A digital biomarker of diabetes from smartphone-based vascular signals

The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 2045 1 . The insidious onset of type 2 diabetes delays diagnosis and increases morbidity 2 . Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethy...

Full description

Saved in:
Bibliographic Details
Published inNature medicine Vol. 26; no. 10; pp. 1576 - 1582
Main Authors Avram, Robert, Olgin, Jeffrey E., Kuhar, Peter, Hughes, J. Weston, Marcus, Gregory M., Pletcher, Mark J., Aschbacher, Kirstin, Tison, Geoffrey H.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.10.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1078-8956
1546-170X
1546-170X
DOI10.1038/s41591-020-1010-5

Cover

Abstract The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 2045 1 . The insidious onset of type 2 diabetes delays diagnosis and increases morbidity 2 . Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography could provide a widely accessible digital biomarker for diabetes. Here we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based photoplethysmography from an initial cohort of 53,870 individuals (the ‘primary cohort’), which we then validated in a separate cohort of 7,806 individuals (the ‘contemporary cohort’) and a cohort of 181 prospectively enrolled individuals from three clinics (the ‘clinic cohort’). The DNN achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% confidence interval: 0.750–0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% confidence interval: 0.723–0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN score, was included in a regression analysis alongside age, gender, race/ethnicity and body mass index, the area under the curve was 0.830 and the DNN score remained independently predictive of diabetes. The performance of the DNN in the clinic cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN score and hemoglobin A1c ( P  ≤ 0.001) among those with hemoglobin A1c data. These findings demonstrate that smartphone-based photoplethysmography provides a readily attainable, non-invasive digital biomarker of prevalent diabetes. A deep neural network applied to smartphone-based vascular imaging can detect diabetes, opening new possibilities for non-invasive diagnosis.
AbstractList The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 2045 . The insidious onset of type 2 diabetes delays diagnosis and increases morbidity . Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography could provide a widely accessible digital biomarker for diabetes. Here we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based photoplethysmography from an initial cohort of 53,870 individuals (the 'primary cohort'), which we then validated in a separate cohort of 7,806 individuals (the 'contemporary cohort') and a cohort of 181 prospectively enrolled individuals from three clinics (the 'clinic cohort'). The DNN achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% confidence interval: 0.750-0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% confidence interval: 0.723-0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN score, was included in a regression analysis alongside age, gender, race/ethnicity and body mass index, the area under the curve was 0.830 and the DNN score remained independently predictive of diabetes. The performance of the DNN in the clinic cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN score and hemoglobin A1c (P ≤ 0.001) among those with hemoglobin A1c data. These findings demonstrate that smartphone-based photoplethysmography provides a readily attainable, non-invasive digital biomarker of prevalent diabetes.
The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 2045.sup.1. The insidious onset of type 2 diabetes delays diagnosis and increases morbidity.sup.2. Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography could provide a widely accessible digital biomarker for diabetes. Here we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based photoplethysmography from an initial cohort of 53,870 individuals (the 'primary cohort'), which we then validated in a separate cohort of 7,806 individuals (the 'contemporary cohort') and a cohort of 181 prospectively enrolled individuals from three clinics (the 'clinic cohort'). The DNN achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% confidence interval: 0.750-0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% confidence interval: 0.723-0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN score, was included in a regression analysis alongside age, gender, race/ethnicity and body mass index, the area under the curve was 0.830 and the DNN score remained independently predictive of diabetes. The performance of the DNN in the clinic cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN score and hemoglobin A1c (P [less than or equal to] 0.001) among those with hemoglobin A1c data. These findings demonstrate that smartphone-based photoplethysmography provides a readily attainable, non-invasive digital biomarker of prevalent diabetes.
The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 20451. The insidious onset of type 2 diabetes delays diagnosis and increases morbidity2. Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography could provide a widely accessible digital biomarker for diabetes. Here we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based photoplethysmography from an initial cohort of 53,870 individuals (the 'primary cohort'), which we then validated in a separate cohort of 7,806 individuals (the 'contemporary cohort') and a cohort of 181 prospectively enrolled individuals from three clinics (the 'clinic cohort'). The DNN achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% confidence interval: 0.750-0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% confidence interval: 0.723-0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN score, was included in a regression analysis alongside age, gender, race/ethnicity and body mass index, the area under the curve was 0.830 and the DNN score remained independently predictive of diabetes. The performance of the DNN in the clinic cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN score and hemoglobin A1c (P ≤ 0.001) among those with hemoglobin A1c data. These findings demonstrate that smartphone-based photoplethysmography provides a readily attainable, non-invasive digital biomarker of prevalent diabetes.The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 20451. The insidious onset of type 2 diabetes delays diagnosis and increases morbidity2. Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography could provide a widely accessible digital biomarker for diabetes. Here we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based photoplethysmography from an initial cohort of 53,870 individuals (the 'primary cohort'), which we then validated in a separate cohort of 7,806 individuals (the 'contemporary cohort') and a cohort of 181 prospectively enrolled individuals from three clinics (the 'clinic cohort'). The DNN achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% confidence interval: 0.750-0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% confidence interval: 0.723-0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN score, was included in a regression analysis alongside age, gender, race/ethnicity and body mass index, the area under the curve was 0.830 and the DNN score remained independently predictive of diabetes. The performance of the DNN in the clinic cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN score and hemoglobin A1c (P ≤ 0.001) among those with hemoglobin A1c data. These findings demonstrate that smartphone-based photoplethysmography provides a readily attainable, non-invasive digital biomarker of prevalent diabetes.
The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 20451. The insidious onset of type 2 diabetes delays diagnosis and increases morbidity2. Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography (PPG) could provide a widely-accessible digital biomarker for diabetes. Here, we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based PPG from an initial cohort of 53,870 individuals (the “Primary Cohort”), which was then validated in a separate cohort of 7,806 individuals (the “Contemporary Cohort”), and a cohort of 181 prospectively-enrolled individuals from three clinics (the “Clinic Cohort”). The DNN achieved an area under the curve (AUC) for prevalent diabetes of 0.766 in the Primary Cohort (95% confidence interval (CI): 0.750–0.782; sensitivity 75%, specificity 65%) and 0.740 in the Contemporary Cohort (95% CI: 0.723–0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN Score, was included in a regression analysis alongside age, gender, race/ethnicity, and body mass index, the AUC was 0.830 and the DNN Score remained independently predictive of diabetes. The performance of the DNN in the Clinic Cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN Score and hemoglobin A1c (HbA1c) (p≤0.001) among those with HbA1c. These findings demonstrate that smartphone-based PPG provides a readily attainable, noninvasive digital biomarker of prevalent diabetes.
The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 2045.sup.1. The insidious onset of type 2 diabetes delays diagnosis and increases morbidity.sup.2. Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography could provide a widely accessible digital biomarker for diabetes. Here we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based photoplethysmography from an initial cohort of 53,870 individuals (the 'primary cohort'), which we then validated in a separate cohort of 7,806 individuals (the 'contemporary cohort') and a cohort of 181 prospectively enrolled individuals from three clinics (the 'clinic cohort'). The DNN achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% confidence interval: 0.750-0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% confidence interval: 0.723-0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN score, was included in a regression analysis alongside age, gender, race/ethnicity and body mass index, the area under the curve was 0.830 and the DNN score remained independently predictive of diabetes. The performance of the DNN in the clinic cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN score and hemoglobin A1c (P [less than or equal to] 0.001) among those with hemoglobin A1c data. These findings demonstrate that smartphone-based photoplethysmography provides a readily attainable, non-invasive digital biomarker of prevalent diabetes. A deep neural network applied to smartphone-based vascular imaging can detect diabetes, opening new possibilities for non-invasive diagnosis.
The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 20451. The insidious onset of type 2 diabetes delays diagnosis and increases morbidity2. Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography could provide a widely accessible digital biomarker for diabetes. Here we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based photoplethysmography from an initial cohort of 53,870 individuals (the ‘primary cohort’), which we then validated in a separate cohort of 7,806 individuals (the ‘contemporary cohort’) and a cohort of 181 prospectively enrolled individuals from three clinics (the ‘clinic cohort’). The DNN achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% confidence interval: 0.750–0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% confidence interval: 0.723–0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN score, was included in a regression analysis alongside age, gender, race/ethnicity and body mass index, the area under the curve was 0.830 and the DNN score remained independently predictive of diabetes. The performance of the DNN in the clinic cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN score and hemoglobin A1c (P ≤ 0.001) among those with hemoglobin A1c data. These findings demonstrate that smartphone-based photoplethysmography provides a readily attainable, non-invasive digital biomarker of prevalent diabetes.A deep neural network applied to smartphone-based vascular imaging can detect diabetes, opening new possibilities for non-invasive diagnosis.
The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 2045 1 . The insidious onset of type 2 diabetes delays diagnosis and increases morbidity 2 . Given the multifactorial vascular effects of diabetes, we hypothesized that smartphone-based photoplethysmography could provide a widely accessible digital biomarker for diabetes. Here we developed a deep neural network (DNN) to detect prevalent diabetes using smartphone-based photoplethysmography from an initial cohort of 53,870 individuals (the ‘primary cohort’), which we then validated in a separate cohort of 7,806 individuals (the ‘contemporary cohort’) and a cohort of 181 prospectively enrolled individuals from three clinics (the ‘clinic cohort’). The DNN achieved an area under the curve for prevalent diabetes of 0.766 in the primary cohort (95% confidence interval: 0.750–0.782; sensitivity 75%, specificity 65%) and 0.740 in the contemporary cohort (95% confidence interval: 0.723–0.758; sensitivity 81%, specificity 54%). When the output of the DNN, called the DNN score, was included in a regression analysis alongside age, gender, race/ethnicity and body mass index, the area under the curve was 0.830 and the DNN score remained independently predictive of diabetes. The performance of the DNN in the clinic cohort was similar to that in other validation datasets. There was a significant and positive association between the continuous DNN score and hemoglobin A1c ( P  ≤ 0.001) among those with hemoglobin A1c data. These findings demonstrate that smartphone-based photoplethysmography provides a readily attainable, non-invasive digital biomarker of prevalent diabetes. A deep neural network applied to smartphone-based vascular imaging can detect diabetes, opening new possibilities for non-invasive diagnosis.
Audience Academic
Author Tison, Geoffrey H.
Marcus, Gregory M.
Hughes, J. Weston
Kuhar, Peter
Avram, Robert
Olgin, Jeffrey E.
Pletcher, Mark J.
Aschbacher, Kirstin
AuthorAffiliation 3 Department of Computer Science, University of California, Berkeley (Berkeley, CA, United States), 253 Cory Hall, Berkeley, California, 94720-1770, United States of America
2 Azumio, inc (Palo Alto, CA, United States), 145, 255 Shoreline Drive, Redwood City, California, 94065, United States of America
4 Department of Epidemiology and Biostatistics, University of California San Francisco (San Francisco, CA, United States), 550 16 th Ave, Mission Hall 2 nd Floor, San Francisco, California, 94143-0560, United States of America
5 Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California, USA
1 Division of Cardiology and Cardiovascular Research Institute, Department of Medicine, University of California, San Francisco, Cardiology (San Francisco, CA, United States), 505 Parnassus Avenue, San Francisco, California, 94143, United States of America
6 Department of Psychiatry, Weill Institute for Neurosciences, University of California San Fran
AuthorAffiliation_xml – name: 6 Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, California, USA
– name: 2 Azumio, inc (Palo Alto, CA, United States), 145, 255 Shoreline Drive, Redwood City, California, 94065, United States of America
– name: 4 Department of Epidemiology and Biostatistics, University of California San Francisco (San Francisco, CA, United States), 550 16 th Ave, Mission Hall 2 nd Floor, San Francisco, California, 94143-0560, United States of America
– name: 5 Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California, USA
– name: 3 Department of Computer Science, University of California, Berkeley (Berkeley, CA, United States), 253 Cory Hall, Berkeley, California, 94720-1770, United States of America
– name: 1 Division of Cardiology and Cardiovascular Research Institute, Department of Medicine, University of California, San Francisco, Cardiology (San Francisco, CA, United States), 505 Parnassus Avenue, San Francisco, California, 94143, United States of America
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0002-8490-0270
  surname: Avram
  fullname: Avram, Robert
  organization: Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco
– sequence: 2
  givenname: Jeffrey E.
  surname: Olgin
  fullname: Olgin, Jeffrey E.
  organization: Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco
– sequence: 3
  givenname: Peter
  surname: Kuhar
  fullname: Kuhar, Peter
  organization: Azumio, Inc
– sequence: 4
  givenname: J. Weston
  surname: Hughes
  fullname: Hughes, J. Weston
  organization: Department of Computer Science, University of California, Berkeley
– sequence: 5
  givenname: Gregory M.
  surname: Marcus
  fullname: Marcus, Gregory M.
  organization: Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco
– sequence: 6
  givenname: Mark J.
  surname: Pletcher
  fullname: Pletcher, Mark J.
  organization: Department of Epidemiology and Biostatistics, University of California, San Francisco
– sequence: 7
  givenname: Kirstin
  orcidid: 0000-0001-6191-6432
  surname: Aschbacher
  fullname: Aschbacher, Kirstin
  organization: Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, Bakar Computational Health Sciences Institute, University of California, San Francisco, Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco
– sequence: 8
  givenname: Geoffrey H.
  orcidid: 0000-0002-0310-3326
  surname: Tison
  fullname: Tison, Geoffrey H.
  email: geoff.tison@ucsf.edu
  organization: Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, Bakar Computational Health Sciences Institute, University of California, San Francisco
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32807931$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9rFDEUxYNUbLv6AXyRAUH0YWoymZlkXoSlWC0UCv7Dt5DJ3MymZpNtMlPttzfDrm63rFLykJD8zkly7j1GB847QOg5wScEU_42lqRqSI4LnBNMcF49QkekKuucMPz9IK0x4zlvqvoQHcd4hTGmuGqeoENacMwaSo7Q2TzrTG8GabPW-KUMPyBkXqdN2cIAMdPBL7OYDobVIt2etzJCl93IqEYrQxZN76SNT9FjnSZ4tpln6OvZ-y-nH_OLyw_np_OLXNWsHHJSyYYppqUkRNZ1WYOGquGgGVClaaubplNlUTddSSiuece6ssJElRwIZ62mM1SsfUe3krc_pbViFUx63a0gWEyhiHUoIoUiplBElUTv1qLV2C6hU-CGILdCL43YPXFmIXp_I3jJKed1Mni9MQj-eoQ4iKWJCqyVDvwYRVHSijS4IBP68h565ccwRSQKnlJPn8Z0S_XSgjBO-3SvmkzFvKaMUcKS5wzle6geHKRHplpok7Z3-JM9fBodLI3aK3izI0jMAL-GXo4xivPPnx7OXn7bZV_dYRcg7bCI3o6D8S7ugi_uVuZvSf70ZwLYGlDBxxhAC5V6dfJJXzP2v0Un95QPaZRNd8XEuh7Ctnj_Fv0GwUwT1A
CitedBy_id crossref_primary_10_1055_s_0041_1734014
crossref_primary_10_1364_BOE_451736
crossref_primary_10_3389_fpsyt_2021_740292
crossref_primary_10_1177_20552076221136642
crossref_primary_10_1177_19322968211007212
crossref_primary_10_3390_healthcare11192608
crossref_primary_10_1038_s41746_022_00622_9
crossref_primary_10_1007_s12265_022_10260_x
crossref_primary_10_1001_jama_2024_21451
crossref_primary_10_1016_j_diabres_2025_112095
crossref_primary_10_1016_j_bios_2021_113246
crossref_primary_10_1136_bmjopen_2021_055580
crossref_primary_10_1007_s44174_024_00230_z
crossref_primary_10_1016_j_actbio_2022_12_001
crossref_primary_10_1364_BOE_497602
crossref_primary_10_3390_e25020335
crossref_primary_10_1016_S2213_8587_24_00154_2
crossref_primary_10_3389_fnins_2025_1558448
crossref_primary_10_3389_fped_2021_715705
crossref_primary_10_1038_s41591_024_03434_4
crossref_primary_10_1016_j_cmpb_2021_106461
crossref_primary_10_1097_CM9_0000000000002117
crossref_primary_10_1161_HCG_0000000000000095
crossref_primary_10_1038_s41746_022_00656_z
crossref_primary_10_1080_21681163_2023_2256896
crossref_primary_10_1038_s41598_024_84265_8
crossref_primary_10_1152_ajpheart_00392_2021
crossref_primary_10_1016_j_cjca_2024_07_028
crossref_primary_10_1016_j_measurement_2025_116780
crossref_primary_10_3899_jrheum_2024_0074
crossref_primary_10_3389_fphys_2021_624928
crossref_primary_10_2196_34560
crossref_primary_10_1016_j_jacasi_2021_09_004
crossref_primary_10_1038_s41574_020_00433_6
crossref_primary_10_1093_cvr_cvab105
crossref_primary_10_1093_jamiaopen_ooae027
crossref_primary_10_1016_j_gerinurse_2023_02_007
crossref_primary_10_1001_jamacardio_2023_0968
crossref_primary_10_15448_1980_6108_2021_1_39340
crossref_primary_10_1016_j_bios_2023_115387
crossref_primary_10_1016_j_bspc_2025_107750
crossref_primary_10_1097_HJH_0000000000003775
crossref_primary_10_1109_RBME_2023_3271595
crossref_primary_10_3390_s22030718
crossref_primary_10_1152_physrev_00033_2022
crossref_primary_10_1016_j_ebiom_2021_103613
crossref_primary_10_1109_ACCESS_2024_3519220
crossref_primary_10_1109_JSEN_2024_3452092
crossref_primary_10_1111_dme_14798
crossref_primary_10_1088_1361_6579_acead2
crossref_primary_10_3389_fdgth_2023_1301019
crossref_primary_10_1016_j_ajpc_2022_100379
crossref_primary_10_3349_ymj_2022_63_S93
crossref_primary_10_3390_ani11072009
crossref_primary_10_1038_s41551_022_00867_5
crossref_primary_10_1038_s41551_023_01151_w
crossref_primary_10_3389_fdgth_2020_614670
crossref_primary_10_1186_s13634_024_01158_8
crossref_primary_10_1007_s40200_020_00712_z
crossref_primary_10_2147_JMDH_S493128
crossref_primary_10_3390_healthcare10030547
crossref_primary_10_1145_3587271
crossref_primary_10_3389_fcvm_2021_711401
crossref_primary_10_1136_bmjdrc_2020_002027
Cites_doi 10.3132/dvdr.2008.047
10.1001/jama.2016.17216
10.1016/j.hrthm.2015.08.004
10.1109/13.804537
10.1038/s41591-018-0322-1
10.1109/TBME.2016.2554661
10.1109/TBME.2007.897805
10.1056/NEJMoa052911
10.1016/S0002-9149(00)00920-6
10.1253/circj.70.304
10.1038/s41746-019-0090-4
10.1038/nature14539
10.1016/j.diabres.2018.02.023
10.4158/EP161267.OR
10.1016/j.bbe.2018.09.007
10.1016/j.patrec.2005.10.010
10.1038/s41746-019-0134-9
10.1088/0967-3334/35/10/2027
10.1371/journal.pone.0195166
10.1038/s41746-019-0136-7
10.2174/157340312801215782
10.1136/heartjnl-2015-309119
10.1161/01.CIR.0000066324.74807.95
10.1136/bmj.d7163
10.2337/dc18-S002
10.2337/dc10-1235
10.1371/journal.pone.0024946
10.1016/j.patrec.2008.08.010
10.2337/diacare.25.3.471
10.1016/j.jacc.2019.08.1055
10.2337/diacare.26.3.725
10.1016/S0895-4356(03)00177-X
10.2337/diacare.15.7.815
10.1088/0967-3334/28/3/R01
10.1001/jamainternmed.2017.7821
10.1109/ICCV.2015.123
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
COPYRIGHT 2020 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s41591-020-1010-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database (via ProQuest SciTech Premium Collection)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic



Research Library Prep



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 1582
ExternalDocumentID oai:pubmedcentral.nih.gov:8483886
PMC8483886
A637731724
32807931
10_1038_s41591_020_1010_5
Genre Validation Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: U2CEB021881; U2CEB021881; U2CEB021881
  funderid: https://doi.org/10.13039/100000002
– fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: K23HL135274
  funderid: https://doi.org/10.13039/100000050
– fundername: Fonds de Recherche du Québec - Santé (Fonds de la recherche en sante du Quebec)
  grantid: Grant 274831
  funderid: https://doi.org/10.13039/501100000156
– fundername: NHLBI NIH HHS
  grantid: K23 HL135274
– fundername: NCATS NIH HHS
  grantid: KL2 TR001870
– fundername: NCRR NIH HHS
  grantid: M01 RR001271
– fundername: NIBIB NIH HHS
  grantid: U2C EB021881
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
ACMFV
PHGZM
PHGZT
AGSTI
AEIIB
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
7X8
5PM
ADTOC
AETEA
NFIDA
UNPAY
ID FETCH-LOGICAL-c674t-15a97c7faa11a6646efe598ef7e3cf3bf99dc4269d413068d7d4501c48e187bf3
IEDL.DBID BENPR
ISSN 1078-8956
1546-170X
IngestDate Sun Oct 26 02:45:50 EDT 2025
Tue Sep 30 17:19:01 EDT 2025
Thu Sep 04 17:33:39 EDT 2025
Mon Oct 06 17:26:04 EDT 2025
Mon Oct 20 21:47:48 EDT 2025
Thu Jun 12 23:52:39 EDT 2025
Mon Oct 20 16:47:53 EDT 2025
Thu Oct 16 14:19:05 EDT 2025
Thu Oct 16 14:29:41 EDT 2025
Thu May 22 21:20:27 EDT 2025
Wed Feb 19 02:05:12 EST 2025
Wed Oct 01 04:32:40 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Fri Feb 21 02:37:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c674t-15a97c7faa11a6646efe598ef7e3cf3bf99dc4269d413068d7d4501c48e187bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
These authors contributed equally as co-senior author: K.A. G.H.T.
Author Contributions: J.E.O., R.A., G.H.T., and K.A. contributed to the study design. P.K., J.E.O., R.A., K.A., and G.H.T. contributed to data collection. R.A. and G.H.T. performed data cleaning and analysis, ran experiments and created tables and figures. R.A., J.E.O., P.K., J.W.H., G.M.M., M.J.P., K.A., and G.H.T. contributed to data interpretation and writing. G.H.T., J.E.O., and K.A. supervised. G.H.T. and K.A. contributed equally as co-senior authors. All authors read and approved the submitted manuscript.
ORCID 0000-0002-0310-3326
0000-0002-8490-0270
0000-0001-6191-6432
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8483886
PMID 32807931
PQID 2828066403
PQPubID 33975
PageCount 7
ParticipantIDs unpaywall_primary_10_1038_s41591_020_1010_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8483886
proquest_miscellaneous_2435190216
proquest_journals_2828066403
gale_infotracmisc_A637731724
gale_infotracgeneralonefile_A637731724
gale_infotracacademiconefile_A637731724
gale_incontextgauss_ISR_A637731724
gale_incontextgauss_IOV_A637731724
gale_healthsolutions_A637731724
pubmed_primary_32807931
crossref_citationtrail_10_1038_s41591_020_1010_5
crossref_primary_10_1038_s41591_020_1010_5
springer_journals_10_1038_s41591_020_1010_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2020
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Bertoni, Krop, Anderson, Brancati (CR3) 2002; 25
Noble, Mathur, Dent, Meads, Greenhalgh (CR23) 2011; 343
Elgendi (CR5) 2019; 2
Harris, Klein, Welborn, Knuiman (CR2) 1992; 15
Lindström, Tuomilehto (CR33) 2003; 26
Avram (CR11) 2019; 2
Pilt, Meigas, Ferenets, Temitski, Viigimaa (CR15) 2014; 35
Camacho, Shah, Schrader, Wong, Burge (CR27) 2016; 22
Schönauer (CR16) 2008; 5
LeCun, Bengio, Hinton (CR17) 2015; 521
Hannun (CR20) 2019; 25
Carnethon, Golden, Folsom, Haskell, Liao (CR12) 2003; 107
CR38
CR37
CR14
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR39) 2014; 15
CR31
Karakaya, Akin, Karagaoglu, Gurlek (CR28) 2014; 19
Alty, Angarita-Jaimes, Millasseau, Chowienczyk (CR6) 2007; 54
Guo (CR13) 2019; 74
Nirala, Periyasamy, Singh, Kumar (CR25) 2019; 39
(CR34) 2018; 41
Elgendi (CR35) 2012; 8
Dixit (CR21) 2016; 13
Emami (CR36) 1999; 42
Pisano (CR29) 2005; 353
Allen (CR4) 2007; 28
CR8
Fawcett (CR22) 2006; 27
Singh (CR10) 2000; 86
Gulshan (CR18) 2016; 316
Coravos, Khozin, Mandl (CR9) 2019; 2
Selvin, Steffes, Gregg, Brancati, Coresh (CR26) 2010; 34
Mathews, Agmas, Cachay (CR30) 2011; 6
Kim (CR32) 2016; 102
CR43
CR42
Zhang (CR19) 2018; 178
CR41
CR40
Otsuka, Kawada, Katsumata, Ibuki (CR7) 2006; 70
Benichou (CR46) 2018; 13
Cho (CR1) 2018; 138
Moreno (CR24) 2017; 64
Ferri, Hernández-Orallo, Modroiu (CR44) 2009; 30
Glas, Lijmer, Prins, Bonsel, Bossuyt (CR45) 2003; 56
JE Camacho (1010_CR27) 2016; 22
MI Harris (1010_CR2) 1992; 15
A Coravos (1010_CR9) 2019; 2
K Pilt (1010_CR15) 2014; 35
D Noble (1010_CR23) 2011; 343
1010_CR31
N Nirala (1010_CR25) 2019; 39
M Elgendi (1010_CR5) 2019; 2
SR Alty (1010_CR6) 2007; 54
E Selvin (1010_CR26) 2010; 34
ED Pisano (1010_CR29) 2005; 353
WC Mathews (1010_CR30) 2011; 6
J Lindström (1010_CR33) 2003; 26
1010_CR37
JP Singh (1010_CR10) 2000; 86
Y Guo (1010_CR13) 2019; 74
1010_CR38
C Ferri (1010_CR44) 2009; 30
American Diabetes Association (1010_CR34) 2018; 41
1010_CR14
V Gulshan (1010_CR18) 2016; 316
AS Glas (1010_CR45) 2003; 56
T Otsuka (1010_CR7) 2006; 70
Y LeCun (1010_CR17) 2015; 521
1010_CR8
H Zhang (1010_CR19) 2018; 178
D-I Kim (1010_CR32) 2016; 102
S Dixit (1010_CR21) 2016; 13
AG Bertoni (1010_CR3) 2002; 25
EM Moreno (1010_CR24) 2017; 64
NH Cho (1010_CR1) 2018; 138
MR Carnethon (1010_CR12) 2003; 107
N Srivastava (1010_CR39) 2014; 15
1010_CR42
1010_CR43
1010_CR40
1010_CR41
T Benichou (1010_CR46) 2018; 13
R Avram (1010_CR11) 2019; 2
M Schönauer (1010_CR16) 2008; 5
M Elgendi (1010_CR35) 2012; 8
AY Hannun (1010_CR20) 2019; 25
J Allen (1010_CR4) 2007; 28
J Karakaya (1010_CR28) 2014; 19
S Emami (1010_CR36) 1999; 42
T Fawcett (1010_CR22) 2006; 27
33060831 - Nat Rev Endocrinol. 2020 Dec;16(12):681-682. doi: 10.1038/s41574-020-00433-6
References_xml – volume: 5
  start-page: 336
  year: 2008
  end-page: 344
  ident: CR16
  article-title: Cardiac autonomic diabetic neuropathy
  publication-title: Diabetes Vasc. Dis. Res.
  doi: 10.3132/dvdr.2008.047
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR18
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2016.17216
– volume: 13
  start-page: 3
  year: 2016
  end-page: 9
  ident: CR21
  article-title: Secondhand smoke and atrial fibrillation: data from the Health eHeart Study
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2015.08.004
– ident: CR43
– volume: 42
  start-page: 311
  year: 1999
  end-page: 314
  ident: CR36
  article-title: New methods for computing interpolation and decimation using polyphase decomposition
  publication-title: IEEE Trans. Educ.
  doi: 10.1109/13.804537
– volume: 25
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR20
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0322-1
– ident: CR14
– ident: CR37
– volume: 64
  start-page: 341
  year: 2017
  end-page: 351
  ident: CR24
  article-title: Type 2 diabetes screening test by means of a pulse oximeter
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2554661
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR39
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 2268
  year: 2007
  end-page: 2275
  ident: CR6
  article-title: Predicting arterial stiffness from the digital volume pulse waveform
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.897805
– volume: 353
  start-page: 1773
  year: 2005
  end-page: 1783
  ident: CR29
  article-title: Diagnostic performance of digital versus film mammography for breast-cancer screening
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa052911
– volume: 86
  start-page: 309
  year: 2000
  end-page: 312
  ident: CR10
  article-title: Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study)
  publication-title: Am. J. Cardiol.
  doi: 10.1016/S0002-9149(00)00920-6
– ident: CR8
– volume: 70
  start-page: 304
  year: 2006
  end-page: 310
  ident: CR7
  article-title: Utility of second derivative of the finger photoplethysmogram for the estimation of the risk of coronary heart disease in the general population
  publication-title: Circ. J.
  doi: 10.1253/circj.70.304
– volume: 2
  year: 2019
  ident: CR9
  article-title: Developing and adopting safe and effective digital biomarkers to improve patient outcomes
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-019-0090-4
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR17
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 138
  start-page: 271
  year: 2018
  end-page: 281
  ident: CR1
  article-title: IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2018.02.023
– ident: CR40
– volume: 22
  start-page: 1288
  year: 2016
  end-page: 1295
  ident: CR27
  article-title: Performance of A1C versus OGTT for the diagnosis of prediabetes in a community-based screening
  publication-title: Endocr. Pract.
  doi: 10.4158/EP161267.OR
– volume: 39
  start-page: 38
  year: 2019
  end-page: 51
  ident: CR25
  article-title: Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.09.007
– ident: CR42
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: CR22
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 2
  year: 2019
  ident: CR11
  article-title: Real-world heart rate norms in the Health eHeart study
  publication-title: npj Dig. Med.
  doi: 10.1038/s41746-019-0134-9
– volume: 35
  start-page: 2027
  year: 2014
  end-page: 2036
  ident: CR15
  article-title: Photoplethysmographic signal waveform index for detection of increased arterial stiffness
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/35/10/2027
– volume: 13
  start-page: e0195166
  year: 2018
  ident: CR46
  article-title: Heart rate variability in type 2 diabetes mellitus: a systematic review and meta-analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0195166
– volume: 2
  year: 2019
  ident: CR5
  article-title: The use of photoplethysmography for assessing hypertension
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-019-0136-7
– volume: 8
  start-page: 14
  year: 2012
  end-page: 25
  ident: CR35
  article-title: On the analysis of fingertip photoplethysmogram signals
  publication-title: Curr. Cardiol. Rev.
  doi: 10.2174/157340312801215782
– volume: 102
  start-page: 1757
  year: 2016
  end-page: 1762
  ident: CR32
  article-title: The association between resting heart rate and type 2 diabetes and hypertension in Korean adults
  publication-title: Heart
  doi: 10.1136/heartjnl-2015-309119
– volume: 107
  start-page: 2190
  year: 2003
  end-page: 2195
  ident: CR12
  article-title: Prospective investigation of autonomic nervous system function and the development of type 2 diabetes
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000066324.74807.95
– volume: 343
  start-page: d7163
  year: 2011
  end-page: d7163
  ident: CR23
  article-title: Risk models and scores for type 2 diabetes: systematic review
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.d7163
– volume: 41
  start-page: S13
  year: 2018
  end-page: S27
  ident: CR34
  article-title: Classification and diagnosis of diabetes: standards of medical care in diabetes—2018
  publication-title: Diabetes Care
  doi: 10.2337/dc18-S002
– ident: CR38
– volume: 19
  start-page: 1051
  year: 2014
  end-page: 1057
  ident: CR28
  article-title: The performance of hemoglobin A1c against fasting plasma glucose and oral glucose tolerance test in detecting prediabetes and diabetes
  publication-title: J. Res. Med. Sci.
– volume: 34
  start-page: 84
  year: 2010
  end-page: 89
  ident: CR26
  article-title: Performance of A1C for the classification and prediction of diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc10-1235
– volume: 6
  start-page: e24946
  year: 2011
  ident: CR30
  article-title: Comparative accuracy of anal and cervical cytology in screening for moderate to severe dysplasia by magnification guided punch biopsy: a meta-analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0024946
– ident: CR31
– volume: 30
  start-page: 27
  year: 2009
  end-page: 38
  ident: CR44
  article-title: An experimental comparison of performance measures for classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.08.010
– volume: 25
  start-page: 471
  year: 2002
  end-page: 475
  ident: CR3
  article-title: Diabetes-related morbidity and mortality in a national sample of U.S. elders
  publication-title: Diabetes Care
  doi: 10.2337/diacare.25.3.471
– volume: 74
  start-page: 2162
  year: 2019
  end-page: 2174
  ident: CR13
  article-title: Genome-wide assessment for resting heart rate and shared genetics with cardiometabolic traits and type 2 diabetes
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2019.08.1055
– volume: 26
  start-page: 725
  year: 2003
  end-page: 731
  ident: CR33
  article-title: The diabetes risk score: a practical tool to predict type 2 diabetes risk
  publication-title: Diabetes Care
  doi: 10.2337/diacare.26.3.725
– volume: 56
  start-page: 1129
  year: 2003
  end-page: 1135
  ident: CR45
  article-title: The diagnostic odds ratio: a single indicator of test performance
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/S0895-4356(03)00177-X
– volume: 15
  start-page: 815
  year: 1992
  end-page: 819
  ident: CR2
  article-title: Onset of NIDDM occurs at least 4–7 yr before clinical diagnosis
  publication-title: Diabetes Care
  doi: 10.2337/diacare.15.7.815
– volume: 28
  start-page: R1
  year: 2007
  end-page: R39
  ident: CR4
  article-title: Photoplethysmography and its application in clinical physiological measurement
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/28/3/R01
– ident: CR41
– volume: 178
  start-page: 239
  year: 2018
  end-page: 247
  ident: CR19
  article-title: Comparison of physician visual assessment with quantitative coronary angiography in assessment of stenosis severity in China
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2017.7821
– volume: 6
  start-page: e24946
  year: 2011
  ident: 1010_CR30
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0024946
– volume: 102
  start-page: 1757
  year: 2016
  ident: 1010_CR32
  publication-title: Heart
  doi: 10.1136/heartjnl-2015-309119
– volume: 15
  start-page: 1929
  year: 2014
  ident: 1010_CR39
  publication-title: J. Mach. Learn. Res.
– volume: 521
  start-page: 436
  year: 2015
  ident: 1010_CR17
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 70
  start-page: 304
  year: 2006
  ident: 1010_CR7
  publication-title: Circ. J.
  doi: 10.1253/circj.70.304
– volume: 107
  start-page: 2190
  year: 2003
  ident: 1010_CR12
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000066324.74807.95
– ident: 1010_CR8
– volume: 42
  start-page: 311
  year: 1999
  ident: 1010_CR36
  publication-title: IEEE Trans. Educ.
  doi: 10.1109/13.804537
– ident: 1010_CR38
– volume: 35
  start-page: 2027
  year: 2014
  ident: 1010_CR15
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/35/10/2027
– volume: 26
  start-page: 725
  year: 2003
  ident: 1010_CR33
  publication-title: Diabetes Care
  doi: 10.2337/diacare.26.3.725
– ident: 1010_CR40
– volume: 27
  start-page: 861
  year: 2006
  ident: 1010_CR22
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 343
  start-page: d7163
  year: 2011
  ident: 1010_CR23
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.d7163
– ident: 1010_CR42
– volume: 30
  start-page: 27
  year: 2009
  ident: 1010_CR44
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.08.010
– volume: 25
  start-page: 471
  year: 2002
  ident: 1010_CR3
  publication-title: Diabetes Care
  doi: 10.2337/diacare.25.3.471
– volume: 316
  start-page: 2402
  year: 2016
  ident: 1010_CR18
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2016.17216
– volume: 138
  start-page: 271
  year: 2018
  ident: 1010_CR1
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2018.02.023
– volume: 25
  start-page: 1
  year: 2019
  ident: 1010_CR20
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0322-1
– volume: 15
  start-page: 815
  year: 1992
  ident: 1010_CR2
  publication-title: Diabetes Care
  doi: 10.2337/diacare.15.7.815
– volume: 74
  start-page: 2162
  year: 2019
  ident: 1010_CR13
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2019.08.1055
– volume: 13
  start-page: 3
  year: 2016
  ident: 1010_CR21
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2015.08.004
– ident: 1010_CR31
– volume: 353
  start-page: 1773
  year: 2005
  ident: 1010_CR29
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa052911
– volume: 41
  start-page: S13
  year: 2018
  ident: 1010_CR34
  publication-title: Diabetes Care
  doi: 10.2337/dc18-S002
– volume: 86
  start-page: 309
  year: 2000
  ident: 1010_CR10
  publication-title: Am. J. Cardiol.
  doi: 10.1016/S0002-9149(00)00920-6
– ident: 1010_CR41
  doi: 10.1109/ICCV.2015.123
– volume: 8
  start-page: 14
  year: 2012
  ident: 1010_CR35
  publication-title: Curr. Cardiol. Rev.
  doi: 10.2174/157340312801215782
– ident: 1010_CR37
– ident: 1010_CR14
– volume: 2
  year: 2019
  ident: 1010_CR5
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-019-0136-7
– volume: 5
  start-page: 336
  year: 2008
  ident: 1010_CR16
  publication-title: Diabetes Vasc. Dis. Res.
  doi: 10.3132/dvdr.2008.047
– volume: 64
  start-page: 341
  year: 2017
  ident: 1010_CR24
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2554661
– volume: 2
  year: 2019
  ident: 1010_CR11
  publication-title: npj Dig. Med.
  doi: 10.1038/s41746-019-0134-9
– volume: 22
  start-page: 1288
  year: 2016
  ident: 1010_CR27
  publication-title: Endocr. Pract.
  doi: 10.4158/EP161267.OR
– volume: 54
  start-page: 2268
  year: 2007
  ident: 1010_CR6
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.897805
– volume: 39
  start-page: 38
  year: 2019
  ident: 1010_CR25
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.09.007
– volume: 178
  start-page: 239
  year: 2018
  ident: 1010_CR19
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2017.7821
– volume: 34
  start-page: 84
  year: 2010
  ident: 1010_CR26
  publication-title: Diabetes Care
  doi: 10.2337/dc10-1235
– ident: 1010_CR43
– volume: 56
  start-page: 1129
  year: 2003
  ident: 1010_CR45
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/S0895-4356(03)00177-X
– volume: 2
  year: 2019
  ident: 1010_CR9
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-019-0090-4
– volume: 19
  start-page: 1051
  year: 2014
  ident: 1010_CR28
  publication-title: J. Res. Med. Sci.
– volume: 28
  start-page: R1
  year: 2007
  ident: 1010_CR4
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/28/3/R01
– volume: 13
  start-page: e0195166
  year: 2018
  ident: 1010_CR46
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0195166
– reference: 33060831 - Nat Rev Endocrinol. 2020 Dec;16(12):681-682. doi: 10.1038/s41574-020-00433-6
SSID ssj0003059
Score 2.5848985
Snippet The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 2045 1 . The insidious onset of type 2 diabetes delays...
The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 2045 . The insidious onset of type 2 diabetes delays...
The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 2045.sup.1. The insidious onset of type 2 diabetes...
The global burden of diabetes is rapidly increasing, from 451 million people in 2019 to 693 million by 20451. The insidious onset of type 2 diabetes delays...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1576
SubjectTerms 692/53/2423
692/699/2743/137
Adult
Aged
Aged, 80 and over
Algorithms
Artificial neural networks
Biological markers
Biomarkers
Biomarkers - analysis
Biomedical and Life Sciences
Biomedicine
Body mass index
Body size
Cancer Research
Cohort Studies
Confidence intervals
Datasets as Topic
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - epidemiology
Diabetes Mellitus, Type 2 - physiopathology
Diagnosis
Female
Health aspects
Heart Rate - physiology
Hemoglobin
Humans
Infectious Diseases
Letter
Male
Metabolic Diseases
Middle Aged
Molecular Medicine
Neural networks
Neural Networks, Computer
Neurosciences
Performance prediction
Photoplethysmography - instrumentation
Photoplethysmography - methods
Predictive Value of Tests
Prevalence
Regional Blood Flow - physiology
Regression analysis
Sensitivity
Sensitivity and Specificity
Signal Processing, Computer-Assisted - instrumentation
Smart phones
Smartphone
Smartphones
Statistical analysis
Technology application
Telemetry - instrumentation
Telemetry - methods
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwED-NTrw-8BivwICAEEhMbuPGcZyPFaIaSBto0Kl8imzHLhVdWq2t0Pjr8eXFUqHBvlW6X9Q6Z9-de7-7A3ilmFSJkX0ihZKEJVoRd1fpE6YDKl0AH1mO1cgHh3x_xD6Oo_EW0LoWpiDtazXt5rOTbj79XnArFye6V_PEeoKJUAh-BbZ55MLvDmyPDj8PvpXcQkFEUkxsdZEBJzQOxnUmMxS9pXNWyPNxFyaKOeCo5Ys2LfI5l7RJl2xypjfh-jpfyLOfcjY755aGt-GoXlDJRvnRXa9UV__a6PV4qRXfgVtVkOoPStFd2DL5Dlwtx1ae7cC1gyohfw-GAz-bTnDwiI-F_Mj1OfXn1q__0vWxfMVfOsEKSfCGoNfM_Jr_6iN9xB2A-zAavv_6bp9UoxmI5jFbERrJJNaxlZJSyTnjxpooEcbGJtQ2VDZJMo1Vshk6SS6yOGNRQDUThopY2fABdHL3rY_At4E1mbBBaKVi7rOzA1lCFVc2MDYLtAdBraRUV33LcXzGLC3y56FIS72mTq9IWAvSyIO3zSOLsmnHReDnqPm0rDttDnw64GEcu-iqzzx4WSCwXUaOfJyJXC-X6YdPx_8B-nLUAr2pQHbu1qBlVQPh3gS24WohX7eQk7IJ-d-Auy2gsw66La43dFpZp2WK12wXarIg9OBFI8YnkXGXm_naYRiObnQRIPfgYbn_m3cZYgulJKQexK2T0QCwZ3lb4jZ20bu82sse7NVn6M_PukBFe80x-7dCH18K_QRu9EuLQAK6C53V6do8dXHmSj2rLMtvMvF1-w
  priority: 102
  providerName: Unpaywall
Title A digital biomarker of diabetes from smartphone-based vascular signals
URI https://link.springer.com/article/10.1038/s41591-020-1010-5
https://www.ncbi.nlm.nih.gov/pubmed/32807931
https://www.proquest.com/docview/2828066403
https://www.proquest.com/docview/2435190216
https://pubmed.ncbi.nlm.nih.gov/PMC8483886
https://www.ncbi.nlm.nih.gov/pmc/articles/8483886
UnpaywallVersion submittedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1546-170X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1546-170X
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61iaBwQFCgGEowCIFEZdXOru31AaEENSpIDVUhKJys9T5CpcgJTSLUf89M_GhdocApkfZzYu_OY9fzzQzA64zLLDGy60mRSY8nKvPwrNL1uPIDiRv40EaUjXwyjI5H_PM4HG_BsMqFIVplZRPXhlrPFL0jP6SjAbpH7rMP818edY2i6GrVQkOWrRX0-3WJsW1od6kyVgva_aPh6Vltm1G6k4KFKDyBR4MqzsnE4QJdGbGA8DgVUIQ4bHiqm_b6msO6SaasI6p3YWeVz-XlbzmdXnNag_twr9xtur1CPB7Alsl34VbRf_JyF26flJH1hzDoufp8Qh1EXMrIJ9LOhTuzbvVu1qU8FHeBA0tisxuP3J92KyKrSzwQlORHMBocfft47JU9FjwVxXzpBaFMYhVbKYNA4vRGxpowEcbGhinLMpskWlG6qyZvFwkdax76geLCBCLOLHsMrRz_9Qm41rdGC-szKzOO31GhdRJkUWZ9Y7WvHPCr-UxVWYCc-mBM03UgnIm0WIIUl4CYZ34aOvCuvmReVN_YBH5Bi5QWCaS15qa9iMUxbpO63IFXawTVvciJWDORq8Ui_fTl-3-Avp41QG9LkJ3hMyhZJjPgTFA9rQbyTQM5KaqJ_w243wCimqvmcCV7aWlmFumVUjjwsh6mK4k6l5vZCjGcejDiVi5yYK8Q1XouGdVCSljgQNwQ4hpAxcebI_n5z3URcsEFEwJ_86AS96vb2rBEB7VG_HtBn25-5Gdwp1toq-cH-9BaXqzMc9whLrMObMfjuAPt3qDfH3ZKI4Cfo-Fp78cfN5Njcg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVlA4ICgvQ6EG8ZCorNrZtb0-VChAq4Q2oSot6s2s17uhUuSEOlGVP8dvYyZ-tK5Q4NJbpP1sxzu7Mzueb2YAXidcJpGWLUeKRDo8UomDvkrL4cr1JB7gfRNQNnKvH3SO-ZcT_2QJfle5MESrrHTiXFGnI0XfyLfINUDzyF32YfzLoa5RFF2tWmjIsrVCuj0vMVYmduzp2Tm6cPl29zPK-02rtbtz9KnjlF0GHBWEfOJ4voxCFRopPU_iAwJttB8JbULNlGGJiaJUUcJnSvo-EGmYct_1FBfaE2FiGN73BqxwxiN0_lY-7vQPDmtbgLspKliPwhHoilRxVSa2cjSdxDpC982jiLTfsIxX7cMlA3mVvFlHcO_A6jQby9m5HA4vGcnde3C3PN3a7WI53oclna3BzaLf5WwNbvXKSP4D2G3b6emAOpbYVAGASEJn9sjY1bdgm_Je7BwHJsSe1w6Z29SuiLM28U5w5zyE42uZ7UewnOFTn4BtXKNTYVxmZMLxNyqQNPKSIDGuNqmrLHCr-YxVWfCc-m4M43ngnYm4EEGMIiCmmxv7FryvLxkX1T4WgTdISHGRsFprirgdsDDEY1mLW_BqjqA6GxkReQZymudx9-v3_wB9O2yA3pUgM8J3ULJMnsCZoPpdDeTbBnJQVC__G3C9AUS1oprD1dqLS7WWxxeb0IKX9TBdSVS9TI-miOHU8xGPjoEFj4ulWs8lo9pLEfMsCBuLuAZQsfPmSHb6c170XHDBhMB7blbL_eJvLRDRZr0j_i3Qp4tfeQNWO0e9_Xi_2997Brdbxc51XG8dlidnU_0cT6eT5EWpAmz4cd1a5w8-CpzD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgocEJSXoVCDeEitrNjetb0-IBRRoobSggpFubnr9W6oFDmhTlTlr_HrmIkfrSsUuPQWacd2vPPa8XwzA_Aq5TKNtfQdKVLp8FilDsYqvsOV60k8wAcmpGrk_YNw94h_GgSDFfhd18IQrLK2iQtDnY0VfSPvUGiA7pG7rGMqWMTXnd77yS-HJkhRprUep1GKyJ6en2H4Vrzr7yCvX_t-7-P3D7tONWHAUWHEp44XyDhSkZHS8yTePNRGB7HQJtJMGZaaOM4UFXtmZOtDkUUZD1xPcaE9EaWG4X2vwfWIsZjghNGgCfZIj-IS7ygcgUFInVFlolOg0yS8EQZuHuWig5ZPvOwZLrjGy7DNJnd7G27O8omcn8nR6IJ77N2FO9W51u6WgngPVnS-DjfKSZfzdVjbr3L496HXtbOTIc0qsan2n-BBp_bY2PVXYJsqXuwCF6aEm9cOOdrMriGzNiFOUGcewNGV7PVDWM3xqY_BNq7RmTAuMzLl-BtNRxZ7aZgaV5vMVRa49X4mqmp1ThM3Rski5c5EUrIgQRYQxs1NAgu2mksmZZ-PZcSbxKSkLFVtbETSDVkU4YHM5xa8XFBQh42cZHUoZ0WR9L_8-A-ib4ctorcVkRnjOyhZlU3gTlDnrhblmxblsOxb_jfCjRYhGhTVXq5lL6kMWpGcq58FL5plupJAerkez5CG07RHPDSGFjwqRbXZS0Zdl2LmWRC1hLghoDbn7ZX85Oei3bngggmB99yuxf38by1h0XajEf9m6JPlr7wJa2hrks_9g72ncMsvFddxvQ1YnZ7O9DM8lk7T5wv9t-H4qg3OH9lZml0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwED-NTrw-8BivwICAEEhMbuPGcZyPFaIaSBto0Kl8imzHLhVdWq2t0Pjr8eXFUqHBvlW6X9Q6Z9-de7-7A3ilmFSJkX0ihZKEJVoRd1fpE6YDKl0AH1mO1cgHh3x_xD6Oo_EW0LoWpiDtazXt5rOTbj79XnArFye6V_PEeoKJUAh-BbZ55MLvDmyPDj8PvpXcQkFEUkxsdZEBJzQOxnUmMxS9pXNWyPNxFyaKOeCo5Ys2LfI5l7RJl2xypjfh-jpfyLOfcjY755aGt-GoXlDJRvnRXa9UV__a6PV4qRXfgVtVkOoPStFd2DL5Dlwtx1ae7cC1gyohfw-GAz-bTnDwiI-F_Mj1OfXn1q__0vWxfMVfOsEKSfCGoNfM_Jr_6iN9xB2A-zAavv_6bp9UoxmI5jFbERrJJNaxlZJSyTnjxpooEcbGJtQ2VDZJMo1Vshk6SS6yOGNRQDUThopY2fABdHL3rY_At4E1mbBBaKVi7rOzA1lCFVc2MDYLtAdBraRUV33LcXzGLC3y56FIS72mTq9IWAvSyIO3zSOLsmnHReDnqPm0rDttDnw64GEcu-iqzzx4WSCwXUaOfJyJXC-X6YdPx_8B-nLUAr2pQHbu1qBlVQPh3gS24WohX7eQk7IJ-d-Auy2gsw66La43dFpZp2WK12wXarIg9OBFI8YnkXGXm_naYRiObnQRIPfgYbn_m3cZYgulJKQexK2T0QCwZ3lb4jZ20bu82sse7NVn6M_PukBFe80x-7dCH18K_QRu9EuLQAK6C53V6do8dXHmSj2rLMtvMvF1-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+digital+biomarker+of+diabetes+from+smartphone-based+vascular+signals&rft.jtitle=Nature+medicine&rft.au=Avram%2C+Robert&rft.au=Olgin%2C+Jeffrey+E.&rft.au=Kuhar%2C+Peter&rft.au=Hughes%2C+J.+Weston&rft.date=2020-10-01&rft.issn=1078-8956&rft.eissn=1546-170X&rft.volume=26&rft.issue=10&rft.spage=1576&rft.epage=1582&rft_id=info:doi/10.1038%2Fs41591-020-1010-5&rft_id=info%3Apmid%2F32807931&rft.externalDocID=PMC8483886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon