Incretin Action in the Pancreas: Potential Promise, Possible Perils, and Pathological Pitfalls

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that control the secretion of insulin, glucagon, and somatostatin to facilitate glucose disposal. The actions of incretin hormones are terminated via enzymatic cleavage by dipeptidyl peptidas...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 62; no. 10; pp. 3316 - 3323
Main Author Drucker, Daniel J.
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.10.2013
Subjects
Online AccessGet full text
ISSN0012-1797
1939-327X
1939-327X
DOI10.2337/db13-0822

Cover

Abstract Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that control the secretion of insulin, glucagon, and somatostatin to facilitate glucose disposal. The actions of incretin hormones are terminated via enzymatic cleavage by dipeptidyl peptidase-4 (DPP-4) and through renal clearance. GLP-1 and GIP promote β-cell proliferation and survival in rodents. DPP-4 inhibitors expand β-cell mass, reduce α-cell mass, and inhibit glucagon secretion in preclinical studies; however, whether incretin-based therapies sustain functional β-cell mass in human diabetic subjects remains unclear. GLP-1 and GIP exert their actions predominantly through unique G protein-coupled receptors expressed on β-cells and other pancreatic cell types. Accurate localization of incretin receptor expression in pancreatic ductal or acinar cells in normal or diabetic human pancreas is challenging because antisera used for detection of the GLP-1 receptor often are neither sufficiently sensitive nor specific to yield reliable data. This article reviews recent advances and controversies in incretin hormone action in the pancreas and contrasts established mechanisms with areas of uncertainty. Furthermore, methodological challenges and pitfalls are highlighted and key areas requiring additional scientific investigation are outlined.
AbstractList Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that control the secretion of insulin, glucagon, and somatostatin to facilitate glucose disposal. The actions of incretin hormones are terminated via enzymatic cleavage by dipeptidyl peptidase-4 (DPP-4) and through renal clearance. GLP-1 and GIP promote β-cell proliferation and survival in rodents. DPP-4 inhibitors expand β-cell mass, reduce (α-cell mass, and inhibit glucagon secretion in preclinical studies; however, whether incretin-based therapies sustain functional β-cell mass in human diabetic subjects remains unclear. GLP-1 and GIP exert their actions predominantly through unique G protein-coupled receptors expressed on β-cells and other pancreatic cell types. Accurate localization of incretin receptor expression in pancreatic ductal or acinar cells in normal or diabetic human pancreas is challenging because antisera used for detection of the GLP-1 receptor often are neither sufficiently sensitive nor specific to yield reliable data. This article reviews recent advances and controversies in incretin hormone action in the pancreas and contrasts established mechanisms with areas of uncertainty. Furthermore, methodological challenges and pitfalls are highlighted and key areas requiring additional scientific investigation are outlined.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that control the secretion of insulin, glucagon, and somatostatin to facilitate glucose disposal. The actions of incretin hormones are terminated via enzymatic cleavage by dipeptidyl peptidase-4 (DPP-4) and through renal clearance. GLP-1 and GIP promote [beta]-cell proliferation and survival in rodents. DPP-4 inhibitors expand [beta]-cell mass, reduce ([alpha]-cell mass, and inhibit glucagon secretion in preclinical studies; however, whether incretin-based therapies sustain functional [beta]-cell mass in human diabetic subjects remains unclear. GLP-1 and GIP exert their actions predominantly through unique G protein-coupled receptors expressed on [beta]-cells and other pancreatic cell types. Accurate localization of incretin receptor expression in pancreatic ductal or acinar cells in normal or diabetic human pancreas is challenging because antisera used for detection of the GLP-1 receptor often are neither sufficiently sensitive nor specific to yield reliable data. This article reviews recent advances and controversies in incretin hormone action in the pancreas and contrasts established mechanisms with areas of uncertainty. Furthermore, methodological challenges and pitfalls are highlighted and key areas requiring additional scientific investigation are outlined.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that control the secretion of insulin, glucagon, and somatostatin to facilitate glucose disposal. The actions of incretin hormones are terminated via enzymatic cleavage by dipeptidyl peptidase-4 (DPP-4) and through renal clearance. GLP-1 and GIP promote β-cell proliferation and survival in rodents. DPP-4 inhibitors expand β-cell mass, reduce α-cell mass, and inhibit glucagon secretion in preclinical studies; however, whether incretin-based therapies sustain functional β-cell mass in human diabetic subjects remains unclear. GLP-1 and GIP exert their actions predominantly through unique G protein-coupled receptors expressed on β-cells and other pancreatic cell types. Accurate localization of incretin receptor expression in pancreatic ductal or acinar cells in normal or diabetic human pancreas is challenging because antisera used for detection of the GLP-1 receptor often are neither sufficiently sensitive nor specific to yield reliable data. This article reviews recent advances and controversies in incretin hormone action in the pancreas and contrasts established mechanisms with areas of uncertainty. Furthermore, methodological challenges and pitfalls are highlighted and key areas requiring additional scientific investigation are outlined.Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that control the secretion of insulin, glucagon, and somatostatin to facilitate glucose disposal. The actions of incretin hormones are terminated via enzymatic cleavage by dipeptidyl peptidase-4 (DPP-4) and through renal clearance. GLP-1 and GIP promote β-cell proliferation and survival in rodents. DPP-4 inhibitors expand β-cell mass, reduce α-cell mass, and inhibit glucagon secretion in preclinical studies; however, whether incretin-based therapies sustain functional β-cell mass in human diabetic subjects remains unclear. GLP-1 and GIP exert their actions predominantly through unique G protein-coupled receptors expressed on β-cells and other pancreatic cell types. Accurate localization of incretin receptor expression in pancreatic ductal or acinar cells in normal or diabetic human pancreas is challenging because antisera used for detection of the GLP-1 receptor often are neither sufficiently sensitive nor specific to yield reliable data. This article reviews recent advances and controversies in incretin hormone action in the pancreas and contrasts established mechanisms with areas of uncertainty. Furthermore, methodological challenges and pitfalls are highlighted and key areas requiring additional scientific investigation are outlined.
Audience Professional
Author Drucker, Daniel J.
Author_xml – sequence: 1
  givenname: Daniel J.
  surname: Drucker
  fullname: Drucker, Daniel J.
  organization: Department of Medicine, Mt. Sinai Hospital, Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Ontario, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27784716$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23818527$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhgep2G31wj8gAyIodNp8zEwyXgjLorWw0L1Q8MqQyZyZTckmbZIR_fdm6Lbr6iK5OOHkOW_OSd6T7Mg6C1n2EqNzQim76FpMC8QJeZLNcEObghL27SibIYRJgVnDjrOTEG4QQnVaz7JjQjnmFWGz7PuVVR6itvlcRe1snnZxDflKTnkZ3ucrF8FGLU2-8m6jA5ylVAi6NYkCr004y6XtUkVcO-MGrSZUx14aE55nT1MM8GIbT7Ovnz5-WXwulteXV4v5slA1q2NRdT0giVkrm7YiBKhUpIZKSWgp5w20SCHSKtWWDcMtqyTnfd_1XAFwTFtET7MP97q3Y7uBTqWOvTTi1uuN9L-Ek1rsn1i9FoP7ISjjuKwmgbdbAe_uRghRpFEVGCMtuDEIXFKGcVOSOqGv_0Jv3OhtGk_gmnCEeV2jHTVIA0Lb3qV71SQq5rQsOamrctIqDlADWEhNpk_udUrv8ecH-LQ62Gh1sODdXkFiIvyMgxxDEPxy-b9mtqxyxsAAIn3Y4nqff_Xnoz--9oO7EvBmC8iQXNH7ZCoddhxjvGR4Erq455RPzvLQC6WjnOyYptNGYCQmn4vJ52Ly-W6sx4oH0X_Z3xfr-Z0
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1111_dom_12817
crossref_primary_10_1152_ajpendo_00166_2016
crossref_primary_10_3389_fendo_2023_1171886
crossref_primary_10_1159_000369555
crossref_primary_10_1242_dev_186213
crossref_primary_10_1016_j_tem_2016_03_013
crossref_primary_10_1016_j_cmet_2016_08_006
crossref_primary_10_1111_dom_12257
crossref_primary_10_1111_jdi_12490
crossref_primary_10_1016_j_jbc_2021_100839
crossref_primary_10_3389_fphar_2024_1463313
crossref_primary_10_1016_j_neuropharm_2017_08_022
crossref_primary_10_14814_phy2_13280
crossref_primary_10_1007_s00125_014_3251_7
crossref_primary_10_15436_2376_0494_17_1300
crossref_primary_10_1038_s41598_018_21751_w
crossref_primary_10_1016_j_mam_2015_01_003
crossref_primary_10_1139_cjpp_2021_0183
crossref_primary_10_1517_14740338_2015_1006625
crossref_primary_10_2337_db14_1514
crossref_primary_10_1371_journal_pone_0152869
crossref_primary_10_2337_db14_0545
crossref_primary_10_1016_j_cmet_2019_02_004
crossref_primary_10_1016_j_peptides_2024_171254
crossref_primary_10_1002_path_4655
crossref_primary_10_1172_JCI75838
crossref_primary_10_1097_MOP_0000000000000110
crossref_primary_10_3390_jcm14061978
crossref_primary_10_1093_brain_awy220
crossref_primary_10_3390_cells13221842
crossref_primary_10_15369_sujms_31_115
crossref_primary_10_3390_md18090485
crossref_primary_10_4236_fns_2016_77066
crossref_primary_10_1111_jdi_12390
crossref_primary_10_1097_HCO_0000000000000562
crossref_primary_10_1513_AnnalsATS_201510_697OC
crossref_primary_10_1111_dom_13339
crossref_primary_10_3390_ijms20174092
crossref_primary_10_1007_s13340_020_00426_w
crossref_primary_10_3390_v16081243
crossref_primary_10_1152_physrev_00013_2014
crossref_primary_10_2337_db13_1169
crossref_primary_10_1007_s00418_014_1292_0
crossref_primary_10_1146_annurev_med_051013_110046
crossref_primary_10_1177_2042098614523031
crossref_primary_10_1371_journal_pone_0158703
crossref_primary_10_1016_j_molmet_2015_01_010
crossref_primary_10_2337_dbi18_0008
crossref_primary_10_1080_13543776_2024_2446226
crossref_primary_10_1111_dom_12480
crossref_primary_10_2337_db14_0883
crossref_primary_10_1038_srep25765
crossref_primary_10_1185_03007995_2014_973939
crossref_primary_10_1007_s00125_015_3841_z
crossref_primary_10_1038_s41598_024_58103_w
crossref_primary_10_1507_endocrj_EJ16_0546
crossref_primary_10_1016_j_isci_2022_104567
crossref_primary_10_1007_s13340_014_0167_x
crossref_primary_10_1016_j_lfs_2013_11_010
crossref_primary_10_1016_j_molmet_2017_07_017
crossref_primary_10_1177_1470320315587180
crossref_primary_10_1111_dom_12294
crossref_primary_10_3389_fendo_2023_1205799
crossref_primary_10_1152_ajpendo_00159_2015
crossref_primary_10_1517_14656566_2015_978289
crossref_primary_10_1530_JOE_14_0182
crossref_primary_10_1016_j_metop_2022_100220
crossref_primary_10_1016_j_mce_2016_05_012
crossref_primary_10_1152_ajpheart_00209_2014
crossref_primary_10_2337_db18_0317
crossref_primary_10_1016_j_jdiacomp_2016_05_018
crossref_primary_10_1080_09513590_2018_1505847
crossref_primary_10_1210_endrev_bnaa032
crossref_primary_10_2147_DMSO_S234665
crossref_primary_10_1097_MPA_0000000000000037
crossref_primary_10_1152_ajpcell_00249_2014
crossref_primary_10_1371_journal_pone_0222179
crossref_primary_10_1007_s11892_015_0602_9
crossref_primary_10_1002_dmrr_2919
crossref_primary_10_1007_s11357_024_01120_4
crossref_primary_10_4161_cc_29250
crossref_primary_10_1007_s00125_017_4315_2
crossref_primary_10_1210_en_2014_1166
crossref_primary_10_1111_dom_12713
crossref_primary_10_1146_annurev_nutr_071812_161201
crossref_primary_10_1016_S1957_2557_14_70835_1
crossref_primary_10_1177_1932296814532874
crossref_primary_10_1111_jdi_12477
crossref_primary_10_1001_jamaophthalmol_2024_4533
crossref_primary_10_1111_nure_12131
crossref_primary_10_1186_s12933_022_01486_9
crossref_primary_10_1016_j_diabet_2017_05_009
crossref_primary_10_1042_BCJ20160476
crossref_primary_10_1152_ajprenal_00527_2014
crossref_primary_10_1371_journal_pone_0293888
crossref_primary_10_2527_jas_2017_1468
crossref_primary_10_1371_journal_pone_0156852
crossref_primary_10_1016_j_tips_2015_04_014
crossref_primary_10_2337_db13_1087
crossref_primary_10_1111_jdi_12468
crossref_primary_10_1016_j_molmet_2015_09_010
crossref_primary_10_1016_j_yexcr_2017_03_050
crossref_primary_10_1021_acs_jafc_6b02292
crossref_primary_10_1007_s00592_013_0544_0
crossref_primary_10_1038_s41598_023_27509_3
crossref_primary_10_4093_dmj_2020_0179
crossref_primary_10_1016_j_molmet_2018_05_011
crossref_primary_10_1080_17425247_2017_1360862
crossref_primary_10_1152_ajpendo_00435_2016
crossref_primary_10_1016_j_jdiacomp_2014_12_010
crossref_primary_10_1038_nrdp_2015_19
crossref_primary_10_3389_fendo_2021_642152
crossref_primary_10_1016_j_ejphar_2024_177106
crossref_primary_10_1155_2020_1621239
crossref_primary_10_1016_j_cmet_2019_08_009
crossref_primary_10_1371_journal_pone_0200070
crossref_primary_10_14814_phy2_13685
crossref_primary_10_1210_en_2017_00252
crossref_primary_10_12659_AJCR_890626
crossref_primary_10_1185_03007995_2015_1045471
crossref_primary_10_1016_j_cmet_2016_06_009
crossref_primary_10_1074_jbc_M114_568683
crossref_primary_10_1038_nrneph_2013_272
crossref_primary_10_4049_jimmunol_1601441
crossref_primary_10_1210_er_2016_1105
crossref_primary_10_1093_cid_ciy1051
crossref_primary_10_1111_jcmm_12465
crossref_primary_10_1111_dom_12879
crossref_primary_10_1111_dom_14496
crossref_primary_10_1210_en_2018_00004
crossref_primary_10_1038_labinvest_2016_34
crossref_primary_10_1515_hmbci_2015_0071
crossref_primary_10_2337_db14_0737
crossref_primary_10_1536_ihj_19_117
crossref_primary_10_1152_ajpcell_00151_2014
crossref_primary_10_1016_j_coph_2017_08_001
crossref_primary_10_1016_j_lfs_2024_123267
crossref_primary_10_2967_jnumed_117_197582
crossref_primary_10_1177_2042018814556099
crossref_primary_10_2337_db13_1440
crossref_primary_10_1017_jns_2015_11
crossref_primary_10_1111_dom_14821
crossref_primary_10_1111_dom_12401
crossref_primary_10_3390_biomedicines8070182
crossref_primary_10_1016_j_jalz_2013_12_011
crossref_primary_10_1210_en_2013_1934
crossref_primary_10_1007_s11695_014_1279_x
crossref_primary_10_1038_srep10949
crossref_primary_10_1002_jcp_25033
crossref_primary_10_1210_jc_2013_2952
crossref_primary_10_1016_j_acthis_2021_151732
crossref_primary_10_3389_fphar_2017_00362
crossref_primary_10_1152_ajpregu_00196_2022
crossref_primary_10_1152_ajpregu_00333_2015
crossref_primary_10_3389_fendo_2022_1028114
crossref_primary_10_1038_nrendo_2015_51
crossref_primary_10_1186_s12967_015_0431_2
crossref_primary_10_1530_JOE_13_0577
crossref_primary_10_2337_dcS15_3007
crossref_primary_10_7888_juoeh_40_65
crossref_primary_10_2147_DMSO_S455026
crossref_primary_10_1002_dmrr_2608
crossref_primary_10_1074_jbc_M114_577510
crossref_primary_10_1111_dom_12349
crossref_primary_10_1186_1758_5996_6_95
crossref_primary_10_1517_14728222_2016_1168808
crossref_primary_10_1097_XCE_0000000000000087
crossref_primary_10_2337_db15_0366
crossref_primary_10_3390_ijms241310590
crossref_primary_10_1080_10590501_2015_1003496
crossref_primary_10_1016_j_molmet_2015_07_008
crossref_primary_10_1016_j_ahj_2013_09_003
crossref_primary_10_1111_jdi_13018
crossref_primary_10_1210_jc_2018_02804
crossref_primary_10_1371_journal_pone_0126003
crossref_primary_10_1136_bmjdrc_2016_000206
crossref_primary_10_1210_me_2014_1230
crossref_primary_10_1210_er_2018_00117
crossref_primary_10_1152_ajpcell_00227_2013
crossref_primary_10_2217_dmt_14_38
crossref_primary_10_1080_17446651_2016_1191349
crossref_primary_10_1586_17446651_2016_1151783
crossref_primary_10_3390_antiox10071118
crossref_primary_10_1177_0192623315588999
crossref_primary_10_1016_j_cmet_2018_03_001
crossref_primary_10_1007_s12020_014_0320_0
crossref_primary_10_1080_19382014_2015_1129096
crossref_primary_10_1097_MPA_0000000000000521
crossref_primary_10_1186_s12933_017_0603_x
crossref_primary_10_33590_emjdiabet_10312637
crossref_primary_10_1074_mcp_M114_040196
crossref_primary_10_1159_000368898
crossref_primary_10_1007_s00125_015_3567_y
crossref_primary_10_1038_s41598_019_39380_2
crossref_primary_10_1016_j_peptides_2021_170715
crossref_primary_10_2337_db15_0220
crossref_primary_10_1038_modpathol_2014_113
crossref_primary_10_1111_obr_12166
crossref_primary_10_1517_14740338_2015_975205
crossref_primary_10_1172_JCI97233
crossref_primary_10_31857_S0301179824040052
crossref_primary_10_1007_s00595_015_1215_2
crossref_primary_10_1016_j_vph_2015_08_011
crossref_primary_10_1111_jdi_13272
crossref_primary_10_1371_journal_pone_0130997
Cites_doi 10.2337/diabetes.53.5.1326
10.1210/er.2011-1052
10.1007/s00125-011-2283-5
10.1517/17460441.2013.741580
10.2967/jnumed.106.038679
10.1007/s00125-005-1878-0
10.1007/s00125-009-1515-4
10.1016/j.cmet.2013.04.008
10.2337/db11-1109
10.2337/db08-1651
10.1210/en.2011-0012
10.2337/db09-0626
10.1016/j.bbrc.2007.08.115
10.1007/s00125-007-0855-1
10.1186/1471-2172-10-19
10.1152/ajpendo.00358.2007
10.1007/s00125-008-1195-5
10.2337/dc09-0773
10.1210/me.2011-1119
10.2337/db11-1605
10.1210/me.2009-0296
10.1210/endo.133.6.8243312
10.1172/JCI43615
10.1210/er.2006-0026
10.1210/jc.2011-1508
10.2337/diab.46.5.785
10.1210/en.2012-1937
10.2337/dc12-2713
10.1016/j.mce.2011.04.008
10.1097/MPA.0b013e31824e67a3
10.1210/en.2012-2124
10.2337/db11-0936
10.1210/jc.2010-0932
10.2337/dc07-0228
10.2337/db05-1145
10.2337/diab.45.2.257
10.1053/j.gastro.2010.01.049
10.2337/db08-1198
10.1016/j.mce.2009.07.024
10.1053/j.gastro.2008.01.017
10.1111/j.1463-1326.2012.01678.x
10.2337/db08-0958
10.1007/s00125-008-1149-y
10.1073/pnas.0237106100
10.1007/s00125-011-2297-z
10.1007/s00125-009-1643-x
10.1111/j.1742-1241.2010.02382.x
10.2337/db06-1033
10.1242/jeb.004820
10.1152/ajpendo.00665.2010
10.1097/MPA.0b013e3181b2bb03
10.1172/JCI42497
10.2337/db07-0697
10.1007/s00125-011-2217-2
10.1210/jc.2012-1544
10.2337/dc11-0291
10.1152/ajpendo.00182.2012
10.2337/db09-0058
10.2337/db12-0976
10.1136/bmj.f3617
10.1038/nm.3128
10.1152/ajpendo.00479.2010
10.1210/en.2005-1410
10.1016/S1470-2045(09)70159-7
10.1186/1479-5876-11-84
10.1210/en.2009-1272
10.1369/jhc.2008.951319
10.1001/jamainternmed.2013.3374
10.1210/jc.2011-2407
10.1016/S0140-6736(06)69705-5
10.1210/en.2004-0015
10.1172/JCI66323
10.1111/dom.12040
10.1210/jc.2010-2318
10.1042/CS20090047
10.1001/jamainternmed.2013.2720
ClassificationCodes 8000431
ContentType Journal Article
Copyright 2014 INIST-CNRS
COPYRIGHT 2013 American Diabetes Association
COPYRIGHT 2013 American Diabetes Association
Copyright American Diabetes Association Oct 2013
2013 by the American Diabetes Association. 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: COPYRIGHT 2013 American Diabetes Association
– notice: COPYRIGHT 2013 American Diabetes Association
– notice: Copyright American Diabetes Association Oct 2013
– notice: 2013 by the American Diabetes Association. 2013
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
K9.
NAPCQ
7X8
5PM
DOI 10.2337/db13-0822
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 3323
ExternalDocumentID PMC3781450
3507913861
A344826546
23818527
27784716
10_2337_db13_0822
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: 123391
– fundername: Canadian Institutes of Health Research
  grantid: 82700
GroupedDBID ---
.55
.XZ
08P
0R~
18M
29F
2WC
354
4.4
53G
5GY
5RE
5RS
5VS
6PF
7RV
7X7
8C1
8G5
8GL
8R4
8R5
AAFWJ
AAKAS
AAQQT
AAWTL
AAYEP
AAYOK
AAYXX
ABOCM
ACGFO
ACGOD
ACPRK
ADBBV
ADGHP
ADZCM
AEGXH
AENEX
AERZD
AHMBA
AIAGR
AIZAD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BBNVY
BENPR
BES
BHPHI
BPHCQ
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EDB
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GICCO
GUQSH
GX1
H13
HCIFZ
HZ~
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
ITC
K-O
K2M
KQ8
L7B
M0R
M2O
M2P
M5~
M7P
O5R
O5S
O9-
OB3
OHH
OK1
OVD
P2P
PCD
Q2X
RHI
RPM
SJN
SV3
TDI
TEORI
TR2
VVN
W8F
WH7
WOQ
WOW
X7M
YFH
YHG
YOC
ZY1
~KM
.GJ
1CY
88E
88I
8AF
8AO
8F7
8FE
8FH
8FI
8FJ
AAYJJ
ABUWG
AFFNX
AFKRA
AI.
AZQEC
BCR
BCU
BEC
BKEYQ
BKNYI
BLC
BVXVI
C1A
CCPQU
DWQXO
GNUQQ
HMCUK
H~9
IQODW
J5H
K9-
LK8
M1P
M2Q
MVM
N4W
NAPCQ
PEA
PHGZT
PQQKQ
PROAC
PSQYO
S0X
SJFOW
UKHRP
VH1
XOL
YQJ
ZGI
ZXP
3V.
AFHIN
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RHF
K9.
7X8
5PM
ID FETCH-LOGICAL-c676t-5dfe0a17ba9b522e3ac26e5caeb3889eb0c02bccb4971b75a88ffdf8cee813b03
ISSN 0012-1797
1939-327X
IngestDate Thu Aug 21 18:05:16 EDT 2025
Fri Sep 05 14:23:55 EDT 2025
Fri Jul 25 19:39:50 EDT 2025
Tue Jun 17 21:30:06 EDT 2025
Thu Jun 12 23:43:56 EDT 2025
Tue Jun 10 20:41:36 EDT 2025
Fri Jun 27 05:06:55 EDT 2025
Tue Jun 10 19:39:48 EDT 2025
Wed Feb 19 02:43:37 EST 2025
Wed Apr 02 07:15:10 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Tue Jul 01 03:04:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Endocrinopathy
Incretin
Pancreas
Diabetes mellitus
Language English
License CC BY 4.0
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c676t-5dfe0a17ba9b522e3ac26e5caeb3889eb0c02bccb4971b75a88ffdf8cee813b03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3781450
PMID 23818527
PQID 1628018660
PQPubID 34443
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3781450
proquest_miscellaneous_1437119426
proquest_journals_1628018660
gale_infotracmisc_A344826546
gale_infotracgeneralonefile_A344826546
gale_infotracacademiconefile_A344826546
gale_incontextgauss_8GL_A344826546
gale_incontextcollege_GICCO_A344826546
pubmed_primary_23818527
pascalfrancis_primary_27784716
crossref_citationtrail_10_2337_db13_0822
crossref_primary_10_2337_db13_0822
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2013
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References Körner (2022031211324183800_B23) 2007; 48
Gier (2022031211324183800_B10) 2012; 61
Ahlqvist (2022031211324183800_B12) 2013; 62
Tschen (2022031211324183800_B38) 2011; 25
Chia (2022031211324183800_B29) 2009; 58
Engel (2022031211324183800_B44) 2010; 64
Rankin (2022031211324183800_B36) 2009; 58
Tornehave (2022031211324183800_B16) 2008; 56
Parkes (2022031211324183800_B41) 2013; 8
Dorrell (2022031211324183800_B19) 2011; 339
Wohlfart (2022031211324183800_B9) 2013; 11
Vora (2022031211324183800_B63) 2009; 10
Gale (2022031211324183800_B79) 2013; 346
Dorrell (2022031211324183800_B21) 2011; 54
Usdin (2022031211324183800_B14) 1993; 133
Moens (2022031211324183800_B18) 1996; 45
Zhou (2022031211324183800_B53) 2009; 38
Singh (2022031211324183800_B75) 2013; 173
Vuguin (2022031211324183800_B46) 2006; 147
Matveyenko (2022031211324183800_B64) 2009; 58
Drucker (2022031211324183800_B72) 2011; 54
Tatarkiewicz (2022031211324183800_B69) 2010; 299
Ali (2022031211324183800_B48) 2011; 121
Dunning (2022031211324183800_B51) 2005; 48
Piteau (2022031211324183800_B25) 2007; 362
Lando (2022031211324183800_B71) 2012
Butler (2022031211324183800_B4) 2013; 36
2022031211324183800_B65
Hayashi (2022031211324183800_B50) 2009; 23
Vrang (2022031211324183800_B55) 2012; 303
Sjöström (2022031211324183800_B78) 2009; 10
Parnaud (2022031211324183800_B39) 2008; 51
Baggio (2022031211324183800_B56) 2008; 134
Kirby (2022031211324183800_B62) 2010; 118
Makdissi (2022031211324183800_B74) 2012; 97
Ussher (2022031211324183800_B3) 2012; 33
Drucker (2022031211324183800_B1) 2006; 368
Dunning (2022031211324183800_B27) 2007; 28
Campbell (2022031211324183800_B2) 2013; 17
Hansotia (2022031211324183800_B59) 2004; 53
Koehler (2022031211324183800_B68) 2009; 58
Brubaker (2022031211324183800_B32) 2004; 145
Gier (2022031211324183800_B11) 2012; 97
Fujita (2022031211324183800_B31) 2010; 138
Pyke (2022031211324183800_B7) 2013; 154
Chen (2022031211324183800_B47) 2011; 152
Kedees (2022031211324183800_B17) 2009; 311
Xiao (2022031211324183800_B33) 2013; 123
Rother (2022031211324183800_B35) 2009; 32
Nyborg (2022031211324183800_B42) 2012; 61
Butler (2022031211324183800_B5) 2013
Gelling (2022031211324183800_B52) 2003; 100
Lund (2022031211324183800_B30) 2011; 300
Chaudhuri (2022031211324183800_B73) 2012; 97
Christel (2022031211324183800_B80) 2007; 210
Koehler (2022031211324183800_B20) 2006; 55
Busch (2022031211324183800_B43) 2013; 15
Longuet (2022031211324183800_B45) 2013; 62
Perl (2022031211324183800_B40) 2010; 95
Tokuyama (2022031211324183800_B70) 2013
Gier (2022031211324183800_B22) 2013; 173
Tatarkiewicz (2022031211324183800_B54) 2013; 15
Bjerre Knudsen (2022031211324183800_B76) 2010; 151
Kim (2022031211324183800_B8) 2013; 19
Drucker (2022031211324183800_B60) 2007; 30
Xu (2022031211324183800_B24) 2007; 56
Lamont (2022031211324183800_B57) 2012; 122
Nachnani (2022031211324183800_B67) 2010; 53
Heller (2022031211324183800_B15) 1997; 46
Højberg (2022031211324183800_B26) 2009; 52
Harada (2022031211324183800_B13) 2008; 294
de Heer (2022031211324183800_B28) 2008; 51
Bunck (2022031211324183800_B34) 2011; 34
Hadjiyanni (2022031211324183800_B61) 2010; 53
Tschen (2022031211324183800_B37) 2009; 58
Flock (2022031211324183800_B58) 2007; 56
Panjwani (2022031211324183800_B6) 2013; 154
Yu (2022031211324183800_B66) 2012; 41
Mu (2022031211324183800_B49) 2011; 54
Hegedüs (2022031211324183800_B77) 2011; 96
22323472 - Endocr Rev. 2012 Apr;33(2):187-215
19358731 - BMC Immunol. 2009;10:19
22031513 - J Clin Endocrinol Metab. 2012 Jan;97(1):121-31
23619362 - J Clin Invest. 2013 May;123(5):2207-17
22338093 - Diabetes. 2012 May;61(5):1243-9
21209033 - J Clin Endocrinol Metab. 2011 Mar;96(3):853-60
17409288 - Endocr Rev. 2007 May;28(3):253-83
15044356 - Endocrinology. 2004 Jun;145(6):2653-9
23349498 - Diabetes. 2013 Jun;62(6):2088-94
23618553 - Diabetes Res Clin Pract. 2013 Jun;100(3):e66-9
20138041 - Gastroenterology. 2010 May;138(5):1966-75
22836857 - Pancreas. 2012 Nov;41(8):1235-40
23440284 - JAMA Intern Med. 2013 Apr 8;173(7):534-9
20923958 - Am J Physiol Endocrinol Metab. 2010 Dec;299(6):E1076-86
22013105 - J Clin Endocrinol Metab. 2012 Jan;97(1):198-207
17360984 - Diabetes. 2007 Jun;56(6):1551-8
21980072 - Mol Endocrinol. 2011 Dec;25(12):2134-43
23267050 - Endocrinology. 2013 Jan;154(1):4-8
19657311 - Pancreas. 2009 Nov;38(8):941-6
23463371 - JAMA Intern Med. 2013 Apr 8;173(7):539-41
21771891 - Endocrinology. 2011 Sep;152(9):3343-50
19819987 - Mol Endocrinol. 2009 Dec;23(12):1990-9
21882062 - Diabetologia. 2011 Nov;54(11):2832-44
16644694 - Diabetes. 2006 May;55(5):1369-79
21868779 - Diabetes Care. 2011 Sep;34(9):2041-7
23736544 - Am J Physiol Endocrinol Metab. 2013 Aug 15;305(4):E475-84
17337495 - Diabetes Care. 2007 Jun;30(6):1335-43
20203154 - Endocrinology. 2010 Apr;151(4):1473-86
19265026 - Diabetes. 2009 Jun;58(6):1365-72
19780719 - Clin Sci (Lond). 2010 Jan;118(1):31-41
19808924 - Diabetes Care. 2009 Dec;32(12):2251-7
22182839 - J Clin Invest. 2012 Jan;122(1):388-402
18795252 - Diabetologia. 2008 Dec;51(12):2263-70
22440997 - Endocr Pract. 2012 Jul-Aug;18(4):472-7
17098089 - Lancet. 2006 Nov 11;368(9548):1696-705
22589391 - Am J Physiol Endocrinol Metab. 2012 Jul 15;303(2):E253-64
19403868 - Diabetes. 2009 Jul;58(7):1604-15
20412332 - Int J Clin Pract. 2010 Jun;64(7):984-90
8549871 - Diabetes. 1996 Feb;45(2):257-61
23524641 - Diabetes. 2013 Jul;62(7):2595-604
21386059 - Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1038-46
22266668 - Diabetes. 2012 May;61(5):1250-62
15111503 - Diabetes. 2004 May;53(5):1326-35
21892687 - Diabetologia. 2011 Nov;54(11):2741-4
20225396 - Diabetologia. 2010 Apr;53(4):730-40
21540554 - J Clin Invest. 2011 May;121(5):1917-29
19228811 - Diabetes. 2009 Jun;58(6):1312-20
23231438 - Expert Opin Drug Discov. 2013 Feb;8(2):219-44
17994216 - Diabetologia. 2008 Jan;51(1):91-100
12552113 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1438-43
23645885 - Diabetes Care. 2013 Jul;36(7):2118-25
23183176 - Endocrinology. 2013 Jan;154(1):127-39
21539888 - Mol Cell Endocrinol. 2011 Jun 6;339(1-2):144-50
23163898 - Diabetes Obes Metab. 2013 May;15(5):417-26
20660050 - J Clin Endocrinol Metab. 2010 Oct;95(10):E234-9
18541709 - J Histochem Cytochem. 2008 Sep;56(9):841-51
16627579 - Endocrinology. 2006 Sep;147(9):3995-4006
17971513 - Am J Physiol Endocrinol Metab. 2008 Jan;294(1):E61-8
19756486 - Diabetologia. 2010 Jan;53(1):153-9
18313669 - Gastroenterology. 2008 Apr;134(4):1137-47
17475961 - J Nucl Med. 2007 May;48(5):736-43
17803965 - Biochem Biophys Res Commun. 2007 Nov 3;362(4):1007-12
17872997 - J Exp Biol. 2007 Oct;210(Pt 19):3430-9
23160527 - Diabetes. 2013 Apr;62(4):1196-205
23684623 - Cell Metab. 2013 Jun 4;17(6):819-37
23751905 - BMJ. 2013;346:f3617
19509017 - Diabetes. 2009 Sep;58(9):2148-61
23537041 - J Transl Med. 2013;11:84
19647035 - Mol Cell Endocrinol. 2009 Nov 13;311(1-2):69-76
22745245 - J Clin Endocrinol Metab. 2012 Sep;97(9):3333-41
19037628 - Diabetologia. 2009 Feb;52(2):199-207
16132964 - Diabetologia. 2005 Sep;48(9):1700-13
8243312 - Endocrinology. 1993 Dec;133(6):2861-70
17717280 - Diabetes. 2007 Dec;56(12):3006-13
19276444 - Diabetes. 2009 Jun;58(6):1342-9
19556163 - Lancet Oncol. 2009 Jul;10(7):653-62
9133545 - Diabetes. 1997 May;46(5):785-91
22882290 - Diabetes Obes Metab. 2013 Jan;15(1):72-6
23542788 - Nat Med. 2013 May;19(5):567-75
21695571 - Diabetologia. 2011 Sep;54(9):2381-91
References_xml – volume: 53
  start-page: 1326
  year: 2004
  ident: 2022031211324183800_B59
  article-title: Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.5.1326
– volume: 33
  start-page: 187
  year: 2012
  ident: 2022031211324183800_B3
  article-title: Cardiovascular biology of the incretin system
  publication-title: Endocr Rev
  doi: 10.1210/er.2011-1052
– volume: 54
  start-page: 2832
  year: 2011
  ident: 2022031211324183800_B21
  article-title: Transcriptomes of the major human pancreatic cell types
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2283-5
– volume: 8
  start-page: 219
  year: 2013
  ident: 2022031211324183800_B41
  article-title: Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1
  publication-title: Expert Opin Drug Discov
  doi: 10.1517/17460441.2013.741580
– start-page: 472
  volume-title: Endocr Pract
  year: 2012
  ident: 2022031211324183800_B71
  article-title: Elevated amylase and lipase levels in patients using glucagonlike peptide-1 receptor agonists or dipeptidyl-peptidase-4 inhibitors in the outpatient setting
– start-page: e66
  volume-title: Diabetes Res Clin Pract
  year: 2013
  ident: 2022031211324183800_B70
  article-title: A low-grade increase of serum pancreatic exocrine enzyme levels by dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes
– volume: 48
  start-page: 736
  year: 2007
  ident: 2022031211324183800_B23
  article-title: GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.106.038679
– volume: 48
  start-page: 1700
  year: 2005
  ident: 2022031211324183800_B51
  article-title: Alpha cell function in health and disease: influence of glucagon-like peptide-1
  publication-title: Diabetologia
  doi: 10.1007/s00125-005-1878-0
– volume: 53
  start-page: 153
  year: 2010
  ident: 2022031211324183800_B67
  article-title: Biochemical and histological effects of exendin-4 (exenatide) on the rat pancreas
  publication-title: Diabetologia
  doi: 10.1007/s00125-009-1515-4
– volume: 17
  start-page: 819
  year: 2013
  ident: 2022031211324183800_B2
  article-title: Pharmacology, physiology, and mechanisms of incretin hormone action
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.04.008
– volume: 61
  start-page: 1250
  year: 2012
  ident: 2022031211324183800_B10
  article-title: Chronic GLP-1 receptor activation by exendin-4 induces expansion of pancreatic duct glands in rats and accelerates formation of dysplastic lesions and chronic pancreatitis in the Kras(G12D) mouse model
  publication-title: Diabetes
  doi: 10.2337/db11-1109
– volume: 58
  start-page: 1312
  year: 2009
  ident: 2022031211324183800_B37
  article-title: Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice
  publication-title: Diabetes
  doi: 10.2337/db08-1651
– volume: 152
  start-page: 3343
  year: 2011
  ident: 2022031211324183800_B47
  article-title: Absence of the glucagon-like peptide-1 receptor does not affect the metabolic phenotype of mice with liver-specific G(s)α deficiency
  publication-title: Endocrinology
  doi: 10.1210/en.2011-0012
– volume: 58
  start-page: 2148
  year: 2009
  ident: 2022031211324183800_B68
  article-title: Glucagon-like peptide-1 receptor activation modulates pancreatitis-associated gene expression but does not modify the susceptibility to experimental pancreatitis in mice
  publication-title: Diabetes
  doi: 10.2337/db09-0626
– volume: 362
  start-page: 1007
  year: 2007
  ident: 2022031211324183800_B25
  article-title: Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2007.08.115
– volume: 51
  start-page: 91
  year: 2008
  ident: 2022031211324183800_B39
  article-title: Proliferation of sorted human and rat beta cells
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0855-1
– volume: 10
  start-page: 19
  year: 2009
  ident: 2022031211324183800_B63
  article-title: Genetic ablation or pharmacological blockade of dipeptidyl peptidase IV does not impact T cell-dependent immune responses
  publication-title: BMC Immunol
  doi: 10.1186/1471-2172-10-19
– volume: 294
  start-page: E61
  year: 2008
  ident: 2022031211324183800_B13
  article-title: A novel GIP receptor splice variant influences GIP sensitivity of pancreatic beta-cells in obese mice
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00358.2007
– volume: 52
  start-page: 199
  year: 2009
  ident: 2022031211324183800_B26
  article-title: Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-008-1195-5
– volume: 32
  start-page: 2251
  year: 2009
  ident: 2022031211324183800_B35
  article-title: Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc09-0773
– volume: 25
  start-page: 2134
  year: 2011
  ident: 2022031211324183800_B38
  article-title: Skp2 is required for incretin hormone-mediated β-cell proliferation
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2011-1119
– volume: 62
  start-page: 1196
  year: 2013
  ident: 2022031211324183800_B45
  article-title: Liver-specific disruption of the murine glucagon receptor produces α-cell hyperplasia: evidence for a circulating α-cell growth factor
  publication-title: Diabetes
  doi: 10.2337/db11-1605
– volume: 23
  start-page: 1990
  year: 2009
  ident: 2022031211324183800_B50
  article-title: Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet alpha-cells but not of intestinal L-cells
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2009-0296
– volume: 133
  start-page: 2861
  year: 1993
  ident: 2022031211324183800_B14
  article-title: Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain
  publication-title: Endocrinology
  doi: 10.1210/endo.133.6.8243312
– volume: 121
  start-page: 1917
  year: 2011
  ident: 2022031211324183800_B48
  article-title: Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis
  publication-title: J Clin Invest
  doi: 10.1172/JCI43615
– volume: 28
  start-page: 253
  year: 2007
  ident: 2022031211324183800_B27
  article-title: The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications
  publication-title: Endocr Rev
  doi: 10.1210/er.2006-0026
– volume: 97
  start-page: 198
  year: 2012
  ident: 2022031211324183800_B73
  article-title: Exenatide exerts a potent antiinflammatory effect
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2011-1508
– volume: 46
  start-page: 785
  year: 1997
  ident: 2022031211324183800_B15
  article-title: Insulinotropic glucagon-like peptide I receptor expression in glucagon-producing alpha-cells of the rat endocrine pancreas
  publication-title: Diabetes
  doi: 10.2337/diab.46.5.785
– volume: 154
  start-page: 127
  year: 2013
  ident: 2022031211324183800_B6
  article-title: GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE(-/-) mice
  publication-title: Endocrinology
  doi: 10.1210/en.2012-1937
– volume: 36
  start-page: 2118
  year: 2013
  ident: 2022031211324183800_B4
  article-title: A critical analysis of the clinical use of incretin-based therapies: are the GLP-1 therapies safe?
  publication-title: Diabetes Care
  doi: 10.2337/dc12-2713
– volume: 339
  start-page: 144
  year: 2011
  ident: 2022031211324183800_B19
  article-title: Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2011.04.008
– volume: 41
  start-page: 1235
  year: 2012
  ident: 2022031211324183800_B66
  article-title: Exenatide-induced chronic damage of pancreatic tissue in rats
  publication-title: Pancreas
  doi: 10.1097/MPA.0b013e31824e67a3
– volume: 154
  start-page: 4
  year: 2013
  ident: 2022031211324183800_B7
  article-title: The glucagon-like peptide-1 receptor—or not?
  publication-title: Endocrinology
  doi: 10.1210/en.2012-2124
– volume: 61
  start-page: 1243
  year: 2012
  ident: 2022031211324183800_B42
  article-title: The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species
  publication-title: Diabetes
  doi: 10.2337/db11-0936
– volume: 95
  start-page: E234
  year: 2010
  ident: 2022031211324183800_B40
  article-title: Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2010-0932
– volume: 30
  start-page: 1335
  year: 2007
  ident: 2022031211324183800_B60
  article-title: Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action
  publication-title: Diabetes Care
  doi: 10.2337/dc07-0228
– volume: 55
  start-page: 1369
  year: 2006
  ident: 2022031211324183800_B20
  article-title: Activation of glucagon-like peptide-1 receptor signaling does not modify the growth or apoptosis of human pancreatic cancer cells
  publication-title: Diabetes
  doi: 10.2337/db05-1145
– volume: 45
  start-page: 257
  year: 1996
  ident: 2022031211324183800_B18
  article-title: Expression and functional activity of glucagon, glucagon-like peptide I, and glucose-dependent insulinotropic peptide receptors in rat pancreatic islet cells
  publication-title: Diabetes
  doi: 10.2337/diab.45.2.257
– volume: 138
  start-page: 1966
  year: 2010
  ident: 2022031211324183800_B31
  article-title: Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet alpha-cells and promotes insulin secretion
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.01.049
– volume: 58
  start-page: 1365
  year: 2009
  ident: 2022031211324183800_B36
  article-title: Adaptive beta-cell proliferation is severely restricted with advanced age
  publication-title: Diabetes
  doi: 10.2337/db08-1198
– volume: 311
  start-page: 69
  year: 2009
  ident: 2022031211324183800_B17
  article-title: Differential expression of glucagon and glucagon-like peptide 1 receptors in mouse pancreatic alpha and beta cells in two models of alpha cell hyperplasia
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2009.07.024
– volume: 134
  start-page: 1137
  year: 2008
  ident: 2022031211324183800_B56
  article-title: An albumin-exendin-4 conjugate engages central and peripheral circuits regulating murine energy and glucose homeostasis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.01.017
– volume: 15
  start-page: 72
  year: 2013
  ident: 2022031211324183800_B43
  article-title: Studies in rodents with the dipeptidyl peptidase-4 inhibitor vildagliptin to evaluate possible drug-induced pancreatic histological changes that are predictive of pancreatitis and cancer development in man
  publication-title: Diabetes Obes Metab
  doi: 10.1111/j.1463-1326.2012.01678.x
– volume: 58
  start-page: 1342
  year: 2009
  ident: 2022031211324183800_B29
  article-title: Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/db08-0958
– volume: 51
  start-page: 2263
  year: 2008
  ident: 2022031211324183800_B28
  article-title: Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas
  publication-title: Diabetologia
  doi: 10.1007/s00125-008-1149-y
– volume: 100
  start-page: 1438
  year: 2003
  ident: 2022031211324183800_B52
  article-title: Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0237106100
– volume: 54
  start-page: 2741
  year: 2011
  ident: 2022031211324183800_B72
  article-title: Glucagon-like peptide-1 (GLP-1) receptor agonists, obesity and psoriasis: diabetes meets dermatology
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2297-z
– volume: 53
  start-page: 730
  year: 2010
  ident: 2022031211324183800_B61
  article-title: Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells
  publication-title: Diabetologia
  doi: 10.1007/s00125-009-1643-x
– volume: 64
  start-page: 984
  year: 2010
  ident: 2022031211324183800_B44
  article-title: Sitagliptin: review of preclinical and clinical data regarding incidence of pancreatitis
  publication-title: Int J Clin Pract
  doi: 10.1111/j.1742-1241.2010.02382.x
– volume: 56
  start-page: 1551
  year: 2007
  ident: 2022031211324183800_B24
  article-title: Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes
  publication-title: Diabetes
  doi: 10.2337/db06-1033
– volume: 210
  start-page: 3430
  year: 2007
  ident: 2022031211324183800_B80
  article-title: Metabolic and digestive response to food ingestion in a binge-feeding lizard, the Gila monster (Heloderma suspectum)
  publication-title: J Exp Biol
  doi: 10.1242/jeb.004820
– volume: 300
  start-page: E1038
  year: 2011
  ident: 2022031211324183800_B30
  article-title: The separate and combined impact of the intestinal hormones, GIP, GLP-1, and GLP-2, on glucagon secretion in type 2 diabetes
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00665.2010
– volume: 38
  start-page: 941
  year: 2009
  ident: 2022031211324183800_B53
  article-title: Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor
  publication-title: Pancreas
  doi: 10.1097/MPA.0b013e3181b2bb03
– ident: 2022031211324183800_B65
– volume: 122
  start-page: 388
  year: 2012
  ident: 2022031211324183800_B57
  article-title: Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice
  publication-title: J Clin Invest
  doi: 10.1172/JCI42497
– volume: 56
  start-page: 3006
  year: 2007
  ident: 2022031211324183800_B58
  article-title: Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice
  publication-title: Diabetes
  doi: 10.2337/db07-0697
– volume: 54
  start-page: 2381
  year: 2011
  ident: 2022031211324183800_B49
  article-title: Chronic treatment with a glucagon receptor antagonist lowers glucose and moderately raises circulating glucagon and glucagon-like peptide 1 without severe alpha cell hypertrophy in diet-induced obese mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2217-2
– volume: 97
  start-page: 3333
  year: 2012
  ident: 2022031211324183800_B74
  article-title: Sitagliptin exerts an antinflammatory action
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2012-1544
– volume: 34
  start-page: 2041
  year: 2011
  ident: 2022031211324183800_B34
  article-title: Effects of exenatide on measures of β-cell function after 3 years in metformin-treated patients with type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc11-0291
– volume: 303
  start-page: E253
  year: 2012
  ident: 2022031211324183800_B55
  article-title: The effects of 13 wk of liraglutide treatment on endocrine and exocrine pancreas in male and female ZDF rats: a quantitative and qualitative analysis revealing no evidence of drug-induced pancreatitis
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00182.2012
– volume: 58
  start-page: 1604
  year: 2009
  ident: 2022031211324183800_B64
  article-title: Beneficial endocrine but adverse exocrine effects of sitagliptin in the human islet amyloid polypeptide transgenic rat model of type 2 diabetes: interactions with metformin
  publication-title: Diabetes
  doi: 10.2337/db09-0058
– start-page: 2595
  volume-title: Diabetes
  year: 2013
  ident: 2022031211324183800_B5
  article-title: Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors
– volume: 62
  start-page: 2088
  year: 2013
  ident: 2022031211324183800_B12
  article-title: Link between GIP and osteopontin in adipose tissue and insulin resistance
  publication-title: Diabetes
  doi: 10.2337/db12-0976
– volume: 346
  start-page: f3617
  year: 2013
  ident: 2022031211324183800_B79
  article-title: Incretin therapy: should adverse consequences have been anticipated?
  publication-title: BMJ
  doi: 10.1136/bmj.f3617
– volume: 19
  start-page: 567
  year: 2013
  ident: 2022031211324183800_B8
  article-title: GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure
  publication-title: Nat Med
  doi: 10.1038/nm.3128
– volume: 299
  start-page: E1076
  year: 2010
  ident: 2022031211324183800_B69
  article-title: Exenatide does not evoke pancreatitis and attenuates chemically induced pancreatitis in normal and diabetic rodents
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00479.2010
– volume: 147
  start-page: 3995
  year: 2006
  ident: 2022031211324183800_B46
  article-title: Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation
  publication-title: Endocrinology
  doi: 10.1210/en.2005-1410
– volume: 10
  start-page: 653
  year: 2009
  ident: 2022031211324183800_B78
  article-title: Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(09)70159-7
– volume: 11
  start-page: 84
  year: 2013
  ident: 2022031211324183800_B9
  article-title: Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-11-84
– volume: 151
  start-page: 1473
  year: 2010
  ident: 2022031211324183800_B76
  article-title: Glucagon-like peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation [pulished correction appears in Endocrinology 2012;153:1000]
  publication-title: Endocrinology
  doi: 10.1210/en.2009-1272
– volume: 56
  start-page: 841
  year: 2008
  ident: 2022031211324183800_B16
  article-title: Expression of the GLP-1 receptor in mouse, rat, and human pancreas
  publication-title: J Histochem Cytochem
  doi: 10.1369/jhc.2008.951319
– volume: 173
  start-page: 539
  year: 2013
  ident: 2022031211324183800_B22
  article-title: Glucagonlike peptide 1-based drugs and pancreatitis: clarity at last, but what about pancreatic cancer?
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2013.3374
– volume: 97
  start-page: 121
  year: 2012
  ident: 2022031211324183800_B11
  article-title: Glucagon like peptide-1 receptor expression in the human thyroid gland
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2011-2407
– volume: 368
  start-page: 1696
  year: 2006
  ident: 2022031211324183800_B1
  article-title: The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69705-5
– volume: 145
  start-page: 2653
  year: 2004
  ident: 2022031211324183800_B32
  article-title: Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system
  publication-title: Endocrinology
  doi: 10.1210/en.2004-0015
– volume: 123
  start-page: 2207
  year: 2013
  ident: 2022031211324183800_B33
  article-title: No evidence for β cell neogenesis in murine adult pancreas
  publication-title: J Clin Invest
  doi: 10.1172/JCI66323
– volume: 15
  start-page: 417
  year: 2013
  ident: 2022031211324183800_B54
  article-title: No evidence of drug-induced pancreatitis in rats treated with exenatide for 13 weeks
  publication-title: Diabetes Obes Metab
  doi: 10.1111/dom.12040
– volume: 96
  start-page: 853
  year: 2011
  ident: 2022031211324183800_B77
  article-title: GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2010-2318
– volume: 118
  start-page: 31
  year: 2010
  ident: 2022031211324183800_B62
  article-title: Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition
  publication-title: Clin Sci (Lond)
  doi: 10.1042/CS20090047
– volume: 173
  start-page: 534
  year: 2013
  ident: 2022031211324183800_B75
  article-title: Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2013.2720
– reference: 21540554 - J Clin Invest. 2011 May;121(5):1917-29
– reference: 23524641 - Diabetes. 2013 Jul;62(7):2595-604
– reference: 23267050 - Endocrinology. 2013 Jan;154(1):4-8
– reference: 22323472 - Endocr Rev. 2012 Apr;33(2):187-215
– reference: 15044356 - Endocrinology. 2004 Jun;145(6):2653-9
– reference: 17994216 - Diabetologia. 2008 Jan;51(1):91-100
– reference: 21980072 - Mol Endocrinol. 2011 Dec;25(12):2134-43
– reference: 17098089 - Lancet. 2006 Nov 11;368(9548):1696-705
– reference: 22182839 - J Clin Invest. 2012 Jan;122(1):388-402
– reference: 19265026 - Diabetes. 2009 Jun;58(6):1365-72
– reference: 20203154 - Endocrinology. 2010 Apr;151(4):1473-86
– reference: 23183176 - Endocrinology. 2013 Jan;154(1):127-39
– reference: 23684623 - Cell Metab. 2013 Jun 4;17(6):819-37
– reference: 8243312 - Endocrinology. 1993 Dec;133(6):2861-70
– reference: 22745245 - J Clin Endocrinol Metab. 2012 Sep;97(9):3333-41
– reference: 8549871 - Diabetes. 1996 Feb;45(2):257-61
– reference: 21882062 - Diabetologia. 2011 Nov;54(11):2832-44
– reference: 17475961 - J Nucl Med. 2007 May;48(5):736-43
– reference: 23645885 - Diabetes Care. 2013 Jul;36(7):2118-25
– reference: 9133545 - Diabetes. 1997 May;46(5):785-91
– reference: 22836857 - Pancreas. 2012 Nov;41(8):1235-40
– reference: 22440997 - Endocr Pract. 2012 Jul-Aug;18(4):472-7
– reference: 23349498 - Diabetes. 2013 Jun;62(6):2088-94
– reference: 23618553 - Diabetes Res Clin Pract. 2013 Jun;100(3):e66-9
– reference: 23751905 - BMJ. 2013;346:f3617
– reference: 20923958 - Am J Physiol Endocrinol Metab. 2010 Dec;299(6):E1076-86
– reference: 19228811 - Diabetes. 2009 Jun;58(6):1312-20
– reference: 19403868 - Diabetes. 2009 Jul;58(7):1604-15
– reference: 16627579 - Endocrinology. 2006 Sep;147(9):3995-4006
– reference: 23736544 - Am J Physiol Endocrinol Metab. 2013 Aug 15;305(4):E475-84
– reference: 21695571 - Diabetologia. 2011 Sep;54(9):2381-91
– reference: 17717280 - Diabetes. 2007 Dec;56(12):3006-13
– reference: 23542788 - Nat Med. 2013 May;19(5):567-75
– reference: 15111503 - Diabetes. 2004 May;53(5):1326-35
– reference: 20225396 - Diabetologia. 2010 Apr;53(4):730-40
– reference: 21868779 - Diabetes Care. 2011 Sep;34(9):2041-7
– reference: 21386059 - Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1038-46
– reference: 22589391 - Am J Physiol Endocrinol Metab. 2012 Jul 15;303(2):E253-64
– reference: 17803965 - Biochem Biophys Res Commun. 2007 Nov 3;362(4):1007-12
– reference: 22882290 - Diabetes Obes Metab. 2013 Jan;15(1):72-6
– reference: 23463371 - JAMA Intern Med. 2013 Apr 8;173(7):539-41
– reference: 23619362 - J Clin Invest. 2013 May;123(5):2207-17
– reference: 21539888 - Mol Cell Endocrinol. 2011 Jun 6;339(1-2):144-50
– reference: 19808924 - Diabetes Care. 2009 Dec;32(12):2251-7
– reference: 17409288 - Endocr Rev. 2007 May;28(3):253-83
– reference: 17337495 - Diabetes Care. 2007 Jun;30(6):1335-43
– reference: 23163898 - Diabetes Obes Metab. 2013 May;15(5):417-26
– reference: 23537041 - J Transl Med. 2013;11:84
– reference: 20412332 - Int J Clin Pract. 2010 Jun;64(7):984-90
– reference: 21771891 - Endocrinology. 2011 Sep;152(9):3343-50
– reference: 19780719 - Clin Sci (Lond). 2010 Jan;118(1):31-41
– reference: 19276444 - Diabetes. 2009 Jun;58(6):1342-9
– reference: 22031513 - J Clin Endocrinol Metab. 2012 Jan;97(1):121-31
– reference: 19358731 - BMC Immunol. 2009;10:19
– reference: 17360984 - Diabetes. 2007 Jun;56(6):1551-8
– reference: 23160527 - Diabetes. 2013 Apr;62(4):1196-205
– reference: 18541709 - J Histochem Cytochem. 2008 Sep;56(9):841-51
– reference: 23231438 - Expert Opin Drug Discov. 2013 Feb;8(2):219-44
– reference: 17971513 - Am J Physiol Endocrinol Metab. 2008 Jan;294(1):E61-8
– reference: 19509017 - Diabetes. 2009 Sep;58(9):2148-61
– reference: 19647035 - Mol Cell Endocrinol. 2009 Nov 13;311(1-2):69-76
– reference: 16644694 - Diabetes. 2006 May;55(5):1369-79
– reference: 21209033 - J Clin Endocrinol Metab. 2011 Mar;96(3):853-60
– reference: 18795252 - Diabetologia. 2008 Dec;51(12):2263-70
– reference: 22338093 - Diabetes. 2012 May;61(5):1243-9
– reference: 19657311 - Pancreas. 2009 Nov;38(8):941-6
– reference: 20660050 - J Clin Endocrinol Metab. 2010 Oct;95(10):E234-9
– reference: 23440284 - JAMA Intern Med. 2013 Apr 8;173(7):534-9
– reference: 19556163 - Lancet Oncol. 2009 Jul;10(7):653-62
– reference: 17872997 - J Exp Biol. 2007 Oct;210(Pt 19):3430-9
– reference: 16132964 - Diabetologia. 2005 Sep;48(9):1700-13
– reference: 20138041 - Gastroenterology. 2010 May;138(5):1966-75
– reference: 19037628 - Diabetologia. 2009 Feb;52(2):199-207
– reference: 22013105 - J Clin Endocrinol Metab. 2012 Jan;97(1):198-207
– reference: 19819987 - Mol Endocrinol. 2009 Dec;23(12):1990-9
– reference: 18313669 - Gastroenterology. 2008 Apr;134(4):1137-47
– reference: 19756486 - Diabetologia. 2010 Jan;53(1):153-9
– reference: 21892687 - Diabetologia. 2011 Nov;54(11):2741-4
– reference: 22266668 - Diabetes. 2012 May;61(5):1250-62
– reference: 12552113 - Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1438-43
SSID ssj0006060
Score 2.5457647
SecondaryResourceType review_article
Snippet Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that control the secretion of insulin, glucagon,...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3316
SubjectTerms Acinar Cells - metabolism
Animals
Atherosclerosis - drug therapy
Atherosclerosis - metabolism
Atherosclerosis - physiopathology
Biological and medical sciences
Blotting, Western
Cell Proliferation
Cricetinae
Diabetes
Diabetes Mellitus - drug therapy
Diabetes Mellitus - metabolism
Diabetes Mellitus - physiopathology
Diabetes therapy
Diabetes. Impaired glucose tolerance
Dipeptidyl-Peptidase IV Inhibitors - therapeutic use
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Enzymes
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Female
G proteins
Gastric Inhibitory Polypeptide - metabolism
Glucagon-Like Peptide 1 - metabolism
Glucagon-Like Peptide-1 Receptor
Glucose metabolism
Health aspects
Humans
Incretins - metabolism
Inflammation - metabolism
Insulin-Secreting Cells - metabolism
Male
Medical sciences
Mice
Pancreas
Pancreas - drug effects
Pancreas - metabolism
Pancreas - physiopathology
Pathology
Peptides
Rats
Real-Time Polymerase Chain Reaction
Receptors, Gastrointestinal Hormone - metabolism
Receptors, Glucagon - agonists
Rodents
s in Diabetes
Title Incretin Action in the Pancreas: Potential Promise, Possible Perils, and Pathological Pitfalls
URI https://www.ncbi.nlm.nih.gov/pubmed/23818527
https://www.proquest.com/docview/1628018660
https://www.proquest.com/docview/1437119426
https://pubmed.ncbi.nlm.nih.gov/PMC3781450
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgSAhpQvxeYUwGoYHEAomdxA5v0wZMiMHLJu2JyHadUalKqiZ94a_nLnbSpOrD4CWKkuspzn2-nN277wh5k0gN3w3FgzjlIoiLOAyyUMaB5UoKm8WCJVgofP4jPbuMv10lV-vGhW11SaM_mD9b60r-x6pwDeyKVbL_YNleKVyAc7AvHMHCcLyRjWFyYxFi-d43_PY5izDBMRZsk90WVYP5QFhvtazApu3-5aLCmTC3SFo8m9ddBid2J-594WLWFGo-r4fR6-lgo3azhc9gS-F02SdruAp2_9-T31yI1mlqzSCfHxxNr38TNN6tRgx5TsXQraZsCJ9w4CQ5d-WVm96b8bb-f6qx4YR05cobZNjHHJaTDAuwbpM7TEC41G3Q-I8vrMdc1ZF_IkcmhZo_9npHIYj_EO8uVA0vt3DdTLYtNzazZgdhyMUDct-vH-ixA8NDcsuWj8jdc58h8Zj86jBBHSYonAEmaIeJT7RHBPWIOKIdHqjDwxEFNNAhGmiHhifk8svni5OzwPfQCEwq0iZIpoUNVSS0yjSE2jAFDUttYpTVXMrM6tCETBuj40xEWiRKyqKYFhJiJxlxHfKnZKesSrtHqE6kSTKlk4SLuJAsM0LrKAVpgSyTakLeda81N55gHvuczHNYaKIFcrRAjhaYkNe96MKxqmwTOkTb5MhSUmIalHFbaTmM7-RnvoYCaBsLXqtVXefy6_eR0FsvVFTwVEb58hMYGzKgjSQPR5LXjv99m-D-SBBMZka3D0ag6kfKhMCYEH_foSz3XqXOo5RB0CjTNJyQV_1tVI3ZkKWtViATcxFFGQTXE_LMgXKtvA3BmZgQMYJrL4B88uM75ex3yyvPkf4uCZ_fdPwvyL21z9gnO81yZV9CiN7og3ZS_gUqjuhE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incretin+action+in+the+pancreas%3A+potential+promise%2C+possible+perils%2C+and+pathological+pitfalls&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Drucker%2C+Daniel+J&rft.date=2013-10-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.volume=62&rft.issue=10&rft.spage=3316&rft_id=info:doi/10.2337%2Fdb13-0822&rft.externalDocID=A344826546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon