Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots
This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When C...
Saved in:
Published in | Analytical and bioanalytical chemistry Vol. 408; no. 2; pp. 557 - 566 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2016
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1618-2642 1618-2650 1618-2650 |
DOI | 10.1007/s00216-015-9132-1 |
Cover
Abstract | This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 μM, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples. Graphical Abstract ᅟ |
---|---|
AbstractList | This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 μM, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples.
Graphical Abstract
ᅟ This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 μM, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples.This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 μM, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples. This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 mu M, and a low detection limit of 7.29 nM (3 sigma ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples. [Figure not available: see fulltext.] Issue Title: Applications of Isotopes in Analytical Ecogeochemistry (pp. 341-440) This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 [mu]M, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples. [Figure not available: see fulltext.] This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 μM, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples. Graphical Abstract ᅟ This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 [mu]M, and a low detection limit of 7.29 nM (3[sigma]). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples. This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 μM, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples. |
Audience | Academic |
Author | Huang, Yanjun Li, Ying Luo, Yeli Guo, Jiajia Shen, Fei Meng, Rizeng Wang, Luokai Sun, Chunyan Xu, Jingyue |
Author_xml | – sequence: 1 fullname: Guo, Jiajia – sequence: 2 fullname: Li, Ying – sequence: 3 fullname: Wang, Luokai – sequence: 4 fullname: Xu, Jingyue – sequence: 5 fullname: Huang, Yanjun – sequence: 6 fullname: Luo, Yeli – sequence: 7 fullname: Shen, Fei – sequence: 8 fullname: Sun, Chunyan – sequence: 9 fullname: Meng, Rizeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26521176$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktr3DAUhU1JaR7tD-imFXTTjVNJtmXPchj6gkAXTdbiWr6aKtjSRJID-Rf9yb3GSQlZpLUNMug7R49zTosjHzwWxVvBzwXn7afEuRSq5KIpN6KSpXhRnAglulKqhh_9_a_lcXGa0jUnsBPqVXFM81KIVp0Uv7eHDBPGsoeEA7PjHCImgz6zZCKid37PICW4YzZEBgYJd4foBnbrgDnvMTLrxkwDWosms2DZPowD8-DDAWJ2ZsTEgmf5Fz5awOBC7oZLZDcz-DxPbAg5vS5eWhgTvrkfz4qrL58vd9_Kix9fv--2F6VRbZ3LXnIQHa8Mhxa7ukOQjUTccNMr3gNXBhvBjekrNE0vQVhjRW9EP_ANVAKrs-Lj6nuI4WbGlPXkaFvjCB7DnLTk9NS15OKfqGg3lawbKeV_oIp3qqKP0A9P0OswR09nJqoTFCyFS9T5Su1hRO28DTmCoXfAyRmqA9096i1ttBO8rRfBu3vbuZ9w0BTVBPFOP0ROQLsCJoaUIlptXIbsgidnN2rB9VIuvZZLU2f0Ui69WIsnygfz5zRy1SRi_R7jo1M-I3q_iiwEDfvokr76SUmoJRLJO1n9AR5F6j0 |
CitedBy_id | crossref_primary_10_1007_s00604_018_3153_3 crossref_primary_10_1007_s00604_016_1992_3 crossref_primary_10_1007_s00604_020_04283_x crossref_primary_10_1039_C6AN00952B crossref_primary_10_3389_fchem_2019_00076 crossref_primary_10_1016_j_aca_2016_10_002 crossref_primary_10_1007_s00604_019_3422_9 crossref_primary_10_1007_s00604_019_3294_z crossref_primary_10_1080_10408398_2022_2086210 crossref_primary_10_1007_s00216_019_02185_3 crossref_primary_10_1007_s00216_020_03141_2 crossref_primary_10_1016_j_saa_2021_120801 crossref_primary_10_1021_acs_jafc_7b05119 crossref_primary_10_1016_j_talanta_2024_126190 crossref_primary_10_1016_j_microc_2023_109313 crossref_primary_10_1016_j_biotechadv_2017_01_003 crossref_primary_10_1007_s00604_019_3516_4 crossref_primary_10_1007_s00604_020_4204_0 crossref_primary_10_1016_j_talanta_2016_07_010 crossref_primary_10_1016_j_saa_2019_117651 crossref_primary_10_1016_j_copbio_2016_11_020 crossref_primary_10_1007_s12161_021_02029_w crossref_primary_10_1016_j_saa_2018_08_030 crossref_primary_10_3390_foods7090148 crossref_primary_10_3389_fchem_2021_616815 crossref_primary_10_1016_j_talanta_2019_06_094 crossref_primary_10_1016_j_bios_2019_01_006 crossref_primary_10_1016_j_trac_2019_115688 crossref_primary_10_1021_acsami_7b03937 crossref_primary_10_1007_s00604_018_2839_x crossref_primary_10_1016_j_microc_2019_04_083 crossref_primary_10_1016_j_tifs_2024_104342 crossref_primary_10_2139_ssrn_4054440 crossref_primary_10_1016_j_jphotochem_2024_116025 crossref_primary_10_1016_j_microc_2024_111281 crossref_primary_10_1021_acs_est_8b00558 crossref_primary_10_1016_j_jclepro_2020_122356 crossref_primary_10_1039_C8AN01166D crossref_primary_10_1039_C7RA08848E crossref_primary_10_1016_j_aca_2017_10_026 crossref_primary_10_1016_j_foodchem_2018_02_148 crossref_primary_10_1016_j_microc_2023_109174 crossref_primary_10_1038_s41598_025_89256_x crossref_primary_10_1016_j_jfda_2018_06_004 crossref_primary_10_1039_D2AY01794F crossref_primary_10_1016_j_saa_2020_118630 crossref_primary_10_1007_s40726_020_00165_1 crossref_primary_10_20964_2022_06_67 crossref_primary_10_1016_j_jece_2022_108178 crossref_primary_10_1016_j_talanta_2017_08_070 crossref_primary_10_1149_1945_7111_abf012 crossref_primary_10_1002_jssc_202001105 crossref_primary_10_1039_C7AY01451A crossref_primary_10_1080_05704928_2019_1608111 crossref_primary_10_1007_s12161_019_01437_3 crossref_primary_10_1080_00032719_2022_2135726 crossref_primary_10_3389_fchem_2016_00025 crossref_primary_10_1016_j_saa_2020_118835 crossref_primary_10_1016_j_bios_2017_01_020 crossref_primary_10_1016_j_saa_2022_121725 crossref_primary_10_1039_D0RA01231A crossref_primary_10_1007_s00604_018_2995_z crossref_primary_10_1021_acsanm_3c01238 crossref_primary_10_1016_j_ab_2019_03_016 crossref_primary_10_1155_2022_8092763 crossref_primary_10_1007_s11468_019_01006_8 crossref_primary_10_1016_j_mtcomm_2020_101373 crossref_primary_10_1016_j_bios_2016_02_001 crossref_primary_10_1016_j_snb_2016_08_107 crossref_primary_10_1021_acs_analchem_8b05303 crossref_primary_10_1002_adv_21838 |
Cites_doi | 10.1021/jf025539q 10.1016/j.snb.2011.03.077 10.1002/em.20309 10.1021/jf104189g 10.1016/j.foodchem.2012.01.028 10.1007/s00216-006-0683-z 10.1016/S0003-2670(00)01126-0 10.1002/chem.200701871 10.1021/jf904045j 10.1021/ac8020592 10.1002/anie.200600438 10.1039/C2AY25519G 10.1021/ja048749n 10.1007/s00216-006-0554-7 10.1016/j.bios.2012.11.033 10.1016/j.chroma.2011.05.026 10.1039/c0ay00452a 10.1016/j.talanta.2007.08.018 10.1016/j.foodchem.2012.06.070 10.1016/j.foodchem.2008.07.103 10.1021/ac00146a015 10.1016/j.bios.2006.10.004 10.1021/jf0261102 10.1016/j.bpc.2005.03.015 10.1016/j.jhazmat.2013.06.031 10.1007/s10661-009-0968-8 10.4000/chinaperspectives.259 10.3109/15563650.2010.517207 10.1002/elps.201200241 10.1039/c3an01814h 10.1021/ja103169v 10.1016/j.talanta.2008.01.032 10.1016/j.chroma.2008.10.088 10.1021/ja0259483 10.1039/b607448k 10.2116/analsci.19.701 10.1016/j.bios.2013.10.070 10.1021/ac501388a 10.1016/j.talanta.2013.08.034 10.1021/am4029735 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2015 COPYRIGHT 2016 Springer Springer-Verlag Berlin Heidelberg 2016 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: COPYRIGHT 2016 Springer – notice: Springer-Verlag Berlin Heidelberg 2016 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U7 7X7 7XB 88E 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KB. KR7 L7M LK8 L~C L~D M0S M1P M7P P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 |
DOI | 10.1007/s00216-015-9132-1 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts Toxicology Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Materials Research Database MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1618-2650 |
EndPage | 566 |
ExternalDocumentID | 4023626801 A442810741 26521176 10_1007_s00216_015_9132_1 US201600042082 |
Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: the Natural Science Foundation of Jilin Province grantid: No. 201215024 – fundername: the Excellent Youth Talent Cultivation Project of Heping Campus of Jilin University grantid: No. 201215024 – fundername: the Graduate Student Innovation Research Project of Jilin University grantid: No. 2014071 |
GroupedDBID | --- -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 78A 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYOK AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACTTH ACVWB ACWMK ADBBV ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS EIOEI EJD EMK EMOBN EPAXT EPL ESBYG ESTFP ESX F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IAO IFM IGS IHE IJ- IKXTQ IMOTQ INH INR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAS LK8 LLZTM M1P M4Y M7P MA- ML- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PQQKQ PROAC PSQYO PT4 PT5 QOK QOR QOS R89 R9I RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SV3 SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z91 Z92 ZMTXR ~8M ~KM 0R~ AACDK AAHBH AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACUHS ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS H13 IHR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U7 7XB 8BQ 8FD 8FK AZQEC C1K DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS 7X8 PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c674t-b20a1803c0a7e848ea252ee90cb60ba06ce510ccb3ec5b2a1fcf1bc1bd09a31e3 |
IEDL.DBID | U2A |
ISSN | 1618-2642 1618-2650 |
IngestDate | Mon Sep 08 13:07:31 EDT 2025 Mon Sep 08 11:37:29 EDT 2025 Mon Sep 08 13:19:13 EDT 2025 Fri Jul 25 11:00:43 EDT 2025 Tue Jun 10 20:28:00 EDT 2025 Mon Jul 21 05:59:11 EDT 2025 Tue Jul 01 00:29:38 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Fri Feb 21 02:41:16 EST 2025 Wed Dec 27 19:25:29 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Acetamiprid Inner filter effect Aptamer CdTe quantum dots Gold nanoparticles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c674t-b20a1803c0a7e848ea252ee90cb60ba06ce510ccb3ec5b2a1fcf1bc1bd09a31e3 |
Notes | http://dx.doi.org/10.1007/s00216-015-9132-1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
PMID | 26521176 |
PQID | 1781216021 |
PQPubID | 2034506 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000044201 proquest_miscellaneous_1793245222 proquest_miscellaneous_1760863863 proquest_journals_1781216021 gale_infotracacademiconefile_A442810741 pubmed_primary_26521176 crossref_citationtrail_10_1007_s00216_015_9132_1 crossref_primary_10_1007_s00216_015_9132_1 springer_journals_10_1007_s00216_015_9132_1 fao_agris_US201600042082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Analytical and bioanalytical chemistry |
PublicationTitleAbbrev | Anal Bioanal Chem |
PublicationTitleAlternate | Anal Bioanal Chem |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | VichapongJBurakhamRSrijaranaiSTalanta20131172212281:CAS:528:DC%2BC3sXhslGjsLrI10.1016/j.talanta.2013.08.034 KocamanAYTopaktasMEnviron Mol Mutagen2007484834901:CAS:528:DC%2BD2sXovFantb0%3D10.1002/em.20309 Mateu-SánchezMMorenoMArrebolaFJVidalJLMAnal Sci20031970170410.2116/analsci.19.701 MohanCKumarYMadanJSaxenaNEnviron Monit Assess20101655735761:CAS:528:DC%2BC3cXls1Cksro%3D10.1007/s10661-009-0968-8 XuHMaoXZengQXWangSFKawdeANLiuGDAnal Chem2009816696751:CAS:528:DC%2BD1cXhsV2nurjL10.1021/ac8020592 LinCXKatiliusELiuYZhangJPYanHAngew Chem Int Ed200645529653011:CAS:528:DC%2BD28Xoslegtbk%3D10.1002/anie.200600438 HeJLiuYFanMTLiuXJJ Agric Food Chem201159158215861:CAS:528:DC%2BC3MXhs1ymtbs%3D10.1021/jf104189g WangYLiZHHuDHLinCTLiJHLinYHJ Am Chem Soc2010132927492761:CAS:528:DC%2BC3cXnvVejtLk%3D10.1021/ja103169v FanLFZhaoGHShiHJLiuMCLiZXBiosens Bioelectron20134312181:CAS:528:DC%2BC3sXjtFWjtLo%3D10.1016/j.bios.2012.11.033 ObanaHOkihashiMAkutsuKKitagawaYHoriSJ Agric Food Chem200250446444671:CAS:528:DC%2BD38Xksleht7o%3D10.1021/jf025539q LiJWLiXMShiXJHeXWWeiWMaNChenHAppl Mater Interfaces20135979898021:CAS:528:DC%2BC3sXhsVWjs7bJ10.1021/am4029735 ZhangMWCaoXYLiHKGuanFRGuoJJShenFLuoYLSunCYZhangLGFood Chem2012135189419001:CAS:528:DC%2BC38XhtlSmu7vL10.1016/j.foodchem.2012.06.070 KopraKSyrjanpaaMHanninenPHarmaHAnalyst2014139201620231:CAS:528:DC%2BC2cXktl2ru7k%3D10.1039/c3an01814h ShiHJZhaoGHLiuMCFanLFCaoTCJ Hazard Mater20132607547611:CAS:528:DC%2BC3sXht1yksr7N10.1016/j.jhazmat.2013.06.031 SecciaSFidentePMontesanoDMorricaPJ Chromatogr A200812141151201:CAS:528:DC%2BD1cXhsVGgs7nJ10.1016/j.chroma.2008.10.088 YuanPWaltDRAnal Chem198759239123941:CAS:528:DyaL2sXlt1Kjurs%3D10.1021/ac00146a015 LinFBYinBDLiCZDengJHFanXYYiYHLiuCLiHTZhangYYYaoSZAnal Methods201356997041:CAS:528:DC%2BC3sXht1Cht7Y%3D10.1039/C2AY25519G LiHXRothbergLJ Am Chem Soc200412610958109611:CAS:528:DC%2BD2cXmsFCrsb8%3D10.1021/ja048749n MairalTNadalPSvobodovaMO'SullivanCKBiosens Bioelectron2014542072101:CAS:528:DC%2BC2cXhtFOltL0%3D10.1016/j.bios.2013.10.070 ZhouQXDingYJXiaoJPAnal Bioanal Chem2006385152015251:CAS:528:DC%2BD28XnvVGmt74%3D10.1007/s00216-006-0554-7 WanatabeSItoSKamataYOmodaNYamazakiTMunakataHKanekoTYuasaYAnal Chim Acta20014272112191:CAS:528:DC%2BD3cXoslSlurw%3D10.1016/S0003-2670(00)01126-0 KimYSJungHSMatsuuraTLeeHYKawaiTGuMBBiosens Bioelectron200722252525311:CAS:528:DC%2BD2sXjslGmt74%3D10.1016/j.bios.2006.10.004 ImamuraTYanagawaYNishikawaKMatsumotoNSakamotoTClin Toxicol20104885185310.3109/15563650.2010.517207 ZhengYWangYYangXRSensors Actuators B201156959910.1016/j.snb.2011.03.077 RadišićMGrujićSVasiljevićTLauševićMFood Chem200911371271910.1016/j.foodchem.2008.07.103 ZhangSHYangXMYinXFWangCWangZFood Chem20121335445501:CAS:528:DC%2BC38XhvFehsbo%3D10.1016/j.foodchem.2012.01.028 LingJHuangCZAnal Methods201021439144710.1039/c0ay00452a LiuSYZhengZTWeiFLRenYPGuiWJWuHMZhuGNJ Agric Food Chem201058327132781:CAS:528:DC%2BC3cXisVChur4%3D10.1021/jf904045j SunYHFanWJiaQShiCLiTYangDShanxi Agric Sci [Chinese journal]20116104106 ZhangBHPanXPVenneLDunnumSMcMurrySTCobbGPAndersonTATalanta200875105510601:CAS:528:DC%2BD1cXlvVOjsLc%3D10.1016/j.talanta.2008.01.032 TangBCaoLHXuKHZhuoLHGeJHLiQFYuLJChem Eur J200814363736441:CAS:528:DC%2BD1cXmtFant70%3D10.1002/chem.200701871 SabherwalPShorieMPathaniaPChaudharySBhasinKKBhallaVSuriCRAnal Chem201486720072041:CAS:528:DC%2BC2cXhtFens7jM10.1021/ac501388a StojanovicMNLandryDWJ Am Chem Soc2002124967896791:CAS:528:DC%2BD38XlsFygtbo%3D10.1021/ja0259483 WangLHLiuXFHuXFSongSPFanCHChem Commun2006363780378210.1039/b607448k ObanaHOkihashiMAkutsuKKitagawaYHoriSJ Agric Food Chem200351250125051:CAS:528:DC%2BD3sXit1Ojsbo%3D10.1021/jf0261102 XieWHanCQianYDingHYChenXMXiJYJ Chromatogr A20111218442644331:CAS:528:DC%2BC3MXotVGmsLo%3D10.1016/j.chroma.2011.05.026 EttieneGBauzaRPlataMRContentoAMRíosÁElectrophoresis201233296929771:CAS:528:DC%2BC38XhtlKrsrjF10.1002/elps.201200241 JiangXShangLWangZXDongSJBiophys Chem200511842501:CAS:528:DC%2BD2MXpvFelsLY%3D10.1016/j.bpc.2005.03.015 XiangYLiZChenXTongATalanta200874114811531:CAS:528:DC%2BD1cXosVelsg%3D%3D10.1016/j.talanta.2007.08.018 Chinese National Standards GB/T 5009.199-2003, Standards Press of China: Beijing, 2003 WatanabeEMiyakeSBabaKEunHEndoSAnal Bioanal Chem2006386144114481:CAS:528:DC%2BD28XhtFegtLzP10.1007/s00216-006-0683-z T Imamura (9132_CR3) 2010; 48 H Obana (9132_CR5) 2002; 50 J Ling (9132_CR22) 2010; 2 P Yuan (9132_CR20) 1987; 59 HJ Shi (9132_CR2) 2013; 260 X Jiang (9132_CR40) 2005; 118 LF Fan (9132_CR1) 2013; 43 YS Kim (9132_CR33) 2007; 22 Y Zheng (9132_CR39) 2011; 56 T Mairal (9132_CR27) 2014; 54 C Mohan (9132_CR7) 2010; 165 S Wanatabe (9132_CR18) 2001; 427 Y Xiang (9132_CR21) 2008; 74 H Obana (9132_CR11) 2003; 51 W Xie (9132_CR13) 2011; 1218 CX Lin (9132_CR30) 2006; 45 S Seccia (9132_CR9) 2008; 1214 M Radišić (9132_CR12) 2009; 113 JW Li (9132_CR25) 2013; 5 AY Kocaman (9132_CR4) 2007; 48 LH Wang (9132_CR31) 2006; 36 BH Zhang (9132_CR10) 2008; 75 YH Sun (9132_CR41) 2011; 6 B Tang (9132_CR23) 2008; 14 J Vichapong (9132_CR8) 2013; 117 P Sabherwal (9132_CR26) 2014; 86 K Kopra (9132_CR29) 2014; 139 MN Stojanovic (9132_CR32) 2002; 124 SY Liu (9132_CR14) 2010; 58 M Mateu-Sánchez (9132_CR15) 2003; 19 H Xu (9132_CR28) 2009; 81 QX Zhou (9132_CR6) 2006; 385 G Ettiene (9132_CR16) 2012; 33 HX Li (9132_CR38) 2004; 126 MW Zhang (9132_CR24) 2012; 135 E Watanabe (9132_CR19) 2006; 386 J He (9132_CR36) 2011; 59 SH Zhang (9132_CR17) 2012; 133 9132_CR37 Y Wang (9132_CR34) 2010; 132 FB Lin (9132_CR35) 2013; 5 |
References_xml | – reference: FanLFZhaoGHShiHJLiuMCLiZXBiosens Bioelectron20134312181:CAS:528:DC%2BC3sXjtFWjtLo%3D10.1016/j.bios.2012.11.033 – reference: XiangYLiZChenXTongATalanta200874114811531:CAS:528:DC%2BD1cXosVelsg%3D%3D10.1016/j.talanta.2007.08.018 – reference: Chinese National Standards GB/T 5009.199-2003, Standards Press of China: Beijing, 2003 – reference: VichapongJBurakhamRSrijaranaiSTalanta20131172212281:CAS:528:DC%2BC3sXhslGjsLrI10.1016/j.talanta.2013.08.034 – reference: XieWHanCQianYDingHYChenXMXiJYJ Chromatogr A20111218442644331:CAS:528:DC%2BC3MXotVGmsLo%3D10.1016/j.chroma.2011.05.026 – reference: LiuSYZhengZTWeiFLRenYPGuiWJWuHMZhuGNJ Agric Food Chem201058327132781:CAS:528:DC%2BC3cXisVChur4%3D10.1021/jf904045j – reference: ZhengYWangYYangXRSensors Actuators B201156959910.1016/j.snb.2011.03.077 – reference: ShiHJZhaoGHLiuMCFanLFCaoTCJ Hazard Mater20132607547611:CAS:528:DC%2BC3sXht1yksr7N10.1016/j.jhazmat.2013.06.031 – reference: ZhouQXDingYJXiaoJPAnal Bioanal Chem2006385152015251:CAS:528:DC%2BD28XnvVGmt74%3D10.1007/s00216-006-0554-7 – reference: KimYSJungHSMatsuuraTLeeHYKawaiTGuMBBiosens Bioelectron200722252525311:CAS:528:DC%2BD2sXjslGmt74%3D10.1016/j.bios.2006.10.004 – reference: YuanPWaltDRAnal Chem198759239123941:CAS:528:DyaL2sXlt1Kjurs%3D10.1021/ac00146a015 – reference: MairalTNadalPSvobodovaMO'SullivanCKBiosens Bioelectron2014542072101:CAS:528:DC%2BC2cXhtFOltL0%3D10.1016/j.bios.2013.10.070 – reference: RadišićMGrujićSVasiljevićTLauševićMFood Chem200911371271910.1016/j.foodchem.2008.07.103 – reference: TangBCaoLHXuKHZhuoLHGeJHLiQFYuLJChem Eur J200814363736441:CAS:528:DC%2BD1cXmtFant70%3D10.1002/chem.200701871 – reference: KopraKSyrjanpaaMHanninenPHarmaHAnalyst2014139201620231:CAS:528:DC%2BC2cXktl2ru7k%3D10.1039/c3an01814h – reference: WangLHLiuXFHuXFSongSPFanCHChem Commun2006363780378210.1039/b607448k – reference: KocamanAYTopaktasMEnviron Mol Mutagen2007484834901:CAS:528:DC%2BD2sXovFantb0%3D10.1002/em.20309 – reference: JiangXShangLWangZXDongSJBiophys Chem200511842501:CAS:528:DC%2BD2MXpvFelsLY%3D10.1016/j.bpc.2005.03.015 – reference: ObanaHOkihashiMAkutsuKKitagawaYHoriSJ Agric Food Chem200250446444671:CAS:528:DC%2BD38Xksleht7o%3D10.1021/jf025539q – reference: LinCXKatiliusELiuYZhangJPYanHAngew Chem Int Ed200645529653011:CAS:528:DC%2BD28Xoslegtbk%3D10.1002/anie.200600438 – reference: ZhangSHYangXMYinXFWangCWangZFood Chem20121335445501:CAS:528:DC%2BC38XhvFehsbo%3D10.1016/j.foodchem.2012.01.028 – reference: EttieneGBauzaRPlataMRContentoAMRíosÁElectrophoresis201233296929771:CAS:528:DC%2BC38XhtlKrsrjF10.1002/elps.201200241 – reference: LingJHuangCZAnal Methods201021439144710.1039/c0ay00452a – reference: ZhangMWCaoXYLiHKGuanFRGuoJJShenFLuoYLSunCYZhangLGFood Chem2012135189419001:CAS:528:DC%2BC38XhtlSmu7vL10.1016/j.foodchem.2012.06.070 – reference: SecciaSFidentePMontesanoDMorricaPJ Chromatogr A200812141151201:CAS:528:DC%2BD1cXhsVGgs7nJ10.1016/j.chroma.2008.10.088 – reference: LinFBYinBDLiCZDengJHFanXYYiYHLiuCLiHTZhangYYYaoSZAnal Methods201356997041:CAS:528:DC%2BC3sXht1Cht7Y%3D10.1039/C2AY25519G – reference: WangYLiZHHuDHLinCTLiJHLinYHJ Am Chem Soc2010132927492761:CAS:528:DC%2BC3cXnvVejtLk%3D10.1021/ja103169v – reference: MohanCKumarYMadanJSaxenaNEnviron Monit Assess20101655735761:CAS:528:DC%2BC3cXls1Cksro%3D10.1007/s10661-009-0968-8 – reference: ObanaHOkihashiMAkutsuKKitagawaYHoriSJ Agric Food Chem200351250125051:CAS:528:DC%2BD3sXit1Ojsbo%3D10.1021/jf0261102 – reference: XuHMaoXZengQXWangSFKawdeANLiuGDAnal Chem2009816696751:CAS:528:DC%2BD1cXhsV2nurjL10.1021/ac8020592 – reference: Mateu-SánchezMMorenoMArrebolaFJVidalJLMAnal Sci20031970170410.2116/analsci.19.701 – reference: SabherwalPShorieMPathaniaPChaudharySBhasinKKBhallaVSuriCRAnal Chem201486720072041:CAS:528:DC%2BC2cXhtFens7jM10.1021/ac501388a – reference: SunYHFanWJiaQShiCLiTYangDShanxi Agric Sci [Chinese journal]20116104106 – reference: ImamuraTYanagawaYNishikawaKMatsumotoNSakamotoTClin Toxicol20104885185310.3109/15563650.2010.517207 – reference: ZhangBHPanXPVenneLDunnumSMcMurrySTCobbGPAndersonTATalanta200875105510601:CAS:528:DC%2BD1cXlvVOjsLc%3D10.1016/j.talanta.2008.01.032 – reference: LiJWLiXMShiXJHeXWWeiWMaNChenHAppl Mater Interfaces20135979898021:CAS:528:DC%2BC3sXhsVWjs7bJ10.1021/am4029735 – reference: HeJLiuYFanMTLiuXJJ Agric Food Chem201159158215861:CAS:528:DC%2BC3MXhs1ymtbs%3D10.1021/jf104189g – reference: WatanabeEMiyakeSBabaKEunHEndoSAnal Bioanal Chem2006386144114481:CAS:528:DC%2BD28XhtFegtLzP10.1007/s00216-006-0683-z – reference: LiHXRothbergLJ Am Chem Soc200412610958109611:CAS:528:DC%2BD2cXmsFCrsb8%3D10.1021/ja048749n – reference: WanatabeSItoSKamataYOmodaNYamazakiTMunakataHKanekoTYuasaYAnal Chim Acta20014272112191:CAS:528:DC%2BD3cXoslSlurw%3D10.1016/S0003-2670(00)01126-0 – reference: StojanovicMNLandryDWJ Am Chem Soc2002124967896791:CAS:528:DC%2BD38XlsFygtbo%3D10.1021/ja0259483 – volume: 50 start-page: 4464 year: 2002 ident: 9132_CR5 publication-title: J Agric Food Chem doi: 10.1021/jf025539q – volume: 56 start-page: 95 year: 2011 ident: 9132_CR39 publication-title: Sensors Actuators B doi: 10.1016/j.snb.2011.03.077 – volume: 48 start-page: 483 year: 2007 ident: 9132_CR4 publication-title: Environ Mol Mutagen doi: 10.1002/em.20309 – volume: 59 start-page: 1582 year: 2011 ident: 9132_CR36 publication-title: J Agric Food Chem doi: 10.1021/jf104189g – volume: 133 start-page: 544 year: 2012 ident: 9132_CR17 publication-title: Food Chem doi: 10.1016/j.foodchem.2012.01.028 – volume: 386 start-page: 1441 year: 2006 ident: 9132_CR19 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-006-0683-z – volume: 427 start-page: 211 year: 2001 ident: 9132_CR18 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)01126-0 – volume: 14 start-page: 3637 year: 2008 ident: 9132_CR23 publication-title: Chem Eur J doi: 10.1002/chem.200701871 – volume: 58 start-page: 3271 year: 2010 ident: 9132_CR14 publication-title: J Agric Food Chem doi: 10.1021/jf904045j – volume: 81 start-page: 669 year: 2009 ident: 9132_CR28 publication-title: Anal Chem doi: 10.1021/ac8020592 – volume: 45 start-page: 5296 year: 2006 ident: 9132_CR30 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200600438 – volume: 5 start-page: 699 year: 2013 ident: 9132_CR35 publication-title: Anal Methods doi: 10.1039/C2AY25519G – volume: 126 start-page: 10958 year: 2004 ident: 9132_CR38 publication-title: J Am Chem Soc doi: 10.1021/ja048749n – volume: 385 start-page: 1520 year: 2006 ident: 9132_CR6 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-006-0554-7 – volume: 43 start-page: 12 year: 2013 ident: 9132_CR1 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2012.11.033 – volume: 1218 start-page: 4426 year: 2011 ident: 9132_CR13 publication-title: J Chromatogr A doi: 10.1016/j.chroma.2011.05.026 – volume: 2 start-page: 1439 year: 2010 ident: 9132_CR22 publication-title: Anal Methods doi: 10.1039/c0ay00452a – volume: 74 start-page: 1148 year: 2008 ident: 9132_CR21 publication-title: Talanta doi: 10.1016/j.talanta.2007.08.018 – volume: 135 start-page: 1894 year: 2012 ident: 9132_CR24 publication-title: Food Chem doi: 10.1016/j.foodchem.2012.06.070 – volume: 6 start-page: 104 year: 2011 ident: 9132_CR41 publication-title: Shanxi Agric Sci [Chinese journal] – volume: 113 start-page: 712 year: 2009 ident: 9132_CR12 publication-title: Food Chem doi: 10.1016/j.foodchem.2008.07.103 – volume: 59 start-page: 2391 year: 1987 ident: 9132_CR20 publication-title: Anal Chem doi: 10.1021/ac00146a015 – volume: 22 start-page: 2525 year: 2007 ident: 9132_CR33 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2006.10.004 – volume: 51 start-page: 2501 year: 2003 ident: 9132_CR11 publication-title: J Agric Food Chem doi: 10.1021/jf0261102 – volume: 118 start-page: 42 year: 2005 ident: 9132_CR40 publication-title: Biophys Chem doi: 10.1016/j.bpc.2005.03.015 – volume: 260 start-page: 754 year: 2013 ident: 9132_CR2 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2013.06.031 – volume: 165 start-page: 573 year: 2010 ident: 9132_CR7 publication-title: Environ Monit Assess doi: 10.1007/s10661-009-0968-8 – ident: 9132_CR37 doi: 10.4000/chinaperspectives.259 – volume: 48 start-page: 851 year: 2010 ident: 9132_CR3 publication-title: Clin Toxicol doi: 10.3109/15563650.2010.517207 – volume: 33 start-page: 2969 year: 2012 ident: 9132_CR16 publication-title: Electrophoresis doi: 10.1002/elps.201200241 – volume: 139 start-page: 2016 year: 2014 ident: 9132_CR29 publication-title: Analyst doi: 10.1039/c3an01814h – volume: 132 start-page: 9274 year: 2010 ident: 9132_CR34 publication-title: J Am Chem Soc doi: 10.1021/ja103169v – volume: 75 start-page: 1055 year: 2008 ident: 9132_CR10 publication-title: Talanta doi: 10.1016/j.talanta.2008.01.032 – volume: 1214 start-page: 115 year: 2008 ident: 9132_CR9 publication-title: J Chromatogr A doi: 10.1016/j.chroma.2008.10.088 – volume: 124 start-page: 9678 year: 2002 ident: 9132_CR32 publication-title: J Am Chem Soc doi: 10.1021/ja0259483 – volume: 36 start-page: 3780 year: 2006 ident: 9132_CR31 publication-title: Chem Commun doi: 10.1039/b607448k – volume: 19 start-page: 701 year: 2003 ident: 9132_CR15 publication-title: Anal Sci doi: 10.2116/analsci.19.701 – volume: 54 start-page: 207 year: 2014 ident: 9132_CR27 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2013.10.070 – volume: 86 start-page: 7200 year: 2014 ident: 9132_CR26 publication-title: Anal Chem doi: 10.1021/ac501388a – volume: 117 start-page: 221 year: 2013 ident: 9132_CR8 publication-title: Talanta doi: 10.1016/j.talanta.2013.08.034 – volume: 5 start-page: 9798 year: 2013 ident: 9132_CR25 publication-title: Appl Mater Interfaces doi: 10.1021/am4029735 |
SSID | ssj0015816 |
Score | 2.4631717 |
Snippet | This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers... Issue Title: Applications of Isotopes in Analytical Ecogeochemistry (pp. 341-440) This paper reports a novel aptamer-based fluorescent detection method for... |
SourceID | proquest gale pubmed crossref springer fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 557 |
SubjectTerms | abscisic acid absorption acetamiprid Agglomeration Analysis Analytical Chemistry Aptamers, Nucleotide - chemistry Binding Biochemistry Cadmium - chemistry Cadmium compounds Cadmium tellurides Characterization and Evaluation of Materials Chemical properties Chemistry Chemistry and Materials Science Chromatography detection limit Efficiency Electrons Fluorescence Food Food Science Gold Gold - chemistry high performance liquid chromatography Insecticides Insecticides - analysis Laboratory Medicine Liquid chromatography Mass spectrometry Metal Nanoparticles - chemistry Monitoring/Environmental Analysis nanogold Nanoparticles Neonicotinoids oligonucleotides Pesticides Pyridines - analysis Quantum dots Quantum Dots - chemistry Quenching (cooling) rapid methods Research Paper Salt tolerance Scientific imaging screening Selectivity SELEX Aptamer Technique - methods Tellurium - chemistry Toxicity vegetables |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_e-aAvh99XPSWCICjBJu122ydZFtdD0Bdv4d5CkibHwl67tx-C_4V_sr_pl6tyC_vW2STNZGZ-k5nOMPYmLZxKy6IQNrWJgL22wnoVhLRjFVIH8fN0NfD1W3Y-T79cji67C7dNl1bZ68RGUZe1ozvyD3IMUyQzmKSPqxtBXaMoutq10Dhid6WCraUvxWefhyjCKG9an1JNeMrkUn1UM26KiGI0ONJNp0Il5F926SiY-n8dvWek_omaNsZo9oCddCiST1q2P2R3fPWI3Zv2zdses1-T1dZc-7UgK1XysNzV67ZwE4eegO-KYTlws_nJgVq5cR7kC8xW8h8Lw5uGXDwsKJTO25QPXgd-VS9LXpkKjnaXT8frigNC7k3gPFFOywvPb3Zg2-6aw_HdPGHz2aeL6bnomi8Il43TrbAqNjKPExebsc_T3Bs1Ut4XsbNZbE2cOQ9xds4m3o2sMjK4IK2TtowLk0ifPGXHVV35U8ZLF4Aag5LWhBSPcxcHT12ObQJsL9OIxf3Wa9dVJqcGGUs91FRuuKXBLU3c0jJi74a_rNqyHIeIT8FPba6gNvX8u6KieqSsgH4i9paYrEmaMaUz3UcJWDjVxdKTFO4Z5axikLP-HOhOzDf6z6GM2OvhMVhNURdT-XpHNBncxgS_QzSA0VTbXt1Ooxp3DqvGXM_aczi8usqAwjBRxN73B3Nvkbfty_PDr_SC3aetau-bztjxdr3zL4HAtvZVI2a_Af92KmE priority: 102 providerName: ProQuest |
Title | Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots |
URI | https://link.springer.com/article/10.1007/s00216-015-9132-1 https://www.ncbi.nlm.nih.gov/pubmed/26521176 https://www.proquest.com/docview/1781216021 https://www.proquest.com/docview/1760863863 https://www.proquest.com/docview/1793245222 https://www.proquest.com/docview/2000044201 |
Volume | 408 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZaxsxEBZN8tC-hN5xmxoVCoWWhV3t6UfbtRNaGkobg_skJK0UDM5u6iOQf9Gf3G_2wj0SKBjvg8YaWSNpvtkZzTD2JhoYEeWDgacjHXrQ19rTVjgv0KlwkcH2s_Rq4PNZcjqLPs7jeXOPe91Gu7cuyeqk7i67kToi67eqLSg8mDwHMaWTwiKeiWHnOoizqt4pJYKn8C3RujL_1cVvymjPqfLvg3lHM_3hKq000PQhO2ygIx_Wsn7E7tniMbs_biu2PWE_h1cbdWlXHqmmnLvltlzV2Zo4DgcYrOiWAyyrGw6oypWxIF-AW86vF4pXVbi4W5D_nNdxHrx0_KJc5rxQBazrJoiOlwUHbtxhYCxRjvNzy39sIavtJYe1u37KZtPJ-fjUayoueCZJo42nha-CzA-Nr1KbRZlVIhbWDnyjE18rPzEWe9gYHVoTa6ECZ1ygTaBzf6DCwIbP2H5RFvaI8dw4QEUnAq1chObM-M5SaWMdAtAHUY_57dRL06Qjp6oYS9klUq6kJSEtSdKSQY-9635yVefiuIv4CPKU6gJnpZx9E5RJj04oQJ4ee0tClrSFwdKo5iYCBk7JsOQwgk1Ggaro5LhdB7LZ22sZpABF6E2g-XXXDFGTq0UVttwSTQJbMcTnLhpgZ0poL26nEZUNh1GD1_N6HXZ_XSSAXmDUY-_bhbkzyNvm5cV_Ub9kD2jm6ndOx2x_s9raV0BhG91ne-k8xXc2Pemzg-How2hKz5PvnyZ4jiZnX772q535C-t7LV8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcNSmh3JB5dnQAkYCIYFWrL3OJjlUKIRWKW0jBInUm7G9dhUp3U3zAPUv-CK-jZl9hABqbpVy24nH9ozn4RnPALyUbStk0m4HRpooQH1tAuOED7hpCi8tHj9HVwNn_bg3lJ_OG-cb8Kt6C0NplZVMzAV1klm6I3_Hm6iKeIwq6f3kKqCuURRdrVpo6LK1QnKQlxgrH3acuOsf6MLNDo4_Ir1fCXF0OOj2grLLQGDjppwHRoSat8LIhrrpWrLltGgI59qhNXFodBhbh3xrrYmcbRihubeeG8tNErZ1xF2E427ClqQLlBpsfTjsf_6yjGM0WnnzVapKT7lkooqrhnkZU1wPuvJ5r0QR8L8046bX2f9aYkVN_hO3zdXh0Q7cLe1Y1ikY7x5suPQ-bHer9nEP4GdnMteXbhqQnkyYHy-yaVE6iqGkQu8Zh2VouetrhnYz09Yh-AixJez7SLO8JRjzIwrmsyLphGWeXWTjhKU6RVe_zOhjWcrQiF1BYB1BdpOBY1cLZJzFJUPXe_YQhrdCmEdQS7PU7QJLrEe71QtutJf4uWVD76jPsonQu-CyDmG19cqWtdGpRcdYLas659RSSC1F1FK8Dm-Wf5kUhUHWAe8iPZW-QMGthl8FlfUjcYn2Vx1eE5EVyRNEaXX5LAInTpW5VEeig0hZszjIfsUHqhQ0M_XnWNThxfIzkpriPjp12YJgYnRcI_ytg0FDnqrri5thRO5Q4qwR1-OCD5dLFzHagYioDm8rxlyZ5E378mT9kp7Ddm9wdqpOj_sne3CHtq24_dqH2ny6cE_RHpybZ-WhY_Dtts_5byn4b8o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFB7aCuqLeG-06giKoCzdmd1sNg8iITW2VotgA30bZ2ZnSiDdTXNR-i_8Pf46v7OXGJXmrZC3PZnbuc85cw5jL-KulXHW7QYmNlEAfW0C46QPhOlIH1uwn6Orgc9Hyf4w_njSPtlgv5q3MJRW2cjEUlBnhaU78l3RgSoSCVTSrq_TIr7sDd5NzgPqIEWR1qadRkUih-7iB9y32duDPeD6pZSD98f9_aDuMBDYpBPPAyNDLdIwsqHuuDROnZZt6Vw3tCYJjQ4T60Cz1prI2baRWnjrhbHCZGFXR8JFGHeTXetE4BN6pT74sIxgtNOy7SrVo6csMtlEVMOygCl2Aie-7JIoA_GXTtz0uvhfP6woyH8itqUiHNxmt2oLlvcqkrvDNlx-l93oN43j7rGfvclcn7lpQBoy4368KKZV0SgOGQW_GcNy2Oz6gsNi5to6gI8wW8a_jzQvm4FxP6IwPq_STXjh-Wkxzniuczj5dS4fL3IO83VlAusIsp8dO36-AMkszjic7tl9NrwStDxgW3mRu23GM-thsXopjPYxPqc29I46LJsIfoWIWyxsjl7Zuio6NecYq2U95xJbCthShC0lWuz18i-TqiTIOuBt4FPpU4hsNfwqqaAfCUpYXi32ipCsSJJgSqvrBxFYONXkUr0YriHly2KQnYYOVC1iZuoPQ7TY8-VnoJoiPjp3xYJgErisEX7rYGDCU119eTmMLF1JrBpzPazocLl1mcACxEQt9qYhzJVFXnYuj9Zv6Rm7Du5Wnw6ODh-zm3Rq1bXXDtuaTxfuCQzBuXlachxn366axX8DGMttZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aptamer-based+fluorescent+screening+assay+for+acetamiprid+via+inner+filter+effect+of+gold+nanoparticles+on+the+fluorescence+of+CdTe+quantum+dots&rft.jtitle=Analytical+and+bioanalytical+chemistry&rft.au=Guo%2C+Jiajia&rft.au=Li%2C+Ying&rft.au=Wang%2C+Luokai&rft.au=Xu%2C+Jingyue&rft.date=2016-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1618-2642&rft.eissn=1618-2650&rft.volume=408&rft.issue=2&rft.spage=557&rft.epage=566&rft_id=info:doi/10.1007%2Fs00216-015-9132-1&rft.externalDocID=10_1007_s00216_015_9132_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-2642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-2642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-2642&client=summon |