Exploring transcriptomic diversity in muscle revealed that cellular signaling pathways mainly differentiate five Western porcine breeds

Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwen...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 16; no. 1; p. 1055
Main Authors SanCristobal, Magali, Rohart, Florian, Lascor, Christine, Bouffaud, Marcel, Trouilh, Lidwine, Martin, Pascal G.P., Lippi, Yannick, Tribout, Thierry, Faraut, Thomas, Mercat, Marie-José, Milan, Denis, Liaubet, Laurence
Format Journal Article
LanguageEnglish
Published London BioMed Central 12.12.2015
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/s12864-015-2259-9

Cover

Abstract Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. Results A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds. Conclusions This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.
AbstractList Among transcriptomic studies, those comparing species or populations can increase ourunderstanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation isthe one of short evolution time with breeds of a domesticated species that underwent strong selective pressures.In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray.A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes weredeclared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds.This study on transcriptomic differentiation across Western pig breeds highlighted a global picture:mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.
Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piñtrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piñtrain breeds. This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.
Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Pietrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. Results A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Pietrain breeds. Conclusions This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.
Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds. This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.
Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piñtrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. Results A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piñtrain breeds. Conclusions This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.
Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. Results A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds. Conclusions This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.
Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray.BACKGROUNDAmong transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray.A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds.RESULTSA total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds.This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.CONCLUSIONSThis study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.
ArticleNumber 1055
Audience Academic
Author Bouffaud, Marcel
Faraut, Thomas
Liaubet, Laurence
Rohart, Florian
Milan, Denis
SanCristobal, Magali
Lascor, Christine
Mercat, Marie-José
Tribout, Thierry
Martin, Pascal G.P.
Trouilh, Lidwine
Lippi, Yannick
Author_xml – sequence: 1
  givenname: Magali
  surname: SanCristobal
  fullname: SanCristobal, Magali
  email: magali.san-cristobal@toulouse.inra.fr
  organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique
– sequence: 2
  givenname: Florian
  surname: Rohart
  fullname: Rohart, Florian
  organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Rds (Bldg 75), The University of Queensland
– sequence: 3
  givenname: Christine
  surname: Lascor
  fullname: Lascor, Christine
  organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique
– sequence: 4
  givenname: Marcel
  surname: Bouffaud
  fullname: Bouffaud, Marcel
  organization: INRA, UE450 Testage - porcs
– sequence: 5
  givenname: Lidwine
  surname: Trouilh
  fullname: Trouilh, Lidwine
  organization: Plateforme Transcriptome GeT-Biopuces, Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés (LISBP)
– sequence: 6
  givenname: Pascal G.P.
  surname: Martin
  fullname: Martin, Pascal G.P.
  organization: Plateau Transcriptomic impact of Xenobiotics (TRiX), ToxAlim INRA/INP
– sequence: 7
  givenname: Yannick
  surname: Lippi
  fullname: Lippi, Yannick
  organization: Plateau Transcriptomic impact of Xenobiotics (TRiX), ToxAlim INRA/INP
– sequence: 8
  givenname: Thierry
  surname: Tribout
  fullname: Tribout, Thierry
  organization: INRA GABI
– sequence: 9
  givenname: Thomas
  surname: Faraut
  fullname: Faraut, Thomas
  organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique
– sequence: 10
  givenname: Marie-José
  surname: Mercat
  fullname: Mercat, Marie-José
  organization: IFIP/BIOPORC
– sequence: 11
  givenname: Denis
  surname: Milan
  fullname: Milan, Denis
  organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique
– sequence: 12
  givenname: Laurence
  surname: Liaubet
  fullname: Liaubet, Laurence
  organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26651482$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01245970$$DView record in HAL
BookMark eNp9kstu1DAYhSNURC_wAGyQJTZ0kRI7viQbpFFVaKWRkLiIpeU4f2ZcJXawnaHzBLw2jqaUmQpQFomc7xzb5z-n2ZF1FrLsJS4uMK7424BJxWleYJYTwuq8fpKdYCpwTjCnR3vfx9lpCLdFgUVF2LPsmHDOMK3ISfbz6m7snTd2haJXNmhvxugGo1FrNuCDiVtkLBqmoHtAHjagemhRXKuINPT91CuPgllZ1c8eo4rrH2ob0KCM7bfJpOvAg41GRUBdskTfIETwFo3Oa2MBNR6gDc-zp53qA7y4f59lX99ffbm8zpcfP9xcLpa55oLFvKEE2qqlrFUtU0SzRlcl1lwrRqtSgGg6LXhHSt1WTFdc4LIQwGnTtrQSZVOeZe92vuPUDNDqdDSvejl6Myi_lU4ZefjHmrVcuY2kXPBKFMngfGewfiS7XizlvFZgQlktig1O7Jv7zbz7PqV7y8GEOTVlwU1BYkHruiY1n9HXj9BbN_mU6kyJmlGM6_oPtUpTkMZ2Lp1Rz6ZyQXlVU16XIlEXf6HS00IabKpQZ9L6geD8QJCYCHdxpaYQ5M3nT4fsq_0AHyL4XakE4B2gvQvBQ_eA4ELOtZW72qagmJxrK-d7iUcabaKKxs0zMP1_lWSnDONcYvB7uf1T9AsiEwKK
CitedBy_id crossref_primary_10_1111_jpn_13906
crossref_primary_10_1007_s13258_017_0540_9
crossref_primary_10_1016_j_genrep_2021_101429
crossref_primary_10_1111_age_12654
crossref_primary_10_1186_s12711_023_00789_z
crossref_primary_10_1016_j_ygeno_2021_04_019
Cites_doi 10.1093/nar/gks402
10.1074/jbc.M212969200
10.1111/j.1365-2052.2006.01440.x
10.1101/gr.2405905
10.1186/1471-2105-14-70
10.1371/journal.pone.0014782
10.1023/A:1010933404324
10.1111/j.1365-2052.2010.02054.x
10.7150/ijbs.6.350
10.1038/nrg3229
10.1073/pnas.1217149109
10.1007/s13238-012-2109-3
10.1016/j.meatsci.2005.04.022
10.2527/jas.2012-5338
10.1126/science.1068996
10.1186/1471-2164-12-81
10.1002/ijc.24878
10.1111/j.1365-2052.2010.02040.x
10.1016/S1471-4914(03)00138-2
10.2527/2006.8413_supplE105x
10.1186/1471-2164-14-121
10.1186/1471-2164-13-59
10.1016/j.metabol.2012.03.018
10.3109/10409238.2013.857291
10.1016/j.carpath.2007.01.004
10.1038/nrendo.2013.262
10.1016/j.ydbio.2011.03.015
10.1038/nrg1914
10.1079/9781845937560.0038
10.1016/j.bbrc.2011.06.017
10.1038/ng983
10.1111/j.2517-6161.1995.tb02031.x
10.1111/j.1365-2052.2005.01385.x
10.1186/1471-2105-12-253
10.1017/S1751731107000766
10.4161/nucl.1.4.12435
10.1186/1297-9686-32-2-187
10.1186/1471-2164-12-635
10.1016/j.meatsci.2010.04.040
10.1042/BJ20080658
10.1186/s12864-015-1403-x
10.1016/j.meatsci.2013.05.010
10.1016/S0301-6226(02)00183-5
10.1038/nature02064
10.1007/s11095-007-9266-8
10.1038/ng.2309
10.1186/1471-2164-10-89
10.1186/1471-2164-13-346
10.3109/10409238.2013.831023
10.1016/j.ajhg.2011.03.012
10.1186/1471-2164-14-65
10.1073/pnas.1210303109
10.1186/1471-2164-11-686
10.1186/1471-2164-14-123
10.1371/journal.pbio.0020132
10.1111/j.1365-294X.2008.03820.x
10.1038/nri3339
10.1186/1471-2164-15-797
10.4161/nucl.24999
10.1530/REP-07-0312
10.1038/ng1086
10.1186/1471-2164-14-18
10.1007/s00223-014-9894-z
10.1073/pnas.0912245107
ContentType Journal Article
Copyright SanCristobal et al. 2015
COPYRIGHT 2015 BioMed Central Ltd.
Copyright BioMed Central 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: SanCristobal et al. 2015
– notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Copyright BioMed Central 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
1XC
VOOES
5PM
DOI 10.1186/s12864-015-2259-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
ExternalDocumentID PMC4676870
oai_HAL_hal_01245970v1
4015259251
A468946937
26651482
10_1186_s12864_015_2259_9
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
1XC
2VQ
C1A
IPNFZ
RIG
VOOES
5PM
ID FETCH-LOGICAL-c675t-b42ed8d45dad5a2c5bc831c6ca54837e7bfc76f23cd85c8671307e64bdd4873b3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Thu Aug 21 18:33:47 EDT 2025
Fri Sep 12 12:50:10 EDT 2025
Fri Sep 05 08:49:39 EDT 2025
Fri Jul 25 10:43:59 EDT 2025
Tue Jun 17 22:05:40 EDT 2025
Tue Jun 10 21:04:41 EDT 2025
Fri Jun 27 05:47:25 EDT 2025
Mon Jul 21 05:57:02 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Tue Jul 01 02:22:23 EDT 2025
Sat Sep 06 07:21:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Production Trait
Differentially Express Gene
Differentially Express
Muscle Mass
Pairwise Analysis
population transcriptomic
selection
domestication
pattern
european pig breed
vitamin-d
evolution
skeletal muscle
mechanism
gene expression
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c675t-b42ed8d45dad5a2c5bc831c6ca54837e7bfc76f23cd85c8671307e64bdd4873b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8062-5072
0000-0003-3036-6479
0000-0002-4271-658X
0000-0003-4717-078X
0000-0003-0201-0264
0000-0001-5156-3434
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-015-2259-9
PMID 26651482
PQID 1779541199
PQPubID 44682
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4676870
hal_primary_oai_HAL_hal_01245970v1
proquest_miscellaneous_1749992961
proquest_journals_1779541199
gale_infotracmisc_A468946937
gale_infotracacademiconefile_A468946937
gale_incontextgauss_ISR_A468946937
pubmed_primary_26651482
crossref_primary_10_1186_s12864_015_2259_9
crossref_citationtrail_10_1186_s12864_015_2259_9
springer_journals_10_1186_s12864_015_2259_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-12
PublicationDateYYYYMMDD 2015-12-12
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-12
  day: 12
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2015
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References A Stinckens (2259_CR59) 2010; 41
SY Jiang (2259_CR15) 2013; 14
H Fraser (2259_CR19) 2010; 107
S Thorsteinsdottir (2259_CR35) 2011; 354
W Enard (2259_CR6) 2002; 296
P Khaitovich (2259_CR7) 2004; 2
D Bem (2259_CR25) 2011; 88
D Natt (2259_CR16) 2012; 13
L Fontanesi (2259_CR40) 2010; 41
Y Benjamini (2259_CR69) 1995; 57
MA Busby (2259_CR8) 2011; 12
PJ Ferre (2259_CR68) 2007; 24
SH Lee (2259_CR45) 2010; 86
KS Kobayashi (2259_CR55) 2012; 12
N Buys (2259_CR58) 2006
L Atanasova (2259_CR13) 2013; 14
G Laval (2259_CR63) 2000; 32
X Su (2259_CR53) 2013; 48
L Yang (2259_CR12) 2013; 14
B Vicoso (2259_CR26) 2006; 7
DA Ferrarezi (2259_CR49) 2012; 61
L Müller (2259_CR18) 2011; 12
GR Foxcroft (2259_CR33) 2006; 84
Y Li (2259_CR41) 2010; 6
M SanCristobal (2259_CR64) 2006; 37
Z Yin (2259_CR56) 2003; 278
JG Laing (2259_CR43) 2007; 16
MJ Mercat (2259_CR60) 2012; 44
T Le Gall (2259_CR9) 2005; 15
KK Starheim (2259_CR50) 2008; 415
M Mensack (2259_CR20) 2010; 11
D Tabas-Madrid (2259_CR27) 2012; 40
M Blomberg Jensen (2259_CR47) 2014; 10
A Liaw (2259_CR70) 2002; 2
M Oleksiak (2259_CR3) 2002; 32
E Jimenez-Guri (2259_CR5) 2013; 14
E Huff-Lonergan (2259_CR44) 2005; 71
HC Yang (2259_CR17) 2012; 13
T Giger (2259_CR10) 2008; 17
Y Yao (2259_CR54) 2013; 4
A Whitehead (2259_CR2) 2006; 15
M Pérez-Enciso (2259_CR21) 2009; 10
HJ Megens (2259_CR66) 2008; 40
JC Politz (2259_CR61) 2013; 4
L Breiman (2259_CR28) 2001; 45
MB Hufford (2259_CR14) 2012; 44
A Bonnet (2259_CR29) 2008; 136
M SanCristobal (2259_CR65) 2006; 37
P Herpin (2259_CR37) 2002; 78
DJ Glass (2259_CR31) 2003; 9
T van der Lende (2259_CR38) 2001; 58
B Guo (2259_CR34) 2015; 16
F Rohart (2259_CR22) 2012; 90
L Canario (2259_CR36) 2007; 1
AS Van Laere (2259_CR57) 2003; 425
V Voillet (2259_CR39) 2014; 15
A Chow (2259_CR52) 2010; 126
A Ouali (2259_CR46) 2013; 95
AJ Amaral (2259_CR67) 2011; 6
S Rifkin (2259_CR4) 2003; 33
L Andersson (2259_CR24) 2011
HP Patel (2259_CR48) 2014; 95
CJ Rubin (2259_CR23) 2012; 109
N Tkachuk (2259_CR42) 2011; 410
P Van Damme (2259_CR51) 2012; 109
MA Egerman (2259_CR32) 2014; 49
2259_CR1
P Clayton (2259_CR62) 2010; 1
E Kristiansson (2259_CR11) 2013; 14
K-A Lê Cao (2259_CR30) 2011; 12
21126341 - BMC Genomics. 2010;11:686
16734675 - Anim Genet. 2006 Jun;37(3):189-98
23483478 - Protein Cell. 2013 Mar;4(3):168-75
18096118 - Genet Sel Evol. 2008 Jan-Feb;40(1):103-28
21679692 - Biochem Biophys Res Commun. 2011 Jul 8;410(3):531-6
21420400 - Dev Biol. 2011 Jun 15;354(2):191-207
20394605 - Anim Genet. 2010 Oct;41(5):493-8
16626448 - Mol Ecol. 2006 Apr;15(5):1197-211
23432824 - BMC Genomics. 2013;14:121
23151514 - Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19529-36
20605337 - Meat Sci. 2010 Sep;86(1):166-70
23175229 - Nat Rev Immunol. 2012 Dec;12(12):813-20
23100586 - J Anim Sci. 2012 Dec;90(13):4729-40
22814378 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54
17502245 - Cardiovasc Pathol. 2007 May-Jun;16(3):159-64
22305654 - BMC Genomics. 2012;13:59
15138501 - PLoS Biol. 2004 May;2(5):E132
19239697 - BMC Genomics. 2009;10:89
23971743 - Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):515-21
12548287 - Nat Genet. 2003 Feb;33(2):138-44
22551951 - Metabolism. 2012 Oct;61(10):1413-21
18456903 - Reproduction. 2008 Aug;136(2):211-24
23324212 - BMC Genomics. 2013;14:18
22444914 - Animal. 2007 Nov;1(10):1409-13
23714733 - Nucleus. 2013 May-Jun;4(3):153-5
11951044 - Science. 2002 Apr 12;296(5566):340-3
22705669 - Nat Rev Genet. 2012 Jul;13(7):505-16
11980194 - Reprod Suppl. 2001;58:247-61
12679338 - J Biol Chem. 2003 Jun 20;278(25):22838-45
14574411 - Nature. 2003 Oct 23;425(6960):832-6
21327084 - Nucleus. 2010 Jul-Aug;1(4):354-66
22573175 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W478-83
14736401 - Genet Sel Evol. 2000 Mar-Apr;32(2):187-203
21483733 - PLoS One. 2011;6(4):e14782
15687289 - Genome Res. 2005 Feb;15(2):260-8
23444967 - BMC Bioinformatics. 2013;14:70
16582081 - J Anim Sci. 2006 Apr;84 Suppl:E105-12
21693065 - BMC Bioinformatics. 2011;12:253
20477793 - Anim Genet. 2010 Oct;41(5):478-92
23790743 - Meat Sci. 2013 Dec;95(4):854-70
22064064 - Meat Sci. 2005 Sep;71(1):194-204
12219088 - Nat Genet. 2002 Oct;32(2):261-6
21276238 - BMC Genomics. 2011;12:81
20133628 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2977-82
22839760 - BMC Genomics. 2012;13:346
22660546 - Nat Genet. 2012 Jul;44(7):808-11
25226791 - BMC Genomics. 2014;15:797
16734682 - Anim Genet. 2006 Jun;37(3):232-8
23368736 - BMC Genomics. 2013;14:65
25887672 - BMC Genomics. 2015;16:177
22206443 - BMC Genomics. 2011;12:635
20617128 - Int J Biol Sci. 2010;6(4):350-60
18522696 - Mol Ecol. 2008 Jul;17(13):3095-108
17380264 - Pharm Res. 2007 Aug;24(8):1480-9
19739119 - Int J Cancer. 2010 May 1;126(9):2079-89
25055749 - Calcif Tissue Int. 2014 Oct;95(4):308-16
18570629 - Biochem J. 2008 Oct 15;415(2):325-31
16847464 - Nat Rev Genet. 2006 Aug;7(8):645-53
21473985 - Am J Hum Genet. 2011 Apr 8;88(4):499-507
12928036 - Trends Mol Med. 2003 Aug;9(8):344-50
24419359 - Nat Rev Endocrinol. 2014 Mar;10(3):175-86
23432914 - BMC Genomics. 2013;14:123
24237131 - Crit Rev Biochem Mol Biol. 2014 Jan-Feb;49(1):59-68
References_xml – volume: 40
  start-page: W478
  year: 2012
  ident: 2259_CR27
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks402
– volume: 278
  start-page: 22838
  issue: 25
  year: 2003
  ident: 2259_CR56
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M212969200
– volume: 37
  start-page: 232
  issue: 3
  year: 2006
  ident: 2259_CR65
  publication-title: Anim Genet
  doi: 10.1111/j.1365-2052.2006.01440.x
– volume: 15
  start-page: 260
  issue: 2
  year: 2005
  ident: 2259_CR9
  publication-title: Genome Res
  doi: 10.1101/gr.2405905
– volume: 14
  start-page: 70
  issue: 1
  year: 2013
  ident: 2259_CR11
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-70
– volume: 6
  start-page: e14782
  issue: 4
  year: 2011
  ident: 2259_CR67
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014782
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 2259_CR28
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 41
  start-page: 478
  issue: 5
  year: 2010
  ident: 2259_CR40
  publication-title: Anim Genet
  doi: 10.1111/j.1365-2052.2010.02054.x
– volume: 6
  start-page: 350
  issue: 4
  year: 2010
  ident: 2259_CR41
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.6.350
– ident: 2259_CR1
  doi: 10.1038/nrg3229
– volume: 109
  start-page: 19529
  issue: 48
  year: 2012
  ident: 2259_CR23
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1217149109
– volume: 4
  start-page: 168
  issue: 3
  year: 2013
  ident: 2259_CR54
  publication-title: Protein Cell
  doi: 10.1007/s13238-012-2109-3
– volume: 71
  start-page: 194
  issue: 1
  year: 2005
  ident: 2259_CR44
  publication-title: Meat Sci
  doi: 10.1016/j.meatsci.2005.04.022
– volume: 90
  start-page: 4729
  issue: 13
  year: 2012
  ident: 2259_CR22
  publication-title: J Anim Sci
  doi: 10.2527/jas.2012-5338
– start-page: 6
  volume-title: 8th World Congress on Genetics Applied to Livestock Production: 13–18 August, 2006
  year: 2006
  ident: 2259_CR58
– volume: 296
  start-page: 340
  issue: 5566
  year: 2002
  ident: 2259_CR6
  publication-title: Science
  doi: 10.1126/science.1068996
– volume: 12
  start-page: 81
  year: 2011
  ident: 2259_CR18
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-81
– volume: 126
  start-page: 2079
  issue: 9
  year: 2010
  ident: 2259_CR52
  publication-title: Int J Cancer J Int Du Cancer
  doi: 10.1002/ijc.24878
– volume: 41
  start-page: 493
  issue: 5
  year: 2010
  ident: 2259_CR59
  publication-title: Anim Genet
  doi: 10.1111/j.1365-2052.2010.02040.x
– volume: 9
  start-page: 344
  issue: 8
  year: 2003
  ident: 2259_CR31
  publication-title: Trends Mol Med
  doi: 10.1016/S1471-4914(03)00138-2
– volume: 40
  start-page: 103
  issue: 1
  year: 2008
  ident: 2259_CR66
  publication-title: Genet Sel Evol
– volume: 84
  start-page: E105
  issue: Suppl
  year: 2006
  ident: 2259_CR33
  publication-title: J Anim Sci
  doi: 10.2527/2006.8413_supplE105x
– volume: 14
  start-page: 121
  year: 2013
  ident: 2259_CR13
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-121
– volume: 58
  start-page: 247
  year: 2001
  ident: 2259_CR38
  publication-title: Reprod Suppl
– volume: 13
  start-page: 59
  year: 2012
  ident: 2259_CR16
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-59
– volume: 61
  start-page: 1413
  issue: 10
  year: 2012
  ident: 2259_CR49
  publication-title: Metab Clin Exp
  doi: 10.1016/j.metabol.2012.03.018
– volume: 49
  start-page: 59
  issue: 1
  year: 2014
  ident: 2259_CR32
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409238.2013.857291
– volume: 16
  start-page: 159
  issue: 3
  year: 2007
  ident: 2259_CR43
  publication-title: Cardiovasc Pathol
  doi: 10.1016/j.carpath.2007.01.004
– volume: 10
  start-page: 175
  issue: 3
  year: 2014
  ident: 2259_CR47
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2013.262
– volume: 354
  start-page: 191
  issue: 2
  year: 2011
  ident: 2259_CR35
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2011.03.015
– volume: 7
  start-page: 645
  issue: 8
  year: 2006
  ident: 2259_CR26
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1914
– start-page: 38
  volume-title: The Genetics of the Pig
  year: 2011
  ident: 2259_CR24
  doi: 10.1079/9781845937560.0038
– volume: 410
  start-page: 531
  issue: 3
  year: 2011
  ident: 2259_CR42
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2011.06.017
– volume: 32
  start-page: 261
  issue: 2
  year: 2002
  ident: 2259_CR3
  publication-title: Nat Genet
  doi: 10.1038/ng983
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 2259_CR69
  publication-title: J Roy Stat Soc B Met
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 37
  start-page: 189
  issue: 3
  year: 2006
  ident: 2259_CR64
  publication-title: Anim Genet
  doi: 10.1111/j.1365-2052.2005.01385.x
– volume: 12
  start-page: 253
  year: 2011
  ident: 2259_CR30
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-253
– volume: 1
  start-page: 1409
  issue: 10
  year: 2007
  ident: 2259_CR36
  publication-title: Int J Anim Biosci
  doi: 10.1017/S1751731107000766
– volume: 1
  start-page: 354
  issue: 4
  year: 2010
  ident: 2259_CR62
  publication-title: Nucleus
  doi: 10.4161/nucl.1.4.12435
– volume: 32
  start-page: 187
  issue: 2
  year: 2000
  ident: 2259_CR63
  publication-title: Genet Sel Evol
  doi: 10.1186/1297-9686-32-2-187
– volume: 12
  start-page: 635
  year: 2011
  ident: 2259_CR8
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-635
– volume: 86
  start-page: 166
  issue: 1
  year: 2010
  ident: 2259_CR45
  publication-title: Meat Sci
  doi: 10.1016/j.meatsci.2010.04.040
– volume: 415
  start-page: 325
  issue: 2
  year: 2008
  ident: 2259_CR50
  publication-title: Biochem J
  doi: 10.1042/BJ20080658
– volume: 16
  start-page: 177
  year: 2015
  ident: 2259_CR34
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1403-x
– volume: 95
  start-page: 854
  issue: 4
  year: 2013
  ident: 2259_CR46
  publication-title: Meat Sci
  doi: 10.1016/j.meatsci.2013.05.010
– volume: 78
  start-page: 25
  issue: 1
  year: 2002
  ident: 2259_CR37
  publication-title: Livest Prod Sci
  doi: 10.1016/S0301-6226(02)00183-5
– volume: 425
  start-page: 832
  issue: 6960
  year: 2003
  ident: 2259_CR57
  publication-title: Nature
  doi: 10.1038/nature02064
– volume: 24
  start-page: 1480
  issue: 8
  year: 2007
  ident: 2259_CR68
  publication-title: Pharm Res
  doi: 10.1007/s11095-007-9266-8
– volume: 44
  start-page: 808
  issue: 7
  year: 2012
  ident: 2259_CR14
  publication-title: Nat Genet
  doi: 10.1038/ng.2309
– volume: 10
  start-page: 89
  year: 2009
  ident: 2259_CR21
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-89
– volume: 13
  start-page: 346
  issue: 1
  year: 2012
  ident: 2259_CR17
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-346
– volume: 48
  start-page: 515
  issue: 6
  year: 2013
  ident: 2259_CR53
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409238.2013.831023
– volume: 88
  start-page: 499
  issue: 4
  year: 2011
  ident: 2259_CR25
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2011.03.012
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 2259_CR70
  publication-title: R News
– volume: 14
  start-page: 65
  year: 2013
  ident: 2259_CR12
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-65
– volume: 109
  start-page: 12449
  issue: 31
  year: 2012
  ident: 2259_CR51
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1210303109
– volume: 11
  start-page: 686
  year: 2010
  ident: 2259_CR20
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-686
– volume: 14
  start-page: 123
  year: 2013
  ident: 2259_CR5
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-123
– volume: 2
  issue: 5
  year: 2004
  ident: 2259_CR7
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020132
– volume: 15
  start-page: 1197
  issue: 5
  year: 2006
  ident: 2259_CR2
  publication-title: Mol Biol Evol
– volume: 17
  start-page: 3095
  issue: 13
  year: 2008
  ident: 2259_CR10
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2008.03820.x
– volume: 12
  start-page: 813
  issue: 12
  year: 2012
  ident: 2259_CR55
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3339
– volume: 44
  start-page: 1
  year: 2012
  ident: 2259_CR60
  publication-title: Journées Recherche Porcine
– volume: 15
  start-page: 797
  issue: 1
  year: 2014
  ident: 2259_CR39
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-797
– volume: 4
  start-page: 153
  issue: 3
  year: 2013
  ident: 2259_CR61
  publication-title: Nucleus
  doi: 10.4161/nucl.24999
– volume: 136
  start-page: 211
  issue: 2
  year: 2008
  ident: 2259_CR29
  publication-title: Reproduction
  doi: 10.1530/REP-07-0312
– volume: 33
  start-page: 138
  issue: 2
  year: 2003
  ident: 2259_CR4
  publication-title: Nat Genet
  doi: 10.1038/ng1086
– volume: 14
  start-page: 18
  year: 2013
  ident: 2259_CR15
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-18
– volume: 95
  start-page: 308
  issue: 4
  year: 2014
  ident: 2259_CR48
  publication-title: Calcif Tissue Int
  doi: 10.1007/s00223-014-9894-z
– volume: 107
  start-page: 2977
  issue: 7
  year: 2010
  ident: 2259_CR19
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0912245107
– reference: 16734675 - Anim Genet. 2006 Jun;37(3):189-98
– reference: 16582081 - J Anim Sci. 2006 Apr;84 Suppl:E105-12
– reference: 23432824 - BMC Genomics. 2013;14:121
– reference: 23790743 - Meat Sci. 2013 Dec;95(4):854-70
– reference: 11980194 - Reprod Suppl. 2001;58:247-61
– reference: 22206443 - BMC Genomics. 2011;12:635
– reference: 24419359 - Nat Rev Endocrinol. 2014 Mar;10(3):175-86
– reference: 22551951 - Metabolism. 2012 Oct;61(10):1413-21
– reference: 12928036 - Trends Mol Med. 2003 Aug;9(8):344-50
– reference: 20394605 - Anim Genet. 2010 Oct;41(5):493-8
– reference: 21679692 - Biochem Biophys Res Commun. 2011 Jul 8;410(3):531-6
– reference: 23324212 - BMC Genomics. 2013;14:18
– reference: 14736401 - Genet Sel Evol. 2000 Mar-Apr;32(2):187-203
– reference: 22839760 - BMC Genomics. 2012;13:346
– reference: 20133628 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2977-82
– reference: 14574411 - Nature. 2003 Oct 23;425(6960):832-6
– reference: 22444914 - Animal. 2007 Nov;1(10):1409-13
– reference: 19239697 - BMC Genomics. 2009;10:89
– reference: 21276238 - BMC Genomics. 2011;12:81
– reference: 23100586 - J Anim Sci. 2012 Dec;90(13):4729-40
– reference: 25887672 - BMC Genomics. 2015;16:177
– reference: 20477793 - Anim Genet. 2010 Oct;41(5):478-92
– reference: 25226791 - BMC Genomics. 2014;15:797
– reference: 20605337 - Meat Sci. 2010 Sep;86(1):166-70
– reference: 24237131 - Crit Rev Biochem Mol Biol. 2014 Jan-Feb;49(1):59-68
– reference: 20617128 - Int J Biol Sci. 2010;6(4):350-60
– reference: 22305654 - BMC Genomics. 2012;13:59
– reference: 23483478 - Protein Cell. 2013 Mar;4(3):168-75
– reference: 23971743 - Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):515-21
– reference: 16626448 - Mol Ecol. 2006 Apr;15(5):1197-211
– reference: 22705669 - Nat Rev Genet. 2012 Jul;13(7):505-16
– reference: 15138501 - PLoS Biol. 2004 May;2(5):E132
– reference: 23432914 - BMC Genomics. 2013;14:123
– reference: 18522696 - Mol Ecol. 2008 Jul;17(13):3095-108
– reference: 17380264 - Pharm Res. 2007 Aug;24(8):1480-9
– reference: 15687289 - Genome Res. 2005 Feb;15(2):260-8
– reference: 21483733 - PLoS One. 2011;6(4):e14782
– reference: 18456903 - Reproduction. 2008 Aug;136(2):211-24
– reference: 12679338 - J Biol Chem. 2003 Jun 20;278(25):22838-45
– reference: 22064064 - Meat Sci. 2005 Sep;71(1):194-204
– reference: 21420400 - Dev Biol. 2011 Jun 15;354(2):191-207
– reference: 25055749 - Calcif Tissue Int. 2014 Oct;95(4):308-16
– reference: 23444967 - BMC Bioinformatics. 2013;14:70
– reference: 21473985 - Am J Hum Genet. 2011 Apr 8;88(4):499-507
– reference: 18570629 - Biochem J. 2008 Oct 15;415(2):325-31
– reference: 22814378 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54
– reference: 19739119 - Int J Cancer. 2010 May 1;126(9):2079-89
– reference: 22573175 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W478-83
– reference: 18096118 - Genet Sel Evol. 2008 Jan-Feb;40(1):103-28
– reference: 17502245 - Cardiovasc Pathol. 2007 May-Jun;16(3):159-64
– reference: 21693065 - BMC Bioinformatics. 2011;12:253
– reference: 21327084 - Nucleus. 2010 Jul-Aug;1(4):354-66
– reference: 12548287 - Nat Genet. 2003 Feb;33(2):138-44
– reference: 11951044 - Science. 2002 Apr 12;296(5566):340-3
– reference: 22660546 - Nat Genet. 2012 Jul;44(7):808-11
– reference: 16847464 - Nat Rev Genet. 2006 Aug;7(8):645-53
– reference: 23151514 - Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19529-36
– reference: 23175229 - Nat Rev Immunol. 2012 Dec;12(12):813-20
– reference: 23714733 - Nucleus. 2013 May-Jun;4(3):153-5
– reference: 16734682 - Anim Genet. 2006 Jun;37(3):232-8
– reference: 23368736 - BMC Genomics. 2013;14:65
– reference: 12219088 - Nat Genet. 2002 Oct;32(2):261-6
– reference: 21126341 - BMC Genomics. 2010;11:686
SSID ssj0017825
Score 2.1918566
Snippet Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the...
Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the...
Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the...
Among transcriptomic studies, those comparing species or populations can increase ourunderstanding of the impact of the evolutionary forces on the...
SourceID pubmedcentral
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1055
SubjectTerms Analysis
Animal Genetics and Genomics
Animals
Biomedical and Life Sciences
Breeding
Female
Gene expression
Gene Expression Profiling - methods
Gene Expression Profiling - veterinary
Gene Expression Regulation
Genes
Genetic research
Genomics
Life Sciences
Livestock
Male
Microarrays
Microbial Genetics and Genomics
Muscle proteins
Muscle, Skeletal - metabolism
Muscles
Non-human and non-rodent vertebrate genomics
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Array Sequence Analysis - veterinary
Plant Genetics and Genomics
Proteomics
Research Article
Signal Transduction
Statistical methods
Sus scrofa - classification
Sus scrofa - genetics
Sus scrofa - metabolism
Swine
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELe2Tki8IL5XGMhMSEigaE1iO_YDQgVtKggqNJjYm-XYDq20pYOkoP4F_NvcJU4gTOypUn12nPh8H77z7wh5KgvrkszFkZLWooNSRMDKLCriwluZT1Ll8Lzjw1zMTti7U366RebdXRhMq-xkYiOo3criGflBnGWKszhW6tXFtwirRmF0tSuhYUJpBfeygRjbJjsJVlUekZ3Xh_OPx31cAfQhD7HNWIqDCqSzwCwMHgFfq0gNtFOQ0dsLTJG8bH9eTqP8J5baqKijm-RGsC3ptGWGW2TLl7fJtbba5OYO-dXn29EaNVQjL_BSMnVdcgZdlvR8XUFvitBOMDFH64WpKZ7vY8IqxXwPg1fYKdYy_mk2FT03y_JsQ7tSKyAyak8LGJJ-aWEYKNj4GL-n4H57V90lJ0eHn9_MolCHIbLgTtRRzhLvpGPcGcdNYnluZRpbYQ1HPHqf5YXNRJGk1kluETAPBIcXLHcO3KE0T--RUbkq_S6h4O3YDIwIxlPDhJvkIPfhRzL0hLxXYzLpvr-2AaQca2Wc6cZZkUK3S6ZhyTQumYYuz_suFy1Cx1XE-7ioGpEvSkyt-WrWVaXffjrWUyakYgLMtTF5FoiKFTzcmnBTAV4BwbIGlHsDStiadtC8D7zTzwqRvGfT9xr_A7uAgS83-RHDGB1r6SA_Kv2H28fkSd-Mw2NOXOlXa6RBbzVRAoa433Ji_ygwuzgivI5JNuDRwVyGLeVy0aCLg-YUIMTH5EXHzX9N63_f9cHVL_GQXE9wk8VYSGePjOrva_8IjLk6fxx26G8sbUo8
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_eieCL-O3q3REPQVCKmzZJk8dl8VhFfVAP7y2kSXq7cNcV21X2L_Dfvpk2Ldc7FXwqNJN02kzmo5n8hpAXqnQ-zT1LtHIOA5QyAVHmScnK4FQxzbTH_x0fP8nFMX9_Ik4iWDSehbm8f8-UfFOD_pSYJyESkDyd6B1yU4Dexey9uZwPGwZg6ETctPxjt5HZicp3Z4m5j9cdy-v5kVc2SVvbc3SX3IlOI511s3yP3AjVfXKrKyO5fUB-D4l0tEHT0yoCPG1MfZ91QVcVPd_U0JsiZhMw5mmztA3FH_eYiUoxkcPi2XSKRYp_2W1Nz-2qOtvSvoYK6IIm0BKGpN86fAUKzjtuzFOIq4OvH5Ljo7df54skFlhIHMQJTVLwNHjlufDWC5s6UTiVMSedFQg0H_KidLks08x5JRwi4YFGCJIX3kOckxXZI7JbravwhFAIY1wO3gEXmeXSTwtQ6HBRHEOcEPSETPvvb1xEH8ciGGemjUKUNN2UGZgyg1NmoMurocv3DnrjX8SHOKkGIS0qzJk5tZu6Nu--fDYzLpXmEvywCXkZico1PNzZeAQBXgFRsEaUeyNKWHNu1HwIsjNwhRDdi9kHg_fA4HMI0qY_GYzRi5aJiqE2LM-14Ixp4Pj50IzDY7JbFdYbpMEwNNUShnjcSeLwKPCnBEK3Tkg-ktERL-OWarVsYcPBJErQzhPyupfmS2z97bs-_S_qZ-R2imuOYcGcPbLb_NiEfXDamuKgXa4XfOs8Fw
  priority: 102
  providerName: Springer Nature
Title Exploring transcriptomic diversity in muscle revealed that cellular signaling pathways mainly differentiate five Western porcine breeds
URI https://link.springer.com/article/10.1186/s12864-015-2259-9
https://www.ncbi.nlm.nih.gov/pubmed/26651482
https://www.proquest.com/docview/1779541199
https://www.proquest.com/docview/1749992961
https://hal.science/hal-01245970
https://pubmed.ncbi.nlm.nih.gov/PMC4676870
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbWTUi8IO4URmUmJCRQWJPYjvOAUKk2FcQmNKjom-XYDq3UpduSAv0F_G3OyQ3CBg-8tGp8rX2u9sl3CHkqU2ODyPpeLI1BByX1gJSZl_qpMzIZhrHF846jYzGZsnczPtsiTXqregHzK107zCc1vVi-_H6-eQ0M_6pkeCn2c5CxAmMpuAfUGXtxj-yAYgqQyI_Yr0sFUIa8vti8shkCAwvBERmzo6VqWd2bY6jkZTv0cjjlH3eqpao6vElu1DYmHVVEcYtsuew2uVZlndzcIT_auDtaoKYq5Qa-nExtE6RBFxk9XefQmiLEE0zM0mKuC4rn_Bi4SjHuQ-Or7BRzGn_Tm5ye6kW23NAm5QqIjsLRFLqknys4BgrLjPf4FNxwZ_O7ZHp48Gk88ep8DJ4Bt6LwEhY4Ky3jVluuA8MTI0PfCKM54tK7KElNJNIgNFZyg8B5IECcYIm14BaFSXiPbGerzD0gFLweE4ExwXiombDDBOQ_fEmGHpFzcZ8Mm_VXpgYrx5wZS1U6LVKoavcU7J7C3VPQ5Hnb5KxC6vhX5T3cVIUIGBmG2HzR6zxXbz-eqBETMmYCzLY-eVZXSlcwuNH1GwvwFxA0q1Nzt1MTWNR0iveAdtpZIaL3ZPRe4TOwDxj4dMOvPvTRkJZq2ED5URRz5vsxzPhJW4zdY2xc5lZrrINeaxAL6OJ-RYntUA0990nUodHOXLol2WJeooyDBhUgzPvkRUPNv03rb-v68L_HeUSuB8iKPuba2SXbxcXaPQZ7r0gGpBfNogHZeXNw_OEEfo3FeFCenQxK_obPaTD6CdTrWS0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZ2EYIXxJ3CADOBkEDRmsR2kocJFdjUsa5CY9P2ZhzboZW2dJCUqb-Af8Vv45zECYSJve0pUnyJk3OPj79DyIs40yaIjO8lsdYYoGQesDLzMj-zOk77YWLwf8feWAwP2cdjfrxEfjVnYTCtstGJlaI2M43_yDf8KEo48_0keXv2zcOqUbi72pTQUK60gtmsIMbcwY5duziHEK7Y3PkA9H4ZBNtbB--Hnqsy4GlwlksvZYE1sWHcKMNVoHmq49DXQiuOaOs2SjMdiSwItYm5Rjg4EAsrWGoMOPthGsK8y2QV3I4QpGr13db40367jwH2l7u9VD8WGwVYA4FZH9wDOUq8pGMNnU1YnmBK5kV_92La5j97t5VJ3L5Fbjpflg5q5rtNlmx-h1yrq1su7pKfbX4fLdEiVvoJD0FT0ySD0GlOT-cFjKYIJQULM7ScqJLifgImyFLML1F4ZJ5i7eRztSjoqZrmJwvalHYBFVVamsGU9KiGfaAQU2C-AIVw35riHjm8EorcJyv5LLcPCYXoSkfgtDAeKiZMPwU7A5eYYeRlbdIj_eb7S-1A0bE2x4msgqNYyJpkEkgmkWQShrxuh5zViCCXdV5HokpE2sgxleermheF3Pm8LwdMxAkT4B72yCvXKZvBw7VyJyPgFRCcq9NzrdMTVIHuNK8D77SrQuTw4WAk8R74IQxix_4PH-ZoWEs6fVXIP9LVI8_bZpwec_ByO5tjH4yOg0TAFA9qTmwfBW4eR0TZHok6PNpZS7cln04qNHOw1AKMRo-8abj5r2X977s-uvwlnpHrw4O9kRztjHcfkxsBCpyPRXzWyEr5fW6fgCNZpk-dtFLy5aoVxG_CL4gr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYEGgviM9RGGAmJCRQtDqxHeexAqoOxoSAir1Zju3QSps7LSmofwH_Nnf5EmGAxFOk-Oxc4vN9xOffEfJMFdbFqWNRpqzFAKWIQJR5VLDCW5WPk8zh_473x3I2529PxElb57Tsst27LcnmTAOiNIXq4NwVzRJX8qAErSoxe0JEII9ZlG2RqxxMNUZf83jSbyOA-RPtVuYfuw2MUauStxaYEXnZ3bycNfnb1mltkaY3yY3WlaSTZu5vkSs-3CbXmuKSmzvkR59eRys0SLV6wDPI1HW5GHQZ6Nm6hN4UkZyAMUerhako_s7H_FSK6R0GT6xTLF383WxKemaW4XRDu8oqoCEqTwsYkn5pUBcouPS4XU8h2vauvEvm0zefX82ituxCZCF6qKKcx94px4UzTpjYityqhFlpjUD4eZ_mhU1lESfWKWERHw_0hJc8dw6inyRP7pHtsAr-PqEQ3NgUfAYuEsOlG-eg5uGiOAY-3mcjMu6-v7YtJjmWxjjVdWyipG6mTMOUaZwyDV1e9F3OG0COfxHv46RqBLoImEnz1azLUh9--qgnXKqMS_DORuR5S1Ss4OHWtAcT4BUQG2tAuTeghJVoB837IDs9VwjcPZscabwHbgCH0G38jcEYnWjpVl2UmqVpJjhjGXD8tG_G4TEFLvjVGmkwOI0zCUPsNpLYPwq8LIGAriOSDmR0wMuwJSwXNZg4GEoJOntEXnbS_Atbf_uuD_6L-gm5_uH1VB8dHr97SHZiXH4sjhjbI9vVxdo_Aq-uyh_XK_cnDgNHaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+transcriptomic+diversity+in+muscle+revealed+that+cellular+signaling+pathways+mainly+differentiate+five+Western+porcine+breeds&rft.jtitle=BMC+genomics&rft.au=SanCristobal%2C+Magali&rft.au=Rohart%2C+Florian&rft.au=Lascor%2C+Christine&rft.au=Bouffaud%2C+Marcel&rft.date=2015-12-12&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=16&rft_id=info:doi/10.1186%2Fs12864-015-2259-9&rft_id=info%3Apmid%2F26651482&rft.externalDocID=PMC4676870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon