Differentiation of small (≤ 3 cm) hepatocellular carcinomas from benign nodules in cirrhotic liver: the added additive value of MRI-based radiomics analysis to LI-RADS version 2018 algorithm

Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carc...

Full description

Saved in:
Bibliographic Details
Published inBMC gastroenterology Vol. 21; no. 1; pp. 155 - 10
Main Authors Zhong, Xi, Guan, Tianpei, Tang, Danrui, Li, Jiansheng, Lu, Bingui, Cui, Shuzhong, Tang, Hongsheng
Format Journal Article
LanguageEnglish
Published London BioMed Central 07.04.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-230X
1471-230X
DOI10.1186/s12876-021-01710-y

Cover

Abstract Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. Methods In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. Results A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [A z ] = 0.898) and the MRI-Based radiomics signature (A z  = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (A z  = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p  = 0.030) and positive predictive value (99.1% vs 92.9%, p  = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p  = 0.215) and negative predictive value (93.5% vs 83.7%, p  = 0.188). Conclusions MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver.
AbstractList Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. Methods In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. Results A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [Az] = 0.898) and the MRI-Based radiomics signature (Az = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (Az = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). Conclusions MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver.
Abstract Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. Methods In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. Results A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [Az] = 0.898) and the MRI-Based radiomics signature (Az = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (Az = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). Conclusions MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver.
Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver.BACKGROUNDAccurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver.In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis.METHODSIn this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis.A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [Az] = 0.898) and the MRI-Based radiomics signature (Az = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (Az = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188).RESULTSA radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [Az] = 0.898) and the MRI-Based radiomics signature (Az = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (Az = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188).MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver.CONCLUSIONSMRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver.
Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small ([less than or equai to] 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. Methods In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. Results A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [A.sub.z] = 0.898) and the MRI-Based radiomics signature (A.sub.z = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (A.sub.z = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). Conclusions MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver. Keywords: Hepatocellular carcinoma, Liver cirrhosis, Magnetic resonance imaging, Diagnosis
Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small ([less than or equai to] 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [A.sub.z] = 0.898) and the MRI-Based radiomics signature (A.sub.z = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (A.sub.z = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver.
Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. Methods In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. Results A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [A z ] = 0.898) and the MRI-Based radiomics signature (A z  = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (A z  = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p  = 0.030) and positive predictive value (99.1% vs 92.9%, p  = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p  = 0.215) and negative predictive value (93.5% vs 83.7%, p  = 0.188). Conclusions MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver.
Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to Liver Imaging Reporting and Data System version 2018 (LI-RADS v 2018) algorithm in differentiating small (≤ 3 cm) hepatocellular carcinomas (HCCs) from benign nodules in cirrhotic liver. In this retrospective study, 150 cirrhosis patients with histopathologically confirmed small liver nodules (HCC, 112; benign nodules, 44) were evaluated from January 2013 to October 2018. Based on the LI-RADS algorithm, a LI-RADS category was assigned for each lesion. A radiomics signature was generated based on texture features extracted from T1-weighted, T2W, and apparent diffusion coefficient (ADC) images by using the least absolute shrinkage and selection operator regression model. A nomogram model was developed for the combined diagnosis. Diagnostic performance was assessed using receiver operating characteristic curve (ROC) analysis. A radiomics signature consisting of eight features was significantly associated with the differentiation of HCCs from benign nodules. Both LI-RADS algorithm (area under ROC [A ] = 0.898) and the MRI-Based radiomics signature (A  = 0.917) demonstrated good discrimination, and the nomogram model showed a superior classification performance (A  = 0.975). Compared with LI-RADS alone, the combined approach significantly improved the specificity (97.7% vs 81.8%, p = 0.030) and positive predictive value (99.1% vs 92.9%, p = 0.031) and afforded comparable sensitivity (97.3% vs 93.8%, p = 0.215) and negative predictive value (93.5% vs 83.7%, p = 0.188). MRI-based radiomics analysis showed additive value to the LI-RADS v 2018 algorithm for differentiating small HCCs from benign nodules in the cirrhotic liver.
ArticleNumber 155
Audience Academic
Author Li, Jiansheng
Tang, Danrui
Guan, Tianpei
Lu, Bingui
Cui, Shuzhong
Tang, Hongsheng
Zhong, Xi
Author_xml – sequence: 1
  givenname: Xi
  surname: Zhong
  fullname: Zhong, Xi
  organization: Department of Medical Imaging, Affiliated Cancer Hospital and Institute of Guangzhou Medical University
– sequence: 2
  givenname: Tianpei
  surname: Guan
  fullname: Guan, Tianpei
  organization: Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University
– sequence: 3
  givenname: Danrui
  surname: Tang
  fullname: Tang, Danrui
  organization: Department of Medical Imaging, Affiliated Cancer Hospital and Institute of Guangzhou Medical University
– sequence: 4
  givenname: Jiansheng
  surname: Li
  fullname: Li, Jiansheng
  organization: Department of Medical Imaging, Affiliated Cancer Hospital and Institute of Guangzhou Medical University
– sequence: 5
  givenname: Bingui
  surname: Lu
  fullname: Lu, Bingui
  organization: Department of Medical Imaging, Affiliated Cancer Hospital and Institute of Guangzhou Medical University
– sequence: 6
  givenname: Shuzhong
  surname: Cui
  fullname: Cui, Shuzhong
  email: cuishuzhong@gzhmu.edu.cn
  organization: Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University
– sequence: 7
  givenname: Hongsheng
  surname: Tang
  fullname: Tang, Hongsheng
  email: 15913139343@163.com
  organization: Department of Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33827440$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARfcAPsECW2JRFih-J47BAqloeIw1CKiCxsxzbmXHl2FM7KZod2_4FC74E_qRfgjNT2k6FKmQpjq7POfY95-5mW847nWVPETxAiNGXEWFW0RxilENUIZgvH2Q7qKhQjgn8unXrfzvbjfEUJhTD5FG2TQjDVVHAnez3sWlbHbTrjeiNd8C3IHbCWrB_efHz8vsF-fVDdi_AXC9E76W2drAiACmCNM53IoI2-A402pmZA86rweoIjAPShDD3vZHAmnMdXoF-roFQSqvxa_pUBOfCDnq88cPJJG9ETGdBKOM7IyMQTthlNBH0Hkwn-cnh8SeQhOL4SAwRA8LOfDD9vHucPWyFjfrJ1b6XfXn75vPR-3z68d3k6HCaS1qRPlcNw7ViQtcFolpUUGFES0JlW-BClKjVsmwgrsqaQNpULS0LhCupqhISLRpE9rLJWld5ccoXwXQiLLkXhq8KPsy4CKljqznGjBakVbiRqEBIMcwaRrWuCcF1pUXSImutwS3E8lsy_FoQQT7Gy9fx8hQvX8XLl4n1es1aDE2nlUyxBWE3nrJ54sycz_w5ZxAzhkgS2L8SCP5s0LHnnYljqsJpP0SOSwQxpXVFE_T5HeipH0IKZYUqygITAm9QM5HaNq716V45ivJDShGpk-ejcwf_QKWldMo6TXVrUn2D8Ox2o9cd_h3cBGBrgAw-xqBbLk2_muCkbOz9JuI71P9y_iqvmMBupsONG_ew_gBJ-SU9
CitedBy_id crossref_primary_10_1007_s00330_024_10813_5
crossref_primary_10_1007_s00261_023_04171_x
crossref_primary_10_3748_wjg_v30_i4_381
crossref_primary_10_1186_s13027_021_00393_0
crossref_primary_10_17709_2410_1893_2022_9_3_10
crossref_primary_10_1186_s13027_022_00422_6
crossref_primary_10_3390_diagnostics12051043
crossref_primary_10_1016_j_ejrad_2022_110251
crossref_primary_10_3390_diagnostics13152591
crossref_primary_10_1097_CM9_0000000000002641
crossref_primary_10_3748_wjg_v28_i42_6002
crossref_primary_10_1016_j_ejro_2023_100535
crossref_primary_10_2463_mrms_rev_2022_0102
crossref_primary_10_1016_j_asjsur_2024_12_152
crossref_primary_10_12677_ACM_2023_13102146
crossref_primary_10_12677_ACM_2023_1391973
crossref_primary_10_3389_fonc_2021_698373
crossref_primary_10_1016_j_dld_2022_12_015
crossref_primary_10_3390_diagnostics13071303
crossref_primary_10_1016_j_iliver_2022_02_005
crossref_primary_10_1007_s00330_023_10134_z
crossref_primary_10_1111_jgh_16663
Cites_doi 10.1148/rg.2018180052
10.1148/radiol.2018181494
10.1159/000455949
10.21037/qims.2018.05.01
10.1007/s00330-019-06368-5
10.1016/j.cmpb.2008.08.005
10.1007/s00330-018-5727-1
10.1002/jmri.26981
10.1016/j.jhep.2017.12.014
10.1007/s00330-018-5463-6
10.1002/hep.24199
10.1097/RLI.0000000000000258
10.1002/hep.27304
10.1016/j.heliyon.2018.e00987
10.1016/j.ejrad.2019.03.010
10.1007/s00330-016-4663-1
10.1016/j.acra.2009.08.012
10.1158/1078-0432.CCR-17-1510
10.1186/s12880-016-0165-5
10.1007/s00330-015-3701-8
10.1002/jmri.25454
10.1186/s12880-016-0171-7
10.1002/jmri.26027
10.1016/j.ebiom.2019.01.013
10.1038/ajg.2015.389
10.1200/JCO.2015.65.9128
10.1038/s41598-019-51303-9
10.3748/wjg.v24.i24.2582
10.1002/jmri.26715
10.3389/fonc.2019.01382
10.1016/j.crad.2013.07.022
10.1186/s40644-019-0252-2
10.1002/jmri.24898
10.1097/MEG.0000000000001269
10.1007/s00330-014-3500-7
10.2214/AJR.16.17649
10.1002/jmri.22268
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7T5
7X7
7XB
88E
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
H94
K9.
M0S
M1P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12876-021-01710-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-230X
EndPage 10
ExternalDocumentID oai_doaj_org_article_228643fd2bc1411d828b86ee933297ea
10.1186/s12876-021-01710-y
PMC8028813
A661398291
33827440
10_1186_s12876_021_01710_y
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7T5
7XB
8FD
8FK
AZQEC
DWQXO
FR3
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c673t-db829d8ae9416ea70d216536cf424a51fec5b02759306b7f654127cd7503eab13
IEDL.DBID M48
ISSN 1471-230X
IngestDate Fri Oct 03 12:38:18 EDT 2025
Sun Oct 26 04:07:41 EDT 2025
Tue Sep 30 15:18:19 EDT 2025
Thu Oct 02 07:06:56 EDT 2025
Tue Oct 07 05:19:16 EDT 2025
Mon Oct 20 21:44:25 EDT 2025
Mon Oct 20 16:50:18 EDT 2025
Thu Apr 03 07:00:10 EDT 2025
Wed Oct 01 04:52:29 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
Sat Sep 06 07:35:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hepatocellular carcinoma
Diagnosis
Magnetic resonance imaging
Liver cirrhosis
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c673t-db829d8ae9416ea70d216536cf424a51fec5b02759306b7f654127cd7503eab13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12876-021-01710-y
PMID 33827440
PQID 2514542330
PQPubID 44673
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_228643fd2bc1411d828b86ee933297ea
unpaywall_primary_10_1186_s12876_021_01710_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8028813
proquest_miscellaneous_2510266976
proquest_journals_2514542330
gale_infotracmisc_A661398291
gale_infotracacademiconefile_A661398291
pubmed_primary_33827440
crossref_citationtrail_10_1186_s12876_021_01710_y
crossref_primary_10_1186_s12876_021_01710_y
springer_journals_10_1186_s12876_021_01710_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-07
PublicationDateYYYYMMDD 2021-04-07
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC gastroenterology
PublicationTitleAbbrev BMC Gastroenterol
PublicationTitleAlternate BMC Gastroenterol
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References SH Choi (1710_CR10) 2016; 51
Z Li (1710_CR18) 2017; 17
M Guarino (1710_CR36) 2018; 24
ME Mayerhoefer (1710_CR19) 2010; 32
KS Lim (1710_CR34) 2014; 69
M Renzulli (1710_CR8) 2019; 31
R Ortiz-Ramon (1710_CR14) 2018; 28
N Schieda (1710_CR15) 2017; 209
X Min (1710_CR33) 2019; 115
Z Hou (1710_CR24) 2018; 8
AZ Kielar (1710_CR7) 2019; 50
YQ Huang (1710_CR25) 2016; 34
DG Mitchell (1710_CR3) 2015; 61
R Inchingolo (1710_CR35) 2015; 25
AZ Kielar (1710_CR4) 2018; 47
J Zhou (1710_CR12) 2020; 51
G Nketiah (1710_CR17) 2017; 27
J Bruix (1710_CR37) 2011; 53
M Di Martino (1710_CR2) 2016; 16
M Cerny (1710_CR5) 2018; 38
EG Giannini (1710_CR32) 2016; 111
A Wibmer (1710_CR16) 2015; 25
Y Ji (1710_CR13) 2019; 19
I Joo (1710_CR11) 2019; 29
K Holli (1710_CR20) 2010; 17
W Zhou (1710_CR28) 2017; 45
PM Szczypinski (1710_CR22) 2009; 94
X Zhong (1710_CR29) 2019; 9
F Vasuri (1710_CR31) 2019; 9
S Liu (1710_CR23) 2020; 30
HJ Park (1710_CR1) 2017; 6
V Chernyak (1710_CR6) 2018; 289
M Ronot (1710_CR9) 2018; 68
D Stocker (1710_CR30) 2018; 4
L Zhang (1710_CR26) 2019; 40
H Yu (1710_CR27) 2015; 42
S Wu (1710_CR21) 2017; 23
References_xml – volume: 38
  start-page: 1973
  year: 2018
  ident: 1710_CR5
  publication-title: Radiographics
  doi: 10.1148/rg.2018180052
– volume: 289
  start-page: 816
  year: 2018
  ident: 1710_CR6
  publication-title: Radiology
  doi: 10.1148/radiol.2018181494
– volume: 6
  start-page: 189
  year: 2017
  ident: 1710_CR1
  publication-title: Liver cancer
  doi: 10.1159/000455949
– volume: 8
  start-page: 410
  year: 2018
  ident: 1710_CR24
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims.2018.05.01
– volume: 30
  start-page: 239
  year: 2020
  ident: 1710_CR23
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06368-5
– volume: 94
  start-page: 66
  year: 2009
  ident: 1710_CR22
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2008.08.005
– volume: 29
  start-page: 1724
  year: 2019
  ident: 1710_CR11
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5727-1
– volume: 51
  start-page: 798
  year: 2020
  ident: 1710_CR12
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26981
– volume: 68
  start-page: 715
  year: 2018
  ident: 1710_CR9
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2017.12.014
– volume: 28
  start-page: 4514
  year: 2018
  ident: 1710_CR14
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5463-6
– volume: 53
  start-page: 1020
  year: 2011
  ident: 1710_CR37
  publication-title: Hepatology
  doi: 10.1002/hep.24199
– volume: 51
  start-page: 483
  year: 2016
  ident: 1710_CR10
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000258
– volume: 61
  start-page: 1056
  year: 2015
  ident: 1710_CR3
  publication-title: Hepatology
  doi: 10.1002/hep.27304
– volume: 4
  start-page: e00987
  year: 2018
  ident: 1710_CR30
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00987
– volume: 115
  start-page: 16
  year: 2019
  ident: 1710_CR33
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.03.010
– volume: 27
  start-page: 3050
  year: 2017
  ident: 1710_CR17
  publication-title: Eur Radiol
  doi: 10.1007/s00330-016-4663-1
– volume: 17
  start-page: 135
  year: 2010
  ident: 1710_CR20
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2009.08.012
– volume: 23
  start-page: 6904
  year: 2017
  ident: 1710_CR21
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-1510
– volume: 16
  start-page: 62
  year: 2016
  ident: 1710_CR2
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-016-0165-5
– volume: 25
  start-page: 2840
  year: 2015
  ident: 1710_CR16
  publication-title: Eur Radiol
  doi: 10.1007/s00330-015-3701-8
– volume: 45
  start-page: 1476
  year: 2017
  ident: 1710_CR28
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25454
– volume: 17
  start-page: 1
  year: 2017
  ident: 1710_CR18
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-016-0171-7
– volume: 47
  start-page: 1459
  year: 2018
  ident: 1710_CR4
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26027
– volume: 40
  start-page: 327
  year: 2019
  ident: 1710_CR26
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.01.013
– volume: 111
  start-page: 70
  issue: 1
  year: 2016
  ident: 1710_CR32
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2015.389
– volume: 34
  start-page: 2157
  year: 2016
  ident: 1710_CR25
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2015.65.9128
– volume: 9
  start-page: 14749
  year: 2019
  ident: 1710_CR31
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-51303-9
– volume: 24
  start-page: 2582
  year: 2018
  ident: 1710_CR36
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v24.i24.2582
– volume: 50
  start-page: 1990
  year: 2019
  ident: 1710_CR7
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26715
– volume: 9
  start-page: 1382
  year: 2019
  ident: 1710_CR29
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.01382
– volume: 69
  start-page: 1
  year: 2014
  ident: 1710_CR34
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2013.07.022
– volume: 19
  start-page: 64
  year: 2019
  ident: 1710_CR13
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-019-0252-2
– volume: 42
  start-page: 1259
  year: 2015
  ident: 1710_CR27
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24898
– volume: 31
  start-page: 283
  year: 2019
  ident: 1710_CR8
  publication-title: Eur J Gastroenterol Hepatol
  doi: 10.1097/MEG.0000000000001269
– volume: 25
  start-page: 1087
  year: 2015
  ident: 1710_CR35
  publication-title: Eur Radiol
  doi: 10.1007/s00330-014-3500-7
– volume: 209
  start-page: W152
  year: 2017
  ident: 1710_CR15
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.16.17649
– volume: 32
  start-page: 352
  year: 2010
  ident: 1710_CR19
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22268
SSID ssj0017823
Score 2.3888
Snippet Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics...
Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics analysis to...
Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based radiomics...
Abstract Background Accurate characterization of small nodules in a cirrhotic liver is challenging. We aimed to determine the additive value of MRI-based...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 155
SubjectTerms Algorithms
Benign
Biopsy
Calibration
Carcinoma, Hepatocellular - complications
Carcinoma, Hepatocellular - diagnostic imaging
Carcinoma, Hepatocellular - pathology
Cirrhosis
Computer-aided medical diagnosis
Diagnosis
Diagnosis, Differential
Diffusion coefficient
Feature selection
Gastroenterology
Hepatocellular carcinoma
Hepatology
Hepatoma
Humans
Internal Medicine
Liver
Liver - diagnostic imaging
Liver - pathology
Liver cancer
Liver cirrhosis
Liver Cirrhosis - complications
Liver Cirrhosis - diagnostic imaging
Liver Cirrhosis - pathology
Liver Neoplasms - complications
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - pathology
Magnetic Resonance Imaging
Medicine
Medicine & Public Health
Metastasis
Methods
Nodules
Nomograms
Patients
Radiomics
Research Article
Retrospective Studies
Sensitivity and Specificity
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiHcDBRkJCRCNmsR5ONwWStUilkOhUm-WYzvdSNmk2s2C9sa1_4IDvwT-SX8JM042bEAqHLjsYe087BnPfBOPvyHkiQ7B7us4d7WnczdUyrhpIANXx1me8Rggs2XgG7-P94_Ct8fR8VqpL8wJa-mB24nbCQIOTjPXQab80Pc1RAhwD2MgEA_SxFho5PF0FUx1-wfg99jqiAyPd-ZghRNMtsXQGXyquxy4IcvW_6dNXnNKvydM9rum18iVRXUql59lWa45pr0b5HqHKOmoHclNcslUt8jlcbdnfpv82O1qoDStFGid0_kUbkSfnZ99O_9yxr5_VdPndAKOqanxQz5mplKFRYYqzB6ieASFZqYqTipa1XpRmjktKqqK2WxSw1NpickdLylgSYqGTOOvzUmiyCVu8InjwwMXPaamM6kLPAo9p7IjRKFNTd8duIej3Q_0U_v9jgJi4FSWJ_WsaCbTO-Ro783H1_tuV7rBVXHCGldnPEg1lyYFwGdk4unAjyMWqxx0Q0Z-blSU4Y5pCiFLluRYjTxIlMZdVSMzn90lG1VdmU1CM2UUDxViUxXmaZ7yzAulCWTCfNC0yCH-SpJCdbzmWF6jFDa-4bFopS9A-sJKXywd8qK_5rRl9biw9ytUkL4nMnLbP0BPRaen4m966pCnqF4C7Qa8npLd8QcYJDJwiREAJZbCrPkO2Rr0hPWuhs0rBRWdvZkLQKlhBMiYeQ553DfjlZhDV5l6YftAwB0D_nTIvVaf-yExxi1VpEOSgaYPxjxsqYqJZSPngFC5zxyyvVoTv17rojnd7tfNP4jg_v8QwQNyNbAmIHS9ZItsNLOFeQiQsskeWevxE_fKc0g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJ3F5QNwGgYGMhASIRWvsXBwkhDq2aUO0QoNJe4sc22krpUlpU1DfeN3_4JfwU_ZLOCe3rSBVvPQhdpo45-5z_B1CXmgX9L72E1t3dWK7Shk7ZJLZ2o-TWPjgMpcIfP2Bf3TqfjzzzjbIoDkLg2WVjU4sFbXOFe6R74Iddj2w_bz7fvrNxq5RmF1tWmjIurWCfldCjF0jmwyRsTpkc-9g8PmkzSuAPeTN0Rnh785BOwdYhIshNdhae7linkoU_3919RVj9XchZZtNvUVuLLKpXP6QaXrFYB3eIbdrT5P2Kta4SzZMdo9c79e59Pvk937dG6WoqEPzhM4n8Ef01cX5r4uf55yqyWs6AntV5Li_jwWrVGHvoQyLiiieTKGxycbDjGa5XqRmTscZVePZbJTDQ2mKNR9vKbiYFPWbxt-yVIkixLjBB_ZPjm00pJrOpB7jCek5lTVOCi1y-unYPuntf6Hfq209Co6EoDIdAmWK0eQBOT08-PrhyK47OtjKD3hh61iwUAtpQvADjQy6mjm-x32VAMtIz0mM8mJMpIYQycRBgk3KWaA0JluNjB2-RTpZnplHhMbKKOEqdFmVm4RJKOKuKw2TAXeAAT2LOA0hI1XDnWPXjTQqwx7hRxXxIyB-VBI_WlrkTXvPtAL7WDt7D_mjnYlA3eWFfDaMarmPGBPg8yWaxcpxHUdDgAsiYEzIOQsDIy3yErkrQnUCr6dkfSoCFonAXFEP_CcewldzLLK9MhPUgFodbvgzqtXQPLoUGos8b4fxTiyty0y-KOdAHO6DW2qRhxU7t0viXJQIkhYJVhh9Zc2rI9l4VIKUC3BchcMtstOIxOVrrfumO63Y_AcJHq9f9BNyk5Wy7drdYJt0itnCPAUfsoif1YrhDwI9cIg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSPwcEH-FQEFGQgJEIzZx4jjclpaqRZRDoVJvlmM73UjZpNrNgvbGtW_BgSeBN-mTMOPNhg2gCi45xHYSe8YznzPjz4Q8MRHYfcNz3wxM7kdaWz8NVegbnuWZ4ACZHQPf_nu-exi9PYqPWpoc3AuzGr8PBH85BfuZYJosLnrBG_rzi-QSOCnuArN8q4sYgKdjy00xf23XczyOn_9PK7zihn5PkezipNfIlVl1ouafVVmuuKKdG-R6iyHpcCH0m-SCrW6Ry_ttlPw2-bHdnnrSLMad1jmdjuFB9NnZ6bezL6fs-1c9fk5H4IqaGn_dYy4q1XisUIX5QhQ3ndDMVsVxRavazEo7pUVFdTGZjGp4Ky0xneMVBfRI0XQZvLosJIrs4RbfuH-w56OPNHSiTIGbn6dUtRQotKnpuz3_YLj9gX5a_LGjgBEEVeVxPSma0fgOOdx583Fr128Pa_A1T1jjm0yEqRHKpgDxrEoGJgx4zLjOQRtUHORWxxnGSFNYpGRJjuePh4k2GEe1KgvYOlmr6sreIzTTVotIIxrVUZ7mqcgGkbKhSlgAuhV7JFhKUuqWyRwP1CilW9EILhfSlyB96aQv5x550bU5WfB4nFv7NSpIVxM5uN0NUE3ZTmkZhgLgXG7CTAdREBhYu4J2W5syFqaJVR55iuol0VLA52nVbniATiLnlhwCNGIpjFrgkY1eTZjhul-8VFDZWpipBFwaxYCF2cAjj7tibIlZc5WtZ64OLLE5IE6P3F3oc9clxoQjh_RI0tP0Xp_7JVUxcvzjAjCpCJhHNpdz4tdnnTemm928-QcR3P-_pz8gV0M32SN_kGyQtWYysw8BLjbZI2cnfgKXomS1
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFB6VVGI5sC-GggYJCRB1Gu82t0CpWkQKKo0UTtZsTqw6duQ4oHDi2n_BgV8C_6S_hPe8hKSgCiQuUZSZkT0zb_le5r1vCHkkbbD70o102ZGRbguh9MBkpi5dHnHfBchcMvD19t3dvv164AzWyNumFoaPxZBBkJ8hI2WeJe3lKvSkNN3wRRxtTWRUabzvbk3ByHqYS4uRMbhMfX6OrLsOgPMWWe_vv-t-KGuMPEMHwD1oSmf-OHDFPZUs_r_b6iVndTqRcnGaeolcmKUTNv_EkmTJYe1cIZNmqlWeylF7VvC2-HyKBfI_rsVVcrkGt7RbSeM1sqbS6-R8rz6-v0F-bNfXsRSVQNAsotMxvDt9cnL87eTLsfX9qxg_pSPwkUWGZwqYJEsF3neUYiITxWoYylUaD1OaZnKWqCmNUyriPB9l8FSaYJ7JcwqwlqJNlfhZpkdRpDVX-MTewZ6OzlvSnMkYq7KnlNXcLLTI6Js9_aC7_Z5-rP5KpABefMqSYZbHxWh8k_R3Xh2-3NXrWyR04XpWoUvum4H0mQoAeyrmdaRpuI7ligjElDlGpITD8fA2gOiJexFejG56QuIBr2LcsG6RVpql6g6hXCjh2wJhsrCjIAp83rGZMplnGSD0jkaMRnhCUVOs400fSViGWr4bVrsTwu6E5e6Ec408W4yZVAQjZ_Z-gTK56Ink4OUPWT4Ma1sTmqYPODOSJheGbRgSgmpQO6UCyzIDTzGNPEaJDtGEoQCxuhIDJolkYGEXMJsVwKoZGtlY6QmmR6w2NzoR1qZvGgJgth0A6VZHIw8XzTgS0_lSlc3KPhD7uwCFNXK7UqHFlCzLL1krNeKtKNfKnFdb0nhUEqP7AJZ9w9LIZqOGv17rrDXdXKjqX2zB3X_rfo9cNEtltPWOt0FaRT5T9wHHFvxBbZt-AnBvmxo
  priority: 102
  providerName: Unpaywall
Title Differentiation of small (≤ 3 cm) hepatocellular carcinomas from benign nodules in cirrhotic liver: the added additive value of MRI-based radiomics analysis to LI-RADS version 2018 algorithm
URI https://link.springer.com/article/10.1186/s12876-021-01710-y
https://www.ncbi.nlm.nih.gov/pubmed/33827440
https://www.proquest.com/docview/2514542330
https://www.proquest.com/docview/2510266976
https://pubmed.ncbi.nlm.nih.gov/PMC8028813
https://bmcgastroenterol.biomedcentral.com/track/pdf/10.1186/s12876-021-01710-y
https://doaj.org/article/228643fd2bc1411d828b86ee933297ea
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: M48
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-230X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017823
  issn: 1471-230X
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB71kEp5QNwYSrRISICoIT7iAwmh9FKLSFWFRiq8WOvddRPJtYvjAHnjtf-CB34J_JP-EmY2dtpAqXix5OxuvMcc3-zOzgA8li7KfeklpmzKxHSFUGZoc9uUXpzEgYeQWUfg6-x62z337UHrYA7qdEfVBA4vNO0on1SvSF98_TR-gwz_WjN84L0cooz1yZWWDGPUmOZ4HhZRU4WUyqHjnp0qoDZ06oszF7ZbhiU02XTQvBk9pcP5_y20z2mtPz0qp8eqV-HKKDvm4y88Tc9prq3rcK2CnKw9oZEbMKeym7DUqQ7Vb8GvjSpJSjlZJpYnbHiEf8Senp78OP124vz8Lo6esT5qrjKnnX5yXWWCshBl5F7E6I4Ki1U2OMxYlstRqoZskDExKIp-jl9lKXl_vGIINhlJOklP7bTEKNi4oi92ujsmqVTJCi4HdFd6yHgVMYWVOXu3Y3bbG-_Z58kGH0NIETCeHubFoOwf3Ybe1ub--rZZ5XYwhec7pSnjwA5lwFWIiFBxvylty2s5nkiQeHjLSpRoxXSkGqJNE_sJpSu3fSHp2FXx2HLuwEKWZ-oesFgoEbiCwKtwkzAJg7jpcmVz37GQFFsGWPVKRqIKfE75N9JIG0CBF00IIUJCiDQhRGMDnk_bHE_Cflxae40IZFqTQnbrH_LiMKokQGTbAaK_RNqxsFzLkmjqIjMoFTqOHfqKG_CEyCsiUsfuCV7dj8BBUoiuqI1Iyglx1iwDVmZqokAQs8U1gUY1P0UIY90WQmenacCjaTG1JCe7TOUjXQctcg8BqgF3J_Q8HVLNFgb4M5Q-M-bZkmzQ1-HKA4SwgeUYsFrzxFm3LpvT1Snf_McS3P9njx_Asq1Z3DWb_goslMVIPUQgWcYNmPcP_AYsrm3u7nXxbd1bb-hNmYaWG_jsrn3E8t7uXvvDbyOvdao
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVqJwQLwxFFgkECBqNd51_ECqUEpbNTSJUGml3pb17jqJlNghcahy49r_we_gwE_pL2HGsd0GpIpLLz5414_1zM5843kR8lK7IPe1F9u6pmPbVcrYIZPM1l4UR4EHkDmvwNfueHtH7qfj-vES-VXmwmBYZSkTc0GtU4X_yDdAD7t10P289mH0zcauUehdLVtoyKK1gt7MS4wViR37ZnYCJtxks7kN9H7F2O7O4cc9u-gyYCvP55mto4CFOpAmBGxipF_TzPHq3FMxLEPWndioeoTOvRDQdeTH2Dib-UqjA9DIyOFw32tkxeVuCMbfytZO5_NB5ccA_cvLVJ3A25iANvAx6BdNeNDt9mxBHeZdA_7VDReU49-Bm5X39iZZnSYjOTuRg8EFBbl7m9wqkC1tzFnxDlkyyV1yvV347u-R39tFL5Zszg00jelkCDeib85Of579OOVUDd_SHujHLEV_AgbIUoW9jhIMYqKYCUMjk_S7CU1SPR2YCe0nVPXH414KD6UDjDF5TwHSUpSnGo95aBTFkuYGH9g-aNqouDUdS93HjOwJlUVdFpqltNW0DxrbX-j3-W9ECsAloHLQBU7IesP75OhKaPuALCdpYh4RGimjAlchRFZuHMZhENVcaZj0uQMMX7eIUxJSqKK8Onb5GIjczAo8MSe-AOKLnPhiZpF31TWjeXGRS2dvIX9UM7EweH4iHXdFIWcEYwFgzFizSDmu42gwqGHLGRNyzkLfSIu8Ru4SKL7g9ZQssjBgkVgITDQAr_EQvppjkbWFmSB21OJwyZ-iEHsTcb5JLfKiGsYrMZQvMek0nwN2vwcw2CIP5-xcLYnzIK9YaRF_gdEX1rw4kvR7eVH0AIBy4HCLrJdb4vy1Lvum69W2-Q8SPL580c_J6t5huyVazc7-E3KD5fvctWv-GlnOxlPzFPBrFj0rhAQlX69aLv0Bm7asfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFB1BkQosEG8MBQYJCRC1Gnv8ZBcSogaaChUqdTcaz4wTS44dOQ4oO7b9CxZ8CfxJv4R7bcckgCrYZJGZsT2-rzO-L0KeKgf0vvJiU3VUbDpSajO0hW0qL4qjwAPIXFXgGx16-8fO2xP3ZC2Lv4p2X7kk65wGrNKUlXszFdciHnh7c9CqPgbP4lEYbKS5vEguOWDdsIdBz-u1fgSwf2yVKvPXdRvmqKra_6duXjNOvwdOtt7Tq-TyIpuJ5WeRpmsGanCdXGuQJe3WrHCDXNDZTbI9anznt8iPftMLpaypQfOYzqdwIfr87PTb2ZdT9v2rnL6gEzBQZY4f9DFClUpsNpRhFBHFVBQa6SwZZzTL1SLVc5pkVCZFMcnhrjTFII9XFDAlRYWm8LeKTaJYU1zjHUdHQxMtp6KFUAmmRM-paAqj0DKnB0PzqNv_QD_V3_EoIIeAinScF0k5md4mx4M3H3v7ZtPCwZSez0pTRYEdqkDoEICfFn5H2ZbnMk_GwCPCtWIt3Qg9pyEcXSI_xq7kti8Vele1iCx2h2xleabvERpJLQNHIkaVThzGYRB1HKFt4TMLOM41iLWiJJdNfXNss5Hy6pwTeLymPgfq84r6fGmQl-2aWV3d49zZr5FB2plYmbv6Iy_GvBF0btsBgLxY2ZG0HMtScKIFntc6ZMwOfS0M8gzZi6P-gMeTokmDgE1iJS7eBcDEQnhrlkF2NmaC3MvN4RWD8kbvzDmgVccFhMw6BnnSDuNKjKXLdL6o5sDB2wMcapC7NT-3W2IsqEpGGsTf4PSNPW-OZMmkqkoeAFINLGaQ3ZVM_Hqs897pbis3_0CC-_939cdk-31_wA-Gh-8ekCt2JfeO2fF3yFZZLPRDwJNl9KhSGT8BwvFv6w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9NAFB6VVGI5sC-GggYJCRB1Gu82t0CpWkQKKo0UTtZsTqw6duQ4oHDi2n_BgV8C_6S_hPe8hKSgCiQuUZSZkT0zb_le5r1vCHkkbbD70o102ZGRbguh9MBkpi5dHnHfBchcMvD19t3dvv164AzWyNumFoaPxZBBkJ8hI2WeJe3lKvSkNN3wRRxtTWRUabzvbk3ByHqYS4uRMbhMfX6OrLsOgPMWWe_vv-t-KGuMPEMHwD1oSmf-OHDFPZUs_r_b6iVndTqRcnGaeolcmKUTNv_EkmTJYe1cIZNmqlWeylF7VvC2-HyKBfI_rsVVcrkGt7RbSeM1sqbS6-R8rz6-v0F-bNfXsRSVQNAsotMxvDt9cnL87eTLsfX9qxg_pSPwkUWGZwqYJEsF3neUYiITxWoYylUaD1OaZnKWqCmNUyriPB9l8FSaYJ7JcwqwlqJNlfhZpkdRpDVX-MTewZ6OzlvSnMkYq7KnlNXcLLTI6Js9_aC7_Z5-rP5KpABefMqSYZbHxWh8k_R3Xh2-3NXrWyR04XpWoUvum4H0mQoAeyrmdaRpuI7ligjElDlGpITD8fA2gOiJexFejG56QuIBr2LcsG6RVpql6g6hXCjh2wJhsrCjIAp83rGZMplnGSD0jkaMRnhCUVOs400fSViGWr4bVrsTwu6E5e6Ec408W4yZVAQjZ_Z-gTK56Ink4OUPWT4Ma1sTmqYPODOSJheGbRgSgmpQO6UCyzIDTzGNPEaJDtGEoQCxuhIDJolkYGEXMJsVwKoZGtlY6QmmR6w2NzoR1qZvGgJgth0A6VZHIw8XzTgS0_lSlc3KPhD7uwCFNXK7UqHFlCzLL1krNeKtKNfKnFdb0nhUEqP7AJZ9w9LIZqOGv17rrDXdXKjqX2zB3X_rfo9cNEtltPWOt0FaRT5T9wHHFvxBbZt-AnBvmxo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiation+of+small+%28%E2%89%A4%E2%80%893%C2%A0cm%29+hepatocellular+carcinomas+from+benign+nodules+in+cirrhotic+liver%3A+the+added+additive+value+of+MRI-based+radiomics+analysis+to+LI-RADS+version+2018+algorithm&rft.jtitle=BMC+gastroenterology&rft.au=Zhong%2C+Xi&rft.au=Guan%2C+Tianpei&rft.au=Tang%2C+Danrui&rft.au=Li%2C+Jiansheng&rft.date=2021-04-07&rft.eissn=1471-230X&rft.volume=21&rft.issue=1&rft.spage=155&rft_id=info:doi/10.1186%2Fs12876-021-01710-y&rft_id=info%3Apmid%2F33827440&rft.externalDocID=33827440
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-230X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-230X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-230X&client=summon