Exploring transcriptomic diversity in muscle revealed that cellular signaling pathways mainly differentiate five Western porcine breeds
Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwen...
Saved in:
Published in | BMC genomics Vol. 16; no. 1; p. 1055 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
12.12.2015
BioMed Central Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2164 1471-2164 |
DOI | 10.1186/s12864-015-2259-9 |
Cover
Abstract | Background
Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray.
Results
A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds.
Conclusions
This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species. |
---|---|
AbstractList | Among transcriptomic studies, those comparing species or populations can increase ourunderstanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation isthe one of short evolution time with breeds of a domesticated species that underwent strong selective pressures.In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray.A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes weredeclared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds.This study on transcriptomic differentiation across Western pig breeds highlighted a global picture:mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species. Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piñtrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piñtrain breeds. This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species. Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Pietrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. Results A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Pietrain breeds. Conclusions This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species. Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds. This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species. Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piñtrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. Results A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piñtrain breeds. Conclusions This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species. Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray. Results A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds. Conclusions This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species. Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray.BACKGROUNDAmong transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the differentiation of populations. A particular situation is the one of short evolution time with breeds of a domesticated species that underwent strong selective pressures. In this study, the gene expression diversity across five pig breeds has been explored in muscle. Samples came from: 24 Duroc, 33 Landrace, 41 Large White dam line, 10 Large White sire line and 39 Piétrain. From these animals, 147 muscle samples obtained at slaughter were analyzed using the porcine Agilent 44 K v1 microarray.A total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds.RESULTSA total of 12,358 genes were identified as expressed in muscle after normalization and 1,703 genes were declared differential for at least one breed (FDR < 0.001). The functional analysis highlighted that gene expression diversity is mainly linked to cellular signaling pathways such as the PI3K (phosphoinositide 3-kinase) pathway. The PI3K pathway is known to be involved in the control of development of the skeletal muscle mass by affecting extracellular matrix - receptor interactions, regulation of actin cytoskeleton pathways and some metabolic functions. This study also highlighted 228 spots (171 unique genes) that differentiate the breeds from each other. A common subgroup of 15 genes selected by three statistical methods was able to differentiate Duroc, Large White and Piétrain breeds.This study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species.CONCLUSIONSThis study on transcriptomic differentiation across Western pig breeds highlighted a global picture: mainly signaling pathways were affected. This result is consistent with the selection objective of increasing muscle mass. These transcriptional changes may indicate selection pressure or simply breed differences which may be driven by human selection. Further work aiming at comparing genetic and transcriptomic diversities would further increase our understanding of the consequences of human impact on livestock species. |
ArticleNumber | 1055 |
Audience | Academic |
Author | Bouffaud, Marcel Faraut, Thomas Liaubet, Laurence Rohart, Florian Milan, Denis SanCristobal, Magali Lascor, Christine Mercat, Marie-José Tribout, Thierry Martin, Pascal G.P. Trouilh, Lidwine Lippi, Yannick |
Author_xml | – sequence: 1 givenname: Magali surname: SanCristobal fullname: SanCristobal, Magali email: magali.san-cristobal@toulouse.inra.fr organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique – sequence: 2 givenname: Florian surname: Rohart fullname: Rohart, Florian organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Rds (Bldg 75), The University of Queensland – sequence: 3 givenname: Christine surname: Lascor fullname: Lascor, Christine organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique – sequence: 4 givenname: Marcel surname: Bouffaud fullname: Bouffaud, Marcel organization: INRA, UE450 Testage - porcs – sequence: 5 givenname: Lidwine surname: Trouilh fullname: Trouilh, Lidwine organization: Plateforme Transcriptome GeT-Biopuces, Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés (LISBP) – sequence: 6 givenname: Pascal G.P. surname: Martin fullname: Martin, Pascal G.P. organization: Plateau Transcriptomic impact of Xenobiotics (TRiX), ToxAlim INRA/INP – sequence: 7 givenname: Yannick surname: Lippi fullname: Lippi, Yannick organization: Plateau Transcriptomic impact of Xenobiotics (TRiX), ToxAlim INRA/INP – sequence: 8 givenname: Thierry surname: Tribout fullname: Tribout, Thierry organization: INRA GABI – sequence: 9 givenname: Thomas surname: Faraut fullname: Faraut, Thomas organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique – sequence: 10 givenname: Marie-José surname: Mercat fullname: Mercat, Marie-José organization: IFIP/BIOPORC – sequence: 11 givenname: Denis surname: Milan fullname: Milan, Denis organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique – sequence: 12 givenname: Laurence surname: Liaubet fullname: Liaubet, Laurence organization: INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Université de Toulouse INPT ENVT, UMR1388 Génétique |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26651482$$D View this record in MEDLINE/PubMed https://hal.science/hal-01245970$$DView record in HAL |
BookMark | eNp9kstu1DAYhSNURC_wAGyQJTZ0kRI7viQbpFFVaKWRkLiIpeU4f2ZcJXawnaHzBLw2jqaUmQpQFomc7xzb5z-n2ZF1FrLsJS4uMK7424BJxWleYJYTwuq8fpKdYCpwTjCnR3vfx9lpCLdFgUVF2LPsmHDOMK3ISfbz6m7snTd2haJXNmhvxugGo1FrNuCDiVtkLBqmoHtAHjagemhRXKuINPT91CuPgllZ1c8eo4rrH2ob0KCM7bfJpOvAg41GRUBdskTfIETwFo3Oa2MBNR6gDc-zp53qA7y4f59lX99ffbm8zpcfP9xcLpa55oLFvKEE2qqlrFUtU0SzRlcl1lwrRqtSgGg6LXhHSt1WTFdc4LIQwGnTtrQSZVOeZe92vuPUDNDqdDSvejl6Myi_lU4ZefjHmrVcuY2kXPBKFMngfGewfiS7XizlvFZgQlktig1O7Jv7zbz7PqV7y8GEOTVlwU1BYkHruiY1n9HXj9BbN_mU6kyJmlGM6_oPtUpTkMZ2Lp1Rz6ZyQXlVU16XIlEXf6HS00IabKpQZ9L6geD8QJCYCHdxpaYQ5M3nT4fsq_0AHyL4XakE4B2gvQvBQ_eA4ELOtZW72qagmJxrK-d7iUcabaKKxs0zMP1_lWSnDONcYvB7uf1T9AsiEwKK |
CitedBy_id | crossref_primary_10_1111_jpn_13906 crossref_primary_10_1007_s13258_017_0540_9 crossref_primary_10_1016_j_genrep_2021_101429 crossref_primary_10_1111_age_12654 crossref_primary_10_1186_s12711_023_00789_z crossref_primary_10_1016_j_ygeno_2021_04_019 |
Cites_doi | 10.1093/nar/gks402 10.1074/jbc.M212969200 10.1111/j.1365-2052.2006.01440.x 10.1101/gr.2405905 10.1186/1471-2105-14-70 10.1371/journal.pone.0014782 10.1023/A:1010933404324 10.1111/j.1365-2052.2010.02054.x 10.7150/ijbs.6.350 10.1038/nrg3229 10.1073/pnas.1217149109 10.1007/s13238-012-2109-3 10.1016/j.meatsci.2005.04.022 10.2527/jas.2012-5338 10.1126/science.1068996 10.1186/1471-2164-12-81 10.1002/ijc.24878 10.1111/j.1365-2052.2010.02040.x 10.1016/S1471-4914(03)00138-2 10.2527/2006.8413_supplE105x 10.1186/1471-2164-14-121 10.1186/1471-2164-13-59 10.1016/j.metabol.2012.03.018 10.3109/10409238.2013.857291 10.1016/j.carpath.2007.01.004 10.1038/nrendo.2013.262 10.1016/j.ydbio.2011.03.015 10.1038/nrg1914 10.1079/9781845937560.0038 10.1016/j.bbrc.2011.06.017 10.1038/ng983 10.1111/j.2517-6161.1995.tb02031.x 10.1111/j.1365-2052.2005.01385.x 10.1186/1471-2105-12-253 10.1017/S1751731107000766 10.4161/nucl.1.4.12435 10.1186/1297-9686-32-2-187 10.1186/1471-2164-12-635 10.1016/j.meatsci.2010.04.040 10.1042/BJ20080658 10.1186/s12864-015-1403-x 10.1016/j.meatsci.2013.05.010 10.1016/S0301-6226(02)00183-5 10.1038/nature02064 10.1007/s11095-007-9266-8 10.1038/ng.2309 10.1186/1471-2164-10-89 10.1186/1471-2164-13-346 10.3109/10409238.2013.831023 10.1016/j.ajhg.2011.03.012 10.1186/1471-2164-14-65 10.1073/pnas.1210303109 10.1186/1471-2164-11-686 10.1186/1471-2164-14-123 10.1371/journal.pbio.0020132 10.1111/j.1365-294X.2008.03820.x 10.1038/nri3339 10.1186/1471-2164-15-797 10.4161/nucl.24999 10.1530/REP-07-0312 10.1038/ng1086 10.1186/1471-2164-14-18 10.1007/s00223-014-9894-z 10.1073/pnas.0912245107 |
ContentType | Journal Article |
Copyright | SanCristobal et al. 2015 COPYRIGHT 2015 BioMed Central Ltd. Copyright BioMed Central 2015 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: SanCristobal et al. 2015 – notice: COPYRIGHT 2015 BioMed Central Ltd. – notice: Copyright BioMed Central 2015 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 1XC VOOES 5PM |
DOI | 10.1186/s12864-015-2259-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer_OA刊 url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
ExternalDocumentID | PMC4676870 oai_HAL_hal_01245970v1 4015259251 A468946937 26651482 10_1186_s12864_015_2259_9 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 23N 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 1XC 2VQ C1A IPNFZ RIG VOOES 5PM |
ID | FETCH-LOGICAL-c675t-b42ed8d45dad5a2c5bc831c6ca54837e7bfc76f23cd85c8671307e64bdd4873b3 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Thu Aug 21 18:33:47 EDT 2025 Fri Sep 12 12:50:10 EDT 2025 Fri Sep 05 08:49:39 EDT 2025 Fri Jul 25 10:43:59 EDT 2025 Tue Jun 17 22:05:40 EDT 2025 Tue Jun 10 21:04:41 EDT 2025 Fri Jun 27 05:47:25 EDT 2025 Mon Jul 21 05:57:02 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Tue Jul 01 02:22:23 EDT 2025 Sat Sep 06 07:21:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Production Trait Differentially Express Gene Differentially Express Muscle Mass Pairwise Analysis population transcriptomic selection domestication pattern european pig breed vitamin-d evolution skeletal muscle mechanism gene expression |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c675t-b42ed8d45dad5a2c5bc831c6ca54837e7bfc76f23cd85c8671307e64bdd4873b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8062-5072 0000-0003-3036-6479 0000-0002-4271-658X 0000-0003-4717-078X 0000-0003-0201-0264 0000-0001-5156-3434 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-015-2259-9 |
PMID | 26651482 |
PQID | 1779541199 |
PQPubID | 44682 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4676870 hal_primary_oai_HAL_hal_01245970v1 proquest_miscellaneous_1749992961 proquest_journals_1779541199 gale_infotracmisc_A468946937 gale_infotracacademiconefile_A468946937 gale_incontextgauss_ISR_A468946937 pubmed_primary_26651482 crossref_primary_10_1186_s12864_015_2259_9 crossref_citationtrail_10_1186_s12864_015_2259_9 springer_journals_10_1186_s12864_015_2259_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-12 |
PublicationDateYYYYMMDD | 2015-12-12 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC genomics |
PublicationTitleAbbrev | BMC Genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2015 |
Publisher | BioMed Central BioMed Central Ltd |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
References | A Stinckens (2259_CR59) 2010; 41 SY Jiang (2259_CR15) 2013; 14 H Fraser (2259_CR19) 2010; 107 S Thorsteinsdottir (2259_CR35) 2011; 354 W Enard (2259_CR6) 2002; 296 P Khaitovich (2259_CR7) 2004; 2 D Bem (2259_CR25) 2011; 88 D Natt (2259_CR16) 2012; 13 L Fontanesi (2259_CR40) 2010; 41 Y Benjamini (2259_CR69) 1995; 57 MA Busby (2259_CR8) 2011; 12 PJ Ferre (2259_CR68) 2007; 24 SH Lee (2259_CR45) 2010; 86 KS Kobayashi (2259_CR55) 2012; 12 N Buys (2259_CR58) 2006 L Atanasova (2259_CR13) 2013; 14 G Laval (2259_CR63) 2000; 32 X Su (2259_CR53) 2013; 48 L Yang (2259_CR12) 2013; 14 B Vicoso (2259_CR26) 2006; 7 DA Ferrarezi (2259_CR49) 2012; 61 L Müller (2259_CR18) 2011; 12 GR Foxcroft (2259_CR33) 2006; 84 Y Li (2259_CR41) 2010; 6 M SanCristobal (2259_CR64) 2006; 37 Z Yin (2259_CR56) 2003; 278 JG Laing (2259_CR43) 2007; 16 MJ Mercat (2259_CR60) 2012; 44 T Le Gall (2259_CR9) 2005; 15 KK Starheim (2259_CR50) 2008; 415 M Mensack (2259_CR20) 2010; 11 D Tabas-Madrid (2259_CR27) 2012; 40 M Blomberg Jensen (2259_CR47) 2014; 10 A Liaw (2259_CR70) 2002; 2 M Oleksiak (2259_CR3) 2002; 32 E Jimenez-Guri (2259_CR5) 2013; 14 E Huff-Lonergan (2259_CR44) 2005; 71 HC Yang (2259_CR17) 2012; 13 T Giger (2259_CR10) 2008; 17 Y Yao (2259_CR54) 2013; 4 A Whitehead (2259_CR2) 2006; 15 M Pérez-Enciso (2259_CR21) 2009; 10 HJ Megens (2259_CR66) 2008; 40 JC Politz (2259_CR61) 2013; 4 L Breiman (2259_CR28) 2001; 45 MB Hufford (2259_CR14) 2012; 44 A Bonnet (2259_CR29) 2008; 136 M SanCristobal (2259_CR65) 2006; 37 P Herpin (2259_CR37) 2002; 78 DJ Glass (2259_CR31) 2003; 9 T van der Lende (2259_CR38) 2001; 58 B Guo (2259_CR34) 2015; 16 F Rohart (2259_CR22) 2012; 90 L Canario (2259_CR36) 2007; 1 AS Van Laere (2259_CR57) 2003; 425 V Voillet (2259_CR39) 2014; 15 A Chow (2259_CR52) 2010; 126 A Ouali (2259_CR46) 2013; 95 AJ Amaral (2259_CR67) 2011; 6 S Rifkin (2259_CR4) 2003; 33 L Andersson (2259_CR24) 2011 HP Patel (2259_CR48) 2014; 95 CJ Rubin (2259_CR23) 2012; 109 N Tkachuk (2259_CR42) 2011; 410 P Van Damme (2259_CR51) 2012; 109 MA Egerman (2259_CR32) 2014; 49 2259_CR1 P Clayton (2259_CR62) 2010; 1 E Kristiansson (2259_CR11) 2013; 14 K-A Lê Cao (2259_CR30) 2011; 12 21126341 - BMC Genomics. 2010;11:686 16734675 - Anim Genet. 2006 Jun;37(3):189-98 23483478 - Protein Cell. 2013 Mar;4(3):168-75 18096118 - Genet Sel Evol. 2008 Jan-Feb;40(1):103-28 21679692 - Biochem Biophys Res Commun. 2011 Jul 8;410(3):531-6 21420400 - Dev Biol. 2011 Jun 15;354(2):191-207 20394605 - Anim Genet. 2010 Oct;41(5):493-8 16626448 - Mol Ecol. 2006 Apr;15(5):1197-211 23432824 - BMC Genomics. 2013;14:121 23151514 - Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19529-36 20605337 - Meat Sci. 2010 Sep;86(1):166-70 23175229 - Nat Rev Immunol. 2012 Dec;12(12):813-20 23100586 - J Anim Sci. 2012 Dec;90(13):4729-40 22814378 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54 17502245 - Cardiovasc Pathol. 2007 May-Jun;16(3):159-64 22305654 - BMC Genomics. 2012;13:59 15138501 - PLoS Biol. 2004 May;2(5):E132 19239697 - BMC Genomics. 2009;10:89 23971743 - Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):515-21 12548287 - Nat Genet. 2003 Feb;33(2):138-44 22551951 - Metabolism. 2012 Oct;61(10):1413-21 18456903 - Reproduction. 2008 Aug;136(2):211-24 23324212 - BMC Genomics. 2013;14:18 22444914 - Animal. 2007 Nov;1(10):1409-13 23714733 - Nucleus. 2013 May-Jun;4(3):153-5 11951044 - Science. 2002 Apr 12;296(5566):340-3 22705669 - Nat Rev Genet. 2012 Jul;13(7):505-16 11980194 - Reprod Suppl. 2001;58:247-61 12679338 - J Biol Chem. 2003 Jun 20;278(25):22838-45 14574411 - Nature. 2003 Oct 23;425(6960):832-6 21327084 - Nucleus. 2010 Jul-Aug;1(4):354-66 22573175 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W478-83 14736401 - Genet Sel Evol. 2000 Mar-Apr;32(2):187-203 21483733 - PLoS One. 2011;6(4):e14782 15687289 - Genome Res. 2005 Feb;15(2):260-8 23444967 - BMC Bioinformatics. 2013;14:70 16582081 - J Anim Sci. 2006 Apr;84 Suppl:E105-12 21693065 - BMC Bioinformatics. 2011;12:253 20477793 - Anim Genet. 2010 Oct;41(5):478-92 23790743 - Meat Sci. 2013 Dec;95(4):854-70 22064064 - Meat Sci. 2005 Sep;71(1):194-204 12219088 - Nat Genet. 2002 Oct;32(2):261-6 21276238 - BMC Genomics. 2011;12:81 20133628 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2977-82 22839760 - BMC Genomics. 2012;13:346 22660546 - Nat Genet. 2012 Jul;44(7):808-11 25226791 - BMC Genomics. 2014;15:797 16734682 - Anim Genet. 2006 Jun;37(3):232-8 23368736 - BMC Genomics. 2013;14:65 25887672 - BMC Genomics. 2015;16:177 22206443 - BMC Genomics. 2011;12:635 20617128 - Int J Biol Sci. 2010;6(4):350-60 18522696 - Mol Ecol. 2008 Jul;17(13):3095-108 17380264 - Pharm Res. 2007 Aug;24(8):1480-9 19739119 - Int J Cancer. 2010 May 1;126(9):2079-89 25055749 - Calcif Tissue Int. 2014 Oct;95(4):308-16 18570629 - Biochem J. 2008 Oct 15;415(2):325-31 16847464 - Nat Rev Genet. 2006 Aug;7(8):645-53 21473985 - Am J Hum Genet. 2011 Apr 8;88(4):499-507 12928036 - Trends Mol Med. 2003 Aug;9(8):344-50 24419359 - Nat Rev Endocrinol. 2014 Mar;10(3):175-86 23432914 - BMC Genomics. 2013;14:123 24237131 - Crit Rev Biochem Mol Biol. 2014 Jan-Feb;49(1):59-68 |
References_xml | – volume: 40 start-page: W478 year: 2012 ident: 2259_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks402 – volume: 278 start-page: 22838 issue: 25 year: 2003 ident: 2259_CR56 publication-title: J Biol Chem doi: 10.1074/jbc.M212969200 – volume: 37 start-page: 232 issue: 3 year: 2006 ident: 2259_CR65 publication-title: Anim Genet doi: 10.1111/j.1365-2052.2006.01440.x – volume: 15 start-page: 260 issue: 2 year: 2005 ident: 2259_CR9 publication-title: Genome Res doi: 10.1101/gr.2405905 – volume: 14 start-page: 70 issue: 1 year: 2013 ident: 2259_CR11 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-70 – volume: 6 start-page: e14782 issue: 4 year: 2011 ident: 2259_CR67 publication-title: PLoS One doi: 10.1371/journal.pone.0014782 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 2259_CR28 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 41 start-page: 478 issue: 5 year: 2010 ident: 2259_CR40 publication-title: Anim Genet doi: 10.1111/j.1365-2052.2010.02054.x – volume: 6 start-page: 350 issue: 4 year: 2010 ident: 2259_CR41 publication-title: Int J Biol Sci doi: 10.7150/ijbs.6.350 – ident: 2259_CR1 doi: 10.1038/nrg3229 – volume: 109 start-page: 19529 issue: 48 year: 2012 ident: 2259_CR23 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1217149109 – volume: 4 start-page: 168 issue: 3 year: 2013 ident: 2259_CR54 publication-title: Protein Cell doi: 10.1007/s13238-012-2109-3 – volume: 71 start-page: 194 issue: 1 year: 2005 ident: 2259_CR44 publication-title: Meat Sci doi: 10.1016/j.meatsci.2005.04.022 – volume: 90 start-page: 4729 issue: 13 year: 2012 ident: 2259_CR22 publication-title: J Anim Sci doi: 10.2527/jas.2012-5338 – start-page: 6 volume-title: 8th World Congress on Genetics Applied to Livestock Production: 13–18 August, 2006 year: 2006 ident: 2259_CR58 – volume: 296 start-page: 340 issue: 5566 year: 2002 ident: 2259_CR6 publication-title: Science doi: 10.1126/science.1068996 – volume: 12 start-page: 81 year: 2011 ident: 2259_CR18 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-81 – volume: 126 start-page: 2079 issue: 9 year: 2010 ident: 2259_CR52 publication-title: Int J Cancer J Int Du Cancer doi: 10.1002/ijc.24878 – volume: 41 start-page: 493 issue: 5 year: 2010 ident: 2259_CR59 publication-title: Anim Genet doi: 10.1111/j.1365-2052.2010.02040.x – volume: 9 start-page: 344 issue: 8 year: 2003 ident: 2259_CR31 publication-title: Trends Mol Med doi: 10.1016/S1471-4914(03)00138-2 – volume: 40 start-page: 103 issue: 1 year: 2008 ident: 2259_CR66 publication-title: Genet Sel Evol – volume: 84 start-page: E105 issue: Suppl year: 2006 ident: 2259_CR33 publication-title: J Anim Sci doi: 10.2527/2006.8413_supplE105x – volume: 14 start-page: 121 year: 2013 ident: 2259_CR13 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-121 – volume: 58 start-page: 247 year: 2001 ident: 2259_CR38 publication-title: Reprod Suppl – volume: 13 start-page: 59 year: 2012 ident: 2259_CR16 publication-title: BMC Genomics doi: 10.1186/1471-2164-13-59 – volume: 61 start-page: 1413 issue: 10 year: 2012 ident: 2259_CR49 publication-title: Metab Clin Exp doi: 10.1016/j.metabol.2012.03.018 – volume: 49 start-page: 59 issue: 1 year: 2014 ident: 2259_CR32 publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409238.2013.857291 – volume: 16 start-page: 159 issue: 3 year: 2007 ident: 2259_CR43 publication-title: Cardiovasc Pathol doi: 10.1016/j.carpath.2007.01.004 – volume: 10 start-page: 175 issue: 3 year: 2014 ident: 2259_CR47 publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2013.262 – volume: 354 start-page: 191 issue: 2 year: 2011 ident: 2259_CR35 publication-title: Dev Biol doi: 10.1016/j.ydbio.2011.03.015 – volume: 7 start-page: 645 issue: 8 year: 2006 ident: 2259_CR26 publication-title: Nat Rev Genet doi: 10.1038/nrg1914 – start-page: 38 volume-title: The Genetics of the Pig year: 2011 ident: 2259_CR24 doi: 10.1079/9781845937560.0038 – volume: 410 start-page: 531 issue: 3 year: 2011 ident: 2259_CR42 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2011.06.017 – volume: 32 start-page: 261 issue: 2 year: 2002 ident: 2259_CR3 publication-title: Nat Genet doi: 10.1038/ng983 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 2259_CR69 publication-title: J Roy Stat Soc B Met doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 37 start-page: 189 issue: 3 year: 2006 ident: 2259_CR64 publication-title: Anim Genet doi: 10.1111/j.1365-2052.2005.01385.x – volume: 12 start-page: 253 year: 2011 ident: 2259_CR30 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-253 – volume: 1 start-page: 1409 issue: 10 year: 2007 ident: 2259_CR36 publication-title: Int J Anim Biosci doi: 10.1017/S1751731107000766 – volume: 1 start-page: 354 issue: 4 year: 2010 ident: 2259_CR62 publication-title: Nucleus doi: 10.4161/nucl.1.4.12435 – volume: 32 start-page: 187 issue: 2 year: 2000 ident: 2259_CR63 publication-title: Genet Sel Evol doi: 10.1186/1297-9686-32-2-187 – volume: 12 start-page: 635 year: 2011 ident: 2259_CR8 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-635 – volume: 86 start-page: 166 issue: 1 year: 2010 ident: 2259_CR45 publication-title: Meat Sci doi: 10.1016/j.meatsci.2010.04.040 – volume: 415 start-page: 325 issue: 2 year: 2008 ident: 2259_CR50 publication-title: Biochem J doi: 10.1042/BJ20080658 – volume: 16 start-page: 177 year: 2015 ident: 2259_CR34 publication-title: BMC Genomics doi: 10.1186/s12864-015-1403-x – volume: 95 start-page: 854 issue: 4 year: 2013 ident: 2259_CR46 publication-title: Meat Sci doi: 10.1016/j.meatsci.2013.05.010 – volume: 78 start-page: 25 issue: 1 year: 2002 ident: 2259_CR37 publication-title: Livest Prod Sci doi: 10.1016/S0301-6226(02)00183-5 – volume: 425 start-page: 832 issue: 6960 year: 2003 ident: 2259_CR57 publication-title: Nature doi: 10.1038/nature02064 – volume: 24 start-page: 1480 issue: 8 year: 2007 ident: 2259_CR68 publication-title: Pharm Res doi: 10.1007/s11095-007-9266-8 – volume: 44 start-page: 808 issue: 7 year: 2012 ident: 2259_CR14 publication-title: Nat Genet doi: 10.1038/ng.2309 – volume: 10 start-page: 89 year: 2009 ident: 2259_CR21 publication-title: BMC Genomics doi: 10.1186/1471-2164-10-89 – volume: 13 start-page: 346 issue: 1 year: 2012 ident: 2259_CR17 publication-title: BMC Genomics doi: 10.1186/1471-2164-13-346 – volume: 48 start-page: 515 issue: 6 year: 2013 ident: 2259_CR53 publication-title: Crit Rev Biochem Mol Biol doi: 10.3109/10409238.2013.831023 – volume: 88 start-page: 499 issue: 4 year: 2011 ident: 2259_CR25 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2011.03.012 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 2259_CR70 publication-title: R News – volume: 14 start-page: 65 year: 2013 ident: 2259_CR12 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-65 – volume: 109 start-page: 12449 issue: 31 year: 2012 ident: 2259_CR51 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1210303109 – volume: 11 start-page: 686 year: 2010 ident: 2259_CR20 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-686 – volume: 14 start-page: 123 year: 2013 ident: 2259_CR5 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-123 – volume: 2 issue: 5 year: 2004 ident: 2259_CR7 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020132 – volume: 15 start-page: 1197 issue: 5 year: 2006 ident: 2259_CR2 publication-title: Mol Biol Evol – volume: 17 start-page: 3095 issue: 13 year: 2008 ident: 2259_CR10 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2008.03820.x – volume: 12 start-page: 813 issue: 12 year: 2012 ident: 2259_CR55 publication-title: Nat Rev Immunol doi: 10.1038/nri3339 – volume: 44 start-page: 1 year: 2012 ident: 2259_CR60 publication-title: Journées Recherche Porcine – volume: 15 start-page: 797 issue: 1 year: 2014 ident: 2259_CR39 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-797 – volume: 4 start-page: 153 issue: 3 year: 2013 ident: 2259_CR61 publication-title: Nucleus doi: 10.4161/nucl.24999 – volume: 136 start-page: 211 issue: 2 year: 2008 ident: 2259_CR29 publication-title: Reproduction doi: 10.1530/REP-07-0312 – volume: 33 start-page: 138 issue: 2 year: 2003 ident: 2259_CR4 publication-title: Nat Genet doi: 10.1038/ng1086 – volume: 14 start-page: 18 year: 2013 ident: 2259_CR15 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-18 – volume: 95 start-page: 308 issue: 4 year: 2014 ident: 2259_CR48 publication-title: Calcif Tissue Int doi: 10.1007/s00223-014-9894-z – volume: 107 start-page: 2977 issue: 7 year: 2010 ident: 2259_CR19 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0912245107 – reference: 16734675 - Anim Genet. 2006 Jun;37(3):189-98 – reference: 16582081 - J Anim Sci. 2006 Apr;84 Suppl:E105-12 – reference: 23432824 - BMC Genomics. 2013;14:121 – reference: 23790743 - Meat Sci. 2013 Dec;95(4):854-70 – reference: 11980194 - Reprod Suppl. 2001;58:247-61 – reference: 22206443 - BMC Genomics. 2011;12:635 – reference: 24419359 - Nat Rev Endocrinol. 2014 Mar;10(3):175-86 – reference: 22551951 - Metabolism. 2012 Oct;61(10):1413-21 – reference: 12928036 - Trends Mol Med. 2003 Aug;9(8):344-50 – reference: 20394605 - Anim Genet. 2010 Oct;41(5):493-8 – reference: 21679692 - Biochem Biophys Res Commun. 2011 Jul 8;410(3):531-6 – reference: 23324212 - BMC Genomics. 2013;14:18 – reference: 14736401 - Genet Sel Evol. 2000 Mar-Apr;32(2):187-203 – reference: 22839760 - BMC Genomics. 2012;13:346 – reference: 20133628 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2977-82 – reference: 14574411 - Nature. 2003 Oct 23;425(6960):832-6 – reference: 22444914 - Animal. 2007 Nov;1(10):1409-13 – reference: 19239697 - BMC Genomics. 2009;10:89 – reference: 21276238 - BMC Genomics. 2011;12:81 – reference: 23100586 - J Anim Sci. 2012 Dec;90(13):4729-40 – reference: 25887672 - BMC Genomics. 2015;16:177 – reference: 20477793 - Anim Genet. 2010 Oct;41(5):478-92 – reference: 25226791 - BMC Genomics. 2014;15:797 – reference: 20605337 - Meat Sci. 2010 Sep;86(1):166-70 – reference: 24237131 - Crit Rev Biochem Mol Biol. 2014 Jan-Feb;49(1):59-68 – reference: 20617128 - Int J Biol Sci. 2010;6(4):350-60 – reference: 22305654 - BMC Genomics. 2012;13:59 – reference: 23483478 - Protein Cell. 2013 Mar;4(3):168-75 – reference: 23971743 - Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):515-21 – reference: 16626448 - Mol Ecol. 2006 Apr;15(5):1197-211 – reference: 22705669 - Nat Rev Genet. 2012 Jul;13(7):505-16 – reference: 15138501 - PLoS Biol. 2004 May;2(5):E132 – reference: 23432914 - BMC Genomics. 2013;14:123 – reference: 18522696 - Mol Ecol. 2008 Jul;17(13):3095-108 – reference: 17380264 - Pharm Res. 2007 Aug;24(8):1480-9 – reference: 15687289 - Genome Res. 2005 Feb;15(2):260-8 – reference: 21483733 - PLoS One. 2011;6(4):e14782 – reference: 18456903 - Reproduction. 2008 Aug;136(2):211-24 – reference: 12679338 - J Biol Chem. 2003 Jun 20;278(25):22838-45 – reference: 22064064 - Meat Sci. 2005 Sep;71(1):194-204 – reference: 21420400 - Dev Biol. 2011 Jun 15;354(2):191-207 – reference: 25055749 - Calcif Tissue Int. 2014 Oct;95(4):308-16 – reference: 23444967 - BMC Bioinformatics. 2013;14:70 – reference: 21473985 - Am J Hum Genet. 2011 Apr 8;88(4):499-507 – reference: 18570629 - Biochem J. 2008 Oct 15;415(2):325-31 – reference: 22814378 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54 – reference: 19739119 - Int J Cancer. 2010 May 1;126(9):2079-89 – reference: 22573175 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W478-83 – reference: 18096118 - Genet Sel Evol. 2008 Jan-Feb;40(1):103-28 – reference: 17502245 - Cardiovasc Pathol. 2007 May-Jun;16(3):159-64 – reference: 21693065 - BMC Bioinformatics. 2011;12:253 – reference: 21327084 - Nucleus. 2010 Jul-Aug;1(4):354-66 – reference: 12548287 - Nat Genet. 2003 Feb;33(2):138-44 – reference: 11951044 - Science. 2002 Apr 12;296(5566):340-3 – reference: 22660546 - Nat Genet. 2012 Jul;44(7):808-11 – reference: 16847464 - Nat Rev Genet. 2006 Aug;7(8):645-53 – reference: 23151514 - Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19529-36 – reference: 23175229 - Nat Rev Immunol. 2012 Dec;12(12):813-20 – reference: 23714733 - Nucleus. 2013 May-Jun;4(3):153-5 – reference: 16734682 - Anim Genet. 2006 Jun;37(3):232-8 – reference: 23368736 - BMC Genomics. 2013;14:65 – reference: 12219088 - Nat Genet. 2002 Oct;32(2):261-6 – reference: 21126341 - BMC Genomics. 2010;11:686 |
SSID | ssj0017825 |
Score | 2.1918566 |
Snippet | Background
Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the... Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the... Background Among transcriptomic studies, those comparing species or populations can increase our understanding of the impact of the evolutionary forces on the... Among transcriptomic studies, those comparing species or populations can increase ourunderstanding of the impact of the evolutionary forces on the... |
SourceID | pubmedcentral hal proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1055 |
SubjectTerms | Analysis Animal Genetics and Genomics Animals Biomedical and Life Sciences Breeding Female Gene expression Gene Expression Profiling - methods Gene Expression Profiling - veterinary Gene Expression Regulation Genes Genetic research Genomics Life Sciences Livestock Male Microarrays Microbial Genetics and Genomics Muscle proteins Muscle, Skeletal - metabolism Muscles Non-human and non-rodent vertebrate genomics Oligonucleotide Array Sequence Analysis - methods Oligonucleotide Array Sequence Analysis - veterinary Plant Genetics and Genomics Proteomics Research Article Signal Transduction Statistical methods Sus scrofa - classification Sus scrofa - genetics Sus scrofa - metabolism Swine |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELe2Tki8IL5XGMhMSEigaE1iO_YDQgVtKggqNJjYm-XYDq20pYOkoP4F_NvcJU4gTOypUn12nPh8H77z7wh5KgvrkszFkZLWooNSRMDKLCriwluZT1Ll8Lzjw1zMTti7U366RebdXRhMq-xkYiOo3criGflBnGWKszhW6tXFtwirRmF0tSuhYUJpBfeygRjbJjsJVlUekZ3Xh_OPx31cAfQhD7HNWIqDCqSzwCwMHgFfq0gNtFOQ0dsLTJG8bH9eTqP8J5baqKijm-RGsC3ptGWGW2TLl7fJtbba5OYO-dXn29EaNVQjL_BSMnVdcgZdlvR8XUFvitBOMDFH64WpKZ7vY8IqxXwPg1fYKdYy_mk2FT03y_JsQ7tSKyAyak8LGJJ-aWEYKNj4GL-n4H57V90lJ0eHn9_MolCHIbLgTtRRzhLvpGPcGcdNYnluZRpbYQ1HPHqf5YXNRJGk1kluETAPBIcXLHcO3KE0T--RUbkq_S6h4O3YDIwIxlPDhJvkIPfhRzL0hLxXYzLpvr-2AaQca2Wc6cZZkUK3S6ZhyTQumYYuz_suFy1Cx1XE-7ioGpEvSkyt-WrWVaXffjrWUyakYgLMtTF5FoiKFTzcmnBTAV4BwbIGlHsDStiadtC8D7zTzwqRvGfT9xr_A7uAgS83-RHDGB1r6SA_Kv2H28fkSd-Mw2NOXOlXa6RBbzVRAoa433Ji_ygwuzgivI5JNuDRwVyGLeVy0aCLg-YUIMTH5EXHzX9N63_f9cHVL_GQXE9wk8VYSGePjOrva_8IjLk6fxx26G8sbUo8 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_eieCL-O3q3REPQVCKmzZJk8dl8VhFfVAP7y2kSXq7cNcV21X2L_Dfvpk2Ldc7FXwqNJN02kzmo5n8hpAXqnQ-zT1LtHIOA5QyAVHmScnK4FQxzbTH_x0fP8nFMX9_Ik4iWDSehbm8f8-UfFOD_pSYJyESkDyd6B1yU4Dexey9uZwPGwZg6ETctPxjt5HZicp3Z4m5j9cdy-v5kVc2SVvbc3SX3IlOI511s3yP3AjVfXKrKyO5fUB-D4l0tEHT0yoCPG1MfZ91QVcVPd_U0JsiZhMw5mmztA3FH_eYiUoxkcPi2XSKRYp_2W1Nz-2qOtvSvoYK6IIm0BKGpN86fAUKzjtuzFOIq4OvH5Ljo7df54skFlhIHMQJTVLwNHjlufDWC5s6UTiVMSedFQg0H_KidLks08x5JRwi4YFGCJIX3kOckxXZI7JbravwhFAIY1wO3gEXmeXSTwtQ6HBRHEOcEPSETPvvb1xEH8ciGGemjUKUNN2UGZgyg1NmoMurocv3DnrjX8SHOKkGIS0qzJk5tZu6Nu--fDYzLpXmEvywCXkZico1PNzZeAQBXgFRsEaUeyNKWHNu1HwIsjNwhRDdi9kHg_fA4HMI0qY_GYzRi5aJiqE2LM-14Ixp4Pj50IzDY7JbFdYbpMEwNNUShnjcSeLwKPCnBEK3Tkg-ktERL-OWarVsYcPBJErQzhPyupfmS2z97bs-_S_qZ-R2imuOYcGcPbLb_NiEfXDamuKgXa4XfOs8Fw priority: 102 providerName: Springer Nature |
Title | Exploring transcriptomic diversity in muscle revealed that cellular signaling pathways mainly differentiate five Western porcine breeds |
URI | https://link.springer.com/article/10.1186/s12864-015-2259-9 https://www.ncbi.nlm.nih.gov/pubmed/26651482 https://www.proquest.com/docview/1779541199 https://www.proquest.com/docview/1749992961 https://hal.science/hal-01245970 https://pubmed.ncbi.nlm.nih.gov/PMC4676870 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbWTUi8IO4URmUmJCRQWJPYjvOAUKk2FcQmNKjom-XYDq3UpduSAv0F_G3OyQ3CBg-8tGp8rX2u9sl3CHkqU2ODyPpeLI1BByX1gJSZl_qpMzIZhrHF846jYzGZsnczPtsiTXqregHzK107zCc1vVi-_H6-eQ0M_6pkeCn2c5CxAmMpuAfUGXtxj-yAYgqQyI_Yr0sFUIa8vti8shkCAwvBERmzo6VqWd2bY6jkZTv0cjjlH3eqpao6vElu1DYmHVVEcYtsuew2uVZlndzcIT_auDtaoKYq5Qa-nExtE6RBFxk9XefQmiLEE0zM0mKuC4rn_Bi4SjHuQ-Or7BRzGn_Tm5ye6kW23NAm5QqIjsLRFLqknys4BgrLjPf4FNxwZ_O7ZHp48Gk88ep8DJ4Bt6LwEhY4Ky3jVluuA8MTI0PfCKM54tK7KElNJNIgNFZyg8B5IECcYIm14BaFSXiPbGerzD0gFLweE4ExwXiombDDBOQ_fEmGHpFzcZ8Mm_VXpgYrx5wZS1U6LVKoavcU7J7C3VPQ5Hnb5KxC6vhX5T3cVIUIGBmG2HzR6zxXbz-eqBETMmYCzLY-eVZXSlcwuNH1GwvwFxA0q1Nzt1MTWNR0iveAdtpZIaL3ZPRe4TOwDxj4dMOvPvTRkJZq2ED5URRz5vsxzPhJW4zdY2xc5lZrrINeaxAL6OJ-RYntUA0990nUodHOXLol2WJeooyDBhUgzPvkRUPNv03rb-v68L_HeUSuB8iKPuba2SXbxcXaPQZ7r0gGpBfNogHZeXNw_OEEfo3FeFCenQxK_obPaTD6CdTrWS0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZ2EYIXxJ3CADOBkEDRmsR2kocJFdjUsa5CY9P2ZhzboZW2dJCUqb-Af8Vv45zECYSJve0pUnyJk3OPj79DyIs40yaIjO8lsdYYoGQesDLzMj-zOk77YWLwf8feWAwP2cdjfrxEfjVnYTCtstGJlaI2M43_yDf8KEo48_0keXv2zcOqUbi72pTQUK60gtmsIMbcwY5duziHEK7Y3PkA9H4ZBNtbB--Hnqsy4GlwlksvZYE1sWHcKMNVoHmq49DXQiuOaOs2SjMdiSwItYm5Rjg4EAsrWGoMOPthGsK8y2QV3I4QpGr13db40367jwH2l7u9VD8WGwVYA4FZH9wDOUq8pGMNnU1YnmBK5kV_92La5j97t5VJ3L5Fbjpflg5q5rtNlmx-h1yrq1su7pKfbX4fLdEiVvoJD0FT0ySD0GlOT-cFjKYIJQULM7ScqJLifgImyFLML1F4ZJ5i7eRztSjoqZrmJwvalHYBFVVamsGU9KiGfaAQU2C-AIVw35riHjm8EorcJyv5LLcPCYXoSkfgtDAeKiZMPwU7A5eYYeRlbdIj_eb7S-1A0bE2x4msgqNYyJpkEkgmkWQShrxuh5zViCCXdV5HokpE2sgxleermheF3Pm8LwdMxAkT4B72yCvXKZvBw7VyJyPgFRCcq9NzrdMTVIHuNK8D77SrQuTw4WAk8R74IQxix_4PH-ZoWEs6fVXIP9LVI8_bZpwec_ByO5tjH4yOg0TAFA9qTmwfBW4eR0TZHok6PNpZS7cln04qNHOw1AKMRo-8abj5r2X977s-uvwlnpHrw4O9kRztjHcfkxsBCpyPRXzWyEr5fW6fgCNZpk-dtFLy5aoVxG_CL4gr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYEGgviM9RGGAmJCRQtDqxHeexAqoOxoSAir1Zju3QSps7LSmofwH_Nnf5EmGAxFOk-Oxc4vN9xOffEfJMFdbFqWNRpqzFAKWIQJR5VLDCW5WPk8zh_473x3I2529PxElb57Tsst27LcnmTAOiNIXq4NwVzRJX8qAErSoxe0JEII9ZlG2RqxxMNUZf83jSbyOA-RPtVuYfuw2MUauStxaYEXnZ3bycNfnb1mltkaY3yY3WlaSTZu5vkSs-3CbXmuKSmzvkR59eRys0SLV6wDPI1HW5GHQZ6Nm6hN4UkZyAMUerhako_s7H_FSK6R0GT6xTLF383WxKemaW4XRDu8oqoCEqTwsYkn5pUBcouPS4XU8h2vauvEvm0zefX82ituxCZCF6qKKcx94px4UzTpjYityqhFlpjUD4eZ_mhU1lESfWKWERHw_0hJc8dw6inyRP7pHtsAr-PqEQ3NgUfAYuEsOlG-eg5uGiOAY-3mcjMu6-v7YtJjmWxjjVdWyipG6mTMOUaZwyDV1e9F3OG0COfxHv46RqBLoImEnz1azLUh9--qgnXKqMS_DORuR5S1Ss4OHWtAcT4BUQG2tAuTeghJVoB837IDs9VwjcPZscabwHbgCH0G38jcEYnWjpVl2UmqVpJjhjGXD8tG_G4TEFLvjVGmkwOI0zCUPsNpLYPwq8LIGAriOSDmR0wMuwJSwXNZg4GEoJOntEXnbS_Atbf_uuD_6L-gm5_uH1VB8dHr97SHZiXH4sjhjbI9vVxdo_Aq-uyh_XK_cnDgNHaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+transcriptomic+diversity+in+muscle+revealed+that+cellular+signaling+pathways+mainly+differentiate+five+Western+porcine+breeds&rft.jtitle=BMC+genomics&rft.au=SanCristobal%2C+Magali&rft.au=Rohart%2C+Florian&rft.au=Lascor%2C+Christine&rft.au=Bouffaud%2C+Marcel&rft.date=2015-12-12&rft.pub=BioMed+Central&rft.eissn=1471-2164&rft.volume=16&rft_id=info:doi/10.1186%2Fs12864-015-2259-9&rft_id=info%3Apmid%2F26651482&rft.externalDocID=PMC4676870 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |