WormPose: Image synthesis and convolutional networks for pose estimation in C. elegans
An important model system for understanding genes, neurons and behavior, the nematode worm C . elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C . elega...
        Saved in:
      
    
          | Published in | PLoS computational biology Vol. 17; no. 4; p. e1008914 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        01.04.2021
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1553-7358 1553-734X 1553-7358  | 
| DOI | 10.1371/journal.pcbi.1008914 | 
Cover
| Abstract | An important model system for understanding genes, neurons and behavior, the nematode worm
C
.
elegans
naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in
C
.
elegans
, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors. | 
    
|---|---|
| AbstractList | An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors. An important model system for understanding genes, neurons and behavior, the nematode worm C . elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C . elegans , including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors. Introduction All animals, including humans, reveal important and subtle information about their internal dynamics in their outward configurations of body posture, whether these internal dynamics originate from gene expression [1], neural activity [2], or motor control strategies [3]. The nematode C. elegans naturally exhibits a variety of coiled shapes which challenge the determination of the centerline posture, a fundamental component for quantitative behavioral understanding. The correct centerline (red) can be determined by close visual inspection (A), however high-throughput analysis necessitates a pose estimation algorithm which is robust to fluctuations in brightness, blur, noise, and occlusion. https://doi.org/10.1371/journal.pcbi.1008914.g001 Classical image skeletonization methods can be used to identify the worm centerline for non-overlapping shapes [7] and are employed in widely-used worm trackers because of their simplicity and speed. Another recent technique utilizes an optimization algorithm by searching for image matches in the “eigenworm” posture space [9], but is limited in efficacy by the slow nature of multi-dimensional image search and by the low resolving power of a comparison metric, which uses only a binary version of the raw image. An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors. Recent advances in machine learning have enabled the high-resolution estimation of bodypoint positions of freely behaving animals, but manual labeling can render these methods imprecise and impractical, especially in highly deformable animals such as the nematode C. elegans. Such animals also frequently coil, resulting in complicated shapes whose ambiguity presents difficulties for standard pose estimation methods. Efficiently solving coiled shapes in C. elegans, exhibited in a variety of important natural contexts, is the primary limiting factor for fully automated high-throughput behavior analysis. WormPose provides pose estimation that works across imaging conditions, naturally complements existing worm trackers, and harnesses the power of deep convolutional networks but with an image generator to automatically provide precise image-centerline pairings for training. We apply WormPose to on-food recordings, finding a near absence of deep δ-turns. We also show that incoherent body motions in the dwell state, which do not translate the worm, have been misidentified as an increase in reversal rate by previous, centroid-based methods. We expect that the combination of a body model and image synthesis demonstrated in WormPose will be both of general interest and important for future progress in precise pose estimation in other slender-bodied and deformable organisms. An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (~ 8 hour), fast-sampled (~ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors. An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors.An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors. Introduction All animals, including humans, reveal important and subtle information about their internal dynamics in their outward configurations of body posture, whether these internal dynamics originate from gene expression [1], neural activity [2], or motor control strategies [3]. The nematode C. elegans naturally exhibits a variety of coiled shapes which challenge the determination of the centerline posture, a fundamental component for quantitative behavioral understanding. The correct centerline (red) can be determined by close visual inspection (A), however high-throughput analysis necessitates a pose estimation algorithm which is robust to fluctuations in brightness, blur, noise, and occlusion. https://doi.org/10.1371/journal.pcbi.1008914.g001 Classical image skeletonization methods can be used to identify the worm centerline for non-overlapping shapes [7] and are employed in widely-used worm trackers because of their simplicity and speed. Another recent technique utilizes an optimization algorithm by searching for image matches in the “eigenworm” posture space [9], but is limited in efficacy by the slow nature of multi-dimensional image search and by the low resolving power of a comparison metric, which uses only a binary version of the raw image.  | 
    
| Audience | Academic | 
    
| Author | Hebert, Laetitia O’Shaughnessy, Liam Ahamed, Tosif Costa, Antonio C. Stephens, Greg J.  | 
    
| AuthorAffiliation | 2 Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada 3 Department of Physics & Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands Hebrew University of Jerusalem, ISRAEL 1 Biological Physics Theory Unit, OIST Graduate University, Onna, Japan  | 
    
| AuthorAffiliation_xml | – name: 3 Department of Physics & Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands – name: 1 Biological Physics Theory Unit, OIST Graduate University, Onna, Japan – name: 2 Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada – name: Hebrew University of Jerusalem, ISRAEL  | 
    
| Author_xml | – sequence: 1 givenname: Laetitia orcidid: 0000-0002-9699-0082 surname: Hebert fullname: Hebert, Laetitia – sequence: 2 givenname: Tosif orcidid: 0000-0002-1405-3539 surname: Ahamed fullname: Ahamed, Tosif – sequence: 3 givenname: Antonio C. orcidid: 0000-0002-7491-9250 surname: Costa fullname: Costa, Antonio C. – sequence: 4 givenname: Liam orcidid: 0000-0002-2260-2569 surname: O’Shaughnessy fullname: O’Shaughnessy, Liam – sequence: 5 givenname: Greg J. orcidid: 0000-0003-3135-3514 surname: Stephens fullname: Stephens, Greg J.  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33905413$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqVUl1v0zAUjdAQ-4B_gMASL_DQYsfxR_aANFUDKk2A-Hy0HNvJXBy72Mm2_nvctZvWCSFQHmL5nnN87rn3sNjzwZuieIrgFGGGXi_CGL1006Vq7BRByGtUPSgOECF4wjDhe3fO-8VhSgsI87Gmj4p9jGtIKoQPiu8_Quw_hWSOwbyXnQFp5Ydzk2wC0muggr8IbhxsyE8Bb4bLEH8m0IYIlpkETBpsL9dlYD2YTYFxppM-PS4ettIl82T7Pyq-vT39Ons_Ofv4bj47OZsoytgwQQwxhTUnlHIsteQGqko1CpfZnFRVXeuSIc0INTVqdNlyqRUraVnlQos4Piqeb3SXLiSxjSSJkpS8hIhCnBHzDUIHuRDLmO3GlQjSiuuLEDsh42CVM0JrxJu6LglrcEUIbHDdIl1izgmmRLdZi2y0Rr-Uq0vp3K0ggmI9lRsLYj0VsZ1K5r3Zuhyb3mhl_BCl2zGzW_H2XHThQnDIOKMoC7zcCsTwa8yhi94mZZyT3oRx3S-qcUk5pBn64h70z6lMN6hO5satb0N-V-VPm97moZvW5vsTSiFFVd6VTHi1Q8iYwVwNnRxTEvMvn_8D-2EX--xuNLeZ3GxoBlQbgIohpWjaf438-B5N2eF6UXOj1v2d_BsAoA6O | 
    
| CitedBy_id | crossref_primary_10_1038_s41592_022_01639_4 crossref_primary_10_7554_eLife_92562_3 crossref_primary_10_1186_s12915_022_01471_4 crossref_primary_10_1016_j_csbj_2023_10_007 crossref_primary_10_1073_pnas_2318805121 crossref_primary_10_7554_eLife_92562 crossref_primary_10_1103_PRXLife_2_023001 crossref_primary_10_1371_journal_pcbi_1011566 crossref_primary_10_1016_j_heliyon_2023_e14715 crossref_primary_10_1007_s11263_023_01818_6 crossref_primary_10_1016_j_compbiomed_2023_106694 crossref_primary_10_1111_brv_12844 crossref_primary_10_3390_s22145188 crossref_primary_10_3390_s21144943 crossref_primary_10_1186_s13007_022_00963_2 crossref_primary_10_1038_s41598_025_93533_0 crossref_primary_10_1038_s41598_023_38213_7 crossref_primary_10_1016_j_applanim_2023_106024 crossref_primary_10_3389_fragi_2022_932656 crossref_primary_10_1038_s42003_022_03206_1 crossref_primary_10_3756_artsci_21_225 crossref_primary_10_1371_journal_pcbi_1009942 crossref_primary_10_1073_pnas_2410254121 crossref_primary_10_1007_s10211_022_00397_y crossref_primary_10_1103_PhysRevLett_130_258402 crossref_primary_10_1038_s42003_023_05098_1  | 
    
| Cites_doi | 10.1109/ICCV.2019.00546 10.1038/s41592-018-0112-1 10.1109/CVPRW50498.2020.00492 10.1073/pnas.1007868108 10.1038/s41593-018-0209-y 10.1109/CVPR42600.2020.00836 10.1093/genetics/77.1.95 10.1186/s12915-018-0494-7 10.1038/s41592-018-0233-6 10.1098/rsif.2019.0174 10.1146/annurev-genom-111219-080427 10.7554/eLife.17227 10.1371/journal.pcbi.1004517 10.1109/ICCV.2015.123 10.1016/j.cell.2013.08.001 10.1038/s41593-019-0502-4 10.7554/eLife.47994 10.1038/s41592-018-0234-5 10.1098/rstb.2017.0375 10.1371/journal.pcbi.1000028 10.1038/s41567-020-01036-8 10.1109/ICCV.2019.01026 10.1109/IEMBS.2006.260657 10.1007/s11263-018-1071-9 10.1145/3293353.3293423 10.1038/s41567-018-0093-0 10.1007/978-3-319-46493-0_38 10.1371/journal.pone.0007584 10.1016/j.jneumeth.2006.06.007 10.1109/CVPR.2017.241 10.2144/btn-2019-0010 10.1109/CVPR.2018.00870 10.1109/CVPR42600.2020.01240 10.1371/journal.pbio.1001529 10.1073/pnas.0409009101  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Hebert et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Hebert et al 2021 Hebert et al  | 
    
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Hebert et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Hebert et al 2021 Hebert et al  | 
    
| DBID | AAYXX CITATION NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pcbi.1008914 | 
    
| DatabaseName | CrossRef PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| DocumentTitleAlternate | WormPose: Image synthesis and convolutional networks for pose estimation in C. elegans | 
    
| EISSN | 1553-7358 | 
    
| ExternalDocumentID | 2528201603 oai_doaj_org_article_dd18b99257b34550b39f1d23885365df 10.1371/journal.pcbi.1008914 PMC8078761 A660614905 33905413 10_1371_journal_pcbi_1008914  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Canada Netherlands  | 
    
| GeographicLocations_xml | – name: Netherlands – name: Canada  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A H13 IPNFZ NPM RIG WOQ 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI Q9U RC3 7X8 5PM ADTOC UNPAY - AAPBV ABPTK ADACO BBAFP M~E PRINS  | 
    
| ID | FETCH-LOGICAL-c677t-1717c3d856683ada8e0c4cbc32413ac499d271d756e91bd2f8adc726249d2f183 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1553-7358 1553-734X  | 
    
| IngestDate | Sun Jan 02 13:50:18 EST 2022 Tue Oct 14 19:08:32 EDT 2025 Sun Oct 26 04:01:42 EDT 2025 Tue Sep 30 16:28:57 EDT 2025 Fri Sep 05 08:26:49 EDT 2025 Tue Oct 07 06:28:33 EDT 2025 Mon Oct 20 16:11:49 EDT 2025 Thu Oct 16 15:04:14 EDT 2025 Thu Oct 16 15:20:26 EDT 2025 Thu Apr 03 07:02:17 EDT 2025 Wed Oct 01 02:08:57 EDT 2025 Thu Apr 24 23:00:11 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c677t-1717c3d856683ada8e0c4cbc32413ac499d271d756e91bd2f8adc726249d2f183 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist.  | 
    
| ORCID | 0000-0002-2260-2569 0000-0002-7491-9250 0000-0003-3135-3514 0000-0002-1405-3539 0000-0002-9699-0082  | 
    
| OpenAccessLink | https://doaj.org/article/dd18b99257b34550b39f1d23885365df | 
    
| PMID | 33905413 | 
    
| PQID | 2528201603 | 
    
| PQPubID | 1436340 | 
    
| ParticipantIDs | plos_journals_2528201603 doaj_primary_oai_doaj_org_article_dd18b99257b34550b39f1d23885365df unpaywall_primary_10_1371_journal_pcbi_1008914 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8078761 proquest_miscellaneous_2519326806 proquest_journals_2528201603 gale_infotracacademiconefile_A660614905 gale_incontextgauss_ISR_A660614905 gale_incontextgauss_ISN_A660614905 pubmed_primary_33905413 crossref_primary_10_1371_journal_pcbi_1008914 crossref_citationtrail_10_1371_journal_pcbi_1008914  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-04-01 | 
    
| PublicationDateYYYYMMDD | 2021-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PLoS computational biology | 
    
| PublicationTitleAlternate | PLoS Comput Biol | 
    
| PublicationYear | 2021 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | AEX Brown (pcbi.1008914.ref005) 2018; 14 pcbi.1008914.ref026 K He (pcbi.1008914.ref027) 2016 Talmo D Pereira (pcbi.1008914.ref017) 2019; 16 pcbi.1008914.ref046 pcbi.1008914.ref047 pcbi.1008914.ref044 JM Graving (pcbi.1008914.ref018) 2019; 8 pcbi.1008914.ref045 pcbi.1008914.ref042 pcbi.1008914.ref043 pcbi.1008914.ref040 G Rogez (pcbi.1008914.ref041) 2018; 126 GJ Stephens (pcbi.1008914.ref007) 2008; 4 GJ Stephens (pcbi.1008914.ref033) 2011; 108 N Niepoth (pcbi.1008914.ref001) 2020; 21 F Pedregosa (pcbi.1008914.ref025) 2011; 12 T Ahamed (pcbi.1008914.ref003) 2021; 17 K Bates (pcbi.1008914.ref020) 2019; 66 G Bradski (pcbi.1008914.ref023) 2000 Kuang-Man Huang (pcbi.1008914.ref013) 2006; 158 CM Bishop (pcbi.1008914.ref024) 2006 pcbi.1008914.ref028 JM Gray (pcbi.1008914.ref006) 2005; 102 A Javer (pcbi.1008914.ref022) 2018; 373 N Cohen (pcbi.1008914.ref038) 2017 GJ Berman (pcbi.1008914.ref004) 2018; 16 SW Flavell (pcbi.1008914.ref030) 2013; 154 JB Lee (pcbi.1008914.ref036) 2019; 16 pcbi.1008914.ref012 A Javer (pcbi.1008914.ref021) 2018; 15 J Ben Arous (pcbi.1008914.ref035) 2009; 4 N Roussel (pcbi.1008914.ref014) 2015; 3 Alexander Mathis (pcbi.1008914.ref016) 2018; 21 E Jones (pcbi.1008914.ref029) LR Rabiner (pcbi.1008914.ref031) 1989; 77 S Musall (pcbi.1008914.ref002) 2019; 22 OD Broekmans (pcbi.1008914.ref009) 2016; 5 MR Mane (pcbi.1008914.ref037) 2020 Y Guo (pcbi.1008914.ref015) 2018 S Nagy (pcbi.1008914.ref010) 2015; 11 A Javer (pcbi.1008914.ref011) 2018; 15 Stephen J Helms (pcbi.1008914.ref032) 2019; 16 JL Donnelly (pcbi.1008914.ref008) 2013; 11 pcbi.1008914.ref019 JE Sulston (pcbi.1008914.ref034) 1974; 77 pcbi.1008914.ref039  | 
    
| References_xml | – ident: pcbi.1008914.ref045 doi: 10.1109/ICCV.2019.00546 – volume: 15 start-page: 645 issue: 9 year: 2018 ident: pcbi.1008914.ref021 article-title: An open-source platform for analyzing and sharing worm-behavior data publication-title: Nature Methods doi: 10.1038/s41592-018-0112-1 – ident: pcbi.1008914.ref044 – volume: 77 start-page: 257 issue: 2 year: 1989 ident: pcbi.1008914.ref031 article-title: Tutorial on Hmm and Applications publication-title: Proceedings of the IEEE – year: 2018 ident: pcbi.1008914.ref015 publication-title: Robust pose tracking with a joint model of appearance and shape – ident: pcbi.1008914.ref019 doi: 10.1109/CVPRW50498.2020.00492 – volume: 108 start-page: 7286 issue: 18 year: 2011 ident: pcbi.1008914.ref033 article-title: Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1007868108 – volume: 21 start-page: 1281 issue: 9 year: 2018 ident: pcbi.1008914.ref016 article-title: DeepLabCut: markerless pose estimation of user-defined body parts with deep learning publication-title: Nature Neuroscience doi: 10.1038/s41593-018-0209-y – ident: pcbi.1008914.ref039 doi: 10.1109/CVPR42600.2020.00836 – volume: 77 start-page: 95 issue: 1 year: 1974 ident: pcbi.1008914.ref034 article-title: The DNA of Caenorhabditis elegans publication-title: Genetics doi: 10.1093/genetics/77.1.95 – volume: 16 start-page: 23 year: 2018 ident: pcbi.1008914.ref004 article-title: Measuring behavior across scales publication-title: BMC biology doi: 10.1186/s12915-018-0494-7 – volume: 16 start-page: 126 issue: 1 year: 2019 ident: pcbi.1008914.ref036 article-title: A compressed sensing framework for efficient dissection of neural circuits publication-title: Nature Methods doi: 10.1038/s41592-018-0233-6 – volume: 16 start-page: 20190174 issue: 157 year: 2019 ident: pcbi.1008914.ref032 article-title: Modelling the ballistic-to-diffusive transition in nematode motility reveals variation in exploratory behaviour across species publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2019.0174 – year: 2020 ident: pcbi.1008914.ref037 publication-title: Head and Tail Localization of C. elegans – volume: 21 issue: 1 year: 2020 ident: pcbi.1008914.ref001 article-title: How Natural Genetic Variation Shapes Behavior publication-title: Annual Review of Genomics and Human Genetics doi: 10.1146/annurev-genom-111219-080427 – volume: 5 start-page: e17227 year: 2016 ident: pcbi.1008914.ref009 article-title: Resolving coiled shapes reveals new reorientation behaviors in C. elegans publication-title: eLife doi: 10.7554/eLife.17227 – volume: 11 start-page: e1004517 issue: 10 year: 2015 ident: pcbi.1008914.ref010 article-title: A Generative Statistical Algorithm for Automatic Detection of Complex Postures publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1004517 – ident: pcbi.1008914.ref026 doi: 10.1109/ICCV.2015.123 – volume: 154 start-page: 1023 issue: 5 year: 2013 ident: pcbi.1008914.ref030 article-title: Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans publication-title: Cell doi: 10.1016/j.cell.2013.08.001 – volume: 22 start-page: 1677 issue: 10 year: 2019 ident: pcbi.1008914.ref002 article-title: Single-trial neural dynamics are dominated by richly varied movements publication-title: Nature Neuroscience doi: 10.1038/s41593-019-0502-4 – volume: 8 year: 2019 ident: pcbi.1008914.ref018 article-title: DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning publication-title: eLife doi: 10.7554/eLife.47994 – year: 2000 ident: pcbi.1008914.ref023 article-title: The OpenCV Library publication-title: Dr Dobb’s Journal of Software Tools – volume: 16 start-page: 117 issue: 1 year: 2019 ident: pcbi.1008914.ref017 article-title: Fast animal pose estimation using deep neural networks publication-title: Nature Methods doi: 10.1038/s41592-018-0234-5 – volume: 373 start-page: 20170375 issue: 1758 year: 2018 ident: pcbi.1008914.ref022 article-title: Powerful and interpretable behavioural features for quantitative phenotyping of Caenorhabditis elegans publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2017.0375 – volume: 4 start-page: 1 issue: 4 year: 2008 ident: pcbi.1008914.ref007 article-title: Dimensionality and Dynamics in the Behavior of C. elegans publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000028 – ident: pcbi.1008914.ref028 – volume: 17 start-page: 275 issue: 2 year: 2021 ident: pcbi.1008914.ref003 article-title: Capturing the continuous complexity of behaviour in Caenorhabditis elegans publication-title: Nature Physics doi: 10.1038/s41567-020-01036-8 – volume: 3 start-page: 00 year: 2015 ident: pcbi.1008914.ref014 article-title: Robust tracking and quantification of C. elegans body shape and locomotion through coiling, entanglement, and omega bends publication-title: Worm – year: 2017 ident: pcbi.1008914.ref038 publication-title: A new computational method for a model of C. elegans biomechanics: Insights into elasticity and locomotion performance – ident: pcbi.1008914.ref047 doi: 10.1109/ICCV.2019.01026 – ident: pcbi.1008914.ref012 doi: 10.1109/IEMBS.2006.260657 – volume: 126 start-page: 993 issue: 9 year: 2018 ident: pcbi.1008914.ref041 article-title: Image-Based Synthesis for Deep 3D Human Pose Estimation publication-title: International Journal of Computer Vision doi: 10.1007/s11263-018-1071-9 – ident: pcbi.1008914.ref046 doi: 10.1145/3293353.3293423 – volume: 14 start-page: 653 issue: 7 year: 2018 ident: pcbi.1008914.ref005 article-title: Ethology as a physical science publication-title: Nature Physics doi: 10.1038/s41567-018-0093-0 – start-page: 630 volume-title: Computer Vision—ECCV 2016 year: 2016 ident: pcbi.1008914.ref027 doi: 10.1007/978-3-319-46493-0_38 – volume: 4 start-page: 1 issue: 10 year: 2009 ident: pcbi.1008914.ref035 article-title: Molecular and sensory basis of a food related two-state behavior in C. elegans publication-title: PLoS ONE doi: 10.1371/journal.pone.0007584 – volume: 158 start-page: 323 issue: 2 year: 2006 ident: pcbi.1008914.ref013 article-title: Machine vision based detection of omega bends and reversals in C. elegans publication-title: Journal of neuroscience methods doi: 10.1016/j.jneumeth.2006.06.007 – ident: pcbi.1008914.ref042 doi: 10.1109/CVPR.2017.241 – volume: 15 start-page: 645 issue: 9 year: 2018 ident: pcbi.1008914.ref011 article-title: An open-source platform for analyzing and sharing worm-behavior data publication-title: Nature Methods doi: 10.1038/s41592-018-0112-1 – volume: 66 start-page: 269 issue: 6 year: 2019 ident: pcbi.1008914.ref020 article-title: Fast, versatile and quantitative annotation of complex images publication-title: BioTechniques doi: 10.2144/btn-2019-0010 – ident: pcbi.1008914.ref043 doi: 10.1109/CVPR.2018.00870 – volume: 12 start-page: 2825 year: 2011 ident: pcbi.1008914.ref025 article-title: Scikit-learn: Machine Learning in Python publication-title: Journal of Machine Learning Research – ident: pcbi.1008914.ref040 doi: 10.1109/CVPR42600.2020.01240 – volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics) year: 2006 ident: pcbi.1008914.ref024 – ident: pcbi.1008914.ref029 publication-title: SciPy: Open source scientific tools for Python; 2001– – volume: 11 start-page: e1001529 issue: 4 year: 2013 ident: pcbi.1008914.ref008 article-title: Monoaminergic orchestration of motor programs in a complex C. elegans behavior publication-title: PLoS Biology doi: 10.1371/journal.pbio.1001529 – volume: 102 start-page: 3184 issue: 9 year: 2005 ident: pcbi.1008914.ref006 article-title: A circuit for navigation in Caenorhabditis elegans publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0409009101  | 
    
| SSID | ssj0035896 | 
    
| Score | 2.4948156 | 
    
| Snippet | An important model system for understanding genes, neurons and behavior, the nematode worm
C
.
elegans
naturally moves through a variety of complex postures,... An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures,... Introduction All animals, including humans, reveal important and subtle information about their internal dynamics in their outward configurations of body...  | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e1008914 | 
    
| SubjectTerms | Algorithms Analysis Behavior Biology and Life Sciences Caenorhabditis elegans Computer and Information Sciences Engineering and Technology Gene expression Genetic aspects Inspection Labeling Methods Morphology Motor task performance Nematodes Neural networks Noise Occlusion Optimization Physical Sciences Physiological aspects Pose estimation Posture Principal components analysis Research and Analysis Methods Resolution Search algorithms Social Sciences  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPRF_G60yiqCT7km2WQ_fKvF0goWUav3FvYr9eDcBHOH3H_vTJILDVbqg4-XndyxM7-b-Q07O0PIK6WKJE89jz2zJs5NrmOZexEr47yFcCWMxYvCH874yXn-flEsLo36wpqwvj1wr7gD51JplAJkGYY3cA1TVeog0ECc4YWr0PsmUu2Sqd4Hs0J2k7lwKE4sWL4YLs0xkR4MNpo31iyxRkCqNJ8Epa53_-ihZ82qbq-in39WUd7ahEZvf-nV6lKIOr5L7gzckh72e7pHbvhwn9zsp01uH5Cv34Cffqxb_4ae_gA3QtttAPrXLluqg6NYfz7gEL4k9OXhLQVSSxt4iWI7jv6eI10GejSnOLECAt1Dcn787svRSTyMVYgtF2Idp5DBWeYkEDnJtNPSJza3xjI8YtMWUiCXidSJgnuVGpdVUjsrMg6JGnwAF_CIzEId_B6h2mhvgKT5BNM8Del0kXBjEy2LTFd5ERG202tph57jOPpiVXYHaQJyj141JVqjHKwRkXh8q-l7blwj_xZNNspix-zuAeCoHHBUXoejiLxEg5fYEyNg0c2F3rRtefr5rDzkHPNmlRR_Ffo0EXo9CFU1bNbq4aIDqAx7bU0k9xBdu021ZVZkyMh4wiKyv0Pc1csvxmXwB3jIo4OvNyjTUXKZ8Ig87gE6KoYx-FEwckTEBLoTzU1XwvJ713McxxIInkZkPoL8n2zz5H_Y5im5nWEpUVcwtU9m658b_wy44No87_72vwFWFFqS priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEF_qFdEv4rONVllF8FOuSTbZTQSRtrS0gkeplt63sK-rB9ckbe6Q---dSTbRYH18vOwkx85MZn6TnQchb7MsCeLQct8yrfxYxdJPYyv8TBmrwV0JpbFQ-POEH5_Hn6bJdINMuloYTKvsbGJjqE2p8Rv5bpRE6Kx4wD5W1z5OjcLT1W6EhnSjFcyHpsXYHbIZYWesEdncP5ycnnW2mSVpM7ELh-X4gsVTV0zHRLjrZDeutJpj7kCahfHAWTU9_XvLPaoWZX0bLP09u_Leqqjk-rtcLH5xXUcPyQOHOeleqySPyIYtHpO77RTK9RNycQG49bSs7Xt6cgXmhdbrAmBhPa-pLAzFvHSnn_CQok0brymAXVrBTRTbdLT1j3Re0AM6pjjKAjzgU3J-dPj14Nh38xZ8zYVY-iGEdpqZFBBeyqSRqQ10rJVmePYmNcRGJhKhEQm3WahMNEul0SLiEMHBD7ANz8ioKAu7TahU0ipAbzbA-E9CnJ0EXOlApkkkZ3HiEdYxNteuGTnOxFjkzQmbgKCk5U2O4sidODzi93dVbTOOf9Dvo8x6Wmyl3Vwoby5z92bmxoSpyjIwXYphibdi2Sw0gGQAyPDEzDzyBiWeY7OMArNxLuWqrvOTL5N8j3MMqLMg-SPR2YDonSOalbBZLV0FBLAMm3ANKLdRvbpN1flP7ffITqdyty-_7pfBUODpjyxsuUKaBqunAffIVquhPWMYgz8FIXtEDHR3wLnhSjH_1jQjx3kFgoceGfda_l-yef73fbwg9yPMHmpypHbIaHmzsi8B_i3VK_dO_wDbllmE priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELemTghe-IYFBjIIiRfSJXFsJ7yViWlDWjUBhfIU-atQrUsr0gqVv567xA0LbGK8pfE5lc_n8-90X4S8yHMepbEToWNGh6lOVZilToa5ts7AdSW1wUTh46E4HKXvxny8RV5tcmHO---ZjPc8R_sLo6fo0c9y7Fq9LTgg7x7ZHg1PBl_qkqichZKl49_PPPOZcpd9pnMT1QX7W7XcW8zm1UWY8-_QyeurcqHWP9Rsdu5eOrhFjjcrasJRTvurpe6bn38Ue7zqkm-Tmx6g0kEjUXfIlivvkmtNy8r1PfLpM4Dck3nlXtOjM9BFtFqXgCGraUVVaSkGsXthho-UTYx5RQEZ0wVMoljTo0mWpNOS7vcptr2A2_I-GR28_bh_GPreDKERUi7DGMxAw2wGaDBjyqrMRSY12jD00ykDdpRNZGwlFy6PtU0mmbJGJgKsPfgBeuQB6ZXz0u0QqrRyGpCei9BWVGCT80hoE6mMJ2qS8oCwzT4Vxhcux_4Zs6L2xkkwYBrWFMixwnMsIGE7a9EU7vgH_RsUgZYWy27XL2BrCn-KC2vjTOc5qDnNMB1cs3wSW0A9AHoEt5OAPEcBKrCwRomRO1_VqqqKow_DYiAEGt95xC8let8heumJJnNYrFE-WwJYhgW7OpQ7KK2bRVVFwhOEdSJiAdndSPDFw8_aYVAq6ClSpZuvkKbG9VkkAvKwEfiWMYzBn8ImB0R2jkKHc92RcvqtLlyOvQ2kiAPSbw_Nlfbm0f9OeExuJBh7VEdY7ZLe8vvKPQHwuNRPvc74BTAxa7o priority: 102 providerName: Unpaywall  | 
    
| Title | WormPose: Image synthesis and convolutional networks for pose estimation in C. elegans | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33905413 https://www.proquest.com/docview/2528201603 https://www.proquest.com/docview/2519326806 https://pubmed.ncbi.nlm.nih.gov/PMC8078761 https://doi.org/10.1371/journal.pcbi.1008914 https://doaj.org/article/dd18b99257b34550b39f1d23885365df http://dx.doi.org/10.1371/journal.pcbi.1008914  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: GX1 dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 8FG dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1553-7358 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M48 dateStart: 20050601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEF_OHup9Ed8XPUsUwU8pSTbZTQSR9rx6J1wpp9X6KeyrZ6EmtWnR_vfO5IXBFv2SkuxsaWZnd37TeRHyMo5DN_AMcwxV0glkIJwoMNyJpTYK1BWXChOFL0fsfBJ8mIbTA1L3bK0YmO807bCf1GS16P36sX0LG_5N0bWBe_Wk3lLJOXr9oxg7Wx-CroqxmcNl0PgVaBjFrEqg2zfziNyiNAYk49GWripK-jcHd2e5yPJdqPTv4Mrbm3Qptj_FYvGH5hreJXcqyGn3Sxm5Rw5Mep_cLJtQbh-Qz18Ato6z3Ly2L77D6WLn2xRQYT7PbZFqG8PSK_GEL0nLqPHcBqxrL2GSjVU6yvRHe57apz0bG1mA_ntIJsOzT6fnTtVtwVGM87XjgWGnqI4A30VUaBEZVwVKKoqeN6HAMtI-9zQPmYk9qf1ZJLTiPgP7DW7gZHhEOmmWmmNiCymMBOxmXLT-BFjZocukckUU-mIWhBahNV8TVZUix44Yi6Twr3EwSUrWJLgwSbUwFnGaWcuyFMc_6Ae4ZA0tFtIuHmSr66Tal4nWXiTjGA4uSTHBW9J45mnAMQBjWKhnFnmBC55gqYwUY3GuxSbPk4uPo6TPGJrTICp7ia5aRK8qolkGL6tElf8ALMMSXC3KY5Su-qXyxA99BGrMpRY5qSVu9_DzZhiOCfT9iNRkG6QpkHrkMos8LgW0YUwt7hbhLdFtca49ks6_FaXIsVsBZ55Feo2Q_9faPNn7I56SIx_DhorgqBPSWa825hngvrXskht8yuEaDd93yWF_8G4whM_B2Wh81S3-S-kWmx2eTUbj_tffRUld-w | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIFReEGdrKLAgEE9Oba-9ayMhVApVQtsIQavmzeyVEinYpk5U5U_xG5nxBRHleOljsmNHOzM78012DkKeJUnkhb7lrmVauaEKpRuHVriJMlaDuxJKY6Hw4YgPjsP342i8Rr63tTCYVtnaxMpQm1zjf-TbQRSgs-Iee118c3FqFN6utiM0arXYt8tzCNnKV8O3IN_nQbD37mh34DZTBVzNhZi7PgQwmpkYcEzMpJGx9XSolWZ4wyQ1RAAmEL4REbeJr0wwiaXRIuAQp8AHOAHw3ivkasjAlsD5EeMuwGNRXM0Dw1E8rmDhuCnVY8LfbjSjX2g1xcyEOPHDFVdYTQzo_EKvmOXlRaD399zN9UVWyOW5nM1-cYx7N8mNBtHSnVoFb5E1m90m1-oZl8s75OQEUPGHvLQv6fArGC9aLjMAneW0pDIzFLPeG-2Hl2R1UnpJAUrTAh6i2ASkrq6k04zu0j7FQRngX--S40vh-z3Sy_LMbhIqlbQKsKH1MLqUEMVHHlfak3EUyEkYOYS1jE110-ocJ27M0ur-TkDIU_MmRXGkjTgc4nZPFXWrj3_Qv0GZdbTYqLv6Ij87TZtznxrjxypJwDAqhgXkiiUT3wBOApjEIzNxyFOUeIqtODLM9TmVi7JMh59G6Q7nGK4nXvRHoo8rRC8aokkOm9Wyqa8AlmGLrxXKTVSvdlNl-vNsOWSrVbmLl590y2CG8G5JZjZfIE0VCcQed8hGraEdYxiDHwUhO0Ss6O4K51ZXsumXqtU5TkMQ3HdIv9Py_5LN_b_v4zFZHxwdHqQHw9H-A3I9wDylKhtri_TmZwv7EIDmXD2qTjclny_bnPwA49SPVQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VII4XxF1DgQWBeHJie22vjYRQaYkaClEFVM2b2cslUrBNnajKX-PXMeMLLMrx0sdkZy15ZnZmPu8chDyN48DxXRPahilp-9IXduQbbsdSGwXuikuFhcLvp-Heof92Fsw2yPe2FgbTKlubWBlqnSv8Rj7yAg-dVeiwUdqkRRzsjl8V32ycIIU3re04jVpF9s36FOBb-XKyC7J-5nnjN5929uxmwoCtQs6XtgtgRjEdQUwTMaFFZBzlK6kY3jYJBWhAe9zVPAhN7ErtpZHQinshYBb4AacBnnuBXOSMxZhOyGcd2GNBVM0Gw7E8Nmf-rCnbY9wdNVoyLJScY5ZCFLt-zy1W0wM6HzEoFnl5VgD8ex7nlVVWiPWpWCx-cZLj6-RaE93S7Vodb5ANk90kl-p5l-tb5OgIIuSDvDQv6OQrGDJarjMIQMt5SUWmKWbANycBHpLVCeolhbCaFrCJYkOQutKSzjO6Q4cUh2aAr71NDs-F73fIIMszs0mokMJIiBONg0hTAKIPnFAqR0SBJ1I_sAhrGZuopu05Tt9YJNVdHgf4U_MmQXEkjTgsYne7irrtxz_oX6PMOlps2l39kZ8cJ40NSLR2IxnHYCQlw2JyyeLU1RAzQcgUBjq1yBOUeIJtOTJU8GOxKstk8nGabIchQvfYCf5I9KFH9LwhSnN4WSWaWgtgGbb76lFuonq1L1UmP8-ZRbZalTt7-XG3DCYJ75lEZvIV0lSoIHJCi9ytNbRjDJwUAAku7OY93e1xrr-Szb9Ubc9xMgIPXYsMOy3_L9nc-_t7PCKXwZAk7ybT_fvkqocpS1Vi1hYZLE9W5gHEnEv5sDrclHw-b2vyA_D4k5g | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELemTghe-IYFBjIIiRfSJXFsJ7yViWlDWjUBhfIU-atQrUsr0gqVv567xA0LbGK8pfE5lc_n8-90X4S8yHMepbEToWNGh6lOVZilToa5ts7AdSW1wUTh46E4HKXvxny8RV5tcmHO---ZjPc8R_sLo6fo0c9y7Fq9LTgg7x7ZHg1PBl_qkqichZKl49_PPPOZcpd9pnMT1QX7W7XcW8zm1UWY8-_QyeurcqHWP9Rsdu5eOrhFjjcrasJRTvurpe6bn38Ue7zqkm-Tmx6g0kEjUXfIlivvkmtNy8r1PfLpM4Dck3nlXtOjM9BFtFqXgCGraUVVaSkGsXthho-UTYx5RQEZ0wVMoljTo0mWpNOS7vcptr2A2_I-GR28_bh_GPreDKERUi7DGMxAw2wGaDBjyqrMRSY12jD00ykDdpRNZGwlFy6PtU0mmbJGJgKsPfgBeuQB6ZXz0u0QqrRyGpCei9BWVGCT80hoE6mMJ2qS8oCwzT4Vxhcux_4Zs6L2xkkwYBrWFMixwnMsIGE7a9EU7vgH_RsUgZYWy27XL2BrCn-KC2vjTOc5qDnNMB1cs3wSW0A9AHoEt5OAPEcBKrCwRomRO1_VqqqKow_DYiAEGt95xC8let8heumJJnNYrFE-WwJYhgW7OpQ7KK2bRVVFwhOEdSJiAdndSPDFw8_aYVAq6ClSpZuvkKbG9VkkAvKwEfiWMYzBn8ImB0R2jkKHc92RcvqtLlyOvQ2kiAPSbw_Nlfbm0f9OeExuJBh7VEdY7ZLe8vvKPQHwuNRPvc74BTAxa7o | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WormPose%3A+Image+synthesis+and+convolutional+networks+for+pose+estimation+in+C.+elegans&rft.jtitle=PLoS+computational+biology&rft.au=Hebert%2C+Laetitia&rft.au=Ahamed%2C+Tosif&rft.au=Costa%2C+Antonio+C&rft.au=O%27Shaughnessy%2C+Liam&rft.date=2021-04-01&rft.eissn=1553-7358&rft.volume=17&rft.issue=4&rft.spage=e1008914&rft_id=info:doi/10.1371%2Fjournal.pcbi.1008914&rft_id=info%3Apmid%2F33905413&rft.externalDocID=33905413 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |