Serum metabolomic and lipidomic profiling identifies diagnostic biomarkers for seropositive and seronegative rheumatoid arthritis patients

Background Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum. Methods We performed comprehensive metabolomic...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational medicine Vol. 19; no. 1; pp. 500 - 10
Main Authors Luan, Hemi, Gu, Wanjian, Li, Hua, Wang, Zi, Lu, Lu, Ke, Mengying, Lu, Jiawei, Chen, Wenjun, Lan, Zhangzhang, Xiao, Yanlin, Xu, Jinyue, Zhang, Yi, Cai, Zongwei, Liu, Shijia, Zhang, Wenyong
Format Journal Article
LanguageEnglish
Published London BioMed Central 07.12.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1479-5876
1479-5876
DOI10.1186/s12967-021-03169-7

Cover

Abstract Background Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum. Methods We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals. Results Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity. Conclusions A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity.
AbstractList Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum.BACKGROUNDDiagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum.We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals.METHODSWe performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals.Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity.RESULTSTwenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity.A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity.CONCLUSIONSA panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity.
Background Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum. Methods We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals. Results Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity. Conclusions A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity.
Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum. We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals. Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity. A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity.
Abstract Background Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum. Methods We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals. Results Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity. Conclusions A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity.
Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum. We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals. Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity. A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity.
Background Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum. Methods We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals. Results Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity. Conclusions A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity. Keywords: Rheumatoid arthritis, Seronegative, Metabolomic, Lipidomic
Background Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum. Methods We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals. Results Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity. Conclusions A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity.
ArticleNumber 500
Audience Academic
Author Li, Hua
Gu, Wanjian
Xu, Jinyue
Cai, Zongwei
Liu, Shijia
Zhang, Yi
Lan, Zhangzhang
Luan, Hemi
Wang, Zi
Lu, Lu
Ke, Mengying
Zhang, Wenyong
Lu, Jiawei
Xiao, Yanlin
Chen, Wenjun
Author_xml – sequence: 1
  givenname: Hemi
  surname: Luan
  fullname: Luan, Hemi
  organization: School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology
– sequence: 2
  givenname: Wanjian
  surname: Gu
  fullname: Gu, Wanjian
  organization: Affiliated Hospital of Nanjing University of Chinese Medicine
– sequence: 3
  givenname: Hua
  surname: Li
  fullname: Li, Hua
  organization: Sustech Core Research Facilities, Southern University of Science and Technology
– sequence: 4
  givenname: Zi
  surname: Wang
  fullname: Wang, Zi
  organization: School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology
– sequence: 5
  givenname: Lu
  surname: Lu
  fullname: Lu, Lu
  organization: Affiliated Hospital of Nanjing University of Chinese Medicine
– sequence: 6
  givenname: Mengying
  surname: Ke
  fullname: Ke, Mengying
  organization: College of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine
– sequence: 7
  givenname: Jiawei
  surname: Lu
  fullname: Lu, Jiawei
  organization: State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 8
  givenname: Wenjun
  surname: Chen
  fullname: Chen, Wenjun
  organization: Affiliated Hospital of Nanjing University of Chinese Medicine
– sequence: 9
  givenname: Zhangzhang
  surname: Lan
  fullname: Lan, Zhangzhang
  organization: School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology
– sequence: 10
  givenname: Yanlin
  surname: Xiao
  fullname: Xiao, Yanlin
  organization: School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology
– sequence: 11
  givenname: Jinyue
  surname: Xu
  fullname: Xu, Jinyue
  organization: School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology
– sequence: 12
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology
– sequence: 13
  givenname: Zongwei
  surname: Cai
  fullname: Cai, Zongwei
  email: zwcai@hkbu.edu.hk
  organization: State Key Laboratory of Environmental and Biological Analysis (SKLEBA), Department of Chemistry, Hong Kong Baptist University
– sequence: 14
  givenname: Shijia
  surname: Liu
  fullname: Liu, Shijia
  email: liushijia2011@163.com
  organization: Affiliated Hospital of Nanjing University of Chinese Medicine
– sequence: 15
  givenname: Wenyong
  orcidid: 0000-0002-8531-8274
  surname: Zhang
  fullname: Zhang, Wenyong
  email: zhangwy@sustech.edu.cn
  organization: School of Medicine, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34876179$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1TAQjVARfcAPsECR2LBJie3EdjZIqOJRqRILYG059jh1SexgJ0X9Bb6aufeWvoQqlEWSmXPOPM4cFnshBiiKl6Q-JkTyt5nQjouqpqSqGeFdJZ4UB6QRXdVKwffufO8Xhzlf1DVt2qZ7VuyzBoNEdAfF76-Q1qmcYNF9HOPkTamDLUc_e7v9m1N0fvRhKL2FsHjnIZfW6yHEvGC-93HS6QekXLqYygwpzjH7xV_CVmkTCDDobSCdwzrpJXpb6rScJ4TlcsYcKufnxVOnxwwvrt9HxfePH76dfK7Ovnw6PXl_Vhku2FJZ2lgniWaudZqbloq-460TltSMd6TvXS-pIEBAUJyfcKmdbYlupNQ9o8COitOdro36Qs3JY_9XKmqvtoGYBoXNeTOC0ob00nDLAUzDOi6NE8ApabmoJeEUtdhOaw2zvvqlx_FGkNRq45LauaTQJbV1SQlkvdux5rWfwBqcPunxXiv3M8GfqyFeKsnbuiENCry5Fkjx5wp5UZPPBsZRB4hrVpRje7Rt2k2t1w-gF3FNAReMKEIY6Zgkt6hB49g-uIh1zUZUveeSN6RrGEPU8T9Q-FjAU0Gb8VLgPuHV3UFvJvx7fwigO4BJMecE7v_WJx-QjF_wiOJmWX58nHrtV8Y6YYB0u41HWH8ApFMReQ
CitedBy_id crossref_primary_10_1007_s11306_023_02004_y
crossref_primary_10_1016_j_jep_2023_116782
crossref_primary_10_3389_fmed_2022_963540
crossref_primary_10_3389_fmed_2022_857135
crossref_primary_10_1039_D2VA00107A
crossref_primary_10_1111_apm_13401
crossref_primary_10_1186_s13020_023_00750_8
crossref_primary_10_1186_s12967_024_05100_2
crossref_primary_10_3389_fimmu_2024_1409555
crossref_primary_10_3390_futurepharmacol2040038
crossref_primary_10_1016_j_jaut_2023_103001
crossref_primary_10_1002_rai2_12142
crossref_primary_10_3389_fimmu_2023_1161148
crossref_primary_10_1016_j_talanta_2024_126696
crossref_primary_10_1016_j_trac_2024_117852
crossref_primary_10_3390_jpm12060924
crossref_primary_10_1002_bmc_5736
crossref_primary_10_1111_1756_185X_70188
crossref_primary_10_1007_s00394_023_03257_y
crossref_primary_10_1016_j_mtcomm_2024_110208
crossref_primary_10_1016_j_cclet_2022_03_020
crossref_primary_10_1016_j_jff_2024_106289
crossref_primary_10_1016_j_aca_2023_341028
crossref_primary_10_1080_13880209_2023_2241512
crossref_primary_10_1016_j_isci_2023_108387
crossref_primary_10_1186_s12884_025_07224_9
crossref_primary_10_1016_j_talanta_2022_123486
crossref_primary_10_3892_etm_2024_12717
crossref_primary_10_1016_j_heliyon_2024_e33085
crossref_primary_10_1007_s10753_024_01986_8
crossref_primary_10_1016_j_jbspin_2024_105841
crossref_primary_10_1093_rheumatology_kead619
crossref_primary_10_1021_acs_jproteome_3c00574
crossref_primary_10_1021_acsomega_2c02766
crossref_primary_10_1038_s41598_023_32428_4
crossref_primary_10_1002_art_42848
crossref_primary_10_3390_ijms231911269
crossref_primary_10_1016_j_arcmed_2023_102907
crossref_primary_10_3390_metabo15030205
crossref_primary_10_1007_s00216_022_04473_x
crossref_primary_10_1136_rmdopen_2023_003560
crossref_primary_10_3389_fimmu_2023_1087925
crossref_primary_10_1155_2022_4258742
crossref_primary_10_1152_ajpcell_00630_2024
crossref_primary_10_3390_ijms25052483
crossref_primary_10_1021_acs_est_3c08033
crossref_primary_10_3389_fimmu_2024_1410365
Cites_doi 10.1016/j.aca.2018.08.002
10.1136/annrheumdis-2016-210997
10.1007/s11033-010-0545-9
10.4137/CIN.S20806
10.1017/nws.2015.20
10.1371/journal.pone.0097501
10.1017/S000711450769936X
10.1007/s10067-018-4021-6
10.1136/ard.2007.084459
10.1038/srep13888
10.1093/rheumatology/key302
10.1002/art.27584
10.1002/art.10241
10.1371/journal.pone.0219400
10.1017/S0007114514001056
10.1136/ard.2006.051672
10.1021/acs.jproteome.8b00439
10.1016/j.berh.2016.02.003
10.1038/cddis.2015.246
10.1016/j.jpba.2015.10.007
10.1016/j.cbi.2019.108903
10.1038/nrrheum.2014.121
10.1038/s41573-019-0032-5
10.1002/art.20720
10.1016/j.cbpa.2015.11.009
10.1136/annrheumdis-2019-216374
10.1186/s13075-019-1956-1
10.3389/fmed.2018.00339/full
10.1038/nrdp.2018.1
10.1016/j.jhazmat.2019.06.015
10.1021/pr401068k
10.1002/cpbi.86
10.1039/c4mb00131a
10.1186/1471-2105-12-77
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12967-021-03169-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
MEDLINE




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 10
ExternalDocumentID oai_doaj_org_article_ac1b8c6d6eec43968cf7e62156708162
10.1186/s12967-021-03169-7
PMC8650414
A686419433
34876179
10_1186_s12967_021_03169_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21904058; 2190457; 81774096
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
  grantid: ZYX03KF031
  funderid: http://dx.doi.org/10.13039/501100012246
– fundername: Young Elite Scientists Sponsorship Program by CAST
  grantid: QNRC2-B04
– fundername: National Natural Science Foundation of China
  grantid: 2190457
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
  grantid: ZYX03KF031
– fundername: National Natural Science Foundation of China
  grantid: 21904058
– fundername: National Natural Science Foundation of China
  grantid: 81774096
– fundername: ;
  grantid: QNRC2-B04
– fundername: ;
  grantid: ZYX03KF031
– fundername: ;
  grantid: 21904058; 2190457; 81774096
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
2VQ
4.4
ADRAZ
ADTOC
AHSBF
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c673t-d24df81a3f5fa6c527b965f7d103691bbfb8271e1e72479168afd51a488ab32e3
IEDL.DBID M48
ISSN 1479-5876
IngestDate Fri Oct 03 12:50:54 EDT 2025
Sun Oct 26 04:15:56 EDT 2025
Sat Oct 11 07:03:06 EDT 2025
Thu Oct 02 11:27:08 EDT 2025
Sun Oct 19 00:03:29 EDT 2025
Mon Oct 20 22:14:53 EDT 2025
Mon Oct 20 16:48:22 EDT 2025
Mon Jul 21 06:08:13 EDT 2025
Thu Apr 24 22:52:13 EDT 2025
Wed Oct 01 03:39:44 EDT 2025
Sat Sep 06 07:28:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metabolomic
Rheumatoid arthritis
Seronegative
Lipidomic
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c673t-d24df81a3f5fa6c527b965f7d103691bbfb8271e1e72479168afd51a488ab32e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8531-8274
OpenAccessLink https://proxy.k.utb.cz/login?url=https://translational-medicine.biomedcentral.com/track/pdf/10.1186/s12967-021-03169-7
PMID 34876179
PQID 2611319381
PQPubID 43076
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_ac1b8c6d6eec43968cf7e62156708162
unpaywall_primary_10_1186_s12967_021_03169_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650414
proquest_miscellaneous_2608125457
proquest_journals_2611319381
gale_infotracmisc_A686419433
gale_infotracacademiconefile_A686419433
pubmed_primary_34876179
crossref_primary_10_1186_s12967_021_03169_7
crossref_citationtrail_10_1186_s12967_021_03169_7
springer_journals_10_1186_s12967_021_03169_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-07
PublicationDateYYYYMMDD 2021-12-07
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of translational medicine
PublicationTitleAbbrev J Transl Med
PublicationTitleAlternate J Transl Med
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References G Wells (3169_CR26) 2009; 68
RS Pinals (3169_CR33) 1977; 4
Y Qi (3169_CR31) 2014; 10
H Brouwers (3169_CR35) 2015; 29
I Navarro-Millán (3169_CR34) 2019; 58
CH Patel (3169_CR38) 2019; 18
VP van Halm (3169_CR7) 2006; 66
X Robin (3169_CR23) 2011; 12
T Tomizawa (3169_CR28) 2019; 21
S Kim (3169_CR29) 2014; 9
S Bugatti (3169_CR1) 2018; 5
P Hu (3169_CR36) 2011; 38
MS Chimenti (3169_CR5) 2015; 6
H Liao (3169_CR8) 2004; 50
A Zabek (3169_CR13) 2016; 117
G Kerekes (3169_CR6) 2014; 10
A Saraux (3169_CR2) 2002; 47
J Chong (3169_CR21) 2019; 68
NG Mahieu (3169_CR18) 2016; 30
H Luan (3169_CR19) 2020; 2
C Sasaki (3169_CR12) 2019; 14
X Sun (3169_CR32) 2014; 112
H Luan (3169_CR20) 2018; 1036
D Mehrle (3169_CR24) 2015; 3
D Aletaha (3169_CR14) 2010; 62
JS Smolen (3169_CR27) 2018; 4
V Moreira (3169_CR37) 2020; 317
M Souto-Carneiro (3169_CR4) 2020; 79
KJ Archer (3169_CR22) 2014; 13
A Wasserman (3169_CR3) 2018; 97
H Luan (3169_CR15) 2014; 13
EEA Arts (3169_CR25) 2017; 76
D Dubey (3169_CR10) 2018
F Ji (3169_CR17) 2019; 378
J Li (3169_CR11) 2018; 37
H Luan (3169_CR16) 2015; 5
P Li (3169_CR30) 2007; 98
AK Carlson (3169_CR9) 2019; 37
References_xml – volume: 1036
  start-page: 66
  year: 2018
  ident: 3169_CR20
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2018.08.002
– volume: 76
  start-page: 1693
  year: 2017
  ident: 3169_CR25
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2016-210997
– volume: 2
  start-page: 89
  year: 2020
  ident: 3169_CR19
  publication-title: Bioinformatics
– volume: 38
  start-page: 4225
  year: 2011
  ident: 3169_CR36
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-010-0545-9
– volume: 13
  start-page: S20806
  year: 2014
  ident: 3169_CR22
  publication-title: Cancer Inform
  doi: 10.4137/CIN.S20806
– volume: 3
  start-page: 348
  year: 2015
  ident: 3169_CR24
  publication-title: Netw Sci
  doi: 10.1017/nws.2015.20
– volume: 9
  start-page: e97501
  year: 2014
  ident: 3169_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0097501
– volume: 98
  start-page: 237
  year: 2007
  ident: 3169_CR30
  publication-title: Br J Nutr
  doi: 10.1017/S000711450769936X
– volume: 37
  start-page: 1493
  year: 2018
  ident: 3169_CR11
  publication-title: Clin Rheumatol
  doi: 10.1007/s10067-018-4021-6
– volume: 68
  start-page: 954
  year: 2009
  ident: 3169_CR26
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.2007.084459
– volume: 37
  start-page: 393
  year: 2019
  ident: 3169_CR9
  publication-title: Clin Exp Rheumatol
– volume: 5
  start-page: 13888
  year: 2015
  ident: 3169_CR16
  publication-title: Sci Rep
  doi: 10.1038/srep13888
– volume: 97
  start-page: 455
  year: 2018
  ident: 3169_CR3
  publication-title: Am Fam Physician
– volume: 58
  start-page: 933
  year: 2019
  ident: 3169_CR34
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/key302
– volume: 62
  start-page: 2569
  year: 2010
  ident: 3169_CR14
  publication-title: Arthritis Rheum
  doi: 10.1002/art.27584
– volume: 47
  start-page: 155
  year: 2002
  ident: 3169_CR2
  publication-title: Arthritis Care Res (Hoboken).
  doi: 10.1002/art.10241
– volume: 14
  start-page: e0219400
  year: 2019
  ident: 3169_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0219400
– volume: 4
  start-page: 414
  year: 1977
  ident: 3169_CR33
  publication-title: J Rheumatol
– volume: 112
  start-page: 477
  year: 2014
  ident: 3169_CR32
  publication-title: Br J Nutr
  doi: 10.1017/S0007114514001056
– volume: 66
  start-page: 184
  year: 2006
  ident: 3169_CR7
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.2006.051672
– year: 2018
  ident: 3169_CR10
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.8b00439
– volume: 29
  start-page: 741
  year: 2015
  ident: 3169_CR35
  publication-title: Best Pract Res Clin Rheumatol
  doi: 10.1016/j.berh.2016.02.003
– volume: 6
  start-page: e1887
  year: 2015
  ident: 3169_CR5
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2015.246
– volume: 117
  start-page: 544
  year: 2016
  ident: 3169_CR13
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2015.10.007
– volume: 317
  start-page: 108903
  year: 2020
  ident: 3169_CR37
  publication-title: Chem Biol Interact
  doi: 10.1016/j.cbi.2019.108903
– volume: 10
  start-page: 691
  year: 2014
  ident: 3169_CR6
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2014.121
– volume: 18
  start-page: 669
  year: 2019
  ident: 3169_CR38
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-019-0032-5
– volume: 50
  start-page: 3792
  year: 2004
  ident: 3169_CR8
  publication-title: Arthritis Rheum
  doi: 10.1002/art.20720
– volume: 30
  start-page: 87
  year: 2016
  ident: 3169_CR18
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2015.11.009
– volume: 79
  start-page: 499
  year: 2020
  ident: 3169_CR4
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2019-216374
– volume: 21
  start-page: 174
  year: 2019
  ident: 3169_CR28
  publication-title: Arthritis Res Ther
  doi: 10.1186/s13075-019-1956-1
– volume: 5
  start-page: 1
  year: 2018
  ident: 3169_CR1
  publication-title: Front Med
  doi: 10.3389/fmed.2018.00339/full
– volume: 4
  start-page: 18001
  year: 2018
  ident: 3169_CR27
  publication-title: Nat Rev Dis Prim
  doi: 10.1038/nrdp.2018.1
– volume: 378
  start-page: 120738
  year: 2019
  ident: 3169_CR17
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.06.015
– volume: 13
  start-page: 1527
  year: 2014
  ident: 3169_CR15
  publication-title: J Proteome Res
  doi: 10.1021/pr401068k
– volume: 68
  start-page: 1
  year: 2019
  ident: 3169_CR21
  publication-title: Curr Protoc Bioinforma
  doi: 10.1002/cpbi.86
– volume: 10
  start-page: 2617
  year: 2014
  ident: 3169_CR31
  publication-title: Mol Biosyst
  doi: 10.1039/c4mb00131a
– volume: 12
  start-page: 77
  year: 2011
  ident: 3169_CR23
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-12-77
SSID ssj0024549
Score 2.52966
Snippet Background Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers...
Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for...
Background Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers...
Abstract Background Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 500
SubjectTerms Amino acids
Arthritis, Rheumatoid
Biological markers
Biomarkers
Biomedical and Life Sciences
Biomedicine
Blood lipids
Chromatography
Chronic illnesses
Development and progression
Diagnosis
Discriminant analysis
Disease
Disease Biomarkers
Energy metabolism
Health aspects
Histidine
Humans
Identification and classification
Learning algorithms
Lipid metabolism
Lipidomic
Lipidomics
Lipids
Medicine/Public Health
Metabolism
Metabolites
Metabolomic
Metabolomics
Phenylalanine
Phosphatidic acid
Phosphatidylethanolamine
Physiological aspects
Prediction models
Rheumatoid arthritis
Seronegative
Serum
SummonAdditionalLinks – databaseName: Openly Available Collection - DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiHcDBRkJiQONiuPEdo4FUVVI5USl3qzYHrORttnVZkPVv8CvZuw82IBUOHBM7CS25_M8lPE3hLzhTngOuL89AE9DqftUGYxSCueV4Rw45OFw8tkXcXqef74oLnZKfYWcsJ4euF-4o8oyo6xwAsCi8RTKegkCDZWQoWZE1L7vVTkGUyPLHoY94xEZJY5atGqoEEI6AoJYlKmcmaHI1v-nTt4xSr8nTE5_Te-RO12zrq6vquVyxzCdPCD3B4-SHvczeUhuQfOI3D4b_pk_Jj9QHXSX9BK2KO9lOIRMq8bRZb2uXbzqy3bjd2jt-twhaKnrU_DwnTSc0A9JPJuWoodLEbOrPtXrO8Q3hRsNfIsM4nSzgA6d4FXtKK7tIlIm0YG8tX1Czk8-ff14mg4VGFIrJN-mLstRZqzivvCVsEUmTSkKLx1Dw1cyY7xRmWTAQGa5RE9TVd4VrEKtUBmeAX9K9hocwj6h3qAkAb0nnpV5Xip0E5ziglvU1M6DTQgbBaLtQE8eqmQsdQxTlNC9EDUKUUchapmQd9Mz656c48beH4Kcp56BWDveQLjpAW76b3BLyNuAEh22Pw7PVsMpBpxkINLSx0KJnJU55wk5mPXEbWvnzSPO9KA2Wo3hLEOdiF5UQl5PzeHJkArXwKoLfXAgGNYXOKFnPSynKXEMP9ElLRMiZ4CdzXne0tSLSCqu0FXPWZ6QwxHav4Z105oeTvD_BxE8_x8ieEHuZmEnh5wieUD2tpsOXqJnuDWvohL4CcRbX3U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxQxFA51C14exLujVSIIPtihZDKTZB5EWmkpQhcRC30LmVy6C9vZdS-Kf8Ff7TmZy3YUio87k5lN9nw5-bI55zuEvOVOBO5hfgfveYql7lNVwS6lcEFVnHvuc0xOPhuL0_P880VxsUPGXS4MhlV2PjE6aje3-B_5ATB9BnCBBebj4nuKVaPwdLUroWHa0gruQ5QYu0V2M1TGGpHdo-Pxl69b9T3YDnWpM0ocrGC1A0eBYQoAblGmcrA8RRX_f331tcXq70DK_jT1HrmzqRfm108zm11bsE4ekPst06SHDTQekh1fPyK3z9qz9MfkN7iJzRW98mvAwQyTk6mpHZ1NF1MXPzXlvOF76NQ1MUV-RV0TmgfvpJi5j8E9yxUF5ksBy_MmBOyHj2_CC7W_jMridDnxGyDH86mjANZJlFKirajr6gk5Pzn-9uk0bSszpFZIvk5dloMtmeGhCEbYIpNVKYogHYMFsWRVFSqVSeaZl1kugYEqE1zBDHgLU_HM86dkVEMXnhMaKmOZB1bFszLPSwX0wSkuuAUP7oK3CWGdQbRtZcuxesZMx-2LEroxogYj6mhELRPyvn9m0Yh23Nj6CO3ct0TB7XhhvrzU7fzV0MlKWeGE9xY4nFA2SC-ALwmJpUuyhLxDlGh0C9A9a9rsBhgkCmzpQ6FEzsqc84TsDVrCdLbD2x3OdOtOVnoL_oS86W_jkxgiV_v5BttAR2C7X8CAnjWw7IfEYVsKVLVMiBwAdjDm4Z16Ooli4woofM7yhOx30N5266bfdL-H_3-Y4MXNg35J7mY4RzGKSO6R0Xq58a-AC66r1-0E_wPgFV2Y
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSDwOiDeBgoyExIFGlePEdo6loqqQyolKvVmOPWYjpdnVZgPiL_CrGTvZdAOogmPiR-zM6xt5ZkzIW-6E54Dy7QF4Gq66T1WFXkrhvKo4Bw55SE4--yxOz_NPF8XFWCYn5MLsnt8zJQ47tEcoyiGQANlPlKm8SW6hkRLxYFYcX9XVQ0dnmxTz13EzwxPr8_-phXfM0O8hktM56T1yp29X5sd30zQ7pujkAbk_Ykh6NBD9IbkB7SNy-2w8JX9MfqIC6C_pJWyQwk1IO6amdbSpV7WLT8NF3fgdWrshWgg66oagO5yThpz8ELaz7ihiWopcuhyCu75BnCm8aOFrrBlO1wvoEfYua0eRDRexSBIdy7V2T8j5yccvx6fpeOdCaoXkm9RlOVKJGe4Lb4QtMlmVovDSMTR1JasqX6lMMmAgs1witlTGu4IZ1AOm4hnwp2SvxSU8J9RXxjJAvMSzMs9LhcDAKS64Rd3sPNiEsC1BtB0Lkod7MRodHRMl9EBEjUTUkYhaJuT9NGY1lOO4tveHQOepZyilHV8gh-lRMjUuslJWOAFgEZ0JZb0EgUhIyHApSZaQd4FLdBB4XJ41Y94CbjKUztJHQomclTnnCdmf9URBtfPmLZ_pUVF0Gh1YhloQcVNC3kzNYWQIfmth2Yc-uBB05Avc0LOBLactcXQ4EYSWCZEzhp3ted7S1otYRlwhOM9ZnpCDLWtfLeu6f3owsf8_kODF_83-ktzNgsyGeCG5T_Y26x5eIerbVK-juP8CnAdQCA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrcTjwLNAoCAjIXGg2cpxYjvHBVFVSK04sFI5WYkf3VXT7Gp3UwQ_gV_NOC-agiqQuO3GduRxZr75nMyMAV4zwx2zaN_OWhb6o-5DmeMuJTFO5oxZZmOfnHx0zA-n8ceT5GQLpl0uzMYjdNG-Bwu778vjy7noRQ3g-EOf7S-Na-xe8v01ui60eh9zgJrK01DcgG2eIEUfwfb0-NPkS51pJNIwQQjoEmj-OHDgpOpa_r8j9iWXdTWcsv-megduVeUy-_Y1K4pLbuvgHlx0AjfRKmfjapOP9fcrtSD_-4rch7st0SWTRjMfwJYtH8LNo_bGj-AHolR1Ts7tBtWw8LnRJCsNKebLuan_NaeJo4BkbpqQJrsmpokMxHsSPzUfW7RaEyTeBE1p0USgXdj6Tv5CaU_rwuZkNbMVcvPF3BC0lVldyYm0NWXXOzA9-PD5_WHYHgwRai7YJjRRjKpEM-YSl3GdRCJPeeKEoeiPU5rnLpeRoJZaEeHzplxmziQ0Q7DKchZZ9hhGJU7hKRCXZ5paJHUsSuM4lchejGScaXQgxlkdAO00Qem2aro_vKNQ9e5JctUsssJFVvUiKxHA237MsqkZcm3vd17B-p6-3nd9YbE6VS18KJxkLjU33FqNFJJL7YTlSNe48CenRAG88eqpPCp5Pcja5AoU0tf3UhMueUzTmLEAdgc9EU30sLlTcNWi2VrhLpsiVCO5C-BV3-xH-gi90i4q3wcnEiEfR4GeNPbQi8RwV4xMOQ1ADCxlIPOwpZzP6lrnEncQMY0D2Ots6te0rlvTvd7u_uIRPPu37s_hduRtygc1iV0YbVaVfYHUdJO_bIHmJzI9iow
  priority: 102
  providerName: Unpaywall
Title Serum metabolomic and lipidomic profiling identifies diagnostic biomarkers for seropositive and seronegative rheumatoid arthritis patients
URI https://link.springer.com/article/10.1186/s12967-021-03169-7
https://www.ncbi.nlm.nih.gov/pubmed/34876179
https://www.proquest.com/docview/2611319381
https://www.proquest.com/docview/2608125457
https://pubmed.ncbi.nlm.nih.gov/PMC8650414
https://translational-medicine.biomedcentral.com/track/pdf/10.1186/s12967-021-03169-7
https://doaj.org/article/ac1b8c6d6eec43968cf7e62156708162
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: KQ8
  dateStart: 20030701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: M48
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: AAJSJ
  dateStart: 20030601
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: C6C
  dateStart: 20030106
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD70Ars8jN3nrQsaDPawukOWLckPYyShpQwSSlkg24uwLbkJpE6Wy7b-hf3qHcmX1lsJewnYkmVJ5_ad-OgcgLdM85wZlO_cGObbUve-TNFLiXQuU8YMM6E9nDwY8tNR-HkcjXegLndUbeDqVtfO1pMaLWdHv75ffUKB_-gEXvIPK7RZKO422ABZlMe-2IV9tFSxLeUwCOV17r3IwWEaitiPUA3Uh2huHaNlqFw-_3-19g2z9XdIZfNd9T7c3RSL5OpnMpvdMF0nD-FBhTlJt2SSR7BjisdwZ1B9VX8Cv1FhbC7JpVkjR8zsMWWSFJrMpoupdldlYW98D5nqMrrIrIgug_RwTGLP8Nswn-WKIAYmyNXzMhjsh3Ej2RuFuXA5xslyYjYIk-dTTZBtJy6pEqnSu66ewujk-Ev_1K9qNPgZF2zt6yBEqtKE5VGe8CwKRBrzKBeaommMaZrmqQwENdSIALedcpnkOqIJ6o0kZYFhz2CvwCm8AJKnSUYN4isWxGEYSwQSWjLOMtTlOjeZB7QmiMqqBOa2jsZMOUdGclUSUSERlSOiEh68b55ZlOk7tvbuWTo3PW3qbXdjvrxQlSQrnGQqM665MRmiOS6zXBiOyIkLW8Qk8OCd5RJlWRanlyXVOQdcpE21pbpc8pDGIWMeHLR6omBn7eaaz1QtFwodXopaE3GWB2-aZvukDZYrzHxj--BE0PGPcEHPS7ZslsTQQUXQGnsgWgzbWnO7pZhOXNpxiWA-pKEHhzVrX09r254eNuz_HyR4uX1PXsG9wMqojScSB7C3Xm7Ma0SF67QDu2IsOrDfOx6eneNVn_c77h-WjlMC-Hve-4bto-FZ9-sfJVNjCw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjF4QHwTGGAkEA8smhI7tvMwoQ02bWytENqkvZnEdtZKXVqalmn_An8Ufxt3-eoCUsXLHhs77rn39bv6fEfIW2ZFxhzod-Yc87HVva9SiFIim6mUMcccx8vJvb44OOVfzqKzFfK7uQuDaZWNTSwNtR0b_I98C5B-AOICDubj5IePXaPwdLVpoZHUrRXsdllirL7YceSuLiGEK7YPPwO_34Xh_t7JpwO_7jLgGyHZzLchB7qChGVRlggThTKNRZRJG4Bxj4M0zVIVysAFToZcAppSSWajIAHJT1IWOgbr3iJrnPEYgr-13b3-12-Lan8QfjVXdZTYKsC7gmHCtAhQJhH7suMOy64B__qGa87x78TN9vT2Llmf55Pk6jIZja45yP375F6NbOlOJYoPyIrLH5Lbvfrs_hH5BWZpfkEv3AzkboSXoWmSWzoaToa2_FS1D4fvoUNb5TC5gtoqFRDWpFgpAJOJpgUFpE1Bd8ZVytlPV66ED3J3XlYyp9OBmwMYHw8tBeUYlKWbaF1EtnhMTm-ER0_Iag4kPCM0SxMTOEBxLIw5jxXAFauYYAY8hs2c8UjQMESbukw6dusY6TJcUkJXTNTARF0yUUuPfGjfmVRFQpbO3kU-tzOxwHf5YDw917W90EBkqoywwjkDmFEok0knAJ8Jia1SQo-8RynRaIaAPJPUtylgk1jQS-8IJXgQc8Y8stGZCebDdIcbOdO1-Sr0Qtk88qYdxjcxJS934znOAUJCAOCwoaeVWLZbYhAGAzSOPSI7AtvZc3ckHw7K4uYKQgYecI9sNqK9IGvZb7rZiv9_sOD58k2_JusHJ71jfXzYP3pB7oSor5jBJDfI6mw6dy8Bh87SV7WyU_L9pu3LH0gUmm4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLagSIUeEFshUMBISBxoVDl2bOdYBkZlacWBSr1ZiZfOSNPMaBYq_gK_mvecTDoBVMEx8RI7b_ssv4WQ19zJwD3Id_Cep1jqPtUVnFJyF3TFuedeYHDy8Yk8OhWfzvKzjSj-6O2-vpJsYhowS1O9PJi50Ii4lgcLsFIg4OheAEwpi1TdJLcEWDesYTCQg6tse3D8WYfK_HVczxzFrP1_6uYN4_S742R3e7pDbq_qWfnjspxMNgzU8B652yJLetiwwn1yw9cPyPZxe3f-kPwEtbC6oBd-CXSfYDAyLWtHJ-PZ2MWnpnw3fIeOXeND5BfUNa54MCfFSH105pkvKCBdCrw7bVy-vvs4E76o_XnMJE7nI78CMDwdOwrMOYqpk2ibxHXxiJwOP3wbHKVtJYbUSsWXqcsE0I6VPOShlDbPVFXIPCjHwAAWrKpCpTPFPPMqEwoQpy6Dy1kJ2qGseOb5LtmqYQlPCA1VaZkHFMWzQohCA1xwmktuQWO74G1C2JogxrZpyrFaxsTE44qWpiGiASKaSESjEvK2GzNrknRc2_sd0rnriQm244vp_Ny08mpgkZW20knvLWA2qW1QXgI-kgpLlWQJeYNcYlANwPJs2UYzwCYxoZY5lFoKVgjOE7LX6wnia_vNaz4zrfpYGDjWMtCNgKYS8qprxpHoElf76Qr7IL8DAIYNPW7YstsSh2MoQNMiIarHsL0991vq8SgmF9cA2QUTCdlfs_bVsq77p_sd-_8DCZ7-3-wvyfbX90Pz5ePJ52fkTobiiw5Fao9sLecr_xxg4bJ6ESX_F_FLWz4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrcTjwLNAoCAjIXGg2cpxYjvHBVFVSK04sFI5WYkf3VXT7Gp3UwQ_gV_NOC-agiqQuO3GduRxZr75nMyMAV4zwx2zaN_OWhb6o-5DmeMuJTFO5oxZZmOfnHx0zA-n8ceT5GQLpl0uzMYjdNG-Bwu778vjy7noRQ3g-EOf7S-Na-xe8v01ui60eh9zgJrK01DcgG2eIEUfwfb0-NPkS51pJNIwQQjoEmj-OHDgpOpa_r8j9iWXdTWcsv-megduVeUy-_Y1K4pLbuvgHlx0AjfRKmfjapOP9fcrtSD_-4rch7st0SWTRjMfwJYtH8LNo_bGj-AHolR1Ts7tBtWw8LnRJCsNKebLuan_NaeJo4BkbpqQJrsmpokMxHsSPzUfW7RaEyTeBE1p0USgXdj6Tv5CaU_rwuZkNbMVcvPF3BC0lVldyYm0NWXXOzA9-PD5_WHYHgwRai7YJjRRjKpEM-YSl3GdRCJPeeKEoeiPU5rnLpeRoJZaEeHzplxmziQ0Q7DKchZZ9hhGJU7hKRCXZ5paJHUsSuM4lchejGScaXQgxlkdAO00Qem2aro_vKNQ9e5JctUsssJFVvUiKxHA237MsqkZcm3vd17B-p6-3nd9YbE6VS18KJxkLjU33FqNFJJL7YTlSNe48CenRAG88eqpPCp5Pcja5AoU0tf3UhMueUzTmLEAdgc9EU30sLlTcNWi2VrhLpsiVCO5C-BV3-xH-gi90i4q3wcnEiEfR4GeNPbQi8RwV4xMOQ1ADCxlIPOwpZzP6lrnEncQMY0D2Ots6te0rlvTvd7u_uIRPPu37s_hduRtygc1iV0YbVaVfYHUdJO_bIHmJzI9iow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serum+metabolomic+and+lipidomic+profiling+identifies+diagnostic+biomarkers+for+seropositive+and+seronegative+rheumatoid+arthritis+patients&rft.jtitle=Journal+of+translational+medicine&rft.au=Luan%2C+Hemi&rft.au=Gu%2C+Wanjian&rft.au=Li%2C+Hua&rft.au=Wang%2C+Zi&rft.date=2021-12-07&rft.pub=BioMed+Central+Ltd&rft.issn=1479-5876&rft.eissn=1479-5876&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12967-021-03169-7&rft.externalDocID=A686419433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon