Differentiation of small (≤ 3 cm) hepatocellular carcinomas from benign nodules in cirrhotic liver: the added additive value of MRI-based radiomics analysis to LI-RADS version 2018 algorithm
Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carc...
        Saved in:
      
    
          | Published in | BMC gastroenterology Vol. 21; no. 1; pp. 155 - 10 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        07.04.2021
     BioMed Central Ltd Springer Nature B.V BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-230X 1471-230X  | 
| DOI | 10.1186/s12876-021-01710-y | 
Cover
| Abstract | Background
Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver.
Methods
In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis.
Results
A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [A
z
] = 0.898) and the MRI-Based radiomics signature (A
z
 = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (A
z
 = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%,
p
 = 0.030) and positive predictive value (99.1% vs 92.9%,
p
 = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%,
p
 = 0.215) and negative predictive value (93.5% vs 83.7%,
p
 = 0.188).
Conclusions
MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver. | 
    
|---|---|
| AbstractList | Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. Methods In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. Results A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [Az] = 0.898) and the MRI-Based radiomics signature (Az = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (Az = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). Conclusions MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver. Abstract Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. Methods In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. Results A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [Az] = 0.898) and the MRI-Based radiomics signature (Az = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (Az = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). Conclusions MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver. Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver.BACKGROUNDAccurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver.In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis.METHODSIn this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis.A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [Az] = 0.898) and the MRI-Based radiomics signature (Az = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (Az = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188).RESULTSA radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [Az] = 0.898) and the MRI-Based radiomics signature (Az = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (Az = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188).MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver.CONCLUSIONSMRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver. Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small ([less than or equai to] 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. Methods In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. Results A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [A.sub.z] = 0.898) and the MRI-Based radiomics signature (A.sub.z = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (A.sub.z = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). Conclusions MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver. Keywords: Hepatocellular carcinoma, Liver cirrhosis, Magnetic resonance imaging, Diagnosis Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small ([less than or equai to] 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [A.sub.z] = 0.898) and the MRI-Based radiomics signature (A.sub.z = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (A.sub.z = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver. Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. Methods In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. Results A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [A z ] = 0.898) and the MRI-Based radiomics signature (A z = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (A z = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). Conclusions MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver. Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [A ] = 0.898) and the MRI-Based radiomics signature (A = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (A = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver.  | 
    
| ArticleNumber | 155 | 
    
| Audience | Academic | 
    
| Author | Li, Jiansheng Tang, Danrui Guan, Tianpei Lu, Bingui Cui, Shuzhong Tang, Hongsheng Zhong, Xi  | 
    
| Author_xml | – sequence: 1 givenname: Xi surname: Zhong fullname: Zhong, Xi organization: Department of Medical Imaging, Affiliated Cancer Hospital and Institute of Guangzhou Medical University – sequence: 2 givenname: Tianpei surname: Guan fullname: Guan, Tianpei organization: Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University – sequence: 3 givenname: Danrui surname: Tang fullname: Tang, Danrui organization: Department of Medical Imaging, Affiliated Cancer Hospital and Institute of Guangzhou Medical University – sequence: 4 givenname: Jiansheng surname: Li fullname: Li, Jiansheng organization: Department of Medical Imaging, Affiliated Cancer Hospital and Institute of Guangzhou Medical University – sequence: 5 givenname: Bingui surname: Lu fullname: Lu, Bingui organization: Department of Medical Imaging, Affiliated Cancer Hospital and Institute of Guangzhou Medical University – sequence: 6 givenname: Shuzhong surname: Cui fullname: Cui, Shuzhong email: cuishuzhong@gzhmu.edu.cn organization: Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University – sequence: 7 givenname: Hongsheng surname: Tang fullname: Tang, Hongsheng email: 15913139343@163.com organization: Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33827440$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUstu1DAUjVARfcAPsECW2JRFih-J47BAqloeIw1CKiCxsxzbmXHl2FM7KZod2_4FC74E_qRfgjNT2k6FKmQpjq7POfY95-5mW847nWVPETxAiNGXEWFW0RxilENUIZgvH2Q7qKhQjgn8unXrfzvbjfEUJhTD5FG2TQjDVVHAnez3sWlbHbTrjeiNd8C3IHbCWrB_efHz8vsF-fVDdi_AXC9E76W2drAiACmCNM53IoI2-A402pmZA86rweoIjAPShDD3vZHAmnMdXoF-roFQSqvxa_pUBOfCDnq88cPJJG9ETGdBKOM7IyMQTthlNBH0Hkwn-cnh8SeQhOL4SAwRA8LOfDD9vHucPWyFjfrJ1b6XfXn75vPR-3z68d3k6HCaS1qRPlcNw7ViQtcFolpUUGFES0JlW-BClKjVsmwgrsqaQNpULS0LhCupqhISLRpE9rLJWld5ccoXwXQiLLkXhq8KPsy4CKljqznGjBakVbiRqEBIMcwaRrWuCcF1pUXSImutwS3E8lsy_FoQQT7Gy9fx8hQvX8XLl4n1es1aDE2nlUyxBWE3nrJ54sycz_w5ZxAzhkgS2L8SCP5s0LHnnYljqsJpP0SOSwQxpXVFE_T5HeipH0IKZYUqygITAm9QM5HaNq716V45ivJDShGpk-ejcwf_QKWldMo6TXVrUn2D8Ox2o9cd_h3cBGBrgAw-xqBbLk2_muCkbOz9JuI71P9y_iqvmMBupsONG_ew_gBJ-SU9 | 
    
| CitedBy_id | crossref_primary_10_1007_s00330_024_10813_5 crossref_primary_10_1007_s00261_023_04171_x crossref_primary_10_3748_wjg_v30_i4_381 crossref_primary_10_1186_s13027_021_00393_0 crossref_primary_10_17709_2410_1893_2022_9_3_10 crossref_primary_10_1186_s13027_022_00422_6 crossref_primary_10_3390_diagnostics12051043 crossref_primary_10_1016_j_ejrad_2022_110251 crossref_primary_10_3390_diagnostics13152591 crossref_primary_10_1097_CM9_0000000000002641 crossref_primary_10_3748_wjg_v28_i42_6002 crossref_primary_10_1016_j_ejro_2023_100535 crossref_primary_10_2463_mrms_rev_2022_0102 crossref_primary_10_1016_j_asjsur_2024_12_152 crossref_primary_10_12677_ACM_2023_13102146 crossref_primary_10_12677_ACM_2023_1391973 crossref_primary_10_3389_fonc_2021_698373 crossref_primary_10_1016_j_dld_2022_12_015 crossref_primary_10_3390_diagnostics13071303 crossref_primary_10_1016_j_iliver_2022_02_005 crossref_primary_10_1007_s00330_023_10134_z crossref_primary_10_1111_jgh_16663  | 
    
| Cites_doi | 10.1148/rg.2018180052 10.1148/radiol.2018181494 10.1159/000455949 10.21037/qims.2018.05.01 10.1007/s00330-019-06368-5 10.1016/j.cmpb.2008.08.005 10.1007/s00330-018-5727-1 10.1002/jmri.26981 10.1016/j.jhep.2017.12.014 10.1007/s00330-018-5463-6 10.1002/hep.24199 10.1097/RLI.0000000000000258 10.1002/hep.27304 10.1016/j.heliyon.2018.e00987 10.1016/j.ejrad.2019.03.010 10.1007/s00330-016-4663-1 10.1016/j.acra.2009.08.012 10.1158/1078-0432.CCR-17-1510 10.1186/s12880-016-0165-5 10.1007/s00330-015-3701-8 10.1002/jmri.25454 10.1186/s12880-016-0171-7 10.1002/jmri.26027 10.1016/j.ebiom.2019.01.013 10.1038/ajg.2015.389 10.1200/JCO.2015.65.9128 10.1038/s41598-019-51303-9 10.3748/wjg.v24.i24.2582 10.1002/jmri.26715 10.3389/fonc.2019.01382 10.1016/j.crad.2013.07.022 10.1186/s40644-019-0252-2 10.1002/jmri.24898 10.1097/MEG.0000000000001269 10.1007/s00330-014-3500-7 10.2214/AJR.16.17649 10.1002/jmri.22268  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2021 COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7T5 7X7 7XB 88E 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH H94 K9. M0S M1P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s12876-021-01710-y | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1471-230X | 
    
| EndPage | 10 | 
    
| ExternalDocumentID | oai_doaj_org_article_228643fd2bc1411d828b86ee933297ea 10.1186/s12876-021-01710-y PMC8028813 A661398291 33827440 10_1186_s12876_021_01710_y  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7T5 7XB 8FD 8FK AZQEC DWQXO FR3 H94 K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM 2VQ 4.4 ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c673t-db829d8ae9416ea70d216536cf424a51fec5b02759306b7f654127cd7503eab13 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-230X | 
    
| IngestDate | Fri Oct 03 12:38:18 EDT 2025 Sun Oct 26 04:07:41 EDT 2025 Tue Sep 30 15:18:19 EDT 2025 Thu Oct 02 07:06:56 EDT 2025 Tue Oct 07 05:19:16 EDT 2025 Mon Oct 20 21:44:25 EDT 2025 Mon Oct 20 16:50:18 EDT 2025 Thu Apr 03 07:00:10 EDT 2025 Wed Oct 01 04:52:29 EDT 2025 Thu Apr 24 23:12:40 EDT 2025 Sat Sep 06 07:35:47 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Hepatocellular carcinoma Diagnosis Magnetic resonance imaging Liver cirrhosis  | 
    
| Language | English | 
    
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c673t-db829d8ae9416ea70d216536cf424a51fec5b02759306b7f654127cd7503eab13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12876-021-01710-y | 
    
| PMID | 33827440 | 
    
| PQID | 2514542330 | 
    
| PQPubID | 44673 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_228643fd2bc1411d828b86ee933297ea unpaywall_primary_10_1186_s12876_021_01710_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_8028813 proquest_miscellaneous_2510266976 proquest_journals_2514542330 gale_infotracmisc_A661398291 gale_infotracacademiconefile_A661398291 pubmed_primary_33827440 crossref_citationtrail_10_1186_s12876_021_01710_y crossref_primary_10_1186_s12876_021_01710_y springer_journals_10_1186_s12876_021_01710_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-04-07 | 
    
| PublicationDateYYYYMMDD | 2021-04-07 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-07 day: 07  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC gastroenterology | 
    
| PublicationTitleAbbrev | BMC Gastroenterol | 
    
| PublicationTitleAlternate | BMC Gastroenterol | 
    
| PublicationYear | 2021 | 
    
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC  | 
    
| References | SH Choi (1710_CR10) 2016; 51 Z Li (1710_CR18) 2017; 17 M Guarino (1710_CR36) 2018; 24 ME Mayerhoefer (1710_CR19) 2010; 32 KS Lim (1710_CR34) 2014; 69 M Renzulli (1710_CR8) 2019; 31 R Ortiz-Ramon (1710_CR14) 2018; 28 N Schieda (1710_CR15) 2017; 209 X Min (1710_CR33) 2019; 115 Z Hou (1710_CR24) 2018; 8 AZ Kielar (1710_CR7) 2019; 50 YQ Huang (1710_CR25) 2016; 34 DG Mitchell (1710_CR3) 2015; 61 R Inchingolo (1710_CR35) 2015; 25 AZ Kielar (1710_CR4) 2018; 47 J Zhou (1710_CR12) 2020; 51 G Nketiah (1710_CR17) 2017; 27 J Bruix (1710_CR37) 2011; 53 M Di Martino (1710_CR2) 2016; 16 M Cerny (1710_CR5) 2018; 38 EG Giannini (1710_CR32) 2016; 111 A Wibmer (1710_CR16) 2015; 25 Y Ji (1710_CR13) 2019; 19 I Joo (1710_CR11) 2019; 29 K Holli (1710_CR20) 2010; 17 W Zhou (1710_CR28) 2017; 45 PM Szczypinski (1710_CR22) 2009; 94 X Zhong (1710_CR29) 2019; 9 F Vasuri (1710_CR31) 2019; 9 S Liu (1710_CR23) 2020; 30 HJ Park (1710_CR1) 2017; 6 V Chernyak (1710_CR6) 2018; 289 M Ronot (1710_CR9) 2018; 68 D Stocker (1710_CR30) 2018; 4 L Zhang (1710_CR26) 2019; 40 H Yu (1710_CR27) 2015; 42 S Wu (1710_CR21) 2017; 23  | 
    
| References_xml | – volume: 38 start-page: 1973 year: 2018 ident: 1710_CR5 publication-title: Radiographics doi: 10.1148/rg.2018180052 – volume: 289 start-page: 816 year: 2018 ident: 1710_CR6 publication-title: Radiology doi: 10.1148/radiol.2018181494 – volume: 6 start-page: 189 year: 2017 ident: 1710_CR1 publication-title: Liver cancer doi: 10.1159/000455949 – volume: 8 start-page: 410 year: 2018 ident: 1710_CR24 publication-title: Quant Imaging Med Surg doi: 10.21037/qims.2018.05.01 – volume: 30 start-page: 239 year: 2020 ident: 1710_CR23 publication-title: Eur Radiol doi: 10.1007/s00330-019-06368-5 – volume: 94 start-page: 66 year: 2009 ident: 1710_CR22 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2008.08.005 – volume: 29 start-page: 1724 year: 2019 ident: 1710_CR11 publication-title: Eur Radiol doi: 10.1007/s00330-018-5727-1 – volume: 51 start-page: 798 year: 2020 ident: 1710_CR12 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26981 – volume: 68 start-page: 715 year: 2018 ident: 1710_CR9 publication-title: J Hepatol doi: 10.1016/j.jhep.2017.12.014 – volume: 28 start-page: 4514 year: 2018 ident: 1710_CR14 publication-title: Eur Radiol doi: 10.1007/s00330-018-5463-6 – volume: 53 start-page: 1020 year: 2011 ident: 1710_CR37 publication-title: Hepatology doi: 10.1002/hep.24199 – volume: 51 start-page: 483 year: 2016 ident: 1710_CR10 publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000258 – volume: 61 start-page: 1056 year: 2015 ident: 1710_CR3 publication-title: Hepatology doi: 10.1002/hep.27304 – volume: 4 start-page: e00987 year: 2018 ident: 1710_CR30 publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00987 – volume: 115 start-page: 16 year: 2019 ident: 1710_CR33 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2019.03.010 – volume: 27 start-page: 3050 year: 2017 ident: 1710_CR17 publication-title: Eur Radiol doi: 10.1007/s00330-016-4663-1 – volume: 17 start-page: 135 year: 2010 ident: 1710_CR20 publication-title: Acad Radiol doi: 10.1016/j.acra.2009.08.012 – volume: 23 start-page: 6904 year: 2017 ident: 1710_CR21 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-1510 – volume: 16 start-page: 62 year: 2016 ident: 1710_CR2 publication-title: BMC Med Imaging doi: 10.1186/s12880-016-0165-5 – volume: 25 start-page: 2840 year: 2015 ident: 1710_CR16 publication-title: Eur Radiol doi: 10.1007/s00330-015-3701-8 – volume: 45 start-page: 1476 year: 2017 ident: 1710_CR28 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25454 – volume: 17 start-page: 1 year: 2017 ident: 1710_CR18 publication-title: BMC Med Imaging doi: 10.1186/s12880-016-0171-7 – volume: 47 start-page: 1459 year: 2018 ident: 1710_CR4 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26027 – volume: 40 start-page: 327 year: 2019 ident: 1710_CR26 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.01.013 – volume: 111 start-page: 70 issue: 1 year: 2016 ident: 1710_CR32 publication-title: Am J Gastroenterol doi: 10.1038/ajg.2015.389 – volume: 34 start-page: 2157 year: 2016 ident: 1710_CR25 publication-title: J Clin Oncol doi: 10.1200/JCO.2015.65.9128 – volume: 9 start-page: 14749 year: 2019 ident: 1710_CR31 publication-title: Sci Rep doi: 10.1038/s41598-019-51303-9 – volume: 24 start-page: 2582 year: 2018 ident: 1710_CR36 publication-title: World J Gastroenterol doi: 10.3748/wjg.v24.i24.2582 – volume: 50 start-page: 1990 year: 2019 ident: 1710_CR7 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26715 – volume: 9 start-page: 1382 year: 2019 ident: 1710_CR29 publication-title: Front Oncol doi: 10.3389/fonc.2019.01382 – volume: 69 start-page: 1 year: 2014 ident: 1710_CR34 publication-title: Clin Radiol doi: 10.1016/j.crad.2013.07.022 – volume: 19 start-page: 64 year: 2019 ident: 1710_CR13 publication-title: Cancer Imaging doi: 10.1186/s40644-019-0252-2 – volume: 42 start-page: 1259 year: 2015 ident: 1710_CR27 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24898 – volume: 31 start-page: 283 year: 2019 ident: 1710_CR8 publication-title: Eur J Gastroenterol Hepatol doi: 10.1097/MEG.0000000000001269 – volume: 25 start-page: 1087 year: 2015 ident: 1710_CR35 publication-title: Eur Radiol doi: 10.1007/s00330-014-3500-7 – volume: 209 start-page: W152 year: 2017 ident: 1710_CR15 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.16.17649 – volume: 32 start-page: 352 year: 2010 ident: 1710_CR19 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22268  | 
    
| SSID | ssj0017823 | 
    
| Score | 2.3888 | 
    
| Snippet | Background
Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics... Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to... Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics... Abstract Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 155 | 
    
| SubjectTerms | Algorithms Benign Biopsy Calibration Carcinoma, Hepatocellular - complications Carcinoma, Hepatocellular - diagnostic imaging Carcinoma, Hepatocellular - pathology Cirrhosis Computer-aided medical diagnosis Diagnosis Diagnosis, Differential Diffusion coefficient Feature selection Gastroenterology Hepatocellular carcinoma Hepatology Hepatoma Humans Internal Medicine Liver Liver - diagnostic imaging Liver - pathology Liver cancer Liver cirrhosis Liver Cirrhosis - complications Liver Cirrhosis - diagnostic imaging Liver Cirrhosis - pathology Liver Neoplasms - complications Liver Neoplasms - diagnostic imaging Liver Neoplasms - pathology Magnetic Resonance Imaging Medicine Medicine & Public Health Metastasis Methods Nodules Nomograms Patients Radiomics Research Article Retrospective Studies Sensitivity and Specificity Software  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiHcDBRkJCRCNmsR5ONwWStUilkOhUm-WYzvdSNmk2s2C9sa1_4IDvwT-SX8JM042bEAqHLjsYe087BnPfBOPvyHkiQ7B7us4d7WnczdUyrhpIANXx1me8Rggs2XgG7-P94_Ct8fR8VqpL8wJa-mB24nbCQIOTjPXQab80Pc1RAhwD2MgEA_SxFho5PF0FUx1-wfg99jqiAyPd-ZghRNMtsXQGXyquxy4IcvW_6dNXnNKvydM9rum18iVRXUql59lWa45pr0b5HqHKOmoHclNcslUt8jlcbdnfpv82O1qoDStFGid0_kUbkSfnZ99O_9yxr5_VdPndAKOqanxQz5mplKFRYYqzB6ieASFZqYqTipa1XpRmjktKqqK2WxSw1NpickdLylgSYqGTOOvzUmiyCVu8InjwwMXPaamM6kLPAo9p7IjRKFNTd8duIej3Q_0U_v9jgJi4FSWJ_WsaCbTO-Ro783H1_tuV7rBVXHCGldnPEg1lyYFwGdk4unAjyMWqxx0Q0Z-blSU4Y5pCiFLluRYjTxIlMZdVSMzn90lG1VdmU1CM2UUDxViUxXmaZ7yzAulCWTCfNC0yCH-SpJCdbzmWF6jFDa-4bFopS9A-sJKXywd8qK_5rRl9biw9ytUkL4nMnLbP0BPRaen4m966pCnqF4C7Qa8npLd8QcYJDJwiREAJZbCrPkO2Rr0hPWuhs0rBRWdvZkLQKlhBMiYeQ553DfjlZhDV5l6YftAwB0D_nTIvVaf-yExxi1VpEOSgaYPxjxsqYqJZSPngFC5zxyyvVoTv17rojnd7tfNP4jg_v8QwQNyNbAmIHS9ZItsNLOFeQiQsskeWevxE_fKc0g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJ3F5QNwGgYGMhASIRWvsXBwkhDq2aUO0QoNJe4sc22krpUlpU1DfeN3_4JfwU_ZLOCe3rSBVvPQhdpo45-5z_B1CXmgX9L72E1t3dWK7Shk7ZJLZ2o-TWPjgMpcIfP2Bf3TqfjzzzjbIoDkLg2WVjU4sFbXOFe6R74Iddj2w_bz7fvrNxq5RmF1tWmjIurWCfldCjF0jmwyRsTpkc-9g8PmkzSuAPeTN0Rnh785BOwdYhIshNdhae7linkoU_3919RVj9XchZZtNvUVuLLKpXP6QaXrFYB3eIbdrT5P2Kta4SzZMdo9c79e59Pvk937dG6WoqEPzhM4n8Ef01cX5r4uf55yqyWs6AntV5Li_jwWrVGHvoQyLiiieTKGxycbDjGa5XqRmTscZVePZbJTDQ2mKNR9vKbiYFPWbxt-yVIkixLjBB_ZPjm00pJrOpB7jCek5lTVOCi1y-unYPuntf6Hfq209Co6EoDIdAmWK0eQBOT08-PrhyK47OtjKD3hh61iwUAtpQvADjQy6mjm-x32VAMtIz0mM8mJMpIYQycRBgk3KWaA0JluNjB2-RTpZnplHhMbKKOEqdFmVm4RJKOKuKw2TAXeAAT2LOA0hI1XDnWPXjTQqwx7hRxXxIyB-VBI_WlrkTXvPtAL7WDt7D_mjnYlA3eWFfDaMarmPGBPg8yWaxcpxHUdDgAsiYEzIOQsDIy3yErkrQnUCr6dkfSoCFonAXFEP_CcewldzLLK9MhPUgFodbvgzqtXQPLoUGos8b4fxTiyty0y-KOdAHO6DW2qRhxU7t0viXJQIkhYJVhh9Zc2rI9l4VIKUC3BchcMtstOIxOVrrfumO63Y_AcJHq9f9BNyk5Wy7drdYJt0itnCPAUfsoif1YrhDwI9cIg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSPwcEH-FQEFGQgJEIzZx4jjclpaqRZRDoVJvlmM73UjZpNrNgvbGtW_BgSeBN-mTMOPNhg2gCi45xHYSe8YznzPjz4Q8MRHYfcNz3wxM7kdaWz8NVegbnuWZ4ACZHQPf_nu-exi9PYqPWpoc3AuzGr8PBH85BfuZYJosLnrBG_rzi-QSOCnuArN8q4sYgKdjy00xf23XczyOn_9PK7zihn5PkezipNfIlVl1ouafVVmuuKKdG-R6iyHpcCH0m-SCrW6Ry_ttlPw2-bHdnnrSLMad1jmdjuFB9NnZ6bezL6fs-1c9fk5H4IqaGn_dYy4q1XisUIX5QhQ3ndDMVsVxRavazEo7pUVFdTGZjGp4Ky0xneMVBfRI0XQZvLosJIrs4RbfuH-w56OPNHSiTIGbn6dUtRQotKnpuz3_YLj9gX5a_LGjgBEEVeVxPSma0fgOOdx583Fr128Pa_A1T1jjm0yEqRHKpgDxrEoGJgx4zLjOQRtUHORWxxnGSFNYpGRJjuePh4k2GEe1KgvYOlmr6sreIzTTVotIIxrVUZ7mqcgGkbKhSlgAuhV7JFhKUuqWyRwP1CilW9EILhfSlyB96aQv5x550bU5WfB4nFv7NSpIVxM5uN0NUE3ZTmkZhgLgXG7CTAdREBhYu4J2W5syFqaJVR55iuol0VLA52nVbniATiLnlhwCNGIpjFrgkY1eTZjhul-8VFDZWpipBFwaxYCF2cAjj7tibIlZc5WtZ64OLLE5IE6P3F3oc9clxoQjh_RI0tP0Xp_7JVUxcvzjAjCpCJhHNpdz4tdnnTemm928-QcR3P-_pz8gV0M32SN_kGyQtWYysw8BLjbZI2cnfgKXomS1 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFB6VVGI5sC-GggYJCRB1Gu82t0CpWkQKKo0UTtZsTqw6duQ4oHDi2n_BgV8C_6S_hPe8hKSgCiQuUZSZkT0zb_le5r1vCHkkbbD70o102ZGRbguh9MBkpi5dHnHfBchcMvD19t3dvv164AzWyNumFoaPxZBBkJ8hI2WeJe3lKvSkNN3wRRxtTWRUabzvbk3ByHqYS4uRMbhMfX6OrLsOgPMWWe_vv-t-KGuMPEMHwD1oSmf-OHDFPZUs_r_b6iVndTqRcnGaeolcmKUTNv_EkmTJYe1cIZNmqlWeylF7VvC2-HyKBfI_rsVVcrkGt7RbSeM1sqbS6-R8rz6-v0F-bNfXsRSVQNAsotMxvDt9cnL87eTLsfX9qxg_pSPwkUWGZwqYJEsF3neUYiITxWoYylUaD1OaZnKWqCmNUyriPB9l8FSaYJ7JcwqwlqJNlfhZpkdRpDVX-MTewZ6OzlvSnMkYq7KnlNXcLLTI6Js9_aC7_Z5-rP5KpABefMqSYZbHxWh8k_R3Xh2-3NXrWyR04XpWoUvum4H0mQoAeyrmdaRpuI7ligjElDlGpITD8fA2gOiJexFejG56QuIBr2LcsG6RVpql6g6hXCjh2wJhsrCjIAp83rGZMplnGSD0jkaMRnhCUVOs400fSViGWr4bVrsTwu6E5e6Ec408W4yZVAQjZ_Z-gTK56Ink4OUPWT4Ma1sTmqYPODOSJheGbRgSgmpQO6UCyzIDTzGNPEaJDtGEoQCxuhIDJolkYGEXMJsVwKoZGtlY6QmmR6w2NzoR1qZvGgJgth0A6VZHIw8XzTgS0_lSlc3KPhD7uwCFNXK7UqHFlCzLL1krNeKtKNfKnFdb0nhUEqP7AJZ9w9LIZqOGv17rrDXdXKjqX2zB3X_rfo9cNEtltPWOt0FaRT5T9wHHFvxBbZt-AnBvmxo priority: 102 providerName: Unpaywall  | 
    
| Title | Differentiation of small (≤ 3 cm) hepatocellular carcinomas from benign nodules in cirrhotic liver: the added additive value of MRI-based radiomics analysis to LI-RADS version 2018 algorithm | 
    
| URI | https://link.springer.com/article/10.1186/s12876-021-01710-y https://www.ncbi.nlm.nih.gov/pubmed/33827440 https://www.proquest.com/docview/2514542330 https://www.proquest.com/docview/2510266976 https://pubmed.ncbi.nlm.nih.gov/PMC8028813 https://bmcgastroenterol.biomedcentral.com/track/pdf/10.1186/s12876-021-01710-y https://doaj.org/article/228643fd2bc1411d828b86ee933297ea  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-230X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: M48 dateStart: 20011001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-230X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017823 issn: 1471-230X databaseCode: C6C dateStart: 20010112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB71kEp5QNwYSrRISICoIT7iAwmh9FKLSFWFRiq8WOvddRPJtYvjAHnjtf-CB34J_JP-EmY2dtpAqXix5OxuvMcc3-zOzgA8li7KfeklpmzKxHSFUGZoc9uUXpzEgYeQWUfg6-x62z337UHrYA7qdEfVBA4vNO0on1SvSF98_TR-gwz_WjN84L0cooz1yZWWDGPUmOZ4HhZRU4WUyqHjnp0qoDZ06oszF7ZbhiU02XTQvBk9pcP5_y20z2mtPz0qp8eqV-HKKDvm4y88Tc9prq3rcK2CnKw9oZEbMKeym7DUqQ7Vb8GvjSpJSjlZJpYnbHiEf8Senp78OP124vz8Lo6esT5qrjKnnX5yXWWCshBl5F7E6I4Ki1U2OMxYlstRqoZskDExKIp-jl9lKXl_vGIINhlJOklP7bTEKNi4oi92ujsmqVTJCi4HdFd6yHgVMYWVOXu3Y3bbG-_Z58kGH0NIETCeHubFoOwf3Ybe1ub--rZZ5XYwhec7pSnjwA5lwFWIiFBxvylty2s5nkiQeHjLSpRoxXSkGqJNE_sJpSu3fSHp2FXx2HLuwEKWZ-oesFgoEbiCwKtwkzAJg7jpcmVz37GQFFsGWPVKRqIKfE75N9JIG0CBF00IIUJCiDQhRGMDnk_bHE_Cflxae40IZFqTQnbrH_LiMKokQGTbAaK_RNqxsFzLkmjqIjMoFTqOHfqKG_CEyCsiUsfuCV7dj8BBUoiuqI1Iyglx1iwDVmZqokAQs8U1gUY1P0UIY90WQmenacCjaTG1JCe7TOUjXQctcg8BqgF3J_Q8HVLNFgb4M5Q-M-bZkmzQ1-HKA4SwgeUYsFrzxFm3LpvT1Snf_McS3P9njx_Asq1Z3DWb_goslMVIPUQgWcYNmPcP_AYsrm3u7nXxbd1bb-hNmYaWG_jsrn3E8t7uXvvDbyOvdao | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVqJwQLwxFFgkECBqNd51_ECqUEpbNTSJUGml3pb17jqJlNghcahy49r_we_gwE_pL2HGsd0GpIpLLz5414_1zM5843kR8lK7IPe1F9u6pmPbVcrYIZPM1l4UR4EHkDmvwNfueHtH7qfj-vES-VXmwmBYZSkTc0GtU4X_yDdAD7t10P289mH0zcauUehdLVtoyKK1gt7MS4wViR37ZnYCJtxks7kN9H7F2O7O4cc9u-gyYCvP55mto4CFOpAmBGxipF_TzPHq3FMxLEPWndioeoTOvRDQdeTH2Dib-UqjA9DIyOFw32tkxeVuCMbfytZO5_NB5ccA_cvLVJ3A25iANvAx6BdNeNDt9mxBHeZdA_7VDReU49-Bm5X39iZZnSYjOTuRg8EFBbl7m9wqkC1tzFnxDlkyyV1yvV347u-R39tFL5Zszg00jelkCDeib85Of579OOVUDd_SHujHLEV_AgbIUoW9jhIMYqKYCUMjk_S7CU1SPR2YCe0nVPXH414KD6UDjDF5TwHSUpSnGo95aBTFkuYGH9g-aNqouDUdS93HjOwJlUVdFpqltNW0DxrbX-j3-W9ECsAloHLQBU7IesP75OhKaPuALCdpYh4RGimjAlchRFZuHMZhENVcaZj0uQMMX7eIUxJSqKK8Onb5GIjczAo8MSe-AOKLnPhiZpF31TWjeXGRS2dvIX9UM7EweH4iHXdFIWcEYwFgzFizSDmu42gwqGHLGRNyzkLfSIu8Ru4SKL7g9ZQssjBgkVgITDQAr_EQvppjkbWFmSB21OJwyZ-iEHsTcb5JLfKiGsYrMZQvMek0nwN2vwcw2CIP5-xcLYnzIK9YaRF_gdEX1rw4kvR7eVH0AIBy4HCLrJdb4vy1Lvum69W2-Q8SPL580c_J6t5huyVazc7-E3KD5fvctWv-GlnOxlPzFPBrFj0rhAQlX69aLv0Bm7asfg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1BkQosEG8MBQYJCRC1Gnv8ZBcSogaaChUqdTcaz4wTS44dOQ4oO7b9CxZ8CfxJv4R7bcckgCrYZJGZsT2-rzO-L0KeKgf0vvJiU3VUbDpSajO0hW0qL4qjwAPIXFXgGx16-8fO2xP3ZC2Lv4p2X7kk65wGrNKUlXszFdciHnh7c9CqPgbP4lEYbKS5vEguOWDdsIdBz-u1fgSwf2yVKvPXdRvmqKra_6duXjNOvwdOtt7Tq-TyIpuJ5WeRpmsGanCdXGuQJe3WrHCDXNDZTbI9anznt8iPftMLpaypQfOYzqdwIfr87PTb2ZdT9v2rnL6gEzBQZY4f9DFClUpsNpRhFBHFVBQa6SwZZzTL1SLVc5pkVCZFMcnhrjTFII9XFDAlRYWm8LeKTaJYU1zjHUdHQxMtp6KFUAmmRM-paAqj0DKnB0PzqNv_QD_V3_EoIIeAinScF0k5md4mx4M3H3v7ZtPCwZSez0pTRYEdqkDoEICfFn5H2ZbnMk_GwCPCtWIt3Qg9pyEcXSI_xq7kti8Vele1iCx2h2xleabvERpJLQNHIkaVThzGYRB1HKFt4TMLOM41iLWiJJdNfXNss5Hy6pwTeLymPgfq84r6fGmQl-2aWV3d49zZr5FB2plYmbv6Iy_GvBF0btsBgLxY2ZG0HMtScKIFntc6ZMwOfS0M8gzZi6P-gMeTokmDgE1iJS7eBcDEQnhrlkF2NmaC3MvN4RWD8kbvzDmgVccFhMw6BnnSDuNKjKXLdL6o5sDB2wMcapC7NT-3W2IsqEpGGsTf4PSNPW-OZMmkqkoeAFINLGaQ3ZVM_Hqs897pbis3_0CC-_939cdk-31_wA-Gh-8ekCt2JfeO2fF3yFZZLPRDwJNl9KhSGT8BwvFv6w | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFB6VVGI5sC-GggYJCRB1Gu82t0CpWkQKKo0UTtZsTqw6duQ4oHDi2n_BgV8C_6S_hPe8hKSgCiQuUZSZkT0zb_le5r1vCHkkbbD70o102ZGRbguh9MBkpi5dHnHfBchcMvD19t3dvv164AzWyNumFoaPxZBBkJ8hI2WeJe3lKvSkNN3wRRxtTWRUabzvbk3ByHqYS4uRMbhMfX6OrLsOgPMWWe_vv-t-KGuMPEMHwD1oSmf-OHDFPZUs_r_b6iVndTqRcnGaeolcmKUTNv_EkmTJYe1cIZNmqlWeylF7VvC2-HyKBfI_rsVVcrkGt7RbSeM1sqbS6-R8rz6-v0F-bNfXsRSVQNAsotMxvDt9cnL87eTLsfX9qxg_pSPwkUWGZwqYJEsF3neUYiITxWoYylUaD1OaZnKWqCmNUyriPB9l8FSaYJ7JcwqwlqJNlfhZpkdRpDVX-MTewZ6OzlvSnMkYq7KnlNXcLLTI6Js9_aC7_Z5-rP5KpABefMqSYZbHxWh8k_R3Xh2-3NXrWyR04XpWoUvum4H0mQoAeyrmdaRpuI7ligjElDlGpITD8fA2gOiJexFejG56QuIBr2LcsG6RVpql6g6hXCjh2wJhsrCjIAp83rGZMplnGSD0jkaMRnhCUVOs400fSViGWr4bVrsTwu6E5e6Ec408W4yZVAQjZ_Z-gTK56Ink4OUPWT4Ma1sTmqYPODOSJheGbRgSgmpQO6UCyzIDTzGNPEaJDtGEoQCxuhIDJolkYGEXMJsVwKoZGtlY6QmmR6w2NzoR1qZvGgJgth0A6VZHIw8XzTgS0_lSlc3KPhD7uwCFNXK7UqHFlCzLL1krNeKtKNfKnFdb0nhUEqP7AJZ9w9LIZqOGv17rrDXdXKjqX2zB3X_rfo9cNEtltPWOt0FaRT5T9wHHFvxBbZt-AnBvmxo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiation+of+small+%28%E2%89%A4%E2%80%893%C2%A0cm%29+hepatocellular+carcinomas+from+benign+nodules+in+cirrhotic+liver%3A+the+added+additive+value+of+MRI-based+radiomics+analysis+to+LI-RADS+version+2018+algorithm&rft.jtitle=BMC+gastroenterology&rft.au=Zhong%2C+Xi&rft.au=Guan%2C+Tianpei&rft.au=Tang%2C+Danrui&rft.au=Li%2C+Jiansheng&rft.date=2021-04-07&rft.eissn=1471-230X&rft.volume=21&rft.issue=1&rft.spage=155&rft_id=info:doi/10.1186%2Fs12876-021-01710-y&rft_id=info%3Apmid%2F33827440&rft.externalDocID=33827440 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-230X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-230X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-230X&client=summon |