Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: Insights for understanding the impact of rotavirus vaccination programs
► Prevalence data on ∼110,000 rotavirus strains identified from 100 countries worldwide during a 12-year period preceding introduction of rotavirus vaccines were collected and presented in this systematic review ► The paper summarizes (i) baseline strain prevalence data for the pre-vaccine era, (ii)...
Saved in:
Published in | Vaccine Vol. 30; pp. A122 - A130 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
27.04.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0264-410X 1873-2518 1873-2518 |
DOI | 10.1016/j.vaccine.2011.09.111 |
Cover
Abstract | ► Prevalence data on ∼110,000 rotavirus strains identified from 100 countries worldwide during a 12-year period preceding introduction of rotavirus vaccines were collected and presented in this systematic review ► The paper summarizes (i) baseline strain prevalence data for the pre-vaccine era, (ii) analyzes spatiotemporal trends in distribution of circulating strains, and (iii) provides a weighted model to describe a more reliable estimate on the medical importance of individual rotavirus strains.
Recently, two rotavirus vaccines have been recommended for routine immunization of infants worldwide. These vaccines proved efficacious during clinical trials and field use in both developing and developed countries, and appear to provide good protection against a range of rotavirus genotypes, including some that are not included in the vaccines. However, since conclusive data that the vaccines will protect against a wide variety of rotavirus strains are still lacking and since vaccines may exert some selection pressure, a detailed picture of global strain prevalence from the pre-rotavirus vaccine era is important to evaluate any potential changes in circulating strains observed after widespread introduction of rotavirus vaccines. Thus, we systematically reviewed rotavirus genotyping studies spanning a 12-year period from 1996 to 2007. In total, ∼110,000 strains were genotyped from 100 reporting countries. Five genotypes (G1–G4, and G9) accounted for 88% of all strains, although extensive geographic and temporal differences were observed. For example, the prevalence of G1 strains declined from 2000 onward, while G3 strains re-emerged, and G9 and G12 strains emerged during the same period. When crude strain prevalence data were weighted by region based on the region's contribution to global rotavirus mortality, the importance of genotypes G1 and G9 strains that were more prevalent in regions with low mortality was reduced and conversely the importance of G8 strains that were more prevalent in African settings with greater contribution to global rotavirus mortality was increased. This study provides the most comprehensive, up-to-date information on rotavirus strain surveillance in the pre-rotavirus vaccine era and will provide useful background to examine the impact of rotavirus vaccine introduction on future strain prevalence. |
---|---|
AbstractList | ► Prevalence data on ∼110,000 rotavirus strains identified from 100 countries worldwide during a 12-year period preceding introduction of rotavirus vaccines were collected and presented in this systematic review ► The paper summarizes (i) baseline strain prevalence data for the pre-vaccine era, (ii) analyzes spatiotemporal trends in distribution of circulating strains, and (iii) provides a weighted model to describe a more reliable estimate on the medical importance of individual rotavirus strains.
Recently, two rotavirus vaccines have been recommended for routine immunization of infants worldwide. These vaccines proved efficacious during clinical trials and field use in both developing and developed countries, and appear to provide good protection against a range of rotavirus genotypes, including some that are not included in the vaccines. However, since conclusive data that the vaccines will protect against a wide variety of rotavirus strains are still lacking and since vaccines may exert some selection pressure, a detailed picture of global strain prevalence from the pre-rotavirus vaccine era is important to evaluate any potential changes in circulating strains observed after widespread introduction of rotavirus vaccines. Thus, we systematically reviewed rotavirus genotyping studies spanning a 12-year period from 1996 to 2007. In total, ∼110,000 strains were genotyped from 100 reporting countries. Five genotypes (G1–G4, and G9) accounted for 88% of all strains, although extensive geographic and temporal differences were observed. For example, the prevalence of G1 strains declined from 2000 onward, while G3 strains re-emerged, and G9 and G12 strains emerged during the same period. When crude strain prevalence data were weighted by region based on the region's contribution to global rotavirus mortality, the importance of genotypes G1 and G9 strains that were more prevalent in regions with low mortality was reduced and conversely the importance of G8 strains that were more prevalent in African settings with greater contribution to global rotavirus mortality was increased. This study provides the most comprehensive, up-to-date information on rotavirus strain surveillance in the pre-rotavirus vaccine era and will provide useful background to examine the impact of rotavirus vaccine introduction on future strain prevalence. Recently, two rotavirus vaccines have been recommended for routine immunization of infants worldwide. These vaccines proved efficacious during clinical trials and field use in both developing and developed countries, and appear to provide good protection against a range of rotavirus genotypes, including some that are not included in the vaccines. However, since conclusive data that the vaccines will protect against a wide variety of rotavirus strains are still lacking and since vaccines may exert some selection pressure, a detailed picture of global strain prevalence from the pre-rotavirus vaccine era is important to evaluate any potential changes in circulating strains observed after widespread introduction of rotavirus vaccines. Thus, we systematically reviewed rotavirus genotyping studies spanning a 12-year period from 1996 to 2007. In total, ∼110,000 strains were genotyped from 100 reporting countries. Five genotypes (G1–G4, and G9) accounted for 88% of all strains, although extensive geographic and temporal differences were observed. For example, the prevalence of G1 strains declined from 2000 onward, while G3 strains re-emerged, and G9 and G12 strains emerged during the same period. When crude strain prevalence data were weighted by region based on the region's contribution to global rotavirus mortality, the importance of genotypes G1 and G9 strains that were more prevalent in regions with low mortality was reduced and conversely the importance of G8 strains that were more prevalent in African settings with greater contribution to global rotavirus mortality was increased. This study provides the most comprehensive, up-to-date information on rotavirus strain surveillance in the pre-rotavirus vaccine era and will provide useful background to examine the impact of rotavirus vaccine introduction on future strain prevalence. Recently, two rotavirus vaccines have been recommended for routine immunization of infants worldwide. These vaccines proved efficacious during clinical trials and field use in both developing and developed countries, and appear to provide good protection against a range of rotavirus genotypes, including some that are not included in the vaccines. However, since conclusive data that the vaccines will protect against a wide variety of rotavirus strains are still lacking and since vaccines may exert some selection pressure, a detailed picture of global strain prevalence from the pre-rotavirus vaccine era is important to evaluate any potential changes in circulating strains observed after widespread introduction of rotavirus vaccines. Thus, we systematically reviewed rotavirus genotyping studies spanning a 12-year period from 1996 to 2007. In total, ~110,000 strains were genotyped from 100 reporting countries. Five genotypes (G1-G4, and G9) accounted for 88% of all strains, although extensive geographic and temporal differences were observed. For example, the prevalence of G1 strains declined from 2000 onward, while G3 strains re-emerged, and G9 and G12 strains emerged during the same period. When crude strain prevalence data were weighted by region based on the region's contribution to global rotavirus mortality, the importance of genotypes G1 and G9 strains that were more prevalent in regions with low mortality was reduced and conversely the importance of G8 strains that were more prevalent in African settings with greater contribution to global rotavirus mortality was increased. This study provides the most comprehensive, up-to-date information on rotavirus strain surveillance in the pre-rotavirus vaccine era and will provide useful background to examine the impact of rotavirus vaccine introduction on future strain prevalence. Recently, two rotavirus vaccines have been recommended for routine immunization of infants worldwide. These vaccines proved efficacious during clinical trials and field use in both developing and developed countries, and appear to provide good protection against a range of rotavirus genotypes, including some that are not included in the vaccines. However, since conclusive data that the vaccines will protect against a wide variety of rotavirus strains are still lacking and since vaccines may exert some selection pressure, a detailed picture of global strain prevalence from the pre-rotavirus vaccine era is important to evaluate any potential changes in circulating strains observed after widespread introduction of rotavirus vaccines. Thus, we systematically reviewed rotavirus genotyping studies spanning a 12-year period from 1996 to 2007. In total, ~110,000 strains were genotyped from 100 reporting countries. Five genotypes (G1-G4, and G9) accounted for 88% of all strains, although extensive geographic and temporal differences were observed. For example, the prevalence of G1 strains declined from 2000 onward, while G3 strains re-emerged, and G9 and G12 strains emerged during the same period. When crude strain prevalence data were weighted by region based on the region's contribution to global rotavirus mortality, the importance of genotypes G1 and G9 strains that were more prevalent in regions with low mortality was reduced and conversely the importance of G8 strains that were more prevalent in African settings with greater contribution to global rotavirus mortality was increased. This study provides the most comprehensive, up-to-date information on rotavirus strain surveillance in the pre-rotavirus vaccine era and will provide useful background to examine the impact of rotavirus vaccine introduction on future strain prevalence.Recently, two rotavirus vaccines have been recommended for routine immunization of infants worldwide. These vaccines proved efficacious during clinical trials and field use in both developing and developed countries, and appear to provide good protection against a range of rotavirus genotypes, including some that are not included in the vaccines. However, since conclusive data that the vaccines will protect against a wide variety of rotavirus strains are still lacking and since vaccines may exert some selection pressure, a detailed picture of global strain prevalence from the pre-rotavirus vaccine era is important to evaluate any potential changes in circulating strains observed after widespread introduction of rotavirus vaccines. Thus, we systematically reviewed rotavirus genotyping studies spanning a 12-year period from 1996 to 2007. In total, ~110,000 strains were genotyped from 100 reporting countries. Five genotypes (G1-G4, and G9) accounted for 88% of all strains, although extensive geographic and temporal differences were observed. For example, the prevalence of G1 strains declined from 2000 onward, while G3 strains re-emerged, and G9 and G12 strains emerged during the same period. When crude strain prevalence data were weighted by region based on the region's contribution to global rotavirus mortality, the importance of genotypes G1 and G9 strains that were more prevalent in regions with low mortality was reduced and conversely the importance of G8 strains that were more prevalent in African settings with greater contribution to global rotavirus mortality was increased. This study provides the most comprehensive, up-to-date information on rotavirus strain surveillance in the pre-rotavirus vaccine era and will provide useful background to examine the impact of rotavirus vaccine introduction on future strain prevalence. Highlights ► Prevalence data on ∼110,000 rotavirus strains identified from 100 countries worldwide during a 12-year period preceding introduction of rotavirus vaccines were collected and presented in this systematic review ► The paper summarizes (i) baseline strain prevalence data for the pre-vaccine era, (ii) analyzes spatiotemporal trends in distribution of circulating strains, and (iii) provides a weighted model to describe a more reliable estimate on the medical importance of individual rotavirus strains. |
Author | Duque, Jazmin Bányai, Krisztián László, Brigitta Parashar, Umesh D. Steele, A. Duncan Nelson, E. Anthony S. Gentsch, Jon R. |
Author_xml | – sequence: 1 givenname: Krisztián surname: Bányai fullname: Bányai, Krisztián email: bkrota@hotmail.com organization: Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary – sequence: 2 givenname: Brigitta surname: László fullname: László, Brigitta organization: Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary – sequence: 3 givenname: Jazmin surname: Duque fullname: Duque, Jazmin organization: Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA – sequence: 4 givenname: A. Duncan surname: Steele fullname: Steele, A. Duncan organization: Vaccines and Immunization, PATH, Seattle, WA, USA – sequence: 5 givenname: E. Anthony S. surname: Nelson fullname: Nelson, E. Anthony S. organization: Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China – sequence: 6 givenname: Jon R. surname: Gentsch fullname: Gentsch, Jon R. organization: Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA – sequence: 7 givenname: Umesh D. surname: Parashar fullname: Parashar, Umesh D. organization: Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22520121$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2O0zAUhS00iJkpPAKQJZsW_8ROAgKERvyMNBKLMhI7y3FuMi6J3bGdor4dj4bTFoQqobJK4nzn3Cufc4nOrLOA0FOCFwQT8XK12CitjYUFxYQscLUghDxAF6Qs2JxyUp6hC0xFPs8J_naOLkNYYYw5I9UjdE4pTypKLtDP5TZEGFQ0OvOwMfAjc21664yzqs-UbbL0e-18-ogebBMyY7Oud3U68C6qjfFjyEL0Kp03ZgM-mLidoHgH2drDX9Rh4wy8epVd22C6uxiy1vlstE0SxjTO2G6nNMNa6bhb5kifdnU2ObvOqyE8Rg9b1Qd4cnjO0O3HD1-vPs9vvny6vnp_M9eiKOK8rqGqsQLGgQvR5jVlNWsELVjOKMtbwataaFU1uuQc41o1muhS5LQhqq5Jzmboxd43Db4fIUQ5mKCh75UFNwZJRCkKWnHCT6OciCJnZU5Oo5hgwYoyhTpDzw7oWA_QyLU3g_Jb-TvLBPA9oL0LwUP7ByF4MhJyJQ8JyKkzElcydSbpXh_ptIm7S55C7U-qn-_VrXJSdd4EebtMQLpEUpSMVYl4tycgxZMa5mXQBqyGxnjQUTbOnJzx9shB98YarfrvsIWwcqNPZU23JQOVWC6n3k-1J8mT85TvDL35t8F_LPALASoX4Q |
CitedBy_id | crossref_primary_10_1016_j_jcv_2017_09_005 crossref_primary_10_36233_0507_4088_46 crossref_primary_10_1371_journal_pone_0108221 crossref_primary_10_14776_piv_2015_22_2_81 crossref_primary_10_3390_pathogens9070515 crossref_primary_10_3390_pathogens9100810 crossref_primary_10_1371_journal_pone_0191429 crossref_primary_10_21101_cejph_a4076 crossref_primary_10_1016_S0140_6736_13_62701_4 crossref_primary_10_1371_journal_pone_0218790 crossref_primary_10_36290_ped_2017_042 crossref_primary_10_1007_s11262_014_1091_7 crossref_primary_10_1007_s00705_016_2969_6 crossref_primary_10_1016_j_ebiom_2021_103648 crossref_primary_10_1080_21645515_2016_1252493 crossref_primary_10_29252_ibj_24_6_394 crossref_primary_10_1002_jmv_23603 crossref_primary_10_1016_j_meegid_2014_08_001 crossref_primary_10_1016_S0140_6736_18_31128_0 crossref_primary_10_1002_jmv_24382 crossref_primary_10_1016_j_vaccine_2020_06_059 crossref_primary_10_1002_jmv_24144 crossref_primary_10_1186_s12985_017_0721_9 crossref_primary_10_7717_peerj_1560 crossref_primary_10_1038_ncomms6907 crossref_primary_10_1002_jmv_23971 crossref_primary_10_1016_j_vaccine_2018_08_046 crossref_primary_10_1007_s12560_015_9213_5 crossref_primary_10_1016_j_meegid_2015_07_033 crossref_primary_10_33321_cdi_2021_45_4 crossref_primary_10_33321_cdi_2021_45_6 crossref_primary_10_1080_21645515_2024_2389606 crossref_primary_10_1093_molbev_msv088 crossref_primary_10_3390_v12121432 crossref_primary_10_1016_S1473_3099_20_30597_1 crossref_primary_10_1080_23120053_2018_1551850 crossref_primary_10_1016_j_meegid_2013_03_031 crossref_primary_10_1371_journal_pone_0110795 crossref_primary_10_1007_s00705_021_05161_4 crossref_primary_10_1586_14787210_2015_1089171 crossref_primary_10_1002_rmv_2259 crossref_primary_10_1186_s12985_016_0643_y crossref_primary_10_1016_j_vaccine_2017_03_076 crossref_primary_10_1016_j_vaccine_2018_07_007 crossref_primary_10_1097_INF_0000000000001472 crossref_primary_10_1093_jac_dkac339 crossref_primary_10_1177_03000605221121956 crossref_primary_10_1159_000464132 crossref_primary_10_1007_s00705_019_04295_w crossref_primary_10_1111_1348_0421_12288 crossref_primary_10_1016_j_ijid_2019_09_008 crossref_primary_10_1016_j_ijid_2020_09_005 crossref_primary_10_1016_j_meegid_2014_09_033 crossref_primary_10_1371_journal_pone_0097127 crossref_primary_10_1007_s00705_020_04853_7 crossref_primary_10_1016_j_jiph_2022_06_009 crossref_primary_10_1016_j_vaccine_2018_12_005 crossref_primary_10_1016_j_virusres_2020_198075 crossref_primary_10_1016_j_meegid_2018_05_013 crossref_primary_10_1002_jmv_25007 crossref_primary_10_1007_s00705_013_1804_6 crossref_primary_10_1016_j_meegid_2014_05_016 crossref_primary_10_1016_j_meegid_2018_04_011 crossref_primary_10_3201_eid1908_130288 crossref_primary_10_1016_j_meegid_2015_06_013 crossref_primary_10_1016_j_meegid_2016_08_024 crossref_primary_10_1080_21645515_2020_1870395 crossref_primary_10_1007_s11262_017_1529_9 crossref_primary_10_1016_j_meegid_2012_12_003 crossref_primary_10_2149_tmh_2012_29 crossref_primary_10_2149_tmh_2012_28 crossref_primary_10_3390_v16030317 crossref_primary_10_2807_1560_7917_ES_2019_24_15_1800418 crossref_primary_10_2807_1560_7917_ES_2019_24_6_1700774 crossref_primary_10_1111_1348_0421_12176 crossref_primary_10_15789_2220_7619_PCA_17805 crossref_primary_10_1016_j_meegid_2014_09_020 crossref_primary_10_1016_j_meegid_2014_09_021 crossref_primary_10_1186_s12879_015_1165_8 crossref_primary_10_1016_j_bjid_2013_05_010 crossref_primary_10_1016_j_meegid_2014_05_020 crossref_primary_10_1016_j_virs_2024_12_001 crossref_primary_10_1186_s12985_019_1173_1 crossref_primary_10_1111_jpc_12815 crossref_primary_10_1002_jmv_28529 crossref_primary_10_3390_vaccines10111831 crossref_primary_10_1016_j_vaccine_2014_03_003 crossref_primary_10_1002_jmv_24605 crossref_primary_10_1002_jmv_24606 crossref_primary_10_1007_s00705_016_2852_5 crossref_primary_10_1016_j_meegid_2014_09_016 crossref_primary_10_1016_j_virusres_2022_198715 crossref_primary_10_1016_j_vaccine_2014_05_073 crossref_primary_10_1016_j_meegid_2012_08_019 crossref_primary_10_1016_j_vaccine_2014_04_037 crossref_primary_10_1007_s11908_013_0333_5 crossref_primary_10_1111_1348_0421_12501 crossref_primary_10_3390_tropicalmed8020101 crossref_primary_10_36233_0507_4088_254 crossref_primary_10_1099_jmm_0_042499_0 crossref_primary_10_1016_j_meegid_2019_104133 crossref_primary_10_1093_jpids_piw065 crossref_primary_10_1016_j_virol_2023_109903 crossref_primary_10_1099_jgv_0_001532 crossref_primary_10_1093_infdis_jiad403 crossref_primary_10_1097_INF_0000000000003286 crossref_primary_10_1099_jgv_0_001535 crossref_primary_10_1002_14651858_CD008521_pub4 crossref_primary_10_1371_journal_pone_0284934 crossref_primary_10_1002_14651858_CD008521_pub6 crossref_primary_10_1002_14651858_CD008521_pub5 crossref_primary_10_11150_kansenshogakuzasshi_89_609 crossref_primary_10_1371_journal_pone_0195947 crossref_primary_10_3109_00365548_2013_876511 crossref_primary_10_1002_jmv_24180 crossref_primary_10_1186_s12985_018_0973_z crossref_primary_10_1080_19490976_2020_1770666 crossref_primary_10_1186_s12879_019_4550_x crossref_primary_10_1590_s1678_9946202062098 crossref_primary_10_1016_j_meegid_2014_10_009 crossref_primary_10_1016_j_vaccine_2014_03_029 crossref_primary_10_1016_j_vaccine_2017_10_062 crossref_primary_10_1590_S0034_8910_2015049006058 crossref_primary_10_1016_j_meegid_2014_10_008 crossref_primary_10_1093_infdis_jiab479 crossref_primary_10_7883_yoken_JJID_2019_211 crossref_primary_10_3390_pathogens10040416 crossref_primary_10_1002_jmv_29761 crossref_primary_10_1016_j_jviromet_2015_07_012 crossref_primary_10_1080_21645515_2018_1553593 crossref_primary_10_1016_j_vaccine_2012_10_049 crossref_primary_10_1099_jgv_0_002088 crossref_primary_10_1186_s12879_020_05745_6 crossref_primary_10_1002_jmv_24510 crossref_primary_10_1007_s00705_014_2244_7 crossref_primary_10_1016_j_meegid_2019_02_007 crossref_primary_10_1186_1471_2334_12_306 crossref_primary_10_1038_s41598_020_69973_1 crossref_primary_10_2217_fvl_2017_0054 crossref_primary_10_1007_s00705_017_3575_y crossref_primary_10_1016_j_meegid_2014_03_001 crossref_primary_10_1080_21645515_2018_1520583 crossref_primary_10_21101_cejph_a4378 crossref_primary_10_1007_s12098_020_03628_x crossref_primary_10_1016_j_meegid_2013_06_013 crossref_primary_10_4103_epj_epj_326_23 crossref_primary_10_1007_s11262_024_02075_6 crossref_primary_10_3389_fmicb_2023_1297269 crossref_primary_10_1016_j_meegid_2014_08_020 crossref_primary_10_1371_journal_pone_0255720 crossref_primary_10_3390_v14102223 crossref_primary_10_3390_ijerph17031008 crossref_primary_10_1016_j_vaccine_2015_10_118 crossref_primary_10_4264_numa_77_1_3 crossref_primary_10_1016_j_virs_2022_01_012 crossref_primary_10_1186_1743_422X_10_287 crossref_primary_10_1016_j_virusres_2024_199411 crossref_primary_10_1080_15321819_2022_2159430 crossref_primary_10_1016_j_vetmic_2019_02_022 crossref_primary_10_3201_eid1908_130470 crossref_primary_10_3390_ijerph191912534 crossref_primary_10_1007_s11262_014_1163_8 crossref_primary_10_1016_j_meegid_2014_08_017 crossref_primary_10_1016_j_meegid_2013_06_005 crossref_primary_10_3103_S0096392517040071 crossref_primary_10_3389_fmicb_2019_00038 crossref_primary_10_1002_jmv_23797 crossref_primary_10_1002_jmv_24404 crossref_primary_10_1371_journal_pone_0218348 crossref_primary_10_3390_vaccines8040609 crossref_primary_10_1016_j_meegid_2017_04_016 crossref_primary_10_1093_infdis_jiaa122 crossref_primary_10_3201_eid2004_131328 crossref_primary_10_1371_journal_pone_0178855 crossref_primary_10_1002_jmv_24531 crossref_primary_10_1155_2024_4232389 crossref_primary_10_1111_tbed_13207 crossref_primary_10_1016_j_meegid_2012_09_010 crossref_primary_10_1002_jmv_24095 crossref_primary_10_1097_INF_0000000000002037 crossref_primary_10_1128_JVI_01246_17 crossref_primary_10_1093_infdis_jiaa616 crossref_primary_10_1002_jmv_23445 crossref_primary_10_1002_jmv_25625 crossref_primary_10_1016_j_vaccine_2018_03_069 crossref_primary_10_1007_s00705_018_3848_0 crossref_primary_10_1002_jmv_25075 crossref_primary_10_1016_j_vetmic_2014_04_002 crossref_primary_10_30895_2221_996X_2023_23_4_499_512 crossref_primary_10_1016_j_vaccine_2013_08_045 crossref_primary_10_1016_j_cll_2015_02_012 crossref_primary_10_1093_infdis_jiw247 crossref_primary_10_1099_jgv_0_000650 crossref_primary_10_1099_vir_0_000174 crossref_primary_10_1111_1348_0421_12795 crossref_primary_10_3390_vaccines10030346 crossref_primary_10_1002_jmv_24664 crossref_primary_10_1099_vir_0_000055 crossref_primary_10_1016_j_jcv_2020_104532 crossref_primary_10_1186_s12887_019_1535_2 crossref_primary_10_1007_s13337_014_0203_2 crossref_primary_10_1016_j_eimc_2014_01_012 crossref_primary_10_1016_j_meegid_2013_01_005 crossref_primary_10_1016_j_meegid_2012_11_010 crossref_primary_10_1016_j_meegid_2016_03_013 crossref_primary_10_1186_1471_2334_14_300 crossref_primary_10_1371_journal_pone_0084699 crossref_primary_10_37871_jbres1198 crossref_primary_10_1002_jmv_24669 crossref_primary_10_1016_j_cimid_2016_04_003 crossref_primary_10_1016_j_jcv_2012_06_016 crossref_primary_10_1038_srep18585 crossref_primary_10_1186_s12879_020_05230_0 crossref_primary_10_1016_j_cmi_2016_03_007 crossref_primary_10_1128_JVI_01476_18 crossref_primary_10_1002_jmv_25642 crossref_primary_10_1586_erv_12_105 crossref_primary_10_1111_1348_0421_12323 crossref_primary_10_3390_v13061075 crossref_primary_10_1016_j_virol_2016_04_017 crossref_primary_10_1038_srep14658 crossref_primary_10_1371_journal_pmed_1003655 crossref_primary_10_1007_s00705_019_04215_y crossref_primary_10_1007_s12519_018_0122_1 crossref_primary_10_3390_v7020844 crossref_primary_10_1016_j_meegid_2013_08_024 crossref_primary_10_1186_s13099_018_0255_8 crossref_primary_10_1016_j_jcv_2023_105497 crossref_primary_10_1089_fpd_2015_1990 crossref_primary_10_1016_j_meegid_2016_03_001 crossref_primary_10_1016_S1473_3099_14_70832_1 crossref_primary_10_1038_s41598_018_31005_4 crossref_primary_10_1007_s12098_020_03626_z crossref_primary_10_1017_S0950268815003258 crossref_primary_10_1097_INF_0000000000000074 crossref_primary_10_1002_jmv_25527 crossref_primary_10_1186_s13099_020_00359_4 crossref_primary_10_1016_j_meegid_2014_10_002 crossref_primary_10_1038_srep40731 crossref_primary_10_1371_journal_pone_0059394 crossref_primary_10_3390_v14092028 crossref_primary_10_1007_s00705_015_2706_6 crossref_primary_10_1099_vir_0_056788_0 crossref_primary_10_4103_jgid_jgid_101_22 crossref_primary_10_1002_jmv_27711 crossref_primary_10_1002_jmv_24685 crossref_primary_10_1016_j_meegid_2013_05_005 crossref_primary_10_1016_j_vaccine_2017_12_006 crossref_primary_10_1007_s11262_013_1026_8 crossref_primary_10_1099_vir_0_050625_0 crossref_primary_10_3390_pathogens10040485 crossref_primary_10_1016_S2222_1808_16_61080_0 crossref_primary_10_1038_s41390_023_02468_7 crossref_primary_10_1097_INF_0000000000000087 crossref_primary_10_1093_jpids_piu090 crossref_primary_10_1186_s12985_016_0609_0 crossref_primary_10_1007_s00705_019_04504_6 crossref_primary_10_1186_s13104_020_05332_7 crossref_primary_10_1016_j_meegid_2017_05_009 crossref_primary_10_5812_archcid_105501 crossref_primary_10_1016_j_jfma_2020_03_019 crossref_primary_10_3390_pathogens9090671 crossref_primary_10_1099_jgv_0_001722 crossref_primary_10_1093_ve_vead030 crossref_primary_10_3390_ijms242417362 crossref_primary_10_1002_jmv_24691 crossref_primary_10_1099_jgv_0_001171 crossref_primary_10_3389_fmed_2021_712326 crossref_primary_10_1016_j_vaccine_2014_01_007 crossref_primary_10_1016_j_vaccine_2014_03_080 crossref_primary_10_1016_j_ijid_2024_01_020 crossref_primary_10_1017_S0950268820002320 crossref_primary_10_1097_INF_0000000000000052 crossref_primary_10_1016_j_meegid_2021_104940 crossref_primary_10_1097_INF_0000000000000053 crossref_primary_10_1097_INF_0000000000001381 crossref_primary_10_1016_j_vaccine_2019_11_017 crossref_primary_10_21307_PM_2018_57_2_156 crossref_primary_10_3390_pathogens10030350 crossref_primary_10_1016_j_jiac_2021_04_002 crossref_primary_10_1016_j_meegid_2015_04_022 crossref_primary_10_1016_j_meegid_2014_09_007 crossref_primary_10_1016_j_meegid_2014_12_030 crossref_primary_10_1016_j_gerinurse_2016_11_004 crossref_primary_10_1016_j_meegid_2016_06_039 crossref_primary_10_1016_j_cmi_2015_01_022 crossref_primary_10_1007_s00705_020_04534_5 crossref_primary_10_35864_evmd_1527104 crossref_primary_10_1080_14787210_2022_2139239 crossref_primary_10_3390_v14081775 crossref_primary_10_3390_pathogens10080959 crossref_primary_10_1007_s00705_016_3103_5 crossref_primary_10_1016_j_vaccine_2019_06_062 crossref_primary_10_1128_JVI_01374_20 crossref_primary_10_1016_j_meegid_2015_02_011 crossref_primary_10_1590_S0036_46652015000400006 crossref_primary_10_1371_journal_pgph_0001358 crossref_primary_10_3390_v15030738 crossref_primary_10_1016_j_vaccine_2011_10_108 crossref_primary_10_1093_pch_pxx071 crossref_primary_10_1093_ve_veab023 crossref_primary_10_1093_pch_pxx072 crossref_primary_10_3390_v16010130 crossref_primary_10_1007_s12098_020_03623_2 crossref_primary_10_17352_ijvsr_000104 crossref_primary_10_1002_rmv_2003 crossref_primary_10_3390_w13192794 crossref_primary_10_1055_s_0041_1728830 crossref_primary_10_1080_14760584_2023_2227699 crossref_primary_10_1016_j_meegid_2021_105133 crossref_primary_10_1155_2022_5231910 crossref_primary_10_3390_v13091791 crossref_primary_10_1002_jmv_24122 crossref_primary_10_1093_cid_civ294 crossref_primary_10_1002_jmv_24123 crossref_primary_10_12998_wjcc_v6_i11_426 crossref_primary_10_3390_v15122321 crossref_primary_10_1016_j_jff_2018_03_002 crossref_primary_10_1002_rmv_1954 crossref_primary_10_1186_s12879_022_07542_9 crossref_primary_10_3389_fmicb_2020_604444 crossref_primary_10_1371_journal_pone_0220387 crossref_primary_10_1016_j_virol_2024_110114 crossref_primary_10_1186_s13104_017_3122_7 crossref_primary_10_1007_s12560_020_09426_0 crossref_primary_10_1016_j_vaccine_2024_04_056 crossref_primary_10_1099_jmm_0_000305 crossref_primary_10_1016_j_jviromet_2019_03_010 crossref_primary_10_12688_wellcomeopenres_14908_1 crossref_primary_10_1093_cid_civ1208 crossref_primary_10_12688_wellcomeopenres_14908_2 crossref_primary_10_1016_j_vaccine_2018_03_035 crossref_primary_10_1371_journal_pone_0176046 crossref_primary_10_1371_journal_ppat_1007865 crossref_primary_10_3389_fmicb_2022_951716 crossref_primary_10_1016_j_idc_2015_07_002 crossref_primary_10_1016_j_meegid_2014_06_021 crossref_primary_10_1016_j_meegid_2020_104656 crossref_primary_10_1556_AMicr_60_2013_1_3 crossref_primary_10_3390_microorganisms8030458 crossref_primary_10_1071_MA21046 crossref_primary_10_1002_jmv_27766 crossref_primary_10_1093_infdis_jiad351 crossref_primary_10_1016_j_jiph_2022_09_001 crossref_primary_10_1111_ped_14150 crossref_primary_10_1016_j_vetmic_2013_03_020 crossref_primary_10_1089_vim_2015_0126 crossref_primary_10_1099_jmm_0_000420 |
Cites_doi | 10.1002/rmv.448 10.2217/fmb.09.96 10.4161/hv.4.4.6403 10.1056/NEJMoa052664 10.1086/595702 10.3201/eid1202.050006 10.1056/NEJM199610033351404 10.1056/NEJMoa0904797 10.1016/S0140-6736(08)60501-2 10.1016/S0140-6736(10)60889-6 10.1053/j.gastro.2009.07.046 10.1086/605049 10.1086/431499 10.1016/j.vetmic.2009.08.028 10.1093/infdis/174.Supplement_1.S73 10.1002/0470846534.ch10 10.1086/653549 10.1056/NEJM198307143090203 10.1002/jmv.1890340202 10.1016/S0140-6736(07)61744-9 10.1093/infdis/174.Supplement_1.S30 10.1056/NEJMoa0905211 10.1097/INF.0b013e3181d73524 10.1086/505493 10.1086/431497 10.1001/jama.2009.756 10.1016/j.vaccine.2008.03.073 10.1086/319744 10.1016/S0140-6736(98)12106-2 10.1136/bmj.c2825 10.1016/S0264-410X(02)00616-3 10.1086/605025 10.1056/NEJMoa052434 10.1016/j.vaccine.2007.10.036 10.3201/eid0905.020562 10.1016/S0140-6736(08)60524-3 10.1086/605061 10.1016/S0140-6736(10)60755-6 10.1128/CMR.00029-07 10.2217/fmb.09.105 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd Elsevier Ltd Copyright © 2011 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2011 Elsevier Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 7S9 L.6 |
DOI | 10.1016/j.vaccine.2011.09.111 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Virology and AIDS Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Veterinary Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-2518 |
EndPage | A130 |
ExternalDocumentID | 22520121 10_1016_j_vaccine_2011_09_111 US201500178339 S0264410X11015532 1_s2_0_S0264410X11015532 |
Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7RV 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABKYH ABMAC ABMZM ABRWV ABUWG ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEUYN AEVXI AEXOQ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGGSO AGUBO AGYEJ AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AQUVI AXJTR AZQEC BBNVY BENPR BHPHI BKEYQ BKNYI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CJTIS CNWQP CS3 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK HZ~ IHE J1W K9- KOM L7B LK8 LUGTX LW9 M0R M0T M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- O9~ OAUVE OK0 OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL RPZ SAB SCC SDF SDG SDP SES SNL SPCBC SSH SSI SSZ T5K UKHRP UV1 WH7 WOW Z5R ~G- .GJ 29Q 3V. AACTN AAQXK ADVLN AFCTW AFJKZ AFKWA AGHFR AHHHB AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HEJ HLV HMG HMK HMO HVGLF HX~ R2- RIG SAE SEW SIN SVS WUQ XPP ZGI ZXP AAIAV ABLVK ABYKQ AESVU AJBFU EFLBG LCYCR QYZTP ABPIF ABPTK FBQ AAYXX ACMHX ADSLC AGQPQ AGRNS AGWPP AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 ACLOT H94 ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c677t-bbe9b0ae35e566f4b23b3d627343234f659b6ca9dc85500badc1c8642d1abb143 |
IEDL.DBID | AIKHN |
ISSN | 0264-410X 1873-2518 |
IngestDate | Sun Sep 28 02:07:04 EDT 2025 Sun Sep 28 10:36:30 EDT 2025 Fri Sep 05 12:59:54 EDT 2025 Mon Jul 21 05:31:44 EDT 2025 Tue Jul 01 03:37:58 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Wed Dec 27 19:11:14 EST 2023 Fri Feb 23 02:31:54 EST 2024 Sun Feb 23 10:19:55 EST 2025 Tue Aug 26 17:46:38 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Molecular epidemiology G type Prevalence Surveillance P type |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c677t-bbe9b0ae35e566f4b23b3d627343234f659b6ca9dc85500badc1c8642d1abb143 |
Notes | http://dx.doi.org/10.1016/j.vaccine.2011.09.111 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://hdl.handle.net/2437/130193 |
PMID | 22520121 |
PQID | 1010637887 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1686729515 proquest_miscellaneous_1516743841 proquest_miscellaneous_1010637887 pubmed_primary_22520121 crossref_primary_10_1016_j_vaccine_2011_09_111 crossref_citationtrail_10_1016_j_vaccine_2011_09_111 fao_agris_US201500178339 elsevier_sciencedirect_doi_10_1016_j_vaccine_2011_09_111 elsevier_clinicalkeyesjournals_1_s2_0_S0264410X11015532 elsevier_clinicalkey_doi_10_1016_j_vaccine_2011_09_111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-27 |
PublicationDateYYYYMMDD | 2012-04-27 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Vaccine |
PublicationTitleAlternate | Vaccine |
PublicationYear | 2012 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Estes, Kapikian (bib0035) 2007 Richardson, Hernandez-Pichardo, Quintanar-Solares, Esparza-Aguilar, Johnson, Gomez-Altamirano (bib0095) 2010; 362 Nelson, Bresee, Parashar, Widdowson, Glass (bib0205) 2008; 26 Vesikari, Karvonen, Prymula, Schuster, Tejedor, Cohen (bib0130) 2007; 370 Matthijnssens, Bilcke, Ciarlet, Martella, Bányai, Rahman (bib0055) 2009; 4 Gentsch, Laird, Bielfelt, Griffin, Banyai, Ramachandran (bib0040) 2005; 192 Clark (bib0090) 2008; 4 de Palma, Cruz, Ramos, de Baires, Villatoro, Pastor (bib0135) 2010; 340 Clark, Offit, Ellis, Eiden, Krah, Shaw (bib0085) 1996; 174 Madhi, Cunliffe, Steele, Witte, Kirsten, Louw (bib0100) 2010; 362 Parashar, Hummelman, Bresee, Miller, Glass (bib0005) 2003; 9 Linhares, Verstraeten, Wolleswinkel-van den Bosch, Clemens, Breuer (bib0165) 2006; 43 Ruiz-Palacios, Pérez-Schael, Velázquez, Abate, Breuer, Clemens (bib0110) 2006; 354 Kapikian (bib0180) 2001; 238 Steele, Ivanoff (bib0210) 2003; 21 Dennehy (bib0020) 2008; 21 Velázquez, Matson, Calva, Guerrero, Morrow, Carter-Campbell (bib0070) 1996; 335 Fu, Wang, Liang, He, Wang, Xu (bib0185) 2007; 25 Armah, Sow, Breiman, Dallas, Tapia, Feikin (bib0120) 2010; 376 Vesikari, Matson, Dennehy, Van Damme, Santosham, Rodriguez (bib0105) 2006; 354 Gentsch, Woods, Ramachandran, Das, Leite, Alfieri (bib0195) 1996; 174 Gurgel, Bohland, Vieira, Oliveira, Fontes, Barros (bib0145) 2009; 137 Bahl, Ray, Subodh, Shambharkar, Saxena, Parashar (bib0170) 2005; 192 Parashar, Burton, Lanata, Boschi-Pinto, Shibuya, Steele (bib0010) 2009; 200 Grimwood, Kirkwood (bib0190) 2008; 371 Widdowson, Steele, Vojdani, Wecker, Parashar (bib0025) 2009; 200 Cascio, Vizzi, Alaimo, Arista (bib0160) 2001; 32 Hoshino, Kapikian, Bishop, Barnes, Cipriani, Lund (bib0075) 2000; 18 Ward, Bernstein (bib0080) 2009; 48 Bernstein, Sack, Rothstein, Reisinger, Smith, O‘Sullivan (bib0065) 1999; 354 Clark, Lawley, Matthijnssens, DiNubile, Hodinka (bib0150) 2010; 29 Ward, Clark, Offit (bib0060) 2010; 202 Linhares, Velázquez, Pérez-Schael, Saez-Llorens, Abate, Espinoza (bib0125) 2008; 371 Patel, Pedreira, De Oliveira, Tate, Orozco, Mercado (bib0140) 2009; 301 WHO (bib0030) 2009; 84 Iturriza-Gómara, Dallman, Bányai, Böttiger, Buesa, Diedrich (bib0200) 2009; 200 Martella, Bányai, Matthijnssens, Buonavoglia, Ciarlet (bib0050) 2010; 140 Parashar, Gibson, Bresse, Glass (bib0015) 2006; 12 Gentsch, Parashar, Glass (bib0155) 2009; 4 White, García, Boher, Blanco, Perez, Romer (bib0175) 1991; 34 Santos, Hoshino (bib0045) 2005; 15 Zaman, Dang, Victor, Shin, Yunus, Dallas (bib0115) 2010; 376 Gentsch (10.1016/j.vaccine.2011.09.111_bib0040) 2005; 192 Vesikari (10.1016/j.vaccine.2011.09.111_bib0105) 2006; 354 Kapikian (10.1016/j.vaccine.2011.09.111_bib0180) 2001; 238 Grimwood (10.1016/j.vaccine.2011.09.111_bib0190) 2008; 371 Patel (10.1016/j.vaccine.2011.09.111_bib0140) 2009; 301 Armah (10.1016/j.vaccine.2011.09.111_bib0120) 2010; 376 Parashar (10.1016/j.vaccine.2011.09.111_bib0005) 2003; 9 Martella (10.1016/j.vaccine.2011.09.111_bib0050) 2010; 140 Vesikari (10.1016/j.vaccine.2011.09.111_bib0130) 2007; 370 Bernstein (10.1016/j.vaccine.2011.09.111_bib0065) 1999; 354 Parashar (10.1016/j.vaccine.2011.09.111_bib0010) 2009; 200 Bishop (10.1016/j.vaccine.2011.09.111_bib0075_2) 1983; 309 WHO (10.1016/j.vaccine.2011.09.111_bib0030) 2009; 84 Fu (10.1016/j.vaccine.2011.09.111_bib0185) 2007; 25 Widdowson (10.1016/j.vaccine.2011.09.111_bib0025) 2009; 200 Dennehy (10.1016/j.vaccine.2011.09.111_bib0020) 2008; 21 Iturriza-Gómara (10.1016/j.vaccine.2011.09.111_bib0200) 2009; 200 Ruiz-Palacios (10.1016/j.vaccine.2011.09.111_bib0110) 2006; 354 Clark (10.1016/j.vaccine.2011.09.111_bib0090) 2008; 4 Richardson (10.1016/j.vaccine.2011.09.111_bib0095) 2010; 362 Ward (10.1016/j.vaccine.2011.09.111_bib0060) 2010; 202 Zaman (10.1016/j.vaccine.2011.09.111_bib0115) 2010; 376 Linhares (10.1016/j.vaccine.2011.09.111_bib0125) 2008; 371 Nelson (10.1016/j.vaccine.2011.09.111_bib0205) 2008; 26 de Palma (10.1016/j.vaccine.2011.09.111_bib0135) 2010; 340 Gurgel (10.1016/j.vaccine.2011.09.111_bib0145) 2009; 137 Steele (10.1016/j.vaccine.2011.09.111_bib0210) 2003; 21 Ward (10.1016/j.vaccine.2011.09.111_bib0080) 2009; 48 Parashar (10.1016/j.vaccine.2011.09.111_bib0015) 2006; 12 Bahl (10.1016/j.vaccine.2011.09.111_bib0170) 2005; 192 Linhares (10.1016/j.vaccine.2011.09.111_bib0165) 2006; 43 Madhi (10.1016/j.vaccine.2011.09.111_bib0100) 2010; 362 Gentsch (10.1016/j.vaccine.2011.09.111_bib0155) 2009; 4 Gentsch (10.1016/j.vaccine.2011.09.111_bib0195) 1996; 174 Santos (10.1016/j.vaccine.2011.09.111_bib0045) 2005; 15 Cascio (10.1016/j.vaccine.2011.09.111_bib0160) 2001; 32 Matthijnssens (10.1016/j.vaccine.2011.09.111_bib0055) 2009; 4 Clark (10.1016/j.vaccine.2011.09.111_bib0150) 2010; 29 Estes (10.1016/j.vaccine.2011.09.111_bib0035) 2007 Velázquez (10.1016/j.vaccine.2011.09.111_bib0070) 1996; 335 White (10.1016/j.vaccine.2011.09.111_bib0175) 1991; 34 Clark (10.1016/j.vaccine.2011.09.111_bib0085) 1996; 174 Hoshino (10.1016/j.vaccine.2011.09.111_bib0075_1) 2000; 18 |
References_xml | – volume: 202 start-page: S72 year: 2010 end-page: S79 ident: bib0060 article-title: Influence of potential protective mechanisms on the development of live rotavirus vaccines publication-title: J Infect Dis – volume: 371 start-page: 1144 year: 2008 end-page: 1145 ident: bib0190 article-title: Human rotavirus vaccines: too early for the strain to tell publication-title: Lancet – volume: 362 start-page: 289 year: 2010 end-page: 298 ident: bib0100 article-title: Effect of human rotavirus vaccine on severe diarrhea in African infants publication-title: N Engl J Med – volume: 34 start-page: 79 year: 1991 end-page: 84 ident: bib0175 article-title: Temporal distribution of human rotavirus serotypes 1–3, and 4 in Venezuelan children with gastroenteritis during 1979–1989 publication-title: J Med Virol – volume: 9 start-page: 565 year: 2003 end-page: 572 ident: bib0005 article-title: Global illness and deaths caused by rotavirus disease in children publication-title: Emerg Infect Dis – volume: 21 start-page: 198 year: 2008 end-page: 208 ident: bib0020 article-title: Rotavirus vaccines: an overview publication-title: Clin Microbiol Rev – start-page: 1917 year: 2007 end-page: 1974 ident: bib0035 article-title: Rotaviruses publication-title: Fields Virology – volume: 371 start-page: 1181 year: 2008 end-page: 1189 ident: bib0125 article-title: Efficacy and safety of an oral live attenuated human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in Latin American infants: a randomised, double-blind, placebo-controlled phase III study publication-title: Lancet – volume: 25 start-page: 8756 year: 2007 end-page: 8761 ident: bib0185 article-title: Effectiveness of Lanzhou lamb rotavirus vaccine against rotavirus gastroenteritis requiring hospitalization: a matched case-control study publication-title: Vaccine – volume: 4 start-page: 1231 year: 2009 end-page: 1234 ident: bib0155 article-title: Impact of rotavirus vaccination: the importance of monitoring strains publication-title: Future Microbiol – volume: 32 start-page: 1126 year: 2001 end-page: 1132 ident: bib0160 article-title: Rotavirus gastroenteritis in Italian children: can severity of symptoms be related to the infecting virus? publication-title: Clin Infect Dis – volume: 15 start-page: 29 year: 2005 end-page: 56 ident: bib0045 article-title: Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine publication-title: Rev Med Virol – volume: 200 start-page: S215 year: 2009 end-page: S221 ident: bib0200 article-title: Rotavirus surveillance in Europe, 2005–2008: web-enabled reporting and real-time analysis of genotyping and epidemiological data publication-title: J Infect Dis – volume: 376 start-page: 615 year: 2010 end-page: 623 ident: bib0115 article-title: Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial publication-title: Lancet – volume: 370 start-page: 1757 year: 2007 end-page: 1763 ident: bib0130 article-title: Efficacy of human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in European infants: randomised, double-blind controlled study publication-title: Lancet – volume: 18 start-page: 5 year: 2000 end-page: 14 ident: bib0075 article-title: Rotavirus serotypes: classification and importance in epidemiology, immunity, and vaccine development publication-title: J Health Popul Nutr – volume: 4 start-page: 256 year: 2008 end-page: 259 ident: bib0090 article-title: A brief account of experiences leading to RotaTeq vaccine publication-title: Hum Vaccine – volume: 354 start-page: 23 year: 2006 end-page: 33 ident: bib0105 article-title: Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine publication-title: N Engl J Med – volume: 354 start-page: 287 year: 1999 end-page: 290 ident: bib0065 article-title: Efficacy of live, attenuated, human rotavirus vaccine 89-12 in infants: a randomised placebo controlled trial publication-title: Lancet – volume: 174 start-page: S73 year: 1996 end-page: S80 ident: bib0085 article-title: The development of multivalent bovine rotavirus (strain WC3) reassortant vaccine for infants publication-title: J Infect Dis – volume: 43 start-page: 312 year: 2006 end-page: 314 ident: bib0165 article-title: Rotavirus serotype G9 is associated with more-severe disease in Latin America publication-title: Clin Infect Dis – volume: 200 start-page: S1 year: 2009 end-page: S8 ident: bib0025 article-title: Global rotavirus surveillance: determining the need and measuring the impact of rotavirus vaccines publication-title: J Infect Dis – volume: 354 start-page: 11 year: 2006 end-page: 22 ident: bib0110 article-title: Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis publication-title: N Engl J Med – volume: 238 start-page: 153 year: 2001 end-page: 171 ident: bib0180 article-title: A rotavirus vaccine for prevention of severe diarrhoea of infants and young children: development, utilization and withdrawal publication-title: Novartis Found Symp – volume: 12 start-page: 304 year: 2006 end-page: 306 ident: bib0015 article-title: Rotavirus and severe childhood diarrhea publication-title: Emerg Infect Dis – volume: 48 start-page: 222 year: 2009 end-page: 228 ident: bib0080 article-title: Rotarix: a rotavirus vaccine for the world publication-title: Clin Infect Dis – volume: 29 start-page: 699 year: 2010 end-page: 702 ident: bib0150 article-title: Sustained decline in cases of rotavirus gastroenteritis presenting to the Children's Hospital of Philadelphia in the new rotavirus vaccine era publication-title: Pediatr Infect Dis J – volume: 192 start-page: S114 year: 2005 end-page: S119 ident: bib0170 article-title: Incidence of severe rotavirus diarrhea in New Delhi, India, and G and P types of the infecting rotavirus strains publication-title: J Infect Dis – volume: 137 start-page: 1970 year: 2009 end-page: 1975 ident: bib0145 article-title: Incidence of rotavirus and all cause diarrhea in northeast Brazil following the introduction of a national vaccination program publication-title: Gastroenterology – volume: 174 start-page: S30 year: 1996 end-page: S36 ident: bib0195 article-title: Review of G and P typing results from a global collection of rotavirus strains: implications for vaccine development publication-title: J Infect Dis – volume: 4 start-page: 1303 year: 2009 end-page: 1316 ident: bib0055 article-title: Rotavirus disease and vaccination: impact on genotype diversity publication-title: Future Microbiol – volume: 376 start-page: 606 year: 2010 end-page: 614 ident: bib0120 article-title: Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial publication-title: Lancet – volume: 301 start-page: 2243 year: 2009 end-page: 2251 ident: bib0140 article-title: Association between pentavalent rotavirus vaccine and severe rotavirus diarrhea among children in Nicaragua publication-title: J Am Med Assoc – volume: 84 start-page: 220 year: 2009 end-page: 236 ident: bib0030 article-title: Meeting of the immunization Strategic Advisory Group of Experts, April 2009—conclusions and recommendations publication-title: Wkly Epidemiol Rec – volume: 192 start-page: S146 year: 2005 end-page: S159 ident: bib0040 article-title: Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs publication-title: J Infect Dis – volume: 140 start-page: 246 year: 2010 end-page: 255 ident: bib0050 article-title: Zoonotic aspects of rotaviruses publication-title: Vet Microbiol – volume: 26 start-page: 3192 year: 2008 end-page: 3196 ident: bib0205 article-title: Asian Rotavirus Surveillance Network. Rotavirus epidemiology: the Asian Rotavirus Surveillance Network publication-title: Vaccine – volume: 200 start-page: S9 year: 2009 end-page: S15 ident: bib0010 article-title: Global mortality associated with rotavirus disease among children in 2004 publication-title: J Infect Dis – volume: 335 start-page: 1022 year: 1996 end-page: 1028 ident: bib0070 article-title: Rotavirus infections in infants as protection against subsequent infections publication-title: N Engl J Med – volume: 21 start-page: 361 year: 2003 end-page: 367 ident: bib0210 article-title: Rotavirus strains circulating in Africa during 1996–1999: emergence of G9 strains and P[6] strains publication-title: Vaccine – volume: 340 start-page: c2825 year: 2010 ident: bib0135 article-title: Effectiveness of rotavirus vaccination against childhood diarrhoea in El Salvador: case-control study publication-title: Br Med J – volume: 362 start-page: 299 year: 2010 end-page: 305 ident: bib0095 article-title: Effect of rotavirus vaccination on death from childhood diarrhea in Mexico publication-title: N Engl J Med – start-page: 1917 year: 2007 ident: 10.1016/j.vaccine.2011.09.111_bib0035 article-title: Rotaviruses – volume: 15 start-page: 29 year: 2005 ident: 10.1016/j.vaccine.2011.09.111_bib0045 article-title: Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine publication-title: Rev Med Virol doi: 10.1002/rmv.448 – volume: 4 start-page: 1303 year: 2009 ident: 10.1016/j.vaccine.2011.09.111_bib0055 article-title: Rotavirus disease and vaccination: impact on genotype diversity publication-title: Future Microbiol doi: 10.2217/fmb.09.96 – volume: 4 start-page: 256 year: 2008 ident: 10.1016/j.vaccine.2011.09.111_bib0090 article-title: A brief account of experiences leading to RotaTeq vaccine publication-title: Hum Vaccine doi: 10.4161/hv.4.4.6403 – volume: 354 start-page: 23 year: 2006 ident: 10.1016/j.vaccine.2011.09.111_bib0105 article-title: Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine publication-title: N Engl J Med doi: 10.1056/NEJMoa052664 – volume: 48 start-page: 222 year: 2009 ident: 10.1016/j.vaccine.2011.09.111_bib0080 article-title: Rotarix: a rotavirus vaccine for the world publication-title: Clin Infect Dis doi: 10.1086/595702 – volume: 12 start-page: 304 year: 2006 ident: 10.1016/j.vaccine.2011.09.111_bib0015 article-title: Rotavirus and severe childhood diarrhea publication-title: Emerg Infect Dis doi: 10.3201/eid1202.050006 – volume: 335 start-page: 1022 year: 1996 ident: 10.1016/j.vaccine.2011.09.111_bib0070 article-title: Rotavirus infections in infants as protection against subsequent infections publication-title: N Engl J Med doi: 10.1056/NEJM199610033351404 – volume: 362 start-page: 289 year: 2010 ident: 10.1016/j.vaccine.2011.09.111_bib0100 article-title: Effect of human rotavirus vaccine on severe diarrhea in African infants publication-title: N Engl J Med doi: 10.1056/NEJMoa0904797 – volume: 371 start-page: 1144 year: 2008 ident: 10.1016/j.vaccine.2011.09.111_bib0190 article-title: Human rotavirus vaccines: too early for the strain to tell publication-title: Lancet doi: 10.1016/S0140-6736(08)60501-2 – volume: 376 start-page: 606 year: 2010 ident: 10.1016/j.vaccine.2011.09.111_bib0120 article-title: Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(10)60889-6 – volume: 137 start-page: 1970 year: 2009 ident: 10.1016/j.vaccine.2011.09.111_bib0145 article-title: Incidence of rotavirus and all cause diarrhea in northeast Brazil following the introduction of a national vaccination program publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.07.046 – volume: 200 start-page: S215 issue: Suppl 1 year: 2009 ident: 10.1016/j.vaccine.2011.09.111_bib0200 article-title: Rotavirus surveillance in Europe, 2005–2008: web-enabled reporting and real-time analysis of genotyping and epidemiological data publication-title: J Infect Dis doi: 10.1086/605049 – volume: 192 start-page: S146 issue: Suppl 1 year: 2005 ident: 10.1016/j.vaccine.2011.09.111_bib0040 article-title: Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs publication-title: J Infect Dis doi: 10.1086/431499 – volume: 140 start-page: 246 year: 2010 ident: 10.1016/j.vaccine.2011.09.111_bib0050 article-title: Zoonotic aspects of rotaviruses publication-title: Vet Microbiol doi: 10.1016/j.vetmic.2009.08.028 – volume: 174 start-page: S73 issue: Suppl 1 year: 1996 ident: 10.1016/j.vaccine.2011.09.111_bib0085 article-title: The development of multivalent bovine rotavirus (strain WC3) reassortant vaccine for infants publication-title: J Infect Dis doi: 10.1093/infdis/174.Supplement_1.S73 – volume: 238 start-page: 153 year: 2001 ident: 10.1016/j.vaccine.2011.09.111_bib0180 article-title: A rotavirus vaccine for prevention of severe diarrhoea of infants and young children: development, utilization and withdrawal publication-title: Novartis Found Symp doi: 10.1002/0470846534.ch10 – volume: 202 start-page: S72 issue: Suppl year: 2010 ident: 10.1016/j.vaccine.2011.09.111_bib0060 article-title: Influence of potential protective mechanisms on the development of live rotavirus vaccines publication-title: J Infect Dis doi: 10.1086/653549 – volume: 309 start-page: 72 year: 1983 ident: 10.1016/j.vaccine.2011.09.111_bib0075_2 article-title: Clinical immunity after neonatal rotavirus infection. A prospective longitudinal study in young children publication-title: N Engl J Med doi: 10.1056/NEJM198307143090203 – volume: 34 start-page: 79 year: 1991 ident: 10.1016/j.vaccine.2011.09.111_bib0175 article-title: Temporal distribution of human rotavirus serotypes 1–3, and 4 in Venezuelan children with gastroenteritis during 1979–1989 publication-title: J Med Virol doi: 10.1002/jmv.1890340202 – volume: 370 start-page: 1757 year: 2007 ident: 10.1016/j.vaccine.2011.09.111_bib0130 article-title: Efficacy of human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in European infants: randomised, double-blind controlled study publication-title: Lancet doi: 10.1016/S0140-6736(07)61744-9 – volume: 18 start-page: 5 year: 2000 ident: 10.1016/j.vaccine.2011.09.111_bib0075_1 article-title: Rotavirus serotypes: classification and importance in epidemiology, immunity, and vaccine development publication-title: J Health Popul Nutr – volume: 174 start-page: S30 issue: Suppl 1 year: 1996 ident: 10.1016/j.vaccine.2011.09.111_bib0195 article-title: Review of G and P typing results from a global collection of rotavirus strains: implications for vaccine development publication-title: J Infect Dis doi: 10.1093/infdis/174.Supplement_1.S30 – volume: 362 start-page: 299 year: 2010 ident: 10.1016/j.vaccine.2011.09.111_bib0095 article-title: Effect of rotavirus vaccination on death from childhood diarrhea in Mexico publication-title: N Engl J Med doi: 10.1056/NEJMoa0905211 – volume: 29 start-page: 699 year: 2010 ident: 10.1016/j.vaccine.2011.09.111_bib0150 article-title: Sustained decline in cases of rotavirus gastroenteritis presenting to the Children's Hospital of Philadelphia in the new rotavirus vaccine era publication-title: Pediatr Infect Dis J doi: 10.1097/INF.0b013e3181d73524 – volume: 43 start-page: 312 year: 2006 ident: 10.1016/j.vaccine.2011.09.111_bib0165 article-title: Rotavirus serotype G9 is associated with more-severe disease in Latin America publication-title: Clin Infect Dis doi: 10.1086/505493 – volume: 192 start-page: S114 issue: Suppl 1 year: 2005 ident: 10.1016/j.vaccine.2011.09.111_bib0170 article-title: Incidence of severe rotavirus diarrhea in New Delhi, India, and G and P types of the infecting rotavirus strains publication-title: J Infect Dis doi: 10.1086/431497 – volume: 84 start-page: 220 year: 2009 ident: 10.1016/j.vaccine.2011.09.111_bib0030 article-title: Meeting of the immunization Strategic Advisory Group of Experts, April 2009—conclusions and recommendations publication-title: Wkly Epidemiol Rec – volume: 301 start-page: 2243 year: 2009 ident: 10.1016/j.vaccine.2011.09.111_bib0140 article-title: Association between pentavalent rotavirus vaccine and severe rotavirus diarrhea among children in Nicaragua publication-title: J Am Med Assoc doi: 10.1001/jama.2009.756 – volume: 26 start-page: 3192 year: 2008 ident: 10.1016/j.vaccine.2011.09.111_bib0205 article-title: Asian Rotavirus Surveillance Network. Rotavirus epidemiology: the Asian Rotavirus Surveillance Network publication-title: Vaccine doi: 10.1016/j.vaccine.2008.03.073 – volume: 32 start-page: 1126 year: 2001 ident: 10.1016/j.vaccine.2011.09.111_bib0160 article-title: Rotavirus gastroenteritis in Italian children: can severity of symptoms be related to the infecting virus? publication-title: Clin Infect Dis doi: 10.1086/319744 – volume: 354 start-page: 287 year: 1999 ident: 10.1016/j.vaccine.2011.09.111_bib0065 article-title: Efficacy of live, attenuated, human rotavirus vaccine 89-12 in infants: a randomised placebo controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(98)12106-2 – volume: 340 start-page: c2825 year: 2010 ident: 10.1016/j.vaccine.2011.09.111_bib0135 article-title: Effectiveness of rotavirus vaccination against childhood diarrhoea in El Salvador: case-control study publication-title: Br Med J doi: 10.1136/bmj.c2825 – volume: 21 start-page: 361 year: 2003 ident: 10.1016/j.vaccine.2011.09.111_bib0210 article-title: Rotavirus strains circulating in Africa during 1996–1999: emergence of G9 strains and P[6] strains publication-title: Vaccine doi: 10.1016/S0264-410X(02)00616-3 – volume: 200 start-page: S9 issue: Suppl 1 year: 2009 ident: 10.1016/j.vaccine.2011.09.111_bib0010 article-title: Global mortality associated with rotavirus disease among children in 2004 publication-title: J Infect Dis doi: 10.1086/605025 – volume: 354 start-page: 11 year: 2006 ident: 10.1016/j.vaccine.2011.09.111_bib0110 article-title: Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis publication-title: N Engl J Med doi: 10.1056/NEJMoa052434 – volume: 25 start-page: 8756 year: 2007 ident: 10.1016/j.vaccine.2011.09.111_bib0185 article-title: Effectiveness of Lanzhou lamb rotavirus vaccine against rotavirus gastroenteritis requiring hospitalization: a matched case-control study publication-title: Vaccine doi: 10.1016/j.vaccine.2007.10.036 – volume: 9 start-page: 565 year: 2003 ident: 10.1016/j.vaccine.2011.09.111_bib0005 article-title: Global illness and deaths caused by rotavirus disease in children publication-title: Emerg Infect Dis doi: 10.3201/eid0905.020562 – volume: 371 start-page: 1181 year: 2008 ident: 10.1016/j.vaccine.2011.09.111_bib0125 article-title: Efficacy and safety of an oral live attenuated human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in Latin American infants: a randomised, double-blind, placebo-controlled phase III study publication-title: Lancet doi: 10.1016/S0140-6736(08)60524-3 – volume: 200 start-page: S1 issue: Suppl 1 year: 2009 ident: 10.1016/j.vaccine.2011.09.111_bib0025 article-title: Global rotavirus surveillance: determining the need and measuring the impact of rotavirus vaccines publication-title: J Infect Dis doi: 10.1086/605061 – volume: 376 start-page: 615 year: 2010 ident: 10.1016/j.vaccine.2011.09.111_bib0115 article-title: Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(10)60755-6 – volume: 21 start-page: 198 year: 2008 ident: 10.1016/j.vaccine.2011.09.111_bib0020 article-title: Rotavirus vaccines: an overview publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00029-07 – volume: 4 start-page: 1231 year: 2009 ident: 10.1016/j.vaccine.2011.09.111_bib0155 article-title: Impact of rotavirus vaccination: the importance of monitoring strains publication-title: Future Microbiol doi: 10.2217/fmb.09.105 |
SSID | ssj0005319 |
Score | 2.5454626 |
SecondaryResourceType | review_article |
Snippet | ► Prevalence data on ∼110,000 rotavirus strains identified from 100 countries worldwide during a 12-year period preceding introduction of rotavirus vaccines... Highlights ► Prevalence data on ∼110,000 rotavirus strains identified from 100 countries worldwide during a 12-year period preceding introduction of rotavirus... Recently, two rotavirus vaccines have been recommended for routine immunization of infants worldwide. These vaccines proved efficacious during clinical trials... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | A122 |
SubjectTerms | Allergy and Immunology clinical trials developed countries field experimentation G type Genetic Variation genotype genotyping Global Health Humans infants Molecular Epidemiology monitoring mortality P type Prevalence Rotavirus Rotavirus - classification Rotavirus - genetics Rotavirus - isolation & purification Rotavirus Infections - epidemiology Rotavirus Infections - mortality Rotavirus Infections - prevention & control Rotavirus Infections - virology Rotavirus Vaccines - immunology strain differences Surveillance systematic review temporal variation vaccination Vaccination - methods vaccines |
Title | Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: Insights for understanding the impact of rotavirus vaccination programs |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0264410X11015532 https://www.clinicalkey.es/playcontent/1-s2.0-S0264410X11015532 https://dx.doi.org/10.1016/j.vaccine.2011.09.111 https://www.ncbi.nlm.nih.gov/pubmed/22520121 https://www.proquest.com/docview/1010637887 https://www.proquest.com/docview/1516743841 https://www.proquest.com/docview/1686729515 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2TiBeEJTLyk1GQnta2iROnIS3UW3qQFQVXVHfLDuxUacprZp20l74bfw0znGcdly2IV7SqvKXi2uf8zk-5zuEvOM6DqNUa4-bgHlRAWtWpePEMybL8ixMjDI2ynfIB5Po4zSe7pB-kwuDYZXO9tc23Vpr90vP9WZvMZv1xr715f4UHBgWvwE7vBeCt09bZO_o9NNguI30YLa-B7b3ELBN5Omddy9ljjvYTswzQxNyk4vaNXJ-MxG1DunkEXnomCQ9qm_2MdnRZZvcq2tLXrXJ_c9u17xNDka1PvXVIT3bpltVh_SAjrbK1YBpf8XgGJuhSxv4E_JjvFF7pnWmC50bihUdkMVTWRbUCVxd0JUNsaWzktZKI3Q5X8nL2XJd0cpWo6BFEwiCjYB90sVSX2vlOorCbb6np2WF7w4qCsyarq-n4VhkneFpb-Y3vB1u1MWeVU_J5OT4rD_wXOEHL-dJsvKU0pnypWaxBrZpIhUyxQqOSjwsZJHhcaZ4LrMiRzk2X8kiD_IUVlJFIJUCBviMtMp5qfcJTZlMfC6l8RFskixUkeKRMpplBvhJh0TNfy1yp4qO3XEhmvC3c-GeXOAQEX6Gi6YO6W5gi1oW5C4AbwaSaHJewUoLcFx3AZO_AXXlbE0lAlGFwhd_zIcOSTfIX6bUv1x0H8a6kN_A0YjJOMTXYmC6U8ayDnnbTAABlgi3l2Sp5-sKTwd8F6NTb2kT26yXNApuacNTDks-INod8ryeYZs-Bu8Togrhi_9_tpfkAZ4CdwTD5BVprZZr_RqI5Uq9Ibvd7wEck2kCx7QP32tTAp8fjoejLz8BjzR-SA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLZY0S4v09aN0V3PpIknQtNcnHhvCA21AyqktlPfLDuxpyKUVE2LxL_bT5uP47TsAkx7jfwljmOf8zk-5zuEfKIqDqJUKY_qXuhFudmzShUnntaMZSxItNQ2yndI-5Po6zSebpGjJhcGwyqd7a9turXW7krXjWZ3Ppt1R7715f7UODAsfmPs8HaERa1bZPtwcNIfbiI9QlvfA9t7CNgk8nQvDq5EhifYTsyToQm5zUU90KK8nYhah3T8jDx1TBIO684-J1uqaJOHdW3J6zZ5dOZOzdtk77zWp77eh_Em3arahz043yhXG0z7GwbH2AxdaOAvyI_RWu0Z6kwXKDVgRQdk8SCKHJzA1SUsbYgtzAqolUZgUS7F1WyxqqCy1SggbwJBsJFhnzBfqBut3ECB6eZnGBQV_juowDBrWN1Mw7HIOsPTduY3vJ1u4GLPqpdkcvxlfNT3XOEHL6NJsvSkVEz6QoWxMmxTRzIIZZhTVOIJgzDSNGaSZoLlGcqx-VLkWS9LzU4q7wkpDQPcIa2iLNQugTQUiU-F0D6CdcICGUkaSa1Cpg0_6ZCo-dY8c6roOByXvAl_u-DuzTlOEe4z3DR1yMEaNq9lQe4D0GYi8Sbn1VhpbhzXfcDkb0BVOVtT8R6vAu7zP9ZDh6Rr5C9L6l8eumvmOhffjaPhk1GAv8WM6U7DkHXIx2YBcGOJ8HhJFKpcVXg7w3cxOvWONrHNekmj3h1taErNls8Q7Q55Va-w9Rgb7xOgCuHr_3-3D-Rxf3x2yk8Hw5M35AneDk8Hg-QtaS0XK_XOkMylfO-MyE-8VHzg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+review+of+regional+and+temporal+trends+in+global+rotavirus+strain+diversity+in+the+pre+rotavirus+vaccine+era%3A+Insights+for+understanding+the+impact+of+rotavirus+vaccination+programs&rft.jtitle=Vaccine&rft.au=B%C3%A1nyai%2C+Kriszti%C3%A1n&rft.au=L%C3%A1szl%C3%B3%2C+Brigitta&rft.au=Duque%2C+Jazmin&rft.au=Steele%2C+A.+Duncan&rft.date=2012-04-27&rft.pub=Elsevier+Ltd&rft.issn=0264-410X&rft.volume=30&rft.spage=A122&rft.epage=A130&rft_id=info:doi/10.1016%2Fj.vaccine.2011.09.111&rft.externalDocID=S0264410X11015532 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0264410X%2FS0264410X12X00136%2Fcov150h.gif |