés Aliments, 1 avenue des Olympiades, F 91300 Massy, France – sequence: 3 givenname: Luc surname: Avérous fullname: Avérous, Luc organization: ECPM-LIPHT, EAc (CNRS) 4379, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France – sequence: 4 givenname: Jean surname: Grenet fullname: Grenet, Jean organization: AMME-LECAP International Laboratory, LECAP, EA4528, Institute for Material Research, Université de Rouen, 76801 Saint Etienne du Rouvray, France – sequence: 5 givenname: Sandra surname: Domenek fullname: Domenek, Sandra email: sandra.domenek@agroparistech.fr organization: AgroParisTech, UMR 1145 Ingénierie procédés Aliments, 1 avenue des Olympiades, F 91300 Massy, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27282888$$DView record in Pascal Francis https://hal.science/hal-01004073$$DView record in HAL |
BookMark | eNp9kl9v0zAUxSM0JLrBA98gEkJaJdLZcRI7j1M1tqGqoAEab9at47TeXLvYDtB9etw_dHQqyJItXf3Ote_xOU6OjDUySV5jNMAI5WcLaQY5ISV9lvRwWbAsr0hxlPQQInlGGGMvkmPv71BkSVn3EjG2RnkbZtLNQafCLX0ArdUDBGVNeq-MDEr41LbpwurlqQYRVCP7mWxbKcK6rsFHRj1I51MwTWo6oWXUm2kKU2nCy-R5C9rLV9vzJPn6_uLL8Cobfby8Hp6PMlExRDOo5GRC5aSqS1xCiyvWCARYoKIWdVHUqGGxigirGoGhgAkGShoo2grXWApETpL-pu8MNF84NQe35BYUvzof8VUNRYsKRMkPHNnTDbtw9nsnfeBz5YXUGoy0nee4zFFNEEUsom-eoHe2cyZOwnFRV1XBKkYeqSloyZVpbXAgVk35OclrSggqVtdmB6hoknSg40-2Kpb3-MEBPq5GzpU4KOjvCSIT5K8whc57fv35Zp999xc76Xz8bB83r6az4DeSPfzt1gfwAnTrwAjld0bnNGd5DNjjE4Sz3jvZ7hCM-CqkPIaUr0Ma2bMnrFBhHb04p9L_U_yMky__3Zp_uhj_UWw9Vz5asVOAu-cVJbTkt-NLPv42vKUfaM5vyG-PAwXb |
CODEN | PYESAZ |
CitedBy_id | crossref_primary_10_1007_s10973_017_6417_y crossref_primary_10_1007_s00289_017_1989_z crossref_primary_10_1021_acsapm_0c00315 crossref_primary_10_3390_cryst11101260 crossref_primary_10_1016_j_polymertesting_2020_106571 crossref_primary_10_1016_j_polymertesting_2021_107163 crossref_primary_10_3390_polym11091413 crossref_primary_10_1016_j_carbpol_2014_12_056 crossref_primary_10_1016_j_indcrop_2017_10_042 crossref_primary_10_1515_polyeng_2015_0140 crossref_primary_10_1007_s00289_022_04309_9 crossref_primary_10_3390_polym15132855 crossref_primary_10_1016_j_eurpolymj_2013_07_017 crossref_primary_10_4028_www_scientific_net_AMR_1096_465 crossref_primary_10_1007_s10853_024_10375_3 crossref_primary_10_1007_s10973_019_08507_y crossref_primary_10_1016_j_jcis_2018_12_030 crossref_primary_10_3390_ma13214910 crossref_primary_10_1016_j_indcrop_2024_119714 crossref_primary_10_1007_s10973_018_7365_x crossref_primary_10_1016_j_eurpolymj_2018_04_012 crossref_primary_10_1007_s10570_014_0476_z crossref_primary_10_3390_polym15020285 crossref_primary_10_3139_217_3525 crossref_primary_10_1002_pen_23862 crossref_primary_10_1002_pc_22810 crossref_primary_10_1007_s10570_018_2136_1 crossref_primary_10_1007_s10973_016_5961_1 crossref_primary_10_1021_jf5029812 crossref_primary_10_1007_s10973_022_11231_9 crossref_primary_10_1002_app_41367 crossref_primary_10_1016_j_matchemphys_2021_125227 crossref_primary_10_1007_s10973_014_4162_z crossref_primary_10_1007_s10965_016_1179_y crossref_primary_10_1038_srep46767 crossref_primary_10_1002_pola_27917 crossref_primary_10_3390_ma13245789 crossref_primary_10_1007_s10570_017_1327_5 crossref_primary_10_1016_j_addr_2016_04_003 crossref_primary_10_1016_j_eurpolymj_2015_10_036 crossref_primary_10_1016_j_ijbiomac_2023_127232 crossref_primary_10_1002_adma_201305413 |
Cites_doi | 10.1002/1521-3927(20020901)23:13<771::AID-MARC771>3.0.CO;2-G 10.1016/j.polymer.2006.03.074 10.1002/pen.11517 10.1007/BF02135016 10.1016/j.polymer.2005.12.066 10.1002/app.27377 10.1002/app.32728 10.6028/jres.057.026 10.1002/app.12549 10.1002/app.11077 10.1007/s10924-011-0285-5 10.1016/0032-3861(78)90060-5 10.1002/(SICI)1097-4628(19961114)62:7<1079::AID-APP14>3.0.CO;2-1 10.1002/pen.11700 10.1016/j.tca.2007.10.004 10.1021/ma9714629 10.1007/s10973-006-7897-3 10.1016/0032-3861(71)90041-3 10.1016/j.tca.2011.05.034 10.1002/app.27261 10.1016/S0032-3861(01)00086-6 10.1016/0079-6700(95)00002-W 10.1016/0032-3861(95)93647-5 10.1016/j.envres.2008.07.025 10.1016/j.polymer.2006.01.062 10.1021/ma034623j 10.1002/pi.2894 10.1016/j.polymer.2005.07.101 10.1016/j.progpolymsci.2008.05.004 10.1016/j.eurpolymj.2004.10.020 10.1002/polb.21154 10.1063/1.1750631 10.1016/j.polymer.2007.09.020 10.1016/j.polymer.2006.03.115 10.1016/j.polymer.2004.09.057 10.1021/bm060089m 10.1002/pol.1969.110070109 10.1016/S0142-9612(97)00076-8 10.1098/rstb.2009.0054 10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0 10.1002/app.32225 10.1063/1.1750872 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X 10.1002/polb.20987 10.1002/masy.200650223 10.1098/rstb.2008.0289 10.1002/1521-3900(200003)153:1<287::AID-MASY287>3.0.CO;2-E 10.1002/app.29784 10.1002/1099-0488(20010201)39:3<300::AID-POLB1002>3.0.CO;2-M 10.1002/pen.21755 10.1016/S0032-3861(03)00609-8 10.1002/app.28512 10.1002/(SICI)1097-4628(19981219)70:12<2371::AID-APP9>3.0.CO;2-4 10.1002/app.29955 10.1002/pc.21004 10.1063/1.1750380 10.1016/j.eurpolymj.2007.06.045 10.1007/s10973-006-7717-9 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Society of Plastics Engineers 2014 INIST-CNRS COPYRIGHT 2013 Society of Plastics Engineers, Inc. Copyright Blackwell Publishing Ltd. May 2013 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2012 Society of Plastics Engineers – notice: 2014 INIST-CNRS – notice: COPYRIGHT 2013 Society of Plastics Engineers, Inc. – notice: Copyright Blackwell Publishing Ltd. May 2013 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION IQODW N95 ISR 7SR 8FD JG9 1XC VOOES |
DOI | 10.1002/pen.23357 |
DatabaseName | Istex CrossRef Pascal-Francis Gale Business: Insights Gale In Context: Science Engineered Materials Abstracts Technology Research Database Materials Research Database Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Applied Sciences |
EISSN | 1548-2634 |
EndPage | 1098 |
ExternalDocumentID | oai_HAL_hal_01004073v1 3213292521 A329733041 27282888 10_1002_pen_23357 PEN23357 ark_67375_WNG_NXCW7J72_R |
Genre | article Feature |
GeographicLocations | France |
GeographicLocations_xml | – name: France |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWL RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT 3V. AAHHS ABTAH ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AIXEN AJBDE ICW RWI RWM WRC XI7 AAYXX CITATION IQODW 7SR 8FD JG9 1XC VOOES |
ID | FETCH-LOGICAL-c6807-a6ebb7eb69515af168dc0a1c049c94490d8af10386dc1a4ab1a73da4f6191ec03 |
IEDL.DBID | DR2 |
ISSN | 0032-3888 |
IngestDate | Fri Sep 12 12:49:25 EDT 2025 Fri Jul 11 10:43:19 EDT 2025 Fri Jul 25 19:16:00 EDT 2025 Tue Jun 17 20:57:36 EDT 2025 Thu Jun 12 23:32:57 EDT 2025 Tue Jun 10 20:45:59 EDT 2025 Fri Jun 27 04:25:14 EDT 2025 Fri May 23 01:31:53 EDT 2025 Wed Apr 02 07:25:19 EDT 2025 Wed Oct 01 02:26:25 EDT 2025 Thu Apr 24 23:05:12 EDT 2025 Wed Jan 22 16:27:17 EST 2025 Sun Sep 21 06:20:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Heat treatment Talc Optically active polymer Ester polymer Citrate Crystallinity Experimental study Modeling Optimization Property formulation relationship Ethylene oxide polymer Kinetic model Additive Lactic acid polymer Cyclic ether polymer Plasticizer Aliphatic polymer Non isothermal condition Kinetics Activation energy Nucleating agent ISOTHERMAL CRYSTALLIZATION STEREOCOMPLEX CRYSTALLITES BEHAVIOR POLY(L-LACTIC ACID) TRIPHENYL PHOSPHATE POLYMER CRYSTALLIZATION POLY(PROPYLENE GLYCOL) MECHANICAL-PROPERTIES PHASE-CHANGE THERMAL-ANALYSIS |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6807-a6ebb7eb69515af168dc0a1c049c94490d8af10386dc1a4ab1a73da4f6191ec03 |
Notes | ArticleID:PEN23357 ark:/67375/WNG-NXCW7J72-R istex:86CA4213D233F6A2550288991E3C44D2965AFEC8 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
ORCID | 0000-0003-3012-041X |
OpenAccessLink | https://hal.science/hal-01004073 |
PQID | 1496648683 |
PQPubID | 41843 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_01004073v1 proquest_miscellaneous_1520930708 proquest_journals_1496648683 gale_infotracmisc_A329733041 gale_infotracgeneralonefile_A329733041 gale_infotracacademiconefile_A329733041 gale_incontextgauss_ISR_A329733041 gale_businessinsightsgauss_A329733041 pascalfrancis_primary_27282888 crossref_primary_10_1002_pen_23357 crossref_citationtrail_10_1002_pen_23357 wiley_primary_10_1002_pen_23357_PEN23357 istex_primary_ark_67375_WNG_NXCW7J72_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2013 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: May 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationTitleAlternate | Polym Eng Sci |
PublicationYear | 2013 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Society of Plastics Engineers, Inc Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Society of Plastics Engineers, Inc – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | H. Xiao,F. Liu,T. Jiang, andJ.-T. Yeh, J. Appl. Polym. Sci., 117, 2980( 2010). Y. Hu,Y.S. Hu,V. Topolkaraev,A. Hiltner, andE. Baer, Polymer, 44, 5681( 2003). S. Liu,Y. Yu,Y. Cui,H. Zhang, andZ. Mo, J. Appl. Polym. Sci., 70, 2371( 1998). T. Ozawa, Polymer, 12, 150( 1971). H.E. Kissinger, J. Res. Nat. Bureau Stand., 57, 217( 1956). M. Li,D.F. Hu,Y.M. Wang, andC.Y. Shen, Polym. Eng. Sci., 50, 2298( 2010). J.H. Song,R.J. Murphy,R. Narayan, andG.B.H. Davies, Philos. T. R. Soc. B, 364, 2127( 2009). M.-B. Coltelli,I.D. Maggiore,M. Bertoldo,F. Signori,S. Bronco, andD. Ciardelli, J. Appl. Polym. Sci., 110, 1250( 2008). M. Day,A. Nawaby, andX. Liao, J. Therm. Anal. Calorim., 86, 623( 2006). H. Tsuji,H. Takai andS.K. Saha, Polymer, 47, 3826( 2006). T.X. Liu,Z.S. Mo,S.G. Wang, andH.F. Zhang, Polym. Eng. Sci., 37, 568( 1997). M.L. Di Lorenzo, Macromol. Symp., 234, 176( 2006). J.Y. Nam,M. Okamoto,H. Okamoto,M. Nakano,A. Usuki, andM. Matsuda, Polymer, 47, 1340( 2006). Y. Long,R.A. Shanks, andZ.H. Stachurski, Prog. Polym. Sci., 20, 651( 1995). R.C. Thompson,S.H. Swan,C.J. Moore, andF.S. vom Saal, Philos. T. R. Soc. B, 364, 1973( 2009). C. Courgneau,S. Domenek,A. Guinault,L. Averous, andV. Ducruet, J. Polym. Environ., 19, 362( 2011). J.-C. Bogaert andP. Coszach, Macromol. Symp., 153, 287( 2000). V.P. Martino,A. Jiménez, andR.A. Ruseckaite, J. Appl. Polym. Sci., 112, 2010( 2009). J.Y. Nam,S. Sinha Ray, andM. Okamoto, Macromolecules, 36, 7126( 2003). Z. Zhang,C. Mao, andZ. Dong, Thermochim. Acta, 466, 22( 2007). M. Baiardo,G. Frisoni,M. Scandola,M. Rimelen,D. Lips,K. Ruffieux, andE. Wintermantel, J. Appl. Polym. Sci., 90, 1731( 2003). L.T. Lim,R. Auras, andM. Rubino, Prog.Polym. Sci., 33, 820( 2008). O. Martin andL. Averous, Polymer, 42, 6209( 2001). T. Liu,Z. Mo,S. Wang, andH. Zhang, Polym. Eng. Sci., 37, 568( 1997). G.P. Balamurugan andS.N. Maiti, J. Appl. Polym. Sci., 107, 2414( 2008). Y. Ikada andH. Tsuji, Macromol. Rapid Commun., 21, 117( 2000). J. Huang,M.S. Lisowski,J. Runt,E.S. Hall,R.T. Kean,N. Buehler, andJ.S. Lin, Macromolecules, 31, 2593( 1998). M.L. Di Lorenzo, Eur. Polym. J., 41, 569( 2005). H.W. Xiao,P. Li,X. Ren,T. Jiang, andJ.-T. Yeh, J. Appl. Polym. Sci., 118, 3558( 2010). M. Avrami, J. Chem. Phys., 8, 212( 1940). X. Ling andJ.E. Spruiell, J. Polym. Sci. Poly. Phys., 44, 3378( 2006). M. Pluta, Polymer, 45, 8239( 2004). F. De Santis,R. Pantani, andG. Titomanlio, Thermochim. Acta, 522, 128( 2011). H. Xiao,W. Lu, andJ.-T. Yeh, J. Appl. Polym. Sci., 113, 112( 2009). H. Li andM.A. Huneault, Polymer, 48, 6855( 2007). Z. Kulinski,E. Piorkowska,K. Gadzinowska, andM. Stasiak, Biomacromolecules, 7, 2128( 2006). J.J. Kolstad, J. Appl. Polym. Sci., 62, 1079( 1996). Z. Kulinski andE. Piorkowska, Polymer, 46, 10290( 2005). L.V. Labrecque,R.A. Kumar,V. Davé,R.A. Gross, andS.P. McCarthy, J. Appl. Polym. Sci., 66, 1507( 1997). A. Jeziorny, Polymer, 19, 1142( 1978). E. Dargent,A. Denis,C. Galland, andJ. Grenet, J. Therm. Anal. Calorim., 46, 377( 1996). A.P. Gupta andV. Kumar, Eur. Polym. J., 43, 4053( 2007). S. Jacobsen andH.G. Fritz, Polym. Eng. Sci., 39, 1303( 1999). S.C. Schmidt andM.A. Hillmyer, J. Polym. Sci. Part B: Polym. Phys., 39, 300( 2001). S.-H. Hyon,K. Jamshidi, andY. Ikada, Biomaterials, 18, 1503( 1997). V.P. Martino,R.A. Ruseckaite, andA. Jiménez, J. Therm. Anal. Calorim., 86, 707( 2006). M. Avrami, J. Chem. Phys., 7, 1103( 1939). H. Xiao,L. Yang,X. Ren,T. Jiang, andJ.-T. Yeh, Polym. Composite., 31, 2057( 2010). M. Avrami, J. Chem. Phys., 9, 177( 1941). S. Vyazovkin, Macromo. Rapid Commun., 23, 771( 2002). C.J. Moore, Environ. Res., 108, 131( 2008). D. Wu,L. Wu,L. Wu,B. Xu,Y. Zhang, andM. Zhang, J. Polym. Sci. Poly. Phys., 45, 1100( 2007). H.L. Friedman, J. Polym. Sci. Polym. Lett., 7, 41( 1969). Y. Liu,L. Wang,Y. He,Z. Fan, andS. Li, Polym. Int., 59, 1616( 2010). N. Ljungberg andB. Wesslén, J. Appl. Polym. Sci., 86, 1227( 2002). K.S. Anderson andM.A. Hillmyer, Polymer, 47, 2030( 2006). E. Piorkowska,Z. Kulinski,A. Galeski, andR. Masirek, Polymer, 47, 7178( 2006). H. Tsuji andY. Ikada, Polymer, 36, 2709( 1995). A.M. Harris andE.C. Lee, J. Appl. Polym. Sci., 107, 2246( 2008). 2007; 466 2010; 59 1941; 9 1995; 36 2008; 108 1956; 57 2008; 107 2009; 112 2009; 113 2008; 33 2011; 19 2001; 42 1995; 20 2011; 522 2003; 90 1940; 8 2010; 118 2002; 86 2010; 117 1971; 12 1969; 7 2009; 364 1997; 18 1996; 62 2008; 110 2003; 44 2010; 31 1997; 66 2000; 21 2004; 45 2009 2006; 7 2005; 41 2003; 36 1978; 19 2000; 153 2005; 46 2006; 234 2006; 86 2006; 44 1999; 39 1997; 37 2002; 23 2006; 47 1998; 70 2001; 39 2007; 43 1996; 46 1998; 31 1939; 7 2007; 45 2007; 48 2010; 50 e_1_2_5_27_2 e_1_2_5_48_2 e_1_2_5_25_2 e_1_2_5_46_2 e_1_2_5_23_2 e_1_2_5_44_2 e_1_2_5_21_2 e_1_2_5_42_2 e_1_2_5_29_2 e_1_2_5_61_2 e_1_2_5_40_2 e_1_2_5_13_2 e_1_2_5_38_2 e_1_2_5_59_2 e_1_2_5_9_2 e_1_2_5_15_2 e_1_2_5_36_2 e_1_2_5_57_2 e_1_2_5_7_2 e_1_2_5_34_2 e_1_2_5_55_2 e_1_2_5_5_2 e_1_2_5_11_2 e_1_2_5_32_2 e_1_2_5_53_2 e_1_2_5_3_2 e_1_2_5_17_2 e_1_2_5_19_2 e_1_2_5_30_2 e_1_2_5_51_2 e_1_2_5_26_2 e_1_2_5_49_2 e_1_2_5_24_2 e_1_2_5_47_2 e_1_2_5_22_2 e_1_2_5_45_2 e_1_2_5_20_2 e_1_2_5_43_2 e_1_2_5_28_2 e_1_2_5_60_2 e_1_2_5_41_2 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_58_2 e_1_2_5_8_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_56_2 e_1_2_5_6_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_54_2 e_1_2_5_4_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_39_2 e_1_2_5_52_2 e_1_2_5_50_2 |
References_xml | – reference: R.C. Thompson,S.H. Swan,C.J. Moore, andF.S. vom Saal, Philos. T. R. Soc. B, 364, 1973( 2009). – reference: J.-C. Bogaert andP. Coszach, Macromol. Symp., 153, 287( 2000). – reference: V.P. Martino,R.A. Ruseckaite, andA. Jiménez, J. Therm. Anal. Calorim., 86, 707( 2006). – reference: C.J. Moore, Environ. Res., 108, 131( 2008). – reference: H. Xiao,W. Lu, andJ.-T. Yeh, J. Appl. Polym. Sci., 113, 112( 2009). – reference: H.L. Friedman, J. Polym. Sci. Polym. Lett., 7, 41( 1969). – reference: F. De Santis,R. Pantani, andG. Titomanlio, Thermochim. Acta, 522, 128( 2011). – reference: Z. Kulinski andE. Piorkowska, Polymer, 46, 10290( 2005). – reference: T. Ozawa, Polymer, 12, 150( 1971). – reference: J.J. Kolstad, J. Appl. Polym. Sci., 62, 1079( 1996). – reference: S. Vyazovkin, Macromo. Rapid Commun., 23, 771( 2002). – reference: C. Courgneau,S. Domenek,A. Guinault,L. Averous, andV. Ducruet, J. Polym. Environ., 19, 362( 2011). – reference: H. Li andM.A. Huneault, Polymer, 48, 6855( 2007). – reference: H. Tsuji,H. Takai andS.K. Saha, Polymer, 47, 3826( 2006). – reference: M. Baiardo,G. Frisoni,M. Scandola,M. Rimelen,D. Lips,K. Ruffieux, andE. Wintermantel, J. Appl. Polym. Sci., 90, 1731( 2003). – reference: H.E. Kissinger, J. Res. Nat. Bureau Stand., 57, 217( 1956). – reference: G.P. Balamurugan andS.N. Maiti, J. Appl. Polym. Sci., 107, 2414( 2008). – reference: L.T. Lim,R. Auras, andM. Rubino, Prog.Polym. Sci., 33, 820( 2008). – reference: S. Jacobsen andH.G. Fritz, Polym. Eng. Sci., 39, 1303( 1999). – reference: M. Li,D.F. Hu,Y.M. Wang, andC.Y. Shen, Polym. Eng. Sci., 50, 2298( 2010). – reference: J.H. Song,R.J. Murphy,R. Narayan, andG.B.H. Davies, Philos. T. R. Soc. B, 364, 2127( 2009). – reference: M. Day,A. Nawaby, andX. Liao, J. Therm. Anal. Calorim., 86, 623( 2006). – reference: J.Y. Nam,S. Sinha Ray, andM. Okamoto, Macromolecules, 36, 7126( 2003). – reference: M. Avrami, J. Chem. Phys., 8, 212( 1940). – reference: J.Y. Nam,M. Okamoto,H. Okamoto,M. Nakano,A. Usuki, andM. Matsuda, Polymer, 47, 1340( 2006). – reference: V.P. Martino,A. Jiménez, andR.A. Ruseckaite, J. Appl. Polym. Sci., 112, 2010( 2009). – reference: H. Xiao,L. Yang,X. Ren,T. Jiang, andJ.-T. Yeh, Polym. Composite., 31, 2057( 2010). – reference: H.W. Xiao,P. Li,X. Ren,T. Jiang, andJ.-T. Yeh, J. Appl. Polym. Sci., 118, 3558( 2010). – reference: A. Jeziorny, Polymer, 19, 1142( 1978). – reference: J. Huang,M.S. Lisowski,J. Runt,E.S. Hall,R.T. Kean,N. Buehler, andJ.S. Lin, Macromolecules, 31, 2593( 1998). – reference: X. Ling andJ.E. Spruiell, J. Polym. Sci. Poly. Phys., 44, 3378( 2006). – reference: M.L. Di Lorenzo, Eur. Polym. J., 41, 569( 2005). – reference: M. Pluta, Polymer, 45, 8239( 2004). – reference: M. Avrami, J. Chem. Phys., 9, 177( 1941). – reference: M.L. Di Lorenzo, Macromol. Symp., 234, 176( 2006). – reference: K.S. Anderson andM.A. Hillmyer, Polymer, 47, 2030( 2006). – reference: Y. Hu,Y.S. Hu,V. Topolkaraev,A. Hiltner, andE. Baer, Polymer, 44, 5681( 2003). – reference: S. Liu,Y. Yu,Y. Cui,H. Zhang, andZ. Mo, J. Appl. Polym. Sci., 70, 2371( 1998). – reference: S.C. Schmidt andM.A. Hillmyer, J. Polym. Sci. Part B: Polym. Phys., 39, 300( 2001). – reference: A.P. Gupta andV. Kumar, Eur. Polym. J., 43, 4053( 2007). – reference: E. Dargent,A. Denis,C. Galland, andJ. Grenet, J. Therm. Anal. Calorim., 46, 377( 1996). – reference: Y. Ikada andH. Tsuji, Macromol. Rapid Commun., 21, 117( 2000). – reference: Z. Zhang,C. Mao, andZ. Dong, Thermochim. Acta, 466, 22( 2007). – reference: M. Avrami, J. Chem. Phys., 7, 1103( 1939). – reference: Z. Kulinski,E. Piorkowska,K. Gadzinowska, andM. Stasiak, Biomacromolecules, 7, 2128( 2006). – reference: H. Xiao,F. Liu,T. Jiang, andJ.-T. Yeh, J. Appl. Polym. Sci., 117, 2980( 2010). – reference: T.X. Liu,Z.S. Mo,S.G. Wang, andH.F. Zhang, Polym. Eng. Sci., 37, 568( 1997). – reference: L.V. Labrecque,R.A. Kumar,V. Davé,R.A. Gross, andS.P. McCarthy, J. Appl. Polym. Sci., 66, 1507( 1997). – reference: M.-B. Coltelli,I.D. Maggiore,M. Bertoldo,F. Signori,S. Bronco, andD. Ciardelli, J. Appl. Polym. Sci., 110, 1250( 2008). – reference: E. Piorkowska,Z. Kulinski,A. Galeski, andR. Masirek, Polymer, 47, 7178( 2006). – reference: Y. Long,R.A. Shanks, andZ.H. Stachurski, Prog. Polym. Sci., 20, 651( 1995). – reference: H. Tsuji andY. Ikada, Polymer, 36, 2709( 1995). – reference: O. Martin andL. Averous, Polymer, 42, 6209( 2001). – reference: S.-H. Hyon,K. Jamshidi, andY. Ikada, Biomaterials, 18, 1503( 1997). – reference: N. Ljungberg andB. Wesslén, J. Appl. Polym. Sci., 86, 1227( 2002). – reference: Y. Liu,L. Wang,Y. He,Z. Fan, andS. Li, Polym. Int., 59, 1616( 2010). – reference: A.M. Harris andE.C. Lee, J. Appl. Polym. Sci., 107, 2246( 2008). – reference: T. Liu,Z. Mo,S. Wang, andH. Zhang, Polym. Eng. Sci., 37, 568( 1997). – reference: D. Wu,L. Wu,L. Wu,B. Xu,Y. Zhang, andM. Zhang, J. Polym. Sci. Poly. Phys., 45, 1100( 2007). – year: 2009 – volume: 112 start-page: 2010 year: 2009 publication-title: J. Appl. Polym. Sci. – volume: 46 start-page: 10290 year: 2005 publication-title: Polymer – volume: 118 start-page: 3558 year: 2010 publication-title: J. Appl. Polym. Sci. – volume: 86 start-page: 623 year: 2006 publication-title: J. Therm. Anal. Calorim. – volume: 31 start-page: 2593 year: 1998 publication-title: Macromolecules – volume: 39 start-page: 1303 year: 1999 publication-title: Polym. Eng. Sci. – volume: 19 start-page: 1142 year: 1978 publication-title: Polymer – volume: 47 start-page: 7178 year: 2006 publication-title: Polymer – volume: 47 start-page: 1340 year: 2006 publication-title: Polymer – volume: 117 start-page: 2980 year: 2010 publication-title: J. Appl. Polym. Sci. – volume: 153 start-page: 287 year: 2000 publication-title: Macromol. Symp. – volume: 62 start-page: 1079 year: 1996 publication-title: J. Appl. Polym. Sci. – volume: 48 start-page: 6855 year: 2007 publication-title: Polymer – volume: 36 start-page: 7126 year: 2003 publication-title: Macromolecules – volume: 47 start-page: 2030 year: 2006 publication-title: Polymer – volume: 44 start-page: 3378 year: 2006 publication-title: J. Polym. Sci. Poly. Phys. – volume: 37 start-page: 568 year: 1997 publication-title: Polym. Eng. Sci. – volume: 12 start-page: 150 year: 1971 publication-title: Polymer – volume: 107 start-page: 2246 year: 2008 publication-title: J. Appl. Polym. Sci. – volume: 86 start-page: 1227 year: 2002 publication-title: J. Appl. Polym. Sci. – volume: 31 start-page: 2057 year: 2010 publication-title: Polym. Composite. – volume: 33 start-page: 820 year: 2008 publication-title: Prog.Polym. Sci. – volume: 364 start-page: 1973 year: 2009 publication-title: Philos. T. R. Soc. B – volume: 47 start-page: 3826 year: 2006 publication-title: Polymer – volume: 23 start-page: 771 year: 2002 publication-title: Macromo. Rapid Commun. – volume: 18 start-page: 1503 year: 1997 publication-title: Biomaterials – volume: 86 start-page: 707 year: 2006 publication-title: J. Therm. Anal. Calorim. – volume: 59 start-page: 1616 year: 2010 publication-title: Polym. Int. – volume: 45 start-page: 8239 year: 2004 publication-title: Polymer – volume: 45 start-page: 1100 year: 2007 publication-title: J. Polym. Sci. Poly. Phys. – volume: 43 start-page: 4053 year: 2007 publication-title: Eur. Polym. J. – volume: 21 start-page: 117 year: 2000 publication-title: Macromol. Rapid Commun. – volume: 20 start-page: 651 year: 1995 publication-title: Prog. Polym. Sci. – volume: 44 start-page: 5681 year: 2003 publication-title: Polymer – volume: 39 start-page: 300 year: 2001 publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 19 start-page: 362 year: 2011 publication-title: J. Polym. Environ. – volume: 36 start-page: 2709 year: 1995 publication-title: Polymer – volume: 110 start-page: 1250 year: 2008 publication-title: J. Appl. Polym. Sci. – volume: 90 start-page: 1731 year: 2003 publication-title: J. Appl. Polym. Sci. – volume: 522 start-page: 128 year: 2011 publication-title: Thermochim. Acta – volume: 50 start-page: 2298 year: 2010 publication-title: Polym. Eng. Sci. – volume: 466 start-page: 22 year: 2007 publication-title: Thermochim. Acta – volume: 234 start-page: 176 year: 2006 publication-title: Macromol. Symp. – volume: 46 start-page: 377 year: 1996 publication-title: J. Therm. Anal. Calorim. – volume: 108 start-page: 131 year: 2008 publication-title: Environ. Res. – volume: 107 start-page: 2414 year: 2008 publication-title: J. Appl. Polym. Sci. – volume: 113 start-page: 112 year: 2009 publication-title: J. Appl. Polym. Sci. – volume: 7 start-page: 2128 year: 2006 publication-title: Biomacromolecules – volume: 66 start-page: 1507 year: 1997 publication-title: J. Appl. Polym. Sci. – volume: 41 start-page: 569 year: 2005 publication-title: Eur. Polym. J. – volume: 364 start-page: 2127 year: 2009 publication-title: Philos. T. R. Soc. B – volume: 7 start-page: 41 year: 1969 publication-title: J. Polym. Sci. Polym. Lett. – volume: 42 start-page: 6209 year: 2001 publication-title: Polymer – volume: 70 start-page: 2371 year: 1998 publication-title: J. Appl. Polym. Sci. – volume: 9 start-page: 177 year: 1941 publication-title: J. Chem. Phys. – volume: 57 start-page: 217 year: 1956 publication-title: J. Res. Nat. Bureau Stand. – volume: 8 start-page: 212 year: 1940 publication-title: J. Chem. Phys. – volume: 7 start-page: 1103 year: 1939 publication-title: J. Chem. Phys. – ident: e_1_2_5_60_2 doi: 10.1002/1521-3927(20020901)23:13<771::AID-MARC771>3.0.CO;2-G – ident: e_1_2_5_9_2 doi: 10.1016/j.polymer.2006.03.074 – ident: e_1_2_5_34_2 doi: 10.1002/pen.11517 – ident: e_1_2_5_58_2 doi: 10.1007/BF02135016 – ident: e_1_2_5_23_2 doi: 10.1016/j.polymer.2005.12.066 – ident: e_1_2_5_49_2 doi: 10.1002/app.27377 – ident: e_1_2_5_41_2 doi: 10.1002/app.32728 – ident: e_1_2_5_57_2 doi: 10.6028/jres.057.026 – ident: e_1_2_5_33_2 doi: 10.1002/app.12549 – ident: e_1_2_5_8_2 – ident: e_1_2_5_27_2 doi: 10.1002/app.11077 – ident: e_1_2_5_36_2 doi: 10.1007/s10924-011-0285-5 – ident: e_1_2_5_50_2 doi: 10.1016/0032-3861(78)90060-5 – ident: e_1_2_5_10_2 doi: 10.1002/(SICI)1097-4628(19961114)62:7<1079::AID-APP14>3.0.CO;2-1 – ident: e_1_2_5_51_2 doi: 10.1002/pen.11700 – ident: e_1_2_5_53_2 doi: 10.1016/j.tca.2007.10.004 – ident: e_1_2_5_11_2 doi: 10.1021/ma9714629 – ident: e_1_2_5_29_2 doi: 10.1007/s10973-006-7897-3 – ident: e_1_2_5_55_2 doi: 10.1016/0032-3861(71)90041-3 – ident: e_1_2_5_17_2 doi: 10.1016/j.tca.2011.05.034 – ident: e_1_2_5_22_2 doi: 10.1002/app.27261 – ident: e_1_2_5_26_2 doi: 10.1016/S0032-3861(01)00086-6 – ident: e_1_2_5_56_2 doi: 10.1016/0079-6700(95)00002-W – ident: e_1_2_5_12_2 doi: 10.1016/0032-3861(95)93647-5 – ident: e_1_2_5_2_2 doi: 10.1016/j.envres.2008.07.025 – ident: e_1_2_5_21_2 doi: 10.1016/j.polymer.2006.01.062 – ident: e_1_2_5_24_2 doi: 10.1021/ma034623j – ident: e_1_2_5_18_2 doi: 10.1002/pi.2894 – ident: e_1_2_5_32_2 doi: 10.1016/j.polymer.2005.07.101 – ident: e_1_2_5_43_2 doi: 10.1016/j.progpolymsci.2008.05.004 – ident: e_1_2_5_15_2 doi: 10.1016/j.eurpolymj.2004.10.020 – ident: e_1_2_5_59_2 doi: 10.1002/polb.21154 – ident: e_1_2_5_47_2 doi: 10.1063/1.1750631 – ident: e_1_2_5_19_2 doi: 10.1016/j.polymer.2007.09.020 – ident: e_1_2_5_39_2 doi: 10.1016/j.polymer.2006.03.115 – ident: e_1_2_5_25_2 doi: 10.1016/j.polymer.2004.09.057 – ident: e_1_2_5_31_2 doi: 10.1021/bm060089m – ident: e_1_2_5_61_2 doi: 10.1002/pol.1969.110070109 – ident: e_1_2_5_42_2 doi: 10.1016/S0142-9612(97)00076-8 – ident: e_1_2_5_3_2 doi: 10.1098/rstb.2009.0054 – ident: e_1_2_5_38_2 doi: 10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0 – ident: e_1_2_5_40_2 doi: 10.1002/app.32225 – ident: e_1_2_5_48_2 doi: 10.1063/1.1750872 – ident: e_1_2_5_6_2 doi: 10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X – ident: e_1_2_5_13_2 doi: 10.1002/polb.20987 – ident: e_1_2_5_16_2 doi: 10.1002/masy.200650223 – ident: e_1_2_5_4_2 doi: 10.1098/rstb.2008.0289 – ident: e_1_2_5_5_2 doi: 10.1002/1521-3900(200003)153:1<287::AID-MASY287>3.0.CO;2-E – ident: e_1_2_5_30_2 doi: 10.1002/app.29784 – ident: e_1_2_5_20_2 doi: 10.1002/1099-0488(20010201)39:3<300::AID-POLB1002>3.0.CO;2-M – ident: e_1_2_5_45_2 doi: 10.1002/pen.21755 – ident: e_1_2_5_35_2 doi: 10.1016/S0032-3861(03)00609-8 – ident: e_1_2_5_37_2 doi: 10.1002/app.28512 – ident: e_1_2_5_52_2 doi: 10.1002/(SICI)1097-4628(19981219)70:12<2371::AID-APP9>3.0.CO;2-4 – ident: e_1_2_5_28_2 doi: 10.1002/app.29955 – ident: e_1_2_5_44_2 doi: 10.1002/pc.21004 – ident: e_1_2_5_46_2 doi: 10.1063/1.1750380 – ident: e_1_2_5_7_2 doi: 10.1016/j.eurpolymj.2007.06.045 – ident: e_1_2_5_14_2 doi: 10.1007/s10973-006-7717-9 – ident: e_1_2_5_54_2 doi: 10.1002/pen.11700 |
SSID | ssj0002359 |
Score | 2.2459235 |
Snippet | Poly(lactide), a bio‐based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization... Poly(lactide), a bio-based aliphatic polyester, is a subject to large research effort. One point of optimization is the acceleration of its crystallization... |
SourceID | hal proquest gale pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1085 |
SubjectTerms | Acceleration Agricultural sciences Aliphatic compounds Applied sciences Blends Chemical properties Chemical reaction, Rate of Citrates Crystallization Effects Exact sciences and technology Forms of application and semi-finished materials Identification and classification Kinetics Lactic acid Life Sciences Molecular weight Nucleation Optimization Plasticizers Polyester resins Polyethylene glycol Polymer industry, paints, wood Polymer processing Properties Talcs Technology of polymers Thermal properties |
Title | Nonisothermal crystallization kinetics of poly(lactide)-effect of plasticizers and nucleating agent |
URI | https://api.istex.fr/ark:/67375/WNG-NXCW7J72-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.23357 https://www.proquest.com/docview/1496648683 https://www.proquest.com/docview/1520930708 https://hal.science/hal-01004073 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1548-2634 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0002359 issn: 0032-3888 databaseCode: ADMLS dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0032-3888 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1548-2634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002359 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcgAOPAqIQKkM4hEOTte7fkWcoqglVChCgao5VFrtrr1FirGrOEG0J34Ev5Bfwsz60RoVCXGJIvtbZ18zO-PMfEPIC-VLqriK3USZ0PXhSHJVFBiXMcU8A5KpjI22mIaTQ_9gHsw3yNsmF6bih2hfuKFkWH2NAi5VuXtBGgre_oBxHmAmuccD-xft7II6ivGgMn05czm4eQ2rEGW7bcvOWVRr5GtfMCDyOs7xdwyUlCXMlamKXHSs0Mu2rD2M9u-Q42YYVQzKYrBeqYE-_4Ph8T_HeZfcro1UZ1TtqntkI823yI1xUxtui9y6RGN4n6RTUAylTeX6Cs308gxMziyrMzydBSCRDNopjHNaZGf9DJMpkvTNrx8_q3ASewfMeIzwPgd71JF54uTItCwxKtuRmP_1gBzu730eT9y6fIOrw5hGrgxTpbDkChhxgTReGCeaSk-DT6KHvj-kSQxXKY_DRHvSl8qTEU-kb8Cn81JN-UOymRd5-og4PKActtowgSPdj0NfJowaGkkdSAUmJ-uRfrOQQtfc5lhiIxMVKzMTMIvCzmKPPG-hpxWhx1Wgl7gbRF0IFD5KfFVSnsh1WYoRx4JfnPoePMzikEgjx0idCvD-06wDel2DTAGd0rJOfIChIfdWB_mqgzypmMevAm53gLD6utst2MXt8JBBfDL6IPAaRYZAUOvf8MfsJm9hcrnAKL8oEEfTd2I6Hx9FBxETsx7Z6UhB24BF6K_HMfSmEQtRa8ASXEpwpGGtYt4jz9rb2FGM6svTYg0YjMHCQwce0bcy8PclER_3pvbL43-HPiE3ma1egvGp22RztVynT8GGXKkdqyx-A4aXbTI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF71cSgceBQQgVIM4pEenK53_YrEJQotaQkWCq2aC1rtru0iJThVnCDaEz-CX8gvYWb9aI2KhLhEkf3Z2dfMzmxmviHkhXIlVVyFdqxS33ZhS7JV4KU2Y4o5KUimSk20ReQPjt3DsTdeIW-qXJiCH6I-cEPJMPoaBRwPpHcvWUPB3e8wzr1glazj_3Molm9Hl-RRjHuF8cuZzcHRq3iFKNutH23sRqVOXv2CIZHrOMrfMVRS5jBaaVHmomGHXrVmzXa0f5t8rjpSRKFMOsuF6uiLPzge_7end8it0k61esXCuktWkmyTbPSr8nCb5OYVJsN7JIlAN-Qmm-srPKbn52B1Tqdlkqc1ASTyQVuz1DqbTc_bU8yniJOdXz9-FhEl5g5Y8hjkfQEmqSWz2MqQbFliYLYlMQXsPjne3zvqD-yygoOt_ZAGtvQTpbDqCthxnkwdP4w1lY4Gt0R3XbdL4xCuUh76sXakK5UjAx5LNwW3zkk05Q_IWjbLkofE4h7lsNq6Mezqbui7MmY0pYHUnlRgdbIWaVczKXRJb45VNqaiIGZmAkZRmFFskec19Kzg9LgO9BKXgyhrgcJHjqcl-alc5rnocaz5xanrwMsMDrk0MgzWKQAHn0YN0OsSlM6gUVqWuQ_QNaTfaiBfNZCnBfn4dcCtBhBmXzebBcu47h6SiA96Q4HXKJIEgmb_hj9mVnkNk_MJBvoFnjiJ3olo3D8JDgMmRi2y3RCD-gEWoMsehtCaSi5EqQRz8CrBl4a5CnmLPKtvY0MxsC9LZkvAYBgW7jvwirYRgr9Pifi4F5kvj_4d-pRsDI4-DMXwIHr_mNxgppgJhqtukbXFfJk8AZNyobaN5vgNHiJxTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF71kDgeOAqIQCkGcYQHp-tdXxFPUWhIS2VVgap5QFrtru0iJThRnCDaJ34Ev5Bfwsz6aI2KhHiJIvtbe6-ZnbFmviHkhXIlVVyFdqxS33bhSLJV4KU2Y4o5KUimSk20ReQPj92DsTdeI2-rXJiCH6L-4IaSYfQ1Cvg8TncvSEPB2-8wzr1gnWy6PnhXaBGNLrijGPcK25czm4OfV9EKUbZbN20cRqVKXv-CEZGbOMnfMVJS5jBZaVHlomGGXjZmzWk0uE0-V-MoglAmndVSdfT5HxSP_znQO-RWaaVavWJb3SVrSbZFrver4nBb5OYlHsN7JIlAM-Qml-srNNOLM7A5p9MyxdOaABLZoK1Zas1n07P2FLMp4uTNrx8_i3gScwfseAzxPgeD1JJZbGVItSwxLNuSmAB2nxwP9j71h3ZZv8HWfkgDW_qJUlhzBaw4T6aOH8aaSkeDU6K7rtulcQhXKQ_9WDvSlcqRAY-lm4JT5ySa8gdkI5tlyUNicY9y2GvdGM50N_RdGTOa0kBqTyqwOVmLtKuFFLokN8caG1NR0DIzAbMozCy2yPMaOi8YPa4CvcTdIMpKoPCT47eS_FSu8lz0OFb84tR14GEGh0waGYbqFID9j6MG6HUJSmfQKS3LzAcYGpJvNZCvGsjTgnr8KuB2Awirr5vdgl1cDw8pxIe9Q4HXKFIEgl7_hi8zm7yGycUEw_wCT5xE70U07p8EBwEToxbZaUhB3YAF6LCHIfSmEgtRqsAcfErwpGGtQt4iz-rb2FEM68uS2QowGISFpw48om1k4O9LIo72IvPn0b9Dn5JrR-8G4nA_-vCY3GCmkgnGqm6TjeVilTwBe3Kpdoze-A1zMm_9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonisothermal+crystallization+kinetics+of+poly%28lactide%29%E2%80%94effect+of+plasticizers+and+nucleating+agent&rft.jtitle=Polymer+engineering+and+science&rft.au=Courgneau%2C+C%C3%A9cile&rft.au=Ducruet%2C+Violette&rft.au=Av%C3%A9rous%2C+Luc&rft.au=Grenet%2C+Jean&rft.date=2013-05-01&rft.issn=0032-3888&rft.eissn=1548-2634&rft.volume=53&rft.issue=5&rft.spage=1085&rft.epage=1098&rft_id=info:doi/10.1002%2Fpen.23357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pen_23357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |