diceR: an R package for class discovery using an ensemble driven approach
Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis...
Saved in:
| Published in | BMC bioinformatics Vol. 19; no. 1; pp. 11 - 4 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
15.01.2018
BioMed Central Ltd BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-017-1996-y |
Cover
| Abstract | Background
Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients.
Results
We introduce
diceR (diverse cluster ensemble in R)
, a software package available on CRAN:
https://CRAN.R-project.org/package=diceR
Conclusions
diceR
is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in
diceR
are data-agnostic and thus can be applied in different contexts. |
|---|---|
| AbstractList | Abstract Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. Results We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: https://CRAN.R-project.org/package=diceR Conclusions diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts. Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. Results We introduce diceR (diverse cluster ensemble in R) , a software package available on CRAN: https://CRAN.R-project.org/package=diceR Conclusions diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts. Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: https://CRAN.R-project.org/package=diceR diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts. Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients.BACKGROUNDGiven a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients.We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: https://CRAN.R-project.org/package=diceR CONCLUSIONS: diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts.RESULTSWe introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: https://CRAN.R-project.org/package=diceR CONCLUSIONS: diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts. Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: https://CRAN.R-project.org/package=diceR CONCLUSIONS: diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts. Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular, high-throughput data is collected with the aim of segmenting patients into sub-populations to aid in disease diagnosis, prognosis or response to therapy. Cluster analysis, a class of unsupervised learning techniques, is often used for class discovery. Cluster analysis suffers from some limitations, including the need to select up-front the algorithm to be used as well as the number of clusters to generate, in addition, there may exist several groupings consistent with the data, making it very difficult to validate a final solution. Ensemble clustering is a technique used to mitigate these limitations and facilitate the generalization and reproducibility of findings in new cohorts of patients. Results We introduce diceR (diverse cluster ensemble in R), a software package available on CRAN: Conclusions diceR is designed to provide a set of tools to guide researchers through a general cluster analysis process that relies on minimizing subjective decision-making. Although developed in a biological context, the tools in diceR are data-agnostic and thus can be applied in different contexts. Keywords: Data mining, Cluster analysis, Ensemble, Consensus, Cancer |
| ArticleNumber | 11 |
| Audience | Academic |
| Author | Chiu, Derek S. Talhouk, Aline |
| Author_xml | – sequence: 1 givenname: Derek S. surname: Chiu fullname: Chiu, Derek S. organization: Department of Molecular Oncology, BC Cancer Agency – sequence: 2 givenname: Aline orcidid: 0000-0001-7760-410X surname: Talhouk fullname: Talhouk, Aline email: atalhouk@bccrc.ca organization: Department of Molecular Oncology, BC Cancer Agency, Department of Pathology and Laboratory Medicine, University of British Columbia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29334888$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB_wA9igSGxgkRI7cWyzqFRVPEaqhDTA2rpj36QeMnawk8L8ezxkqDoIVcgLW_Z3jn2P72l25LzDLHtOynNCRPMmEiqYLErCCyJlU2wfZSek5qSgpGRH99bH2WmM6zKBomRPsmMqq6oWQpxkC2M1Lt_m4PJlPoD-Bh3mrQ-57iHG3Nio_S2GbT5F67odhi7iZtVjboK9RZfDMAQP-uZp9riFPuKz_XyWfX3_7svVx-L604fF1eV1oRvOxoIKSggIWgMhumxLWbWM8hq5kK0UDTNSy4oD48xQYLRpJUpqwDTcrFomaHWWLWZf42GthmA3ELbKg1W_N3zoFITR6h4V18hkCbqilalFUwpOgEhWG0rqpkaTvOjsNbkBtj-g7-8MSal2Gas5Y5WiU7uM1TaJLmbRMK02aDS6MUB_8JLDE2dvVOdvFeNNyp0lg1d7g-C_TxhHtUkxY9-DQz_FdI-QTLKqLhP6ckY7SPVY1_rkqHe4umR1U0nKpUzU-T-oNAxurE4909q0fyB4fSBIzIg_xw6mGNXi8_KQfXG_3Ls6__RQAsgM6OBjDNj-V4b8L422I4zW7xKz_YPK_ZfFdIvrMKi1n4JLHfeA6Bed8vfA |
| CitedBy_id | crossref_primary_10_1093_braincomms_fcaf074 crossref_primary_10_3168_jds_2021_21518 crossref_primary_10_1126_scisignal_adl1030 crossref_primary_10_3389_fgene_2022_836798 crossref_primary_10_1016_j_jclepro_2023_138580 crossref_primary_10_1007_s00357_025_09503_8 crossref_primary_10_1097_SPV_0000000000001314 crossref_primary_10_1158_1078_0432_CCR_22_3815 crossref_primary_10_3389_fgene_2021_627964 crossref_primary_10_1016_j_psychres_2023_115265 crossref_primary_10_1145_3616011 crossref_primary_10_1016_j_brat_2024_104615 crossref_primary_10_1016_j_ecoser_2023_101593 crossref_primary_10_1016_j_nbd_2021_105530 crossref_primary_10_1038_s41586_024_07747_9 crossref_primary_10_1158_1078_0432_CCR_18_3241 crossref_primary_10_1186_s40594_022_00365_9 crossref_primary_10_1093_bib_bbad501 crossref_primary_10_1093_nar_gkaa1146 crossref_primary_10_1016_j_lfs_2025_123524 crossref_primary_10_1158_1078_0432_CCR_20_0103 crossref_primary_10_1093_ibd_izaa281 crossref_primary_10_1016_j_neuroimage_2020_116721 crossref_primary_10_18778_0208_6018_357_04 crossref_primary_10_1186_s12859_018_2053_1 crossref_primary_10_1093_hmg_ddaa182 crossref_primary_10_1016_j_jmsy_2021_05_005 crossref_primary_10_1038_s41398_023_02401_w |
| Cites_doi | 10.1007/s10618-012-0290-x 10.1186/1471-2105-10-62 10.1016/j.patcog.2009.11.012 10.1023/A:1010933404324 10.1002/widm.32 10.1093/bioinformatics/bti517 10.1080/10618600.2014.948179 10.1137/1.9781611972740.35 10.1109/TSMCB.2012.2220543 10.1023/A:1023949509487 10.1186/s13040-017-0142-8 10.1016/j.patcog.2012.07.021 10.1093/bioinformatics/btq226 10.1038/srep06207 10.1186/s40246-015-0049-8 10.1201/b19706 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2018 COPYRIGHT 2018 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s). 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION NPM ISR 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-017-1996-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 4 |
| ExternalDocumentID | oai_doaj_org_article_7ce590ac323d4860871a1954d21464ed 10.1186/s12859-017-1996-y PMC5769335 A546392799 29334888 10_1186_s12859_017_1996_y |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 M0N NPM 7X8 5PM 123 2VQ 4.4 ADTOC AFFHD AHSBF C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c675t-28211a824a11c0f093f5274e789f9865d9c937a575d2a526f9e92dad67dbf5823 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:53:02 EDT 2025 Wed Oct 29 12:23:19 EDT 2025 Tue Sep 23 05:48:04 EDT 2025 Thu Oct 02 09:01:29 EDT 2025 Mon Oct 20 21:55:36 EDT 2025 Mon Oct 20 16:24:24 EDT 2025 Thu Oct 16 14:55:46 EDT 2025 Wed Feb 19 02:44:07 EST 2025 Wed Oct 01 04:15:30 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Sat Sep 06 07:27:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Cluster analysis Data mining Consensus Ensemble Cancer |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c675t-28211a824a11c0f093f5274e789f9865d9c937a575d2a526f9e92dad67dbf5823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7760-410X |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-017-1996-y |
| PMID | 29334888 |
| PQID | 1989595340 |
| PQPubID | 23479 |
| PageCount | 4 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7ce590ac323d4860871a1954d21464ed unpaywall_primary_10_1186_s12859_017_1996_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_5769335 proquest_miscellaneous_1989595340 gale_infotracmisc_A546392799 gale_infotracacademiconefile_A546392799 gale_incontextgauss_ISR_A546392799 pubmed_primary_29334888 crossref_primary_10_1186_s12859_017_1996_y crossref_citationtrail_10_1186_s12859_017_1996_y springer_journals_10_1186_s12859_017_1996_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-15 |
| PublicationDateYYYYMMDD | 2018-01-15 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | BMC series – open, inclusive and trusted |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2018 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | A Strehl (1996_CR9) 2002; 3 J Handl (1996_CR6) 2005; 21 L Breiman (1996_CR7) 2001; 45 H Huang (1996_CR16) 2015; 24 O Arbelaitz (1996_CR5) 2013; 46 J Ghosh (1996_CR15) 2011; 1 1996_CR1 1996_CR14 V Pihur (1996_CR18) 2009; 10 Y Șenbabaoğlu (1996_CR4) 2014; 4 U Neumann (1996_CR8) 2017; 10 1996_CR11 S Monti (1996_CR12) 2003; 52 MC Naldi (1996_CR17) 2013; 27 HG Ayad (1996_CR13) 2010; 43 N Iam-On (1996_CR10) 2010; 26 Q Song (1996_CR2) 2015; 9 Y Liu (1996_CR3) 2013; 43 26755893 - J Comput Graph Stat. 2015;24(4):975-993 15914541 - Bioinformatics. 2005 Aug 1;21(15):3201-12 26481255 - Hum Genomics. 2015 Oct 19;9:27 19228411 - BMC Bioinformatics. 2009 Feb 19;10:62 28674556 - BioData Min. 2017 Jun 27;10 :21 20444838 - Bioinformatics. 2010 Jun 15;26(12):1513-9 25158761 - Sci Rep. 2014 Aug 27;4:6207 23193245 - IEEE Trans Cybern. 2013 Jun;43(3):982-94 |
| References_xml | – volume: 27 start-page: 259 year: 2013 ident: 1996_CR17 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0290-x – volume: 10 start-page: 62 year: 2009 ident: 1996_CR18 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-62 – volume: 43 start-page: 1943 year: 2010 ident: 1996_CR13 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.11.012 – volume: 45 start-page: 5 year: 2001 ident: 1996_CR7 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 1 start-page: 305 year: 2011 ident: 1996_CR15 publication-title: Wiley Interdiscip Rev Data Min Knowl Discov doi: 10.1002/widm.32 – volume: 21 start-page: 3201 year: 2005 ident: 1996_CR6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti517 – ident: 1996_CR14 – volume: 24 start-page: 975 year: 2015 ident: 1996_CR16 publication-title: J Comput Graph Stat doi: 10.1080/10618600.2014.948179 – volume: 3 start-page: 583 year: 2002 ident: 1996_CR9 publication-title: J Mach Learn Res – ident: 1996_CR11 doi: 10.1137/1.9781611972740.35 – volume: 43 start-page: 982 year: 2013 ident: 1996_CR3 publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2220543 – volume: 52 start-page: 91 year: 2003 ident: 1996_CR12 publication-title: Mach Learn doi: 10.1023/A:1023949509487 – volume: 10 start-page: 21 year: 2017 ident: 1996_CR8 publication-title: BioData Min. doi: 10.1186/s13040-017-0142-8 – volume: 46 start-page: 243 year: 2013 ident: 1996_CR5 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.07.021 – volume: 26 start-page: 1513 year: 2010 ident: 1996_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq226 – volume: 4 start-page: 6207 year: 2014 ident: 1996_CR4 publication-title: Sci Rep doi: 10.1038/srep06207 – volume: 9 start-page: 27 year: 2015 ident: 1996_CR2 publication-title: Hum Genomics doi: 10.1186/s40246-015-0049-8 – ident: 1996_CR1 doi: 10.1201/b19706 – reference: 23193245 - IEEE Trans Cybern. 2013 Jun;43(3):982-94 – reference: 28674556 - BioData Min. 2017 Jun 27;10 :21 – reference: 15914541 - Bioinformatics. 2005 Aug 1;21(15):3201-12 – reference: 26755893 - J Comput Graph Stat. 2015;24(4):975-993 – reference: 19228411 - BMC Bioinformatics. 2009 Feb 19;10:62 – reference: 26481255 - Hum Genomics. 2015 Oct 19;9:27 – reference: 25158761 - Sci Rep. 2014 Aug 27;4:6207 – reference: 20444838 - Bioinformatics. 2010 Jun 15;26(12):1513-9 |
| SSID | ssj0017805 |
| Score | 2.4600794 |
| Snippet | Background
Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in... Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in particular,... Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer research in... Abstract Background Given a set of features, researchers are often interested in partitioning objects into homogeneous clusters. In health research, cancer... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11 |
| SubjectTerms | Algorithms Analysis Bioinformatics Biomedical and Life Sciences Cancer Cancer research Cluster analysis Computational Biology/Bioinformatics Computer Appl. in Life Sciences Consensus Data mining Ensemble Life Sciences Microarrays Sequence analysis (methods) Software Software Article |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC4kIOoh-HY0SiuCYBjS8-iZbm9RDIkHD6uB3JqefkRxMxsyu8j8e6vmxY5CcvE6XXPoenUV_fVXAG-l8xkPXsW2Ej7Oq1zEVagcxlUIZeA2LasOIPu1OD7Nv5yJs61RX4QJ6-mBe8UdlPROiBubpZmjgUlY4BtiKXM0kTr3jrIvl2pspob7A2LqH-4wE1kcNAnxtMWUkTvUbTs7hTqy_n9T8taZ9Ddecro0vQd3NvWlaX-b5XLrXDq6D7tDQckO-408gFu-fgi3-xGT7SM4cZgJFh-YqdmCYX_8C_MHw0KVWSqbGT3KJRBnywgAf05i2Nf6i2rpmbuiTMhG1vHHcHr0-fun43gYnxBb7ALWMTZTSWJkmpsksTxwlQWBPagvpQpKFsIpi7WJwXrNpUakRVBepc64onRVEDLNnsBOvar9M2BFjgp0OXeJwyDnRErPc2-q1CuO9nUR8FGd2g7c4jTiYqm7HkMWureARgtosoBuI3g__XLZE2tcJ_yRbDQJEid29wE9RQ-eom_ylAjekIU1sV7UBKs5N5um0SffFvqQhgKotFQqgneDUFjhDqwZXimgHogoaya5N5PEsLSz5dejI2laIixb7VebRhNKTSiR5TyCp71jTRvD4ivDlCojKGcuN9v5fKX--aNjBRc01TITEeyPzqmHdNRcp9j9yX9vNsPz_2GGF3AXi05CUMaJ2IOd9dXGv8TCbl296mL4DyaRRTM priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0IuqD-FWNVllFECzBzcdusr61xdL64MNpoW_LZj9q8cyV5g7Jf-9MkguXKhVfs5OQna-dYWZ_A_C2dD7jwavYVsLHeZWLuAqVQ7sKoQjcpkXVNch-kUcn-edTcTqARdNdmM36fVLKD01CCGsx-dKuX7a9CbfwjJJdXVYejAUDguYfipZ_fW1y7HTo_H_64I1D6GqD5FglvQd3VvWFaX-Z-XzjIDp8APeHCJLt9SJ_CDd8_Qhu9zMl28dw7ND0Zx-ZqdmMYUL8Ax0Gw8iUWYqTGd3Cpa7NllHH-xmRYSLrf1Zzz9wluT62hhl_AieHn74dHMXDvITYYti_jDF7ShJTprlJEssDV1kQmHT6olRBlVI4ZTEYMRigudSIVAblVeqMk4WrgijTbBu26kXtnwGTOTLQ5dwlDq2aEwo9z72pUq84CtRFwNfs1HYAE6eZFnPdJRWl1L0ENEpAkwR0G8H78ZWLHknjOuJ9ktFISCDY3QPUDT3YlC7oChk3NkszR7O0MPczBGDnaFh57vEn35CENcFc1NRHc2ZWTaOPv870Hk0BUGmhVATvBqKwwB1YM1xLQD4QMtaEcmdCiXZoJ8uv14qkaYma12q_WDWa2tKEElnOI3jaK9a4MYy2MvShZQTFROUmO5-u1OffOxhwQWMsMxHB7lo59eB_musYuzvq77_F8Py_vv0C7mI4Sb2RcSJ2YGt5ufIvMWRbVq86Y_0NycA22A priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxNBEF9qiqgPflY9rXKKIFgu3fvYu1vfolhaH6pEA_Vp2c9Ykl5CkkPiX-_MfYRclYrgW8jOkezszG9nuJnfEPIqNzamzvJAK2aDRCUsUE4Z8CvnMkd1lKmqQPY0PR4lH8_Y2Q751PbCqAutzmcNaSgSFfe329CnFXbDBz05nBtXu3yeHi5D5GELEHGrqtr1NbKbMgjOe2R3dPp58K3qMcrCABIc1rzb_ONzndupIvH_Haq37qrLdZSbl6m3yI2ymMv1Dzmdbt1XR3fIvN1pXaYy6Zcr1dc_L5FA_kdV3CW3m9jWH9TGeI_s2OI-uV5Pu1w_ICcGQGn41peFP_QhVZ8AlPnws77GCN7H_mCsJ137WIs_RjFIse2FmlrfLBCU_ZYAfY-Mjj58fX8cNJMcAg0JySqAvC4MZR4lMgw1dZTHjkE6bLOcO56nzHANYZKE0NFEkkWp45ZHRpo0M8qxPIofkl4xK-xj4qcJbNAk1IQG8IYiPz5NrFSR5RRMzXiEticodENzjtM2pqJKd_JU1BoSoCGBGhJrj7zZPDKvOT6uEn6HZrERRHru6ovZYiwabxcZNrdRqeMoNjjlC7JSidR6BseoJxb-5Es0KoEEHAVW-IxluVyKky9DMcD5BDzKOPfI60bIzfCcZdMwAXpAzq6O5H5HEhBCd5ZftLYrcAnL6go7K5cCC-YYZ3FCPfKotuXNxiAOjAHdc49kHSvv7Ly7Upx_rwjKGQ7YjJlHDlp_EA0yLq9S7MHGZf5-DE_-SfopuQmBLlZtBiHbJ73VorTPIJhcqecNQPwCeDVtnw priority: 102 providerName: Unpaywall |
| Title | diceR: an R package for class discovery using an ensemble driven approach |
| URI | https://link.springer.com/article/10.1186/s12859-017-1996-y https://www.ncbi.nlm.nih.gov/pubmed/29334888 https://www.proquest.com/docview/1989595340 https://pubmed.ncbi.nlm.nih.gov/PMC5769335 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-017-1996-y https://doaj.org/article/7ce590ac323d4860871a1954d21464ed |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZ2EQIeEHcCozIICYkp4FycxEgIddXKVolq6qjUPVlObBdESEcvgvx7zkmTssA0XnhppfhEqn0uPqc-_j5CXiTaBMwa4WYpN26YhtxNbarBr6yNLcv8OK0aZIfR0TgcTPhkizT0VvUCLi4t7ZBPajzPX__8Xr4Hh39XOXwSvVl4iMLmYrytemrLbbILG5VAJoeP4e9DBYTvrw82L32ttTVVCP5_x-kLG9WfTZSbk9Sb5PqqOFflD5XnFzar_m1yq84yaXdtFnfIlinukmtr3snyHjnWEB5Gb6kq6IhC0fwVggqF7JVmmEtTvKmLnZ0lxa74KYpBsWu-pbmheo7hkTZQ5PfJuH_4qXfk1pwKbgalwdKFCsvzVOKHyvMyZpkILIfC1MSJsCKJuBYZJCwKkjjtK-5HVhjha6WjWKeWJ37wgOwUs8I8IjQKYQF1yLSnwfMZItWz0KjUN4KB0rVDWLOcMqsBx5H3IpdV4ZFEcq0BCRqQqAFZOuTV5pXzNdrGVcIHqKONIAJlVw9m86ms_U7GeM2MqSzwA418W1AfKgS500hoHhr4kc9RwxKhMArstZmq1WIhj09HsotMAcKPhXDIy1rIzmAGmaqvLsA6IHpWS3KvJQm-mrWGnzWGJHEIG9wKM1stJLauccGDkDnk4dqwNhODjCyAOJs4JG6ZXGvm7ZHiy-cKKpwj1WXAHbLfGKdsXOyqhd3f2O-_1fD4f6jhCbkBmSi2Vboe3yM7y_nKPIVsb5l2yHY8ieEz6X_okN1ud3A6gO-Dw-HJCJ72ol6n-h-lU_k6jIyHJ92zXwBAVfc |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFSocEG8CBQxCQqKKcB5OYm4LotpdSg_bVurNcvxYEEu22uwK5d8zk3WiBlAR13gSxZ6HZ-TP3xDyujA2Yc6KUJfchmmZ8rB0pQG_ci53TMd52QJkj7PxWTo95-f-Hnfdod27I8k2UrduXWTv6gi51kKMqi1ytrlOdhFjBd64OxpNT6b94QHS9PsDzL--ONiCWqb-P-PxpQ3pd7Bkf2J6i-xtqgvV_FSLxaVN6fAOue2zSTraqv8uuWare-TGtr9kc59MDISB2XuqKjqjUBx_h-BBIUulGnNmijdyEcHZUES_z1EMilr7o1xYalYYBmlHOf6AnB1-Ov04Dn3vhFBDCbAOoZKKIlXEqYoizRwTieNQgNq8EE4UGTdCQ2KiIFkzseJx5oQVsVEmy03peBEnD8lOtazsY0KzFBbQpMxEBjycISM9S60qYysYKNcEhHXLKbUnFsf-FgvZFhhFJrcakKABiRqQTUDe9q9cbFk1rhL-gDrqBZEQu32wXM2l9y-Z43UypnQSJwb7akEdqJDMzmDj8tTCT75CDUukvKgQUzNXm7qWk5OZHGFHABHnQgTkjRdyS5iBVv6KAqwDsmQNJPcHkuCTejD8sjMkiUMIZKvsclNLhKhxwZOUBeTR1rD6iUHmlUA8LQKSD0xuMPPhSPXta0sJzrGlZcIDctAZp_SxqL5qYQ96-_23Gp7817dfkL3x6ZcjeTQ5_vyU3IQ0EzGTYcT3yc56tbHPIJVbl8-96_4CZAY_MQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA664u1BvFtdNYoguJRN26RtfFtHhx2VRUYX9i2kucwujp1hOoPMv_ec3tiqrPjanJYm55JzyJfvEPIqty5h3snQFMKFvOAiLHxhwa-8zzwzcVbUANmj9PCYfzwRJ22f06pDu3dHks2dBmRpKtf7S-sbF8_T_SpC3rUQI2yNot1eJlc4bG7YwmCUjvpjBCTsb48y__raYDOqOfv_jMzntqbfYZP92elNcn1TLvX2p57Pz21P49vkVptX0oPGEO6QS668S642nSa398jEQkCYvqW6pFMKZfJ3CCMU8lVqMHumeDcXsZxbijj4GYpBeet-FHNH7QoDIu3Ix--T4_GHb6PDsO2iEBooBtYh1FRRpPOY6ygyzDOZeAGlqMty6WWeCisNpCga0jYbaxGnXjoZW23TzBZe5HHygOyUi9I9IjTlsICWMxtZ8HWG3PSMO13ETjJQsw0I65ZTmZZiHDtdzFVdauSpajSgQAMKNaC2AXnTv7Js-DUuEn6HOuoFkRq7frBYzVTraSrDi2VMmyROLHbYgopQI62dxRbm3MFPvkQNKyS_KBFdM9ObqlKTr1N1gL0BZJxJGZDXrZBfwAyMbi8rwDogX9ZAcncgCd5pBsMvOkNSOISQttItNpVCsJqQIuEsIA8bw-onBjlYApE1D0g2MLnBzIcj5dlpTQ4usLllIgKy1xmnaqNSddHC7vX2-281PP6vbz8n1768H6vPk6NPT8gNyDcRPBlGYpfsrFcb9xRyunXxrPbbX9gQQg4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxNBEF9qiqgPflY9rXKKIFgu3fvYu1vfolhaH6pEA_Vp2c9Ykl5CkkPiX-_MfYRclYrgW8jOkezszG9nuJnfEPIqNzamzvJAK2aDRCUsUE4Z8CvnMkd1lKmqQPY0PR4lH8_Y2Q751PbCqAutzmcNaSgSFfe329CnFXbDBz05nBtXu3yeHi5D5GELEHGrqtr1NbKbMgjOe2R3dPp58K3qMcrCABIc1rzb_ONzndupIvH_Haq37qrLdZSbl6m3yI2ymMv1Dzmdbt1XR3fIvN1pXaYy6Zcr1dc_L5FA_kdV3CW3m9jWH9TGeI_s2OI-uV5Pu1w_ICcGQGn41peFP_QhVZ8AlPnws77GCN7H_mCsJ137WIs_RjFIse2FmlrfLBCU_ZYAfY-Mjj58fX8cNJMcAg0JySqAvC4MZR4lMgw1dZTHjkE6bLOcO56nzHANYZKE0NFEkkWp45ZHRpo0M8qxPIofkl4xK-xj4qcJbNAk1IQG8IYiPz5NrFSR5RRMzXiEticodENzjtM2pqJKd_JU1BoSoCGBGhJrj7zZPDKvOT6uEn6HZrERRHru6ovZYiwabxcZNrdRqeMoNjjlC7JSidR6BseoJxb-5Es0KoEEHAVW-IxluVyKky9DMcD5BDzKOPfI60bIzfCcZdMwAXpAzq6O5H5HEhBCd5ZftLYrcAnL6go7K5cCC-YYZ3FCPfKotuXNxiAOjAHdc49kHSvv7Ly7Upx_rwjKGQ7YjJlHDlp_EA0yLq9S7MHGZf5-DE_-SfopuQmBLlZtBiHbJ73VorTPIJhcqecNQPwCeDVtnw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=diceR%3A+an+R+package+for+class+discovery+using+an+ensemble+driven+approach&rft.jtitle=BMC+bioinformatics&rft.au=Derek+S.+Chiu&rft.au=Aline+Talhouk&rft.date=2018-01-15&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1186%2Fs12859-017-1996-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7ce590ac323d4860871a1954d21464ed |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |