Diagnosis support systems for rare diseases: a scoping review

Introduction Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many re...

Full description

Saved in:
Bibliographic Details
Published inOrphanet journal of rare diseases Vol. 15; no. 1; pp. 94 - 16
Main Authors Faviez, Carole, Chen, Xiaoyi, Garcelon, Nicolas, Neuraz, Antoine, Knebelmann, Bertrand, Salomon, Rémi, Lyonnet, Stanislas, Saunier, Sophie, Burgun, Anita
Format Journal Article
LanguageEnglish
Published London BioMed Central 16.04.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1750-1172
1750-1172
DOI10.1186/s13023-020-01374-z

Cover

Abstract Introduction Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many relying on rare disease expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases. Methods A scoping review was conducted based on methods proposed by Arksey and O’Malley. A charting form for relevant study analysis was developed and used to categorize data. Results Sixty-eight studies were retained at the end of the charting process. Diagnosis targets varied from 1 rare disease to all rare diseases. Material used for diagnosis support consisted mostly of phenotype concepts, images or fluids. Fifty-seven percent of the studies used expert knowledge. Two-thirds of the studies relied on machine learning algorithms, and one-third used simple similarities. Manual algorithms were encountered as well. Most of the studies presented satisfying performance of evaluation by comparison with references or with external validation. Fourteen studies provided online tools, most of which aimed to support the diagnosis of all rare diseases by considering queries based on phenotype concepts. Conclusion Numerous solutions relying on different materials and use of various methodologies are emerging with satisfying preliminary results. However, the variability of approaches and evaluation processes complicates the comparison of results. Efforts should be made to adequately validate these tools and guarantee reproducibility and explicability.
AbstractList Introduction Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many relying on rare disease expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases. Methods A scoping review was conducted based on methods proposed by Arksey and O’Malley. A charting form for relevant study analysis was developed and used to categorize data. Results Sixty-eight studies were retained at the end of the charting process. Diagnosis targets varied from 1 rare disease to all rare diseases. Material used for diagnosis support consisted mostly of phenotype concepts, images or fluids. Fifty-seven percent of the studies used expert knowledge. Two-thirds of the studies relied on machine learning algorithms, and one-third used simple similarities. Manual algorithms were encountered as well. Most of the studies presented satisfying performance of evaluation by comparison with references or with external validation. Fourteen studies provided online tools, most of which aimed to support the diagnosis of all rare diseases by considering queries based on phenotype concepts. Conclusion Numerous solutions relying on different materials and use of various methodologies are emerging with satisfying preliminary results. However, the variability of approaches and evaluation processes complicates the comparison of results. Efforts should be made to adequately validate these tools and guarantee reproducibility and explicability.
Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many relying on rare disease expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases. A scoping review was conducted based on methods proposed by Arksey and O'Malley. A charting form for relevant study analysis was developed and used to categorize data. Sixty-eight studies were retained at the end of the charting process. Diagnosis targets varied from 1 rare disease to all rare diseases. Material used for diagnosis support consisted mostly of phenotype concepts, images or fluids. Fifty-seven percent of the studies used expert knowledge. Two-thirds of the studies relied on machine learning algorithms, and one-third used simple similarities. Manual algorithms were encountered as well. Most of the studies presented satisfying performance of evaluation by comparison with references or with external validation. Fourteen studies provided online tools, most of which aimed to support the diagnosis of all rare diseases by considering queries based on phenotype concepts. Numerous solutions relying on different materials and use of various methodologies are emerging with satisfying preliminary results. However, the variability of approaches and evaluation processes complicates the comparison of results. Efforts should be made to adequately validate these tools and guarantee reproducibility and explicability.
Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many relying on rare disease expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases.INTRODUCTIONRare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many relying on rare disease expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases.A scoping review was conducted based on methods proposed by Arksey and O'Malley. A charting form for relevant study analysis was developed and used to categorize data.METHODSA scoping review was conducted based on methods proposed by Arksey and O'Malley. A charting form for relevant study analysis was developed and used to categorize data.Sixty-eight studies were retained at the end of the charting process. Diagnosis targets varied from 1 rare disease to all rare diseases. Material used for diagnosis support consisted mostly of phenotype concepts, images or fluids. Fifty-seven percent of the studies used expert knowledge. Two-thirds of the studies relied on machine learning algorithms, and one-third used simple similarities. Manual algorithms were encountered as well. Most of the studies presented satisfying performance of evaluation by comparison with references or with external validation. Fourteen studies provided online tools, most of which aimed to support the diagnosis of all rare diseases by considering queries based on phenotype concepts.RESULTSSixty-eight studies were retained at the end of the charting process. Diagnosis targets varied from 1 rare disease to all rare diseases. Material used for diagnosis support consisted mostly of phenotype concepts, images or fluids. Fifty-seven percent of the studies used expert knowledge. Two-thirds of the studies relied on machine learning algorithms, and one-third used simple similarities. Manual algorithms were encountered as well. Most of the studies presented satisfying performance of evaluation by comparison with references or with external validation. Fourteen studies provided online tools, most of which aimed to support the diagnosis of all rare diseases by considering queries based on phenotype concepts.Numerous solutions relying on different materials and use of various methodologies are emerging with satisfying preliminary results. However, the variability of approaches and evaluation processes complicates the comparison of results. Efforts should be made to adequately validate these tools and guarantee reproducibility and explicability.CONCLUSIONNumerous solutions relying on different materials and use of various methodologies are emerging with satisfying preliminary results. However, the variability of approaches and evaluation processes complicates the comparison of results. Efforts should be made to adequately validate these tools and guarantee reproducibility and explicability.
Introduction Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many relying on rare disease expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases. Methods A scoping review was conducted based on methods proposed by Arksey and O’Malley. A charting form for relevant study analysis was developed and used to categorize data. Results Sixty-eight studies were retained at the end of the charting process. Diagnosis targets varied from 1 rare disease to all rare diseases. Material used for diagnosis support consisted mostly of phenotype concepts, images or fluids. Fifty-seven percent of the studies used expert knowledge. Two-thirds of the studies relied on machine learning algorithms, and one-third used simple similarities. Manual algorithms were encountered as well. Most of the studies presented satisfying performance of evaluation by comparison with references or with external validation. Fourteen studies provided online tools, most of which aimed to support the diagnosis of all rare diseases by considering queries based on phenotype concepts. Conclusion Numerous solutions relying on different materials and use of various methodologies are emerging with satisfying preliminary results. However, the variability of approaches and evaluation processes complicates the comparison of results. Efforts should be made to adequately validate these tools and guarantee reproducibility and explicability.
Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many relying on rare disease expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases. A scoping review was conducted based on methods proposed by Arksey and O'Malley. A charting form for relevant study analysis was developed and used to categorize data. Sixty-eight studies were retained at the end of the charting process. Diagnosis targets varied from 1 rare disease to all rare diseases. Material used for diagnosis support consisted mostly of phenotype concepts, images or fluids. Fifty-seven percent of the studies used expert knowledge. Two-thirds of the studies relied on machine learning algorithms, and one-third used simple similarities. Manual algorithms were encountered as well. Most of the studies presented satisfying performance of evaluation by comparison with references or with external validation. Fourteen studies provided online tools, most of which aimed to support the diagnosis of all rare diseases by considering queries based on phenotype concepts. Numerous solutions relying on different materials and use of various methodologies are emerging with satisfying preliminary results. However, the variability of approaches and evaluation processes complicates the comparison of results. Efforts should be made to adequately validate these tools and guarantee reproducibility and explicability.
Abstract Introduction Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many relying on rare disease expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases. Methods A scoping review was conducted based on methods proposed by Arksey and O’Malley. A charting form for relevant study analysis was developed and used to categorize data. Results Sixty-eight studies were retained at the end of the charting process. Diagnosis targets varied from 1 rare disease to all rare diseases. Material used for diagnosis support consisted mostly of phenotype concepts, images or fluids. Fifty-seven percent of the studies used expert knowledge. Two-thirds of the studies relied on machine learning algorithms, and one-third used simple similarities. Manual algorithms were encountered as well. Most of the studies presented satisfying performance of evaluation by comparison with references or with external validation. Fourteen studies provided online tools, most of which aimed to support the diagnosis of all rare diseases by considering queries based on phenotype concepts. Conclusion Numerous solutions relying on different materials and use of various methodologies are emerging with satisfying preliminary results. However, the variability of approaches and evaluation processes complicates the comparison of results. Efforts should be made to adequately validate these tools and guarantee reproducibility and explicability.
Introduction Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number of expert centers. Consequently, computerized diagnosis support systems have been developed to address these issues, with many relying on rare disease expertise and taking advantage of the increasing volume of generated and accessible health-related data. Our objective is to perform a review of all initiatives aiming to support the diagnosis of rare diseases. Methods A scoping review was conducted based on methods proposed by Arksey and O'Malley. A charting form for relevant study analysis was developed and used to categorize data. Results Sixty-eight studies were retained at the end of the charting process. Diagnosis targets varied from 1 rare disease to all rare diseases. Material used for diagnosis support consisted mostly of phenotype concepts, images or fluids. Fifty-seven percent of the studies used expert knowledge. Two-thirds of the studies relied on machine learning algorithms, and one-third used simple similarities. Manual algorithms were encountered as well. Most of the studies presented satisfying performance of evaluation by comparison with references or with external validation. Fourteen studies provided online tools, most of which aimed to support the diagnosis of all rare diseases by considering queries based on phenotype concepts. Conclusion Numerous solutions relying on different materials and use of various methodologies are emerging with satisfying preliminary results. However, the variability of approaches and evaluation processes complicates the comparison of results. Efforts should be made to adequately validate these tools and guarantee reproducibility and explicability. Keywords: Scoping review, Rare disease, Genetic diseases, Diagnosis, Clinical decision support, Artificial intelligence, Machine learning, Patient similarity, Phenotype
ArticleNumber 94
Audience Academic
Author Salomon, Rémi
Lyonnet, Stanislas
Saunier, Sophie
Chen, Xiaoyi
Faviez, Carole
Garcelon, Nicolas
Knebelmann, Bertrand
Burgun, Anita
Neuraz, Antoine
Author_xml – sequence: 1
  givenname: Carole
  surname: Faviez
  fullname: Faviez, Carole
  email: carole.faviez@inserm.fr
  organization: Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université
– sequence: 2
  givenname: Xiaoyi
  surname: Chen
  fullname: Chen, Xiaoyi
  organization: Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université
– sequence: 3
  givenname: Nicolas
  surname: Garcelon
  fullname: Garcelon, Nicolas
  organization: Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Institut Imagine, Université de Paris
– sequence: 4
  givenname: Antoine
  surname: Neuraz
  fullname: Neuraz, Antoine
  organization: Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Département d’informatique médicale, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP)
– sequence: 5
  givenname: Bertrand
  surname: Knebelmann
  fullname: Knebelmann, Bertrand
  organization: Service de Néphrologie Transplantation Adultes, Hôpital Necker-Enfants Malades, Université de Paris, Institut Necker-Enfants Malades, INSERM, Hôpital Necker-Enfants Malades
– sequence: 6
  givenname: Rémi
  surname: Salomon
  fullname: Salomon, Rémi
  organization: Institut Imagine, Université de Paris, Service de Néphrologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris
– sequence: 7
  givenname: Stanislas
  surname: Lyonnet
  fullname: Lyonnet, Stanislas
  organization: Université de Paris, Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Université de Paris, Imagine Institute, Service de génétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP)
– sequence: 8
  givenname: Sophie
  surname: Saunier
  fullname: Saunier, Sophie
  organization: Université de Paris, Laboratory of Renal Hereditary Diseases, INSERM UMR 1163, Université de Paris, Imagine Institute
– sequence: 9
  givenname: Anita
  surname: Burgun
  fullname: Burgun, Anita
  organization: Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, Département d’informatique médicale, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), Université de Paris, PaRis Artificial Intelligence Research InstitutE (PRAIRIE)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32299466$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-02570643$$DView record in HAL
BookMark eNqNkttr2zAUxs3oWC_bP7CHYdjL-uBON0v2YIPQXRoIDHZ5Fiey5Co4livZ6dq_fkqcZU0YZehB4uj7PonfOafJUetanSQvMbrAuOBvA6aI0AwRlCFMBcvunyQnWOQow1iQowfn4-Q0hAVCLKeoeJYcU0LKknF-krz_aKFuXbAhDUPXOd-n4S70ehlS43zqweu0skFD0OFdCmlQrrNtnXq9svr2efLUQBP0i-1-lvz8_OnH5VU2-_plejmZZYqLvM8IwZxShHKDNJhCVQYhINrgigkm5jQHXTKGgRgiKs5LpqCac5qrQhE1Z4SeJdMxt3KwkJ23S_B30oGVm4LztQTfW9VoSaBQRlQlMMgZYRwUcFVUbJ4rjIwRMYuOWUPbwd0tNM0uECO5BitHsDKClRuw8j66PoyubpgvdaV023to9r6yf9Paa1m7lRSYM0JQDDgfA64PbFeTmVzXEMkF4oyucNS-2T7m3c2gQy-XNijdNNBqNwRJaIlLITBdk3l9IF24wbexGRsVQwhH9jtVDRGRbY2Lf1TrUDnhRFAmMM6j6uIfqrgqvbQqzp6xsb5nON8zRE2vf_U1DCHI6fdv-9pXDwHuEPwZxSggo0B5F4LX5v_aUhyYlO2ht27dBNs8bt3OQYjvtLX2f8k94voN1pAPVg
CitedBy_id crossref_primary_10_1080_02648725_2023_2196476
crossref_primary_10_1007_s00482_023_00777_8
crossref_primary_10_2196_25929
crossref_primary_10_1002_humu_24341
crossref_primary_10_1186_s13023_024_03342_3
crossref_primary_10_1186_s13023_023_02663_z
crossref_primary_10_1016_j_compbiomed_2021_104716
crossref_primary_10_1016_j_semerg_2024_102434
crossref_primary_10_1007_s11606_024_09086_x
crossref_primary_10_3390_diagnostics11122320
crossref_primary_10_1186_s13023_021_01906_1
crossref_primary_10_1016_j_ijbiomac_2024_134097
crossref_primary_10_1016_j_gim_2022_07_008
crossref_primary_10_1016_j_ccc_2021_12_002
crossref_primary_10_1016_j_tig_2020_06_009
crossref_primary_10_1186_s12913_021_06926_y
crossref_primary_10_1007_s00108_023_01599_7
crossref_primary_10_3389_fneur_2023_1108222
crossref_primary_10_3389_fbinf_2024_1457619
crossref_primary_10_3389_fmed_2021_664023
crossref_primary_10_2196_51391
crossref_primary_10_3389_fmed_2021_747612
crossref_primary_10_1186_s13023_022_02530_3
crossref_primary_10_1186_s13023_020_01542_1
crossref_primary_10_1016_j_hlpt_2020_11_001
crossref_primary_10_3389_fpubh_2023_1214766
crossref_primary_10_3390_ijerph19116456
crossref_primary_10_5808_gi_21016
crossref_primary_10_1002_uog_26242
crossref_primary_10_1186_s13023_024_03063_7
crossref_primary_10_1016_j_compbiomed_2024_107924
crossref_primary_10_1038_s41431_021_00928_4
crossref_primary_10_3389_fphar_2022_786710
crossref_primary_10_2196_49720
crossref_primary_10_1007_s10067_023_06699_1
crossref_primary_10_7759_cureus_46860
crossref_primary_10_7759_cureus_47219
crossref_primary_10_1007_s10405_025_00606_y
crossref_primary_10_1111_cts_13619
crossref_primary_10_1186_s12911_024_02538_8
crossref_primary_10_1007_s00108_021_01221_8
crossref_primary_10_1016_S0140_6736_23_02652_1
crossref_primary_10_1089_gtmb_2023_29074_persp
crossref_primary_10_1098_rsif_2022_0541
crossref_primary_10_1007_s10067_023_06846_8
crossref_primary_10_1016_j_gim_2023_100921
crossref_primary_10_3390_jcm12103599
Cites_doi 10.1007/s10916-011-9811-1
10.1016/j.compbiomed.2013.08.020
10.1186/s12920-018-0333-2
10.1371/journal.pone.0207840
10.1001/jamaophthalmol.2016.0611
10.1186/s13023-014-0204-7
10.1186/s12887-016-0641-7
10.1002/uog.17558
10.1007/s10916-016-0651-x
10.1111/cge.12716
10.1093/nar/gki033
10.2174/0929867324666170511111803
10.1371/journal.pone.0146733
10.1038/s41551-016-0024
10.1111/j.1365-2133.2012.10742.x
10.1111/all.12153
10.1016/j.ajhg.2009.09.003
10.1109/ICCONS.2018.8663062
10.1016/j.compbiomed.2009.03.006
10.1016/j.compbiomed.2018.05.004
10.1007/s11010-019-03527-6
10.1126/scitranslmed.3009262
10.1016/j.ijmedinf.2013.01.005
10.1016/j.atherosclerosis.2014.12.034
10.7717/peerj.2211
10.1016/j.neuroimage.2014.04.057
10.7554/eLife.02020
10.1109/TII.2017.2686380
10.2196/11301
10.1007/978-3-319-91563-0_30
10.1186/s12911-016-0268-5
10.1016/j.talanta.2010.02.014
10.1111/apa.12072
10.1186/1750-1172-8-94
10.1016/j.jbiomech.2016.04.010
10.1109/JBHI.2016.2608859
10.3389/fgene.2018.00587
10.1016/j.compbiomed.2011.05.010
10.1038/ki.2011.30
10.19082/5974
10.1093/bioinformatics/bts471
10.1016/j.ajhg.2008.09.017
10.1016/j.neuroimage.2010.04.273
10.3389/fnins.2018.00491
10.1016/j.ajhg.2018.08.003
10.1093/qjmed/hcs008
10.1002/humu.22347
10.1186/s13023-019-1040-6
10.1155/2019/6319581
10.1109/ICMLA.2012.234
10.1016/j.jhsa.2017.03.043
10.1038/s41591-018-0279-0
10.1080/1364557032000119616
10.1109/JBHI.2015.2462744
10.1109/TKDE.2009.191
10.1016/j.atherosclerosissup.2016.10.002
10.1016/j.artmed.2018.04.009
10.3390/genes10120978
10.1145/2700487
10.1371/journal.pone.0135180
10.1016/j.compbiomed.2011.12.004
10.1039/C4AN01942C
10.1016/j.jbi.2010.12.001
10.1055/s-0039-1677911
10.1038/s41436-018-0272-5
10.1002/jcla.21631
10.1109/FUZZY.2011.6007719
10.1038/nmeth.3484
10.1038/ki.2014.202
10.1007/s11548-015-1312-0
10.1007/978-3-319-63315-2_52
10.1136/bmjqs-2018-008370
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s13023-020-01374-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest British Nursing Database
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
MEDLINE - Academic






Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1750-1172
EndPage 16
ExternalDocumentID oai_doaj_org_article_2a8cf7d9a4a54246aca6c8d4b5c10ff7
10.1186/s13023-020-01374-z
PMC7164220
oai:HAL:hal-02570643v1
A627347115
32299466
10_1186_s13023_020_01374_z
Genre Research Support, Non-U.S. Gov't
Journal Article
Scoping Review
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-17-RHUS-0002
  funderid: http://dx.doi.org/10.13039/501100001665
– fundername: ;
  grantid: ANR-17-RHUS-0002
GroupedDBID ---
0R~
123
29N
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AN0
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BNQBC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ISR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
1XC
2VQ
4.4
AFFHD
AHSBF
EJD
H13
IPNFZ
RIG
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c675t-221633005f0eaf8cdf00a2ef1d4747b35ae9441a2f27d6694cadb635c8c2cb423
IEDL.DBID M48
ISSN 1750-1172
IngestDate Fri Oct 03 12:45:56 EDT 2025
Sun Oct 26 04:13:55 EDT 2025
Tue Sep 30 16:49:41 EDT 2025
Tue Oct 28 08:49:58 EDT 2025
Wed Oct 01 14:37:56 EDT 2025
Sun Oct 19 01:29:56 EDT 2025
Mon Oct 20 22:11:41 EDT 2025
Mon Oct 20 16:36:31 EDT 2025
Thu Oct 16 14:47:35 EDT 2025
Mon Jul 21 05:27:06 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Wed Oct 01 03:02:44 EDT 2025
Sat Sep 06 07:29:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Phenotype
Rare disease
Machine learning
Scoping review
Diagnosis
Clinical decision support
Genetic diseases
Patient similarity
Artificial intelligence
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c675t-221633005f0eaf8cdf00a2ef1d4747b35ae9441a2f27d6694cadb635c8c2cb423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-3
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMCID: PMC7164220
ORCID 0000-0002-3326-2811
0000-0001-6855-4366
0000-0002-1500-0236
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13023-020-01374-z
PMID 32299466
PQID 2391400116
PQPubID 76088
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_2a8cf7d9a4a54246aca6c8d4b5c10ff7
unpaywall_primary_10_1186_s13023_020_01374_z
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7164220
hal_primary_oai_HAL_hal_02570643v1
proquest_miscellaneous_2391977132
proquest_journals_2391400116
gale_infotracmisc_A627347115
gale_infotracacademiconefile_A627347115
gale_incontextgauss_ISR_A627347115
pubmed_primary_32299466
crossref_primary_10_1186_s13023_020_01374_z
crossref_citationtrail_10_1186_s13023_020_01374_z
springer_journals_10_1186_s13023_020_01374_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-16
PublicationDateYYYYMMDD 2020-04-16
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Orphanet journal of rare diseases
PublicationTitleAbbrev Orphanet J Rare Dis
PublicationTitleAlternate Orphanet J Rare Dis
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References E Stroes (1374_CR38) 2017; 23
M Hassanzad (1374_CR46) 2017; 9
F Shen (1374_CR72) 2017; 2017
S Natarajan (1374_CR58) 2018
H Arksey (1374_CR6) 2005; 8
A Savio (1374_CR22) 2011; 41
A-K Rother (1374_CR52) 2015; 10
L Grigull (1374_CR53) 2016; 16
T Zemojtel (1374_CR67) 2014; 6
Q Li (1374_CR78) 2019; 21
1374_CR10
T Van den Bulcke (1374_CR24) 2011; 44
AC Neocleous (1374_CR15) 2018; 51
G Peng (1374_CR56) 2019; 21
GB Sharma (1374_CR40) 2016; 49
J Schaaf (1374_CR76) 2019; 264
AC Neocleous (1374_CR13) 2016; 20
Q Ferry (1374_CR51) 2014; 3
S Saraydemir (1374_CR21) 2012; 36
M-H Zhang (1374_CR35) 2016; 11
L Basel-Vanagaite (1374_CR43) 2016; 89
S Porat (1374_CR12) 2014; 9
T Fujiwara (1374_CR71) 2018; 103
J Jia (1374_CR73) 2018; 9
S Kadali (1374_CR60) 2019; 458
MZ Ullah (1374_CR68) 2015; 6
G Acampora (1374_CR11) 2011
H Yang (1374_CR69) 2015; 12
B Klimova (1374_CR3) 2017; 24
Q Zhao (1374_CR30) 2013; 2013
1374_CR25
S Faguer (1374_CR32) 2014; 86
1374_CR7
SF Weng (1374_CR37) 2015; 238
A Gambin (1374_CR48) 2009; 39
S Köhler (1374_CR63) 2009; 85
1374_CR1
S Gambhir (1374_CR4) 2016; 40
H Li (1374_CR57) 2018; 12
R Alves (1374_CR2) 2016; 4
K Sidiropoulos (1374_CR8) 2012; 42
A Zampetti (1374_CR26) 2012; 166
JP Campbell (1374_CR41) 2016; 134
P Muralidharan (1374_CR9) 2014; 17
S Bauer (1374_CR64) 2012; 28
SJ Pan (1374_CR82) 2010; 22
AS AlAgha (1374_CR47) 2018; 88
GL Masala (1374_CR29) 2013; 43
A Lux (1374_CR31) 2013; 8
Z Li (1374_CR42) 2016; 11
R Dragusin (1374_CR66) 2013; 82
A Catic (1374_CR16) 2018; 11
Y Gurovich (1374_CR62) 2019; 25
1374_CR79
A Rizk-Jackson (1374_CR19) 2011; 56
R Challen (1374_CR84) 2019; 28
TP Burange (1374_CR74) 2018
D Kostro (1374_CR33) 2014; 98
F Shen (1374_CR75) 2018; 6
C Lacombe (1374_CR36) 2015; 140
M Pineda (1374_CR39) 2016; 16
S Sheikhzadeh (1374_CR27) 2012; 105
A Hamosh (1374_CR80) 2005; 33
JJY Lee (1374_CR54) 2018; 20
AC Neocleous (1374_CR14) 2017; 21
A Koivu (1374_CR18) 2018; 98
1374_CR83
1374_CR44
PN Robinson (1374_CR81) 2008; 83
Q Zhao (1374_CR34) 2013; 16
J Chen (1374_CR77) 2019; 21
M Baas (1374_CR55) 2017; 42
M Arjmand (1374_CR20) 2010; 81
1374_CR45
G Barnhart-Magen (1374_CR28) 2013; 27
1374_CR49
S Montani (1374_CR5) 2019; 28
M Girdea (1374_CR65) 2013; 34
M Pinol (1374_CR70) 2017; 13
W Gronwald (1374_CR23) 2011; 79
J Yang (1374_CR17) 2018; 13
S Kuwayama (1374_CR59) 2019; 2019
S Ronicke (1374_CR61) 2019; 14
M Maurer (1374_CR50) 2013; 68
References_xml – volume: 36
  start-page: 3205
  issue: 5
  year: 2012
  ident: 1374_CR21
  publication-title: J Med Syst
  doi: 10.1007/s10916-011-9811-1
– volume: 43
  start-page: 1724
  issue: 11
  year: 2013
  ident: 1374_CR29
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.08.020
– volume: 11
  start-page: 19
  issue: 1
  year: 2018
  ident: 1374_CR16
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-018-0333-2
– volume: 13
  start-page: e0207840
  issue: 12
  year: 2018
  ident: 1374_CR17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0207840
– volume: 134
  start-page: 651
  issue: 6
  year: 2016
  ident: 1374_CR41
  publication-title: JAMA Ophthalmol
  doi: 10.1001/jamaophthalmol.2016.0611
– ident: 1374_CR1
– volume: 9
  start-page: 204
  year: 2014
  ident: 1374_CR12
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/s13023-014-0204-7
– volume: 16
  start-page: 107
  year: 2016
  ident: 1374_CR39
  publication-title: BMC Pediatr
  doi: 10.1186/s12887-016-0641-7
– volume: 51
  start-page: 503
  issue: 4
  year: 2018
  ident: 1374_CR15
  publication-title: Off J Int Soc Ultrasound Obstet Gynecol Avr
  doi: 10.1002/uog.17558
– volume: 40
  start-page: 287
  issue: 12
  year: 2016
  ident: 1374_CR4
  publication-title: J Med Syst déc
  doi: 10.1007/s10916-016-0651-x
– volume: 89
  start-page: 557
  issue: 5
  year: 2016
  ident: 1374_CR43
  publication-title: Clin Genet
  doi: 10.1111/cge.12716
– volume: 33
  start-page: D514
  issue: Database issue
  year: 2005
  ident: 1374_CR80
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki033
– volume: 24
  start-page: 3153
  issue: 29
  year: 2017
  ident: 1374_CR3
  publication-title: Curr Med Chem
  doi: 10.2174/0929867324666170511111803
– volume: 17
  start-page: 49
  issue: Pt 3
  year: 2014
  ident: 1374_CR9
  publication-title: Med Image Comput Comput-Assist Interv MICCAI Int Conf Med Image Comput Comput-Assist Interv
– volume: 16
  start-page: 222
  issue: Pt 2
  year: 2013
  ident: 1374_CR34
  publication-title: Med Image Comput Comput-Assist Interv MICCAI Int Conf Med Image Comput Comput-Assist Interv.
– volume: 11
  start-page: e0146733
  issue: 2
  year: 2016
  ident: 1374_CR42
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0146733
– ident: 1374_CR44
  doi: 10.1038/s41551-016-0024
– volume: 166
  start-page: 712
  issue: 4
  year: 2012
  ident: 1374_CR26
  publication-title: Br J Dermatol
  doi: 10.1111/j.1365-2133.2012.10742.x
– volume: 68
  start-page: 816
  issue: 6
  year: 2013
  ident: 1374_CR50
  publication-title: Allergy.
  doi: 10.1111/all.12153
– volume: 85
  start-page: 457
  issue: 4
  year: 2009
  ident: 1374_CR63
  publication-title: Am J Hum Genet oct
  doi: 10.1016/j.ajhg.2009.09.003
– start-page: 1160
  volume-title: 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS)
  year: 2018
  ident: 1374_CR74
  doi: 10.1109/ICCONS.2018.8663062
– volume: 39
  start-page: 460
  issue: 5
  year: 2009
  ident: 1374_CR48
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2009.03.006
– ident: 1374_CR79
– volume: 98
  start-page: 1
  year: 2018
  ident: 1374_CR18
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.05.004
– volume: 458
  start-page: 27
  issue: 1–2
  year: 2019
  ident: 1374_CR60
  publication-title: Mol Cell Biochem
  doi: 10.1007/s11010-019-03527-6
– volume: 6
  start-page: 252ra123
  issue: 252
  year: 2014
  ident: 1374_CR67
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3009262
– volume: 82
  start-page: 528
  issue: 6
  year: 2013
  ident: 1374_CR66
  publication-title: Int J Med Inf
  doi: 10.1016/j.ijmedinf.2013.01.005
– volume: 238
  start-page: 336
  issue: 2
  year: 2015
  ident: 1374_CR37
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2014.12.034
– volume: 4
  year: 2016
  ident: 1374_CR2
  publication-title: PeerJ.
  doi: 10.7717/peerj.2211
– start-page: 3498
  volume-title: Proceedings of the twenty-seventh international joint conference on artificial intelligence [internet]
  year: 2018
  ident: 1374_CR58
– volume: 98
  start-page: 405
  year: 2014
  ident: 1374_CR33
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.057
– volume: 3
  start-page: e02020
  year: 2014
  ident: 1374_CR51
  publication-title: eLife
  doi: 10.7554/eLife.02020
– volume: 13
  start-page: 1184
  issue: 3
  year: 2017
  ident: 1374_CR70
  publication-title: Ieee Trans Ind Inform
  doi: 10.1109/TII.2017.2686380
– volume: 6
  start-page: e11301
  issue: 4
  year: 2018
  ident: 1374_CR75
  publication-title: JMIR Med Inform
  doi: 10.2196/11301
– ident: 1374_CR10
  doi: 10.1007/978-3-319-91563-0_30
– volume: 16
  start-page: 31
  year: 2016
  ident: 1374_CR53
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-016-0268-5
– volume: 81
  start-page: 1229
  issue: 4–5
  year: 2010
  ident: 1374_CR20
  publication-title: Talanta
  doi: 10.1016/j.talanta.2010.02.014
– ident: 1374_CR25
  doi: 10.1111/apa.12072
– volume: 8
  start-page: 94
  year: 2013
  ident: 1374_CR31
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/1750-1172-8-94
– volume: 49
  start-page: 1961
  issue: 9
  year: 2016
  ident: 1374_CR40
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2016.04.010
– volume: 21
  start-page: 1271
  issue: 5
  year: 2017
  ident: 1374_CR14
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2608859
– volume: 9
  start-page: 587
  year: 2018
  ident: 1374_CR73
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00587
– volume: 41
  start-page: 600
  issue: 8
  year: 2011
  ident: 1374_CR22
  publication-title: Comput Biol Med Août
  doi: 10.1016/j.compbiomed.2011.05.010
– volume: 79
  start-page: 1244
  issue: 11
  year: 2011
  ident: 1374_CR23
  publication-title: Kidney Int
  doi: 10.1038/ki.2011.30
– ident: 1374_CR7
– volume: 20
  start-page: 151
  issue: 1
  year: 2018
  ident: 1374_CR54
  publication-title: Genet Med Off J Am Coll Med Genet.
– volume: 2017
  start-page: 1554
  year: 2017
  ident: 1374_CR72
  publication-title: AMIA Annu Symp Proc AMIA Symp
– volume: 9
  start-page: 5974
  issue: 12
  year: 2017
  ident: 1374_CR46
  publication-title: Electron Physician
  doi: 10.19082/5974
– volume: 28
  start-page: 2502
  issue: 19)
  year: 2012
  ident: 1374_CR64
  publication-title: Bioinforma Oxf Engl
  doi: 10.1093/bioinformatics/bts471
– volume: 83
  start-page: 610
  issue: 5
  year: 2008
  ident: 1374_CR81
  publication-title: Am J Hum Genet nov
  doi: 10.1016/j.ajhg.2008.09.017
– volume: 56
  start-page: 788
  issue: 2
  year: 2011
  ident: 1374_CR19
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.273
– volume: 12
  start-page: 491
  year: 2018
  ident: 1374_CR57
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00491
– volume: 21
  start-page: 2126
  issue: 9
  year: 2019
  ident: 1374_CR78
  publication-title: Genet Med Off J Am Coll Med Genet sept
– volume: 103
  start-page: 389
  issue: 3
  year: 2018
  ident: 1374_CR71
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2018.08.003
– volume: 105
  start-page: 527
  issue: 6
  year: 2012
  ident: 1374_CR27
  publication-title: QJM Mon J Assoc Physicians
  doi: 10.1093/qjmed/hcs008
– volume: 34
  start-page: 1057
  issue: 8
  year: 2013
  ident: 1374_CR65
  publication-title: Hum Mutat
  doi: 10.1002/humu.22347
– volume: 14
  start-page: 69
  issue: 1
  year: 2019
  ident: 1374_CR61
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/s13023-019-1040-6
– volume: 2019
  start-page: 6319581
  year: 2019
  ident: 1374_CR59
  publication-title: J Ophthalmol
  doi: 10.1155/2019/6319581
– ident: 1374_CR49
  doi: 10.1109/ICMLA.2012.234
– volume: 42
  start-page: 533
  issue: 7
  year: 2017
  ident: 1374_CR55
  publication-title: J Hand Surg
  doi: 10.1016/j.jhsa.2017.03.043
– volume: 25
  start-page: 60
  issue: 1
  year: 2019
  ident: 1374_CR62
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0279-0
– volume: 8
  start-page: 19
  issue: 1
  year: 2005
  ident: 1374_CR6
  publication-title: Int J Soc Res Methodol févr
  doi: 10.1080/1364557032000119616
– volume: 21
  start-page: 339
  issue: 2
  year: 2019
  ident: 1374_CR77
  publication-title: Genet Med Off J Am Coll Med Genet
– volume: 20
  start-page: 1427
  issue: 5
  year: 2016
  ident: 1374_CR13
  publication-title: IEEE J Biomed Health Inform.
  doi: 10.1109/JBHI.2015.2462744
– volume: 2013
  start-page: 3670
  year: 2013
  ident: 1374_CR30
  publication-title: Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 1374_CR82
  publication-title: IEEE Trans Knowl Data Eng oct
  doi: 10.1109/TKDE.2009.191
– volume: 23
  start-page: 1
  year: 2017
  ident: 1374_CR38
  publication-title: Atheroscler Suppl
  doi: 10.1016/j.atherosclerosissup.2016.10.002
– volume: 88
  start-page: 70
  year: 2018
  ident: 1374_CR47
  publication-title: Palestine Artif Intell Med
  doi: 10.1016/j.artmed.2018.04.009
– ident: 1374_CR83
  doi: 10.3390/genes10120978
– volume: 6
  start-page: 56
  issue: 4
  year: 2015
  ident: 1374_CR68
  publication-title: Acm Trans Intell Syst Technol
  doi: 10.1145/2700487
– volume: 10
  start-page: e0135180
  issue: 8
  year: 2015
  ident: 1374_CR52
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0135180
– volume: 42
  start-page: 376
  issue: 4
  year: 2012
  ident: 1374_CR8
  publication-title: Comput Biol Med avr
  doi: 10.1016/j.compbiomed.2011.12.004
– volume: 140
  start-page: 2280
  issue: 7
  year: 2015
  ident: 1374_CR36
  publication-title: Analyst
  doi: 10.1039/C4AN01942C
– volume: 44
  start-page: 319
  issue: 2
  year: 2011
  ident: 1374_CR24
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2010.12.001
– volume: 28
  start-page: 120
  issue: 1
  year: 2019
  ident: 1374_CR5
  publication-title: Yearb Med Inform août
  doi: 10.1055/s-0039-1677911
– volume: 21
  start-page: 896
  issue: 4
  year: 2019
  ident: 1374_CR56
  publication-title: Genet Med
  doi: 10.1038/s41436-018-0272-5
– volume: 264
  start-page: 1580
  year: 2019
  ident: 1374_CR76
  publication-title: Stud Health Technol Inform
– volume: 27
  start-page: 481
  issue: 6
  year: 2013
  ident: 1374_CR28
  publication-title: J Clin Lab Anal
  doi: 10.1002/jcla.21631
– start-page: 2073
  volume-title: 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)
  year: 2011
  ident: 1374_CR11
  doi: 10.1109/FUZZY.2011.6007719
– volume: 12
  start-page: 841
  issue: 9
  year: 2015
  ident: 1374_CR69
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3484
– volume: 86
  start-page: 1007
  issue: 5
  year: 2014
  ident: 1374_CR32
  publication-title: Kidney Int
  doi: 10.1038/ki.2014.202
– volume: 11
  start-page: 1755
  issue: 9
  year: 2016
  ident: 1374_CR35
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-015-1312-0
– ident: 1374_CR45
  doi: 10.1007/978-3-319-63315-2_52
– volume: 28
  start-page: 231
  issue: 3
  year: 2019
  ident: 1374_CR84
  publication-title: BMJ Qual Saf
  doi: 10.1136/bmjqs-2018-008370
SSID ssj0045308
Score 2.509481
SecondaryResourceType review_article
Snippet Introduction Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a...
Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a small number...
Introduction Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a...
Introduction: Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most clinicians and a...
Abstract Introduction Rare diseases affect approximately 350 million people worldwide. Delayed diagnosis is frequent due to lack of knowledge of most...
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 94
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Bibliographic literature
Bioengineering
Clinical decision making
Clinical decision support
Computer Science
Cystic fibrosis
Data mining
Decision making
Diagnosis
Disease
Genetic diseases
Human Genetics
Humans
Knowledge
Learning algorithms
Life Sciences
Machine Learning
Medical diagnosis
Medical prognosis
Medical research
Medicine
Medicine & Public Health
Metadata
Objectives
Other
Pharmacology/Toxicology
Phenotypes
Rare disease
Rare diseases
Rare Diseases - diagnosis
Reproducibility of Results
Review
Reviews
Scoping review
Search strategies
Websites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgB6AHxHdDCzIVEgcaNbEdJ-a2IKoFUQ5Apd4sx7FppVV21WyK6K_vTJyERpUKB44bzybOzMR-o5l5JuQ1k8rwkvPYw24aC1HyGH6p2DNlPfZec47NyYdf5fxIfD7Ojq8c9YU1YYEeOChun5nC-rxSRphMMCGNNdIWlSgzmybed33kSaGGYCqswSLjSTG0yBRyv8H0HOYrsQiL5yK-mGxDHVv_uCbfPsGSyOt483rZ5Jg73SR323plfv8yi8WV7engAbnf40o6C-_zkNxy9SNy57DPnD8mWPqCNXWnDW3aFYJuGkicGwqwlULI7GifrGneUUOxWwUeSkNryxNydPDxx4d53B-dEFuIANYxY4CzkIneJ874wlY-SQxzPq0ExA8lz4xTAIQM8yyvpFTCmqoE7GELy2wJEOsp2aiXtdsi1Dpl0tIBzIDgRbm0sMoJCbDFWsUsYxFJB01q2_OK4_EWC93FF4XUQfsatK877euLiLwd_7MKrBo3Sr9HA42SyIjdXQA_0b2f6L_5SUR20bwaOS9qLKr5adqm0Z--f9MziRw_OWDjiLzphfwS3sGavkcBNIE0WRPJnYkkfJR2MrwLXjSZ8Xz2ReO1BM8NBBx4nsI9BifT_crRaMYVxLyYHovIq3EYb4_VcLVbtkEGcHvKQfnPgk-Oj4IFWuGZARHJJ946mct0pD496XjFMXRmLInI3uDXf6Z1k3X2Rt__B2M-_x_G3Cb3WPcxiziVO2Rjfda6FwAO1-XLbh24BMSmW-A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9swED_aFPb4sEf3qLdueGWwD6upLSu2NRgjHS3ZWMPoVug3IctSWwhOWicb61-_O1t2ZwphH2NfHFn30O9yL4C3LBEqzuM4sHiaBpzncYCfRGCZ0JZqr-OYipOPJsn4hH89HZ6uwaSthaG0ytYm1oa6mGn6j3yPxQJ9AQobfJpfBjQ1iqKr7QgN5UYrFB_rFmPrsMGoM9YANvYPJt-PW9vMh3GYtaUzWbJXUdiO4piUnBWnPLjuHU91F__OVq-fU6rkbRx6O52yi6neh7vLcq7-_FbT6T_H1uEjeODwpj9qBOQxrJlyEx62sxx8p9qbcOfIBdmfAGXJUPrdReVXyznhc7_p91z5iHB99K6N7-I61Qdf-VTYguvwmyqYp3ByePDz8zhwUxYCjc7CImAMIRk1rbehUTbThQ1DxYyNCo6uRh4PlRGImRSzLC2SRHCtihxhis400zmisWcwKGel2QJfG6Gi3CAiQT9HmCjTwvAEEY7WgmnGPIjazZXatSCnSRhTWbsiWSIbhkhkiKwZIq89eN99Z9404FhJvU886yipeXZ9YXZ1Jp0uSqYybdNCKK6GnPFEaZXorOD5UEehtakHO8RxSe0xSsq_OVPLqpJffhzLUULtgFKE0R68c0R2hu-glStnwJ2gjlo9yu0eJeqv7t3eQcHqrXg8-ibpWkgjBhEy_orwGa3cSWdkKnmjEh686W7T4ylxrjSzZUODED-KcfOfN2La_RTackHjBTxIewLcW0v_TnlxXrcgJy-bsdCD3VbUb5a1iju7nTr8BzNfrH7pl3CP1ZrLgyjZhsHiamleIUJc5K-d2v8Fhthe3Q
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIvE4IN4ECjIVEgcakdiOE3NbKqoFUQ5Apd4sx7FppVV2RTYg-uuZSbKhUVEFx40njnc8tr_RzHwGeMGVtqIUIg54msZSliLGXzoOXLtAtddCUHHy4Sc1P5IfjrPjgSaHamHOx-_TQr1uKLBGkUZKnxK5jM-24CoeUqoLzKr9za4rM5EUm6KYv743OXg6fv5xF946oSTIiwjzYqLkGC29CdfbemV__bSLxbkD6eA23BqQJJv1U38Hrvj6Llw7HGLl94CSXSiL7rRhTbsimM162uaGIVBl6CR7NoRnmjfMMqpPwY-yvpjlPhwdvPu6P4-HyxJih5h_HXOOyIq450PibShcFZLEch_SSqLHUIrMeo3Qx_LA80opLZ2tSkQbrnDclQiqHsB2vaz9I2DOa5uWHoEFuivap4XTXioEKs5p7jiPIN1o0riBSZwutFiYzqMolOm1b1D7ptO-OYvg1fjOqufRuFT6LU3QKEkc2N0DNA0zLCnDbeFCXmkrbSa5VNZZ5YpKlplLkxDyCHZpeg2xXNSURvPNtk1j3n_5bGaKWH1yRMMRvByEwhL_g7NDVQJqgoixJpI7E0lchm7SvItWNBnxfPbR0LOEbgpE5PcjxT42RmaGvaIxXGj0cikgFsHzsZm6p_y32i_bXgaReipQ-Q97mxw_hVuyplsCIsgn1joZy7SlPj3pmMTJWeY8iWBvY9d_hnXZ7OyNtv8Pk_n4_3p_Ajd4t2xlnKod2F5_b_1TBH7r8lm34n8D1tZLbQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELe2TuLxgfcjMFCYkPjA0iWO48R8K4hREJsQUGl8shzHXseqtGoaEP3rucuLhaEJJL618SVxzne-3-keJuQp5UKFaRh6Fqypx1gaevBPeJYKbbH2OgyxOPngkI8n7N1RdLRB3rS1MPOvy2x4tvJ8Vm3X8EOf7i0yW2t5wvcKjLhhCBLzqsKYeeshDG-SLR4BKB-Qrcnhh9GXqhwy8r0A7HRbMvPHm3tmqere3-3Rm1NMkTyPP8-nUXax1Kvkcpkv1I_vajY7Y672r5Np-6F1lsrpsFylQ73-rQfkf-DEDXKtgbTuqJbBm2TD5LfIpYMmaH-bYNYNpvOdFG5RLhDvu3X_6MIFxOyCt27cJk5UvHCVi4Uy8H1uXVVzh0z2X39-NfaaUxs8Dc7HyqMUIB42wbe-UTbRmfV9RY0NMgauSxpGygjAYIpaGmecC6ZVlgLs0YmmOgV0d5cM8nlu7hNXG6GC1MAKgt8kTJBoYRgHxKS1oJpShwTtokndtDTHkzVmsnJtEi5r3kjgjax4I9cOed7ds6gbelxI_RJloaPEZtzVhfnyWDa6LalKtI0zoZiKGGVcacV1krE00oFvbeyQHZQkie02csznOVZlUci3nz7KEcf2QjHAcoc8a4jsHNdYNeURwAns0NWj3O5Rwn6ge8M7ILC9GY9H7yVe8_HIQoCg3wJ4RivPstm0CklDAe42RuYc8qQbxsdjIl5u5mVNAy5DEALz79Xi370KbIPA4wocEvcUozeX_kh-Mq1amqPXTqnvkN1WhX5N66LV2e3U7C8W88G_kT8kV2ilVMwL-DYZrJaleQQIdJU-bnaXn3vqelA
  priority: 102
  providerName: Unpaywall
Title Diagnosis support systems for rare diseases: a scoping review
URI https://link.springer.com/article/10.1186/s13023-020-01374-z
https://www.ncbi.nlm.nih.gov/pubmed/32299466
https://www.proquest.com/docview/2391400116
https://www.proquest.com/docview/2391977132
https://hal.sorbonne-universite.fr/hal-02570643
https://pubmed.ncbi.nlm.nih.gov/PMC7164220
https://ojrd.biomedcentral.com/track/pdf/10.1186/s13023-020-01374-z.pdf
https://doaj.org/article/2a8cf7d9a4a54246aca6c8d4b5c10ff7
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: RBZ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: ABDBF
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: M48
  dateStart: 20060401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: AAJSJ
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Link
  customDbUrl:
  eissn: 1750-1172
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045308
  issn: 1750-1172
  databaseCode: C6C
  dateStart: 20060112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfWTRrjAfFNYFRhQuKBBRLHdWIkhLJqU6loNW1UKk-W4zjbpCotTQtsfz13-YJo04R4qmpfEtd3F_-u90XIa8qF8mPfd1I4TR3GYt-Bb8JJqdAp5l77PiYnj8Z8MGHDaW-6Qep2R9UG5jeadthParKcvfv1_fITKPzHQuFD_j5H5xt6IzHEyg-Yc9UhW3BSCWzlMGKNV4H1fDesE2duvG6HbIOAC6y53jqninL-zUu7c44xk9cB6fW4ysa5epfcWWcLdflTzWZ_nV9H98m9CnjaUSkpD8iGyR6S7VHlWn9EMDYGg-4ucjtfL3BD7LLKc24DrrXBpjZ25c3JP9jKxnQWeKhd5r48JpOjw6_9gVP1VnA0mAgrh1IAYliqPnWNSkOdpK6rqEm9hIGBEfs9ZQQgJUVTGiScC6ZVEgM40aGmOgYM9oRsZvPMPCO2NkJ5sQEcAtaNMF6ohWEccI3WgmpKLeLVOyl1VXgc-1_MZGGAhFyWjJDACFkwQl5Z5G1zzaIsu3Er9QEyqKHEktnFwHx5JisNlFSFOg0SoZjqMcq40orrMGFxT3tumgYW2UP2SiyKkWHUzZla57n8fHoiI45FgAIAzxZ5UxGlc_gNWlVJDLATWEerRbnbogSt1a3pPZCi1ooH0ReJYy42FgSg-MODe9RCJmvNkNQXYBSj_8wir5ppvD2Gy2Vmvi5pANh7Pmz-01Imm0fVAm6RoCWtrbW0Z7KL86LwONrWlLoW2a_l-s-ybuPOfiP7_8DM5_-9rhdkhxbKzByP75LN1XJtXgJkXMVd0gmmQZdsRdHwdAifB4fj4xMY7fN-t_gbplu8KWBmMj6Ovv0GsUlqaA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjF44GN8BQaECcQDi5Y4bhIjTaiDTS1rJ7QPaW_GcextUpWWpWXa_jj-Nu4SJyOaVPGyxybX1PGd737X-yLkPY24DNMw9AxYU4-xNPTgE_cM5cpg7XUYYnHycC_qHbHvx53jBfKnroXBtMpaJ5aKOhsr_I98g4YcfAEMG3yZ_PJwahRGV-sRGtKOVsg2yxZjtrBjV19egAtXbPa_Ab8_ULqzffi159kpA54CsDz1KAVIgk3bja-lSVRmfF9SbYKMAdROw47UHDCDpIbGWRRxpmSWgplWiaIqZdj4AEzAEgsZB-dvaWt778d-bQtYJ_STulQniTYKDBNi3BSTwcKYeVctc1hODWhsw51TTM28iXtvpm82Mdz7ZHmWT-TlhRyN_jGTO4_IA4tv3W4lkI_Jgs5XyMN6doRrVckKuTu0Qf0nBLNyMN3vrHCL2QT9AbfqL124gKhd8Oa1a-NIxWdXulhIA-twq6qbp-ToVvb7GVnMx7l-QVyluQxSDQgI_Cqug0RxzSJAVEpxqih1SFBvrlC25TlO3hiJ0vVJIlExRABDRMkQceWQT813JlXDj7nUW8izhhKbdZcXxucnwp59QWWiTJxxyWSHURZJJSOVZCztqMA3JnbIGnJcYDuOHPN9TuSsKET_YF90I2w_FANsd8hHS2TG8A5K2vIJ2Ans4NWiXG1Rgr5QrdtrIFitFfe6A4HXfBxpCBD1dwDPqOVOWKVWiOsj6JB3zW18PCbq5Xo8q2jApQhC2PznlZg2PwW2g-M4A4fELQFuraV9Jz87LVueo1dPqe-Q9VrUr5c1jzvrzXH4D2a-nP_Sb8ly73A4EIP-3u4rco-Wp5h5QbRKFqfnM_0a0Ok0fWNVgEt-3rbW-QsKG5vR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYkAY8IL4GgQFmQuKBRUts14l5K4Wqg21CwKS9WY5jb5OqtFoaEPvrucsXi4YmeGx8cdzz2f6d7u5nQl4zqQzPOA89nKahEBkP4ZcKPVPWY-0151icfHAoZ0fi0_Ho-FIVf53t3oUkm5oGZGkqVrvL3DdLPJW7JYbbMP6ISVU8EeHFGrkp4HTDOwwmctLtxWLEo7Qrlfnre4PjqGbt7_fmtVNMjbyKO6-mT_Yx1DvkVlUsza-fZj6_dExN75G7Lb6k48Yg7pMbrnhANg7aCPpDgikwmFt3VtKyWiL4pg2Zc0kBvlJwnR1tgzblO2ooVq3AR2lT4vKIHE0_fp_MwvYKhdCCJ7AKGQO8hYz0PnLGpzb3UWSY83EuwI_I-Mg4BYDIMM-SXEolrMkzwCA2tcxmALU2yXqxKNwTQq1TJs4cwA1wYpSLU6uckABfrFXMMhaQuNOkti2_OF5zMde1n5FK3Whfg_Z1rX19EZC3_TvLhl3jWun3OEG9JDJj1w8W5ye6XWiamdT6JFdGmJFgQhprpE1zkY1sHHmfBGQbp1cj90WByTUnpipLvfftqx5L5PpJACMH5E0r5BfwH6xpaxVAE0iXNZDcGkjC4rSD5m2wosGIZ-N9jc8ivD8Q8OCPGProjEy3O0ipGVfg-2KYLCCv-mbsHrPiCreoGhnA7zEH5T9ubLL_FGzUCu8OCEgysNbBWIYtxdlpzS-OLjRjUUB2Orv-M6zrZment_1_mMyn_9f7S7Lx5cNU7-8dfn5GbrN6BYswlltkfXVeueeADFfZi3rx_wYC-Faj
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELe2TuLxgfcjMFCYkPjA0iWO48R8K4hREJsQUGl8shzHXseqtGoaEP3rucuLhaEJJL618SVxzne-3-keJuQp5UKFaRh6Fqypx1gaevBPeJYKbbH2OgyxOPngkI8n7N1RdLRB3rS1MPOvy2x4tvJ8Vm3X8EOf7i0yW2t5wvcKjLhhCBLzqsKYeeshDG-SLR4BKB-Qrcnhh9GXqhwy8r0A7HRbMvPHm3tmqere3-3Rm1NMkTyPP8-nUXax1Kvkcpkv1I_vajY7Y672r5Np-6F1lsrpsFylQ73-rQfkf-DEDXKtgbTuqJbBm2TD5LfIpYMmaH-bYNYNpvOdFG5RLhDvu3X_6MIFxOyCt27cJk5UvHCVi4Uy8H1uXVVzh0z2X39-NfaaUxs8Dc7HyqMUIB42wbe-UTbRmfV9RY0NMgauSxpGygjAYIpaGmecC6ZVlgLs0YmmOgV0d5cM8nlu7hNXG6GC1MAKgt8kTJBoYRgHxKS1oJpShwTtokndtDTHkzVmsnJtEi5r3kjgjax4I9cOed7ds6gbelxI_RJloaPEZtzVhfnyWDa6LalKtI0zoZiKGGVcacV1krE00oFvbeyQHZQkie02csznOVZlUci3nz7KEcf2QjHAcoc8a4jsHNdYNeURwAns0NWj3O5Rwn6ge8M7ILC9GY9H7yVe8_HIQoCg3wJ4RivPstm0CklDAe42RuYc8qQbxsdjIl5u5mVNAy5DEALz79Xi370KbIPA4wocEvcUozeX_kh-Mq1amqPXTqnvkN1WhX5N66LV2e3U7C8W88G_kT8kV2ilVMwL-DYZrJaleQQIdJU-bnaXn3vqelA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+support+systems+for+rare+diseases%3A+a+scoping+review&rft.jtitle=Orphanet+journal+of+rare+diseases&rft.au=Faviez%2C+Carole&rft.au=Chen%2C+Xiaoyi&rft.au=Garcelon%2C+Nicolas&rft.au=Neuraz%2C+Antoine&rft.date=2020-04-16&rft.pub=BioMed+Central&rft.eissn=1750-1172&rft.volume=15&rft_id=info:doi/10.1186%2Fs13023-020-01374-z&rft_id=info%3Apmid%2F32299466&rft.externalDocID=PMC7164220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1172&client=summon