diceR: an R package for class discovery using an ensemble driven approach

Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 19; no. 1; pp. 11 - 4
Main Authors Chiu, Derek S., Talhouk, Aline
Format Journal Article
LanguageEnglish
Published London BioMed Central 15.01.2018
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-017-1996-y

Cover

Abstract Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. Results We introduce diceR (diverse cluster ensemble in R) , a software package available on CRAN: https://CRAN.R-project.org/package=diceR Conclusions diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts.
AbstractList Abstract Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. Results We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: https://CRAN.R-project.org/package=diceR Conclusions diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts.
Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. Results We introduce diceR (diverse cluster ensemble in R) , a software package available on CRAN: https://CRAN.R-project.org/package=diceR Conclusions diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts.
Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: https://CRAN.R-project.org/package=diceR diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts.
Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients.BACKGROUNDGiven a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients.We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: https://CRAN.R-project.org/package=diceR CONCLUSIONS: diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts.RESULTSWe introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: https://CRAN.R-project.org/package=diceR CONCLUSIONS: diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts.
Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: https://CRAN.R-project.org/package=diceR CONCLUSIONS: diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts.
Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. Results We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: Conclusions diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts. Keywords: Data mining, Cluster analysis, Ensemble, Consensus, Cancer
ArticleNumber 11
Audience Academic
Author Chiu, Derek S.
Talhouk, Aline
Author_xml – sequence: 1
  givenname: Derek S.
  surname: Chiu
  fullname: Chiu, Derek S.
  organization: Department of Molecular Oncology, BC Cancer Agency
– sequence: 2
  givenname: Aline
  orcidid: 0000-0001-7760-410X
  surname: Talhouk
  fullname: Talhouk, Aline
  email: atalhouk@bccrc.ca
  organization: Department of Molecular Oncology, BC Cancer Agency, Department of Pathology and Laboratory Medicine, University of British Columbia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29334888$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wA9igSGxgkRI7cWyzqFRVPEaqhDTA2rpj36QeMnawk8L8ezxkqDoIVcgLW_Z3jn2P72l25LzDLHtOynNCRPMmEiqYLErCCyJlU2wfZSek5qSgpGRH99bH2WmM6zKBomRPsmMqq6oWQpxkC2M1Lt_m4PJlPoD-Bh3mrQ-57iHG3Nio_S2GbT5F67odhi7iZtVjboK9RZfDMAQP-uZp9riFPuKz_XyWfX3_7svVx-L604fF1eV1oRvOxoIKSggIWgMhumxLWbWM8hq5kK0UDTNSy4oD48xQYLRpJUpqwDTcrFomaHWWLWZf42GthmA3ELbKg1W_N3zoFITR6h4V18hkCbqilalFUwpOgEhWG0rqpkaTvOjsNbkBtj-g7-8MSal2Gas5Y5WiU7uM1TaJLmbRMK02aDS6MUB_8JLDE2dvVOdvFeNNyp0lg1d7g-C_TxhHtUkxY9-DQz_FdI-QTLKqLhP6ckY7SPVY1_rkqHe4umR1U0nKpUzU-T-oNAxurE4909q0fyB4fSBIzIg_xw6mGNXi8_KQfXG_3Ls6__RQAsgM6OBjDNj-V4b8L422I4zW7xKz_YPK_ZfFdIvrMKi1n4JLHfeA6Bed8vfA
CitedBy_id crossref_primary_10_1093_braincomms_fcaf074
crossref_primary_10_3168_jds_2021_21518
crossref_primary_10_1126_scisignal_adl1030
crossref_primary_10_3389_fgene_2022_836798
crossref_primary_10_1016_j_jclepro_2023_138580
crossref_primary_10_1007_s00357_025_09503_8
crossref_primary_10_1097_SPV_0000000000001314
crossref_primary_10_1158_1078_0432_CCR_22_3815
crossref_primary_10_3389_fgene_2021_627964
crossref_primary_10_1016_j_psychres_2023_115265
crossref_primary_10_1145_3616011
crossref_primary_10_1016_j_brat_2024_104615
crossref_primary_10_1016_j_ecoser_2023_101593
crossref_primary_10_1016_j_nbd_2021_105530
crossref_primary_10_1038_s41586_024_07747_9
crossref_primary_10_1158_1078_0432_CCR_18_3241
crossref_primary_10_1186_s40594_022_00365_9
crossref_primary_10_1093_bib_bbad501
crossref_primary_10_1093_nar_gkaa1146
crossref_primary_10_1016_j_lfs_2025_123524
crossref_primary_10_1158_1078_0432_CCR_20_0103
crossref_primary_10_1093_ibd_izaa281
crossref_primary_10_1016_j_neuroimage_2020_116721
crossref_primary_10_18778_0208_6018_357_04
crossref_primary_10_1186_s12859_018_2053_1
crossref_primary_10_1093_hmg_ddaa182
crossref_primary_10_1016_j_jmsy_2021_05_005
crossref_primary_10_1038_s41398_023_02401_w
Cites_doi 10.1007/s10618-012-0290-x
10.1186/1471-2105-10-62
10.1016/j.patcog.2009.11.012
10.1023/A:1010933404324
10.1002/widm.32
10.1093/bioinformatics/bti517
10.1080/10618600.2014.948179
10.1137/1.9781611972740.35
10.1109/TSMCB.2012.2220543
10.1023/A:1023949509487
10.1186/s13040-017-0142-8
10.1016/j.patcog.2012.07.021
10.1093/bioinformatics/btq226
10.1038/srep06207
10.1186/s40246-015-0049-8
10.1201/b19706
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-017-1996-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 4
ExternalDocumentID oai_doaj_org_article_7ce590ac323d4860871a1954d21464ed
10.1186/s12859-017-1996-y
PMC5769335
A546392799
29334888
10_1186_s12859_017_1996_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
M0N
NPM
7X8
5PM
123
2VQ
4.4
ADTOC
AFFHD
AHSBF
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c675t-28211a824a11c0f093f5274e789f9865d9c937a575d2a526f9e92dad67dbf5823
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:53:02 EDT 2025
Wed Oct 29 12:23:19 EDT 2025
Tue Sep 23 05:48:04 EDT 2025
Thu Oct 02 09:01:29 EDT 2025
Mon Oct 20 21:55:36 EDT 2025
Mon Oct 20 16:24:24 EDT 2025
Thu Oct 16 14:55:46 EDT 2025
Wed Feb 19 02:44:07 EST 2025
Wed Oct 01 04:15:30 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cluster analysis
Data mining
Consensus
Ensemble
Cancer
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c675t-28211a824a11c0f093f5274e789f9865d9c937a575d2a526f9e92dad67dbf5823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7760-410X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-017-1996-y
PMID 29334888
PQID 1989595340
PQPubID 23479
PageCount 4
ParticipantIDs doaj_primary_oai_doaj_org_article_7ce590ac323d4860871a1954d21464ed
unpaywall_primary_10_1186_s12859_017_1996_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5769335
proquest_miscellaneous_1989595340
gale_infotracmisc_A546392799
gale_infotracacademiconefile_A546392799
gale_incontextgauss_ISR_A546392799
pubmed_primary_29334888
crossref_primary_10_1186_s12859_017_1996_y
crossref_citationtrail_10_1186_s12859_017_1996_y
springer_journals_10_1186_s12859_017_1996_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References A Strehl (1996_CR9) 2002; 3
J Handl (1996_CR6) 2005; 21
L Breiman (1996_CR7) 2001; 45
H Huang (1996_CR16) 2015; 24
O Arbelaitz (1996_CR5) 2013; 46
J Ghosh (1996_CR15) 2011; 1
1996_CR1
1996_CR14
V Pihur (1996_CR18) 2009; 10
Y Șenbabaoğlu (1996_CR4) 2014; 4
U Neumann (1996_CR8) 2017; 10
1996_CR11
S Monti (1996_CR12) 2003; 52
MC Naldi (1996_CR17) 2013; 27
HG Ayad (1996_CR13) 2010; 43
N Iam-On (1996_CR10) 2010; 26
Q Song (1996_CR2) 2015; 9
Y Liu (1996_CR3) 2013; 43
26755893 - J Comput Graph Stat. 2015;24(4):975-993
15914541 - Bioinformatics. 2005 Aug 1;21(15):3201-12
26481255 - Hum Genomics. 2015 Oct 19;9:27
19228411 - BMC Bioinformatics. 2009 Feb 19;10:62
28674556 - BioData Min. 2017 Jun 27;10 :21
20444838 - Bioinformatics. 2010 Jun 15;26(12):1513-9
25158761 - Sci Rep. 2014 Aug 27;4:6207
23193245 - IEEE Trans Cybern. 2013 Jun;43(3):982-94
References_xml – volume: 27
  start-page: 259
  year: 2013
  ident: 1996_CR17
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-012-0290-x
– volume: 10
  start-page: 62
  year: 2009
  ident: 1996_CR18
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-62
– volume: 43
  start-page: 1943
  year: 2010
  ident: 1996_CR13
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.11.012
– volume: 45
  start-page: 5
  year: 2001
  ident: 1996_CR7
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 1
  start-page: 305
  year: 2011
  ident: 1996_CR15
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.32
– volume: 21
  start-page: 3201
  year: 2005
  ident: 1996_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti517
– ident: 1996_CR14
– volume: 24
  start-page: 975
  year: 2015
  ident: 1996_CR16
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.2014.948179
– volume: 3
  start-page: 583
  year: 2002
  ident: 1996_CR9
  publication-title: J Mach Learn Res
– ident: 1996_CR11
  doi: 10.1137/1.9781611972740.35
– volume: 43
  start-page: 982
  year: 2013
  ident: 1996_CR3
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2220543
– volume: 52
  start-page: 91
  year: 2003
  ident: 1996_CR12
  publication-title: Mach Learn
  doi: 10.1023/A:1023949509487
– volume: 10
  start-page: 21
  year: 2017
  ident: 1996_CR8
  publication-title: BioData Min.
  doi: 10.1186/s13040-017-0142-8
– volume: 46
  start-page: 243
  year: 2013
  ident: 1996_CR5
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.07.021
– volume: 26
  start-page: 1513
  year: 2010
  ident: 1996_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq226
– volume: 4
  start-page: 6207
  year: 2014
  ident: 1996_CR4
  publication-title: Sci Rep
  doi: 10.1038/srep06207
– volume: 9
  start-page: 27
  year: 2015
  ident: 1996_CR2
  publication-title: Hum Genomics
  doi: 10.1186/s40246-015-0049-8
– ident: 1996_CR1
  doi: 10.1201/b19706
– reference: 23193245 - IEEE Trans Cybern. 2013 Jun;43(3):982-94
– reference: 28674556 - BioData Min. 2017 Jun 27;10 :21
– reference: 15914541 - Bioinformatics. 2005 Aug 1;21(15):3201-12
– reference: 26755893 - J Comput Graph Stat. 2015;24(4):975-993
– reference: 19228411 - BMC Bioinformatics. 2009 Feb 19;10:62
– reference: 26481255 - Hum Genomics. 2015 Oct 19;9:27
– reference: 25158761 - Sci Rep. 2014 Aug 27;4:6207
– reference: 20444838 - Bioinformatics. 2010 Jun 15;26(12):1513-9
SSID ssj0017805
Score 2.4600794
Snippet Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in...
Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular,...
Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in...
Abstract Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Cancer
Cancer research
Cluster analysis
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Consensus
Data mining
Ensemble
Life Sciences
Microarrays
Sequence analysis (methods)
Software
Software Article
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC4kIOoh-HY0SiuCYBjS8-iZbm9RDIkHD6uB3JqefkRxMxsyu8j8e6vmxY5CcvE6XXPoenUV_fVXAG-l8xkPXsW2Ej7Oq1zEVagcxlUIZeA2LasOIPu1OD7Nv5yJs61RX4QJ6-mBe8UdlPROiBubpZmjgUlY4BtiKXM0kTr3jrIvl2pspob7A2LqH-4wE1kcNAnxtMWUkTvUbTs7hTqy_n9T8taZ9Ddecro0vQd3NvWlaX-b5XLrXDq6D7tDQckO-408gFu-fgi3-xGT7SM4cZgJFh-YqdmCYX_8C_MHw0KVWSqbGT3KJRBnywgAf05i2Nf6i2rpmbuiTMhG1vHHcHr0-fun43gYnxBb7ALWMTZTSWJkmpsksTxwlQWBPagvpQpKFsIpi7WJwXrNpUakRVBepc64onRVEDLNnsBOvar9M2BFjgp0OXeJwyDnRErPc2-q1CuO9nUR8FGd2g7c4jTiYqm7HkMWureARgtosoBuI3g__XLZE2tcJ_yRbDQJEid29wE9RQ-eom_ylAjekIU1sV7UBKs5N5um0SffFvqQhgKotFQqgneDUFjhDqwZXimgHogoaya5N5PEsLSz5dejI2laIixb7VebRhNKTSiR5TyCp71jTRvD4ivDlCojKGcuN9v5fKX--aNjBRc01TITEeyPzqmHdNRcp9j9yX9vNsPz_2GGF3AXi05CUMaJ2IOd9dXGv8TCbl296mL4DyaRRTM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0IuqD-FWNVllFECzBzcdusr61xdL64MNpoW_LZj9q8cyV5g7Jf-9MkguXKhVfs5OQna-dYWZ_A_C2dD7jwavYVsLHeZWLuAqVQ7sKoQjcpkXVNch-kUcn-edTcTqARdNdmM36fVLKD01CCGsx-dKuX7a9CbfwjJJdXVYejAUDguYfipZ_fW1y7HTo_H_64I1D6GqD5FglvQd3VvWFaX-Z-XzjIDp8APeHCJLt9SJ_CDd8_Qhu9zMl28dw7ND0Zx-ZqdmMYUL8Ax0Gw8iUWYqTGd3Cpa7NllHH-xmRYSLrf1Zzz9wluT62hhl_AieHn74dHMXDvITYYti_jDF7ShJTprlJEssDV1kQmHT6olRBlVI4ZTEYMRigudSIVAblVeqMk4WrgijTbBu26kXtnwGTOTLQ5dwlDq2aEwo9z72pUq84CtRFwNfs1HYAE6eZFnPdJRWl1L0ENEpAkwR0G8H78ZWLHknjOuJ9ktFISCDY3QPUDT3YlC7oChk3NkszR7O0MPczBGDnaFh57vEn35CENcFc1NRHc2ZWTaOPv870Hk0BUGmhVATvBqKwwB1YM1xLQD4QMtaEcmdCiXZoJ8uv14qkaYma12q_WDWa2tKEElnOI3jaK9a4MYy2MvShZQTFROUmO5-u1OffOxhwQWMsMxHB7lo59eB_musYuzvq77_F8Py_vv0C7mI4Sb2RcSJ2YGt5ufIvMWRbVq86Y_0NycA22A
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxNBEF9qiqgPflY9rXKKIFgu3fvYu1vfolhaH6pEA_Vp2c9Ykl5CkkPiX-_MfYRclYrgW8jOkezszG9nuJnfEPIqNzamzvJAK2aDRCUsUE4Z8CvnMkd1lKmqQPY0PR4lH8_Y2Q751PbCqAutzmcNaSgSFfe329CnFXbDBz05nBtXu3yeHi5D5GELEHGrqtr1NbKbMgjOe2R3dPp58K3qMcrCABIc1rzb_ONzndupIvH_Haq37qrLdZSbl6m3yI2ymMv1Dzmdbt1XR3fIvN1pXaYy6Zcr1dc_L5FA_kdV3CW3m9jWH9TGeI_s2OI-uV5Pu1w_ICcGQGn41peFP_QhVZ8AlPnws77GCN7H_mCsJ137WIs_RjFIse2FmlrfLBCU_ZYAfY-Mjj58fX8cNJMcAg0JySqAvC4MZR4lMgw1dZTHjkE6bLOcO56nzHANYZKE0NFEkkWp45ZHRpo0M8qxPIofkl4xK-xj4qcJbNAk1IQG8IYiPz5NrFSR5RRMzXiEticodENzjtM2pqJKd_JU1BoSoCGBGhJrj7zZPDKvOT6uEn6HZrERRHru6ovZYiwabxcZNrdRqeMoNjjlC7JSidR6BseoJxb-5Es0KoEEHAVW-IxluVyKky9DMcD5BDzKOPfI60bIzfCcZdMwAXpAzq6O5H5HEhBCd5ZftLYrcAnL6go7K5cCC-YYZ3FCPfKotuXNxiAOjAHdc49kHSvv7Ly7Upx_rwjKGQ7YjJlHDlp_EA0yLq9S7MHGZf5-DE_-SfopuQmBLlZtBiHbJ73VorTPIJhcqecNQPwCeDVtnw
  priority: 102
  providerName: Unpaywall
Title diceR: an R package for class discovery using an ensemble driven approach
URI https://link.springer.com/article/10.1186/s12859-017-1996-y
https://www.ncbi.nlm.nih.gov/pubmed/29334888
https://www.proquest.com/docview/1989595340
https://pubmed.ncbi.nlm.nih.gov/PMC5769335
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-017-1996-y
https://doaj.org/article/7ce590ac323d4860871a1954d21464ed
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZ2EQIeEHcCozIICYkp4FycxEgIddXKVolq6qjUPVlObBdESEcvgvx7zkmTssA0XnhppfhEqn0uPqc-_j5CXiTaBMwa4WYpN26YhtxNbarBr6yNLcv8OK0aZIfR0TgcTPhkizT0VvUCLi4t7ZBPajzPX__8Xr4Hh39XOXwSvVl4iMLmYrytemrLbbILG5VAJoeP4e9DBYTvrw82L32ttTVVCP5_x-kLG9WfTZSbk9Sb5PqqOFflD5XnFzar_m1yq84yaXdtFnfIlinukmtr3snyHjnWEB5Gb6kq6IhC0fwVggqF7JVmmEtTvKmLnZ0lxa74KYpBsWu-pbmheo7hkTZQ5PfJuH_4qXfk1pwKbgalwdKFCsvzVOKHyvMyZpkILIfC1MSJsCKJuBYZJCwKkjjtK-5HVhjha6WjWKeWJ37wgOwUs8I8IjQKYQF1yLSnwfMZItWz0KjUN4KB0rVDWLOcMqsBx5H3IpdV4ZFEcq0BCRqQqAFZOuTV5pXzNdrGVcIHqKONIAJlVw9m86ms_U7GeM2MqSzwA418W1AfKgS500hoHhr4kc9RwxKhMArstZmq1WIhj09HsotMAcKPhXDIy1rIzmAGmaqvLsA6IHpWS3KvJQm-mrWGnzWGJHEIG9wKM1stJLauccGDkDnk4dqwNhODjCyAOJs4JG6ZXGvm7ZHiy-cKKpwj1WXAHbLfGKdsXOyqhd3f2O-_1fD4f6jhCbkBmSi2Vboe3yM7y_nKPIVsb5l2yHY8ieEz6X_okN1ud3A6gO-Dw-HJCJ72ol6n-h-lU_k6jIyHJ92zXwBAVfc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFSocEG8CBQxCQqKKcB5OYm4LotpdSg_bVurNcvxYEEu22uwK5d8zk3WiBlAR13gSxZ6HZ-TP3xDyujA2Yc6KUJfchmmZ8rB0pQG_ci53TMd52QJkj7PxWTo95-f-Hnfdod27I8k2UrduXWTv6gi51kKMqi1ytrlOdhFjBd64OxpNT6b94QHS9PsDzL--ONiCWqb-P-PxpQ3pd7Bkf2J6i-xtqgvV_FSLxaVN6fAOue2zSTraqv8uuWare-TGtr9kc59MDISB2XuqKjqjUBx_h-BBIUulGnNmijdyEcHZUES_z1EMilr7o1xYalYYBmlHOf6AnB1-Ov04Dn3vhFBDCbAOoZKKIlXEqYoizRwTieNQgNq8EE4UGTdCQ2KiIFkzseJx5oQVsVEmy03peBEnD8lOtazsY0KzFBbQpMxEBjycISM9S60qYysYKNcEhHXLKbUnFsf-FgvZFhhFJrcakKABiRqQTUDe9q9cbFk1rhL-gDrqBZEQu32wXM2l9y-Z43UypnQSJwb7akEdqJDMzmDj8tTCT75CDUukvKgQUzNXm7qWk5OZHGFHABHnQgTkjRdyS5iBVv6KAqwDsmQNJPcHkuCTejD8sjMkiUMIZKvsclNLhKhxwZOUBeTR1rD6iUHmlUA8LQKSD0xuMPPhSPXta0sJzrGlZcIDctAZp_SxqL5qYQ96-_23Gp7817dfkL3x6ZcjeTQ5_vyU3IQ0EzGTYcT3yc56tbHPIJVbl8-96_4CZAY_MQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA664u1BvFtdNYoguJRN26RtfFtHhx2VRUYX9i2kucwujp1hOoPMv_ec3tiqrPjanJYm55JzyJfvEPIqty5h3snQFMKFvOAiLHxhwa-8zzwzcVbUANmj9PCYfzwRJ22f06pDu3dHks2dBmRpKtf7S-sbF8_T_SpC3rUQI2yNot1eJlc4bG7YwmCUjvpjBCTsb48y__raYDOqOfv_jMzntqbfYZP92elNcn1TLvX2p57Pz21P49vkVptX0oPGEO6QS668S642nSa398jEQkCYvqW6pFMKZfJ3CCMU8lVqMHumeDcXsZxbijj4GYpBeet-FHNH7QoDIu3Ix--T4_GHb6PDsO2iEBooBtYh1FRRpPOY6ygyzDOZeAGlqMty6WWeCisNpCga0jYbaxGnXjoZW23TzBZe5HHygOyUi9I9IjTlsICWMxtZ8HWG3PSMO13ETjJQsw0I65ZTmZZiHDtdzFVdauSpajSgQAMKNaC2AXnTv7Js-DUuEn6HOuoFkRq7frBYzVTraSrDi2VMmyROLHbYgopQI62dxRbm3MFPvkQNKyS_KBFdM9ObqlKTr1N1gL0BZJxJGZDXrZBfwAyMbi8rwDogX9ZAcncgCd5pBsMvOkNSOISQttItNpVCsJqQIuEsIA8bw-onBjlYApE1D0g2MLnBzIcj5dlpTQ4usLllIgKy1xmnaqNSddHC7vX2-281PP6vbz8n1768H6vPk6NPT8gNyDcRPBlGYpfsrFcb9xRyunXxrPbbX9gQQg4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxNBEF9qiqgPflY9rXKKIFgu3fvYu1vfolhaH6pEA_Vp2c9Ykl5CkkPiX-_MfYRclYrgW8jOkezszG9nuJnfEPIqNzamzvJAK2aDRCUsUE4Z8CvnMkd1lKmqQPY0PR4lH8_Y2Q751PbCqAutzmcNaSgSFfe329CnFXbDBz05nBtXu3yeHi5D5GELEHGrqtr1NbKbMgjOe2R3dPp58K3qMcrCABIc1rzb_ONzndupIvH_Haq37qrLdZSbl6m3yI2ymMv1Dzmdbt1XR3fIvN1pXaYy6Zcr1dc_L5FA_kdV3CW3m9jWH9TGeI_s2OI-uV5Pu1w_ICcGQGn41peFP_QhVZ8AlPnws77GCN7H_mCsJ137WIs_RjFIse2FmlrfLBCU_ZYAfY-Mjj58fX8cNJMcAg0JySqAvC4MZR4lMgw1dZTHjkE6bLOcO56nzHANYZKE0NFEkkWp45ZHRpo0M8qxPIofkl4xK-xj4qcJbNAk1IQG8IYiPz5NrFSR5RRMzXiEticodENzjtM2pqJKd_JU1BoSoCGBGhJrj7zZPDKvOT6uEn6HZrERRHru6ovZYiwabxcZNrdRqeMoNjjlC7JSidR6BseoJxb-5Es0KoEEHAVW-IxluVyKky9DMcD5BDzKOPfI60bIzfCcZdMwAXpAzq6O5H5HEhBCd5ZftLYrcAnL6go7K5cCC-YYZ3FCPfKotuXNxiAOjAHdc49kHSvv7Ly7Upx_rwjKGQ7YjJlHDlp_EA0yLq9S7MHGZf5-DE_-SfopuQmBLlZtBiHbJ73VorTPIJhcqecNQPwCeDVtnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=diceR%3A+an+R+package+for+class+discovery+using+an+ensemble+driven+approach&rft.jtitle=BMC+bioinformatics&rft.au=Derek+S.+Chiu&rft.au=Aline+Talhouk&rft.date=2018-01-15&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1186%2Fs12859-017-1996-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7ce590ac323d4860871a1954d21464ed
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon