Solid oxide fuel cell interconnect design optimization considering the thermal stresses

The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objec...

Full description

Saved in:
Bibliographic Details
Published inScience bulletin (Beijing) Vol. 61; no. 17; pp. 1333 - 1344
Main Authors Xu, Min, Li, Tingshuai, Yang, Ming, Andersson, Martin
Format Journal Article
LanguageEnglish
Published Beijing Elsevier B.V 01.09.2016
Science China Press
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-9273
2095-9281
2095-9281
DOI10.1007/s11434-016-1146-3

Cover

Abstract The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water–gas shift reaction were considered in our model. The results examine the relationship between the interconnect structures and thermal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell.
AbstractList The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water-gas shift reaction were considered in our model. The results examine the relationship between the interconnect structures and thermal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell.The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water-gas shift reaction were considered in our model. The results examine the relationship between the interconnect structures and thermal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell.
The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water–gas shift reaction were considered in our model. The results examine the relationship between the interconnect structures and thermal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell.
The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water-gas shift reac- tion were considered in our model. The results examine the relationship between the interconnect structures and ther- mal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell.
Author Andersson, Martin
Li, Tingshuai
Yang, Ming
Xu, Min
AuthorAffiliation School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Author_xml – sequence: 1
  givenname: Min
  surname: Xu
  fullname: Xu, Min
  organization: School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 2
  givenname: Tingshuai
  surname: Li
  fullname: Li, Tingshuai
  organization: School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 3
  givenname: Ming
  surname: Yang
  fullname: Yang, Ming
  organization: School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 4
  givenname: Martin
  surname: Andersson
  fullname: Andersson, Martin
  email: martin.andersson@energy.lth.se
  organization: Department of Energy Sciences, Faculty of Engineering, Lund University, P.O. Box 118, 221 00 Lund, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27635282$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQjVARLaU_gAuK4MIlYDuOP4SEhCq-pEocAHG0vPZk11XW3tpJ-fj1TLrLqu1hOVgZxe_NezN-j6ujmCJU1VNKXlFC5OtCKW95Q6hosBJN-6A6YUR3jWaKHu1r2R5XZ6VcEkIo14wT-ag6ZlK0HVPspPrxNQ3B1-lX8FD3Ewy1g2GoQxwhuxQjuLH2UMIy1mkzhnX4Y8eQYo13BSk5xGU9rmA-eW2HuowZSoHypHrY26HA2e57Wn3_8P7b-afm4svHz-fvLhonJBsbypQEbenCaw0CrPASf-B4wJ3vWsa06F2nQAjR99B7QhjrJXecLJjoadeeVnbbt_yEzbQwmxzWNv82yQazSXm0g0FDYLNbmWEyBQyihuBupihGKd_LXltj2aI3XHNrtLLCcOpVi5UWzKHG260GUtfgHcQxY987UnduYliZZbo2HdolnGODl7sGOV1NUEazDmXes42QpmIYmYFSyPa_UKo6LVsiNEXoi3vQyzTliNtGlCJKKqJn7We3ze9d_4sAAugW4HIqJUO_h1Bi5qSZbdIMJs3MSTOzS3mP48J4s1KcPwwHmWz3Xps5O5BvmT5AerMlASbpOiCpuADRgQ8ZA2p8CgfZz3dmVykur1B1P6EQGtfUEtX-BSmnB9c
CitedBy_id crossref_primary_10_1080_15567036_2019_1607951
crossref_primary_10_33961_jecst_2019_00276
crossref_primary_10_1080_15567036_2021_1916655
crossref_primary_10_1080_15435075_2022_2065881
crossref_primary_10_1080_15435075_2023_2177857
crossref_primary_10_1016_j_ijhydene_2023_07_084
crossref_primary_10_1016_j_physo_2024_100219
crossref_primary_10_1016_j_ijhydene_2022_10_147
crossref_primary_10_1016_j_enconman_2017_12_045
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_096
crossref_primary_10_1149_2_1001814jes
crossref_primary_10_3390_cryst12121697
crossref_primary_10_1007_s11434_016_1150_7
crossref_primary_10_1142_S0217984920501584
crossref_primary_10_3390_cryst12070953
crossref_primary_10_1016_j_icheatmasstransfer_2025_108702
crossref_primary_10_1007_s11666_021_01171_5
crossref_primary_10_1002_ente_202001012
crossref_primary_10_1016_j_jpowsour_2022_232073
crossref_primary_10_1002_fuce_201800048
crossref_primary_10_1016_j_ijhydene_2024_10_114
crossref_primary_10_1149_2_1341802jes
crossref_primary_10_1149_1945_7111_ab79aa
crossref_primary_10_1007_s11581_020_03602_9
crossref_primary_10_1016_j_ijhydene_2025_02_045
crossref_primary_10_1016_j_jpowsour_2018_01_011
crossref_primary_10_1016_j_ijhydene_2023_06_140
crossref_primary_10_1016_j_ijhydene_2019_03_079
crossref_primary_10_1021_acs_iecr_8b04142
crossref_primary_10_1016_j_ijhydene_2021_12_014
crossref_primary_10_3390_app9020352
crossref_primary_10_1002_er_5036
crossref_primary_10_1016_j_scib_2024_01_028
crossref_primary_10_3390_en15010343
crossref_primary_10_1016_j_jeurceramsoc_2020_09_004
crossref_primary_10_1002_ep_13443
crossref_primary_10_1016_j_ijhydene_2019_02_155
crossref_primary_10_1016_j_ceramint_2023_03_088
crossref_primary_10_1016_j_jpowsour_2020_228868
crossref_primary_10_1016_j_seta_2022_102891
crossref_primary_10_1088_1742_6596_2178_1_012005
crossref_primary_10_1016_j_ijhydene_2022_08_236
crossref_primary_10_3390_en14051280
crossref_primary_10_1016_j_ijhydene_2017_05_189
crossref_primary_10_1016_j_ijhydene_2024_07_092
crossref_primary_10_1016_j_rser_2021_111369
crossref_primary_10_1021_acs_energyfuels_0c04217
crossref_primary_10_1016_j_ceramint_2024_07_413
crossref_primary_10_1016_j_ijoes_2024_100550
crossref_primary_10_1016_j_jpowsour_2022_230981
crossref_primary_10_1016_j_ijhydene_2019_10_139
crossref_primary_10_1002_er_7129
crossref_primary_10_1016_j_icheatmasstransfer_2020_104831
crossref_primary_10_1016_j_jpowsour_2020_228310
crossref_primary_10_3389_fchem_2020_609338
crossref_primary_10_1016_j_susmat_2025_e01317
Cites_doi 10.1016/j.jeurceramsoc.2007.12.025
10.1016/j.ijthermalsci.2013.10.008
10.1016/j.matlet.2015.07.137
10.1002/fuce.201300160
10.1002/aenm.201500537
10.1016/j.jpowsour.2014.10.083
10.1038/nmat1040
10.3390/en7010295
10.1016/j.jpowsour.2012.12.122
10.1002/fuce.201300248
10.1149/1.2913152
10.1016/j.ijheatmasstransfer.2011.10.032
10.1016/j.jpowsour.2012.03.027
10.1016/j.jpowsour.2008.04.059
10.1016/S0955-2219(01)00238-2
10.1016/j.jeurceramsoc.2013.12.055
10.1016/j.enconman.2013.02.008
10.1016/j.pecs.2014.12.001
10.1016/j.electacta.2015.01.222
10.1016/j.jpowsour.2014.02.041
10.1007/s10008-010-1166-x
10.1016/j.jpowsour.2009.10.011
10.1016/j.jpowsour.2009.10.064
10.1016/j.electacta.2011.08.038
10.1002/fuce.201500180
10.1016/j.jpowsour.2012.02.077
10.1016/j.ijhydene.2009.07.089
10.1016/j.ijhydene.2010.08.063
10.1039/c3ta10844a
10.1007/s00231-008-0449-6
10.1016/j.ijheatmasstransfer.2014.06.033
10.1017/S0022112005007998
10.1016/j.pmatsci.2015.01.001
10.1016/S1005-0302(10)60049-7
10.1149/06801.3003ecst
10.1016/j.ijheatmasstransfer.2012.04.011
10.1016/S1570-7946(08)80146-0
10.1039/C3TA13196C
10.3390/ma8095265
10.1016/S0378-7753(02)00726-7
10.1016/j.jpowsour.2012.12.059
10.1038/35005040
10.1016/j.nanoen.2014.05.010
10.1016/j.jpowsour.2015.10.090
10.1016/j.jpowsour.2009.03.010
ContentType Journal Article
Copyright 2016 Science China Press
Science China Press and Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: 2016 Science China Press
– notice: Science China Press and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2016
CorporateAuthor Institutioner vid LTH
Department of Energy Sciences
Departments at LTH
Värmeöverföring
Lunds universitet
Institutionen för energivetenskaper
Faculty of Engineering, LTH
Lunds Tekniska Högskola
Heat Transfer
Lund University
CorporateAuthor_xml – name: Faculty of Engineering, LTH
– name: Lund University
– name: Heat Transfer
– name: Värmeöverföring
– name: Department of Energy Sciences
– name: Institutioner vid LTH
– name: Lunds Tekniska Högskola
– name: Departments at LTH
– name: Lunds universitet
– name: Institutionen för energivetenskaper
DBID 2RA
92L
CQIGP
~WA
6I.
AAFTH
C6C
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1007/s11434-016-1146-3
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA
PubMed




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
Physics
DocumentTitleAlternate Solid oxide fuel cell interconnect design optimization considering the thermal stresses
EISSN 2095-9281
EndPage 1344
ExternalDocumentID oai_portal_research_lu_se_publications_88df7f9a_a2bf_494a_98a6_41d8398a962c
PMC5002044
27635282
10_1007_s11434_016_1146_3
S2095927316300391
669878308
Genre Journal Article
GroupedDBID --M
0R~
2RA
4.4
5VR
92L
AACTN
AAEDT
AAEDW
AAIAL
AAIAV
AAJKR
AAKOC
AALRI
AANXM
AAOAW
AARTL
AAXUO
AAYIU
AAYQN
AAYTO
ABBBX
ABJNI
ABJOX
ABMAC
ABQEM
ABQYD
ABTEG
ABTHY
ABTMW
ABUDA
ABYKQ
ACBXY
ACDAQ
ACGFS
ACIWK
ACKNC
ACPRK
ACRLP
ADBBV
ADINQ
ADKPE
ADRFC
AEBSH
AEGNC
AEHWI
AEJHL
AENEX
AEOHA
AEPYU
AFKWA
AFLOW
AFNRJ
AFRAH
AFTJW
AFUIB
AFXIZ
AFZHZ
AFZKB
AGJBK
AGQMX
AGUBO
AGWZB
AGYKE
AHAVH
AHBYD
AHJVU
AHSBF
AIEXJ
AIIXL
AIKHN
AITUG
AJBFU
AJBLW
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
ASPBG
ATOGT
AUKKA
AVWKF
AXJTR
AZFZN
BGNMA
BJAXD
BKOJK
CCEZO
CCVFK
CHBEP
CQIGP
CSCUP
EBS
EFJIC
EFLBG
EJD
FA0
FDB
FIRID
FRRFC
FYGXN
HG6
HX~
IXD
KOM
KOV
M41
M4Y
NU0
O9-
ROL
RSV
SOJ
SPC
SPCBC
SSE
SSK
SST
SSU
SSZ
T5K
TCJ
TGP
UG4
~G-
~WA
6I.
AAFTH
-SA
-S~
5XA
5XB
AAQFI
AAXDM
AAXKI
AAYZH
ADVLN
AEIPS
AFBBN
AFJKZ
AKRWK
ANKPU
C6C
CAJEA
CJPJV
H13
Q--
U1G
U5K
AATTM
AAYWO
AAYXX
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFHIU
AFPUW
AGCQF
AGRNS
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
NPM
EFKBS
7X8
ACLOT
7S9
L.6
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c672t-1287e9a1bd99e6ea6d787e007e4cd532296fc58e666ffefd0022f74c40b26f153
IEDL.DBID C6C
ISSN 2095-9273
2095-9281
IngestDate Tue Sep 09 22:44:13 EDT 2025
Thu Aug 21 18:25:39 EDT 2025
Sun Sep 28 09:11:38 EDT 2025
Sun Sep 28 07:14:22 EDT 2025
Wed Aug 13 04:53:36 EDT 2025
Thu Apr 03 07:08:06 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Tue Jul 01 02:57:30 EDT 2025
Fri Feb 21 02:34:21 EST 2025
Fri Feb 23 02:33:52 EST 2024
Wed Feb 14 10:16:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Interconnect
Finite element method
Solid oxide fuel cell
Thermal stresses
Optimization
Language English
License http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c672t-1287e9a1bd99e6ea6d787e007e4cd532296fc58e666ffefd0022f74c40b26f153
Notes The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water-gas shift reac- tion were considered in our model. The results examine the relationship between the interconnect structures and ther- mal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell.
Solid oxide fuel cell; Thermal stresses;Interconnect - Optimization; Finite element method
10-1298/N
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1007/s11434-016-1146-3
PMID 27635282
PQID 1880878094
PQPubID 2044236
PageCount 12
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_88df7f9a_a2bf_494a_98a6_41d8398a962c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5002044
proquest_miscellaneous_2000207673
proquest_miscellaneous_1859730691
proquest_journals_1880878094
pubmed_primary_27635282
crossref_primary_10_1007_s11434_016_1146_3
crossref_citationtrail_10_1007_s11434_016_1146_3
springer_journals_10_1007_s11434_016_1146_3
elsevier_sciencedirect_doi_10_1007_s11434_016_1146_3
chongqing_primary_669878308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Netherlands
PublicationTitle Science bulletin (Beijing)
PublicationTitleAbbrev Sci. Bull
PublicationTitleAlternate Chinese Science Bulletin
PublicationYear 2016
Publisher Elsevier B.V
Science China Press
Springer Nature B.V
Publisher_xml – name: Elsevier B.V
– name: Science China Press
– name: Springer Nature B.V
References Jensen, Sun, Ebbesen (bib5) 2016; 16
Noh, Hwang, Yoon (bib32) 2013; 230
Sohn, Nam, Jeon (bib40) 2010; 35
Jiang, Chen (bib23) 2009; 34
Andersson, Nakajima, Kitahara (bib45) 2014; 77
Li, Xu, Chen (bib36) 2010; 15
Andersson, Yuan, Sundén (bib10) 2014; 14
Clague, Marquis, Brandon (bib25) 2012; 210
Li, Gao, Xu (bib34) 2014; 14
Reddy, Goel, Tulyaganov (bib4) 2014; 2
Chen, Zhou, Ding (bib8) 2015; 5
Chiang, Liu, Shiu (bib21) 2010; 195
Mahato, Banerjee, Gupta (bib26) 2015; 72
COMSOL Multiphysics Version 5.0 User Guide. Stockholm, Sweden, 2014.
Li, Xu, Gao (bib6) 2014; 258
Huang, Shy, Lee (bib29) 2008; 183
Xu, Andersson, Li (bib47) 2015; 68
Chen, Lin, Zhang (bib9) 2014; 8
Grondin, Deseure, Zahid (bib31) 2008; 25
Janardhanan, Deutschmann (bib13) 2011; 56
Aljaberi, Irvine (bib3) 2013; 1
Fleischhauer, Terner, Bermejo (bib20) 2015; 275
Wu, Liu (bib27) 2010; 26
Stygar, Brylewski, Rękas (bib30) 2012; 55
Chen, Zhang, Lu (bib11) 2016; 303
Xu, Li, Wang (bib7) 2015; 167
Fan, Li, Zeng (bib22) 2014; 77
Atkinson, Barnett, Gorte (bib1) 2004; 3
Pecho, Stenzel, Iwanschitz (bib12) 2015; 8
Peksen (bib18) 2015; 48
Lin, Stevenson, Khaleel (bib28) 2003; 117
Ni (bib14) 2013; 70
Holtappels, Stimming (bib38) 2010
Le Bars, Grae Worster (bib41) 2006; 550
Liu, Kim, Chandra (bib46) 2010; 195
Laurencin, Delette, Lefebvre-Joud (bib17) 2008; 28
Xie, Xue (bib15) 2012; 209
Kong, Gao, Liu (bib33) 2014; 7
Andersson, Yuan, Sunden (bib39) 2013; 232
Greco, Frandsen, Nakajo (bib16) 2014; 34
Andersson, Yuan, Sundn (bib42) 2012; 55
Holtappels, Bagger (bib35) 2002; 22
Boccaccini, Sevecek, Frandsen (bib19) 2016; 162
Lin, Huang, Chiang (bib24) 2009; 192
Park, Vohs, Gorte (bib2) 2000; 404
Zhu, Kee (bib37) 2008; 155
Yuan, Huang, Sundén (bib44) 2009; 45
Aljaberi, Irvine (CR3) 2013; 1
Zhu, Kee (CR37) 2008; 155
Andersson, Yuan, Sundén (CR39) 2013; 232
Peksen (CR18) 2015; 48
Wu, Liu (CR27) 2010; 26
Janardhanan, Deutschmann (CR13) 2011; 56
Laurencin, Delette, Lefebvre-Joud (CR17) 2008; 28
Lin, Stevenson, Khaleel (CR28) 2003; 117
Xu, Andersson, Li (CR47) 2015; 68
Li, Gao, Xu (CR34) 2014; 14
Andersson, Nakajima, Kitahara (CR45) 2014; 77
Greco, Frandsen, Nakajo (CR16) 2014; 34
Lin, Huang, Chiang (CR24) 2009; 192
Xie, Xue (CR15) 2012; 209
Kong, Gao, Liu (CR33) 2014; 7
Chen, Lin, Zhang (CR9) 2014; 8
Chen, Zhang, Lu (CR11) 2016; 303
Ni (CR14) 2013; 70
Sohn, Nam, Jeon (CR40) 2010; 35
Chiang, Liu, Shiu (CR21) 2010; 195
Pecho, Stenzel, Iwanschitz (CR12) 2015; 8
Fan, Li, Zeng (CR22) 2014; 77
Noh, Hwang, Yoon (CR32) 2013; 230
Li, Xu, Gao (CR6) 2014; 258
Jiang, Chen (CR23) 2009; 34
Li, Xu, Chen (CR36) 2010; 15
Reddy, Goel, Tulyaganov (CR4) 2014; 2
Clague, Marquis, Brandon (CR25) 2012; 210
Andersson, Yuan, Sundn (CR42) 2012; 55
Mahato, Banerjee, Gupta (CR26) 2015; 72
Atkinson, Barnett, Gorte (CR1) 2004; 3
Stygar, Brylewski, Rękas (CR30) 2012; 55
Andersson, Yuan, Sundén (CR10) 2014; 14
Holtappels, Bagger (CR35) 2002; 22
Park, Vohs, Gorte (CR2) 2000; 404
Xu, Li, Wang (CR7) 2015; 167
Chen, Zhou, Ding (CR8) 2015; 5
Holtappels, Stimming, Vielstich, Gasteiger, Lamm (CR38) 2010
CR43
Huang, Shy, Lee (CR29) 2008; 183
Fleischhauer, Terner, Bermejo (CR20) 2015; 275
Le Bars, Grae Worster (CR41) 2006; 550
Jensen, Sun, Ebbesen (CR5) 2016; 16
Boccaccini, Sevecek, Frandsen (CR19) 2016; 162
Yuan, Huang, Sundén (CR44) 2009; 45
Grondin, Deseure, Zahid (CR31) 2008; 25
Liu, Kim, Chandra (CR46) 2010; 195
Aljaberi (10.1007/s11434-016-1146-3_bib3) 2013; 1
Jensen (10.1007/s11434-016-1146-3_bib5) 2016; 16
Noh (10.1007/s11434-016-1146-3_bib32) 2013; 230
Zhu (10.1007/s11434-016-1146-3_bib37) 2008; 155
10.1007/s11434-016-1146-3_bib43
Andersson (10.1007/s11434-016-1146-3_bib39) 2013; 232
Chen (10.1007/s11434-016-1146-3_bib11) 2016; 303
Reddy (10.1007/s11434-016-1146-3_bib4) 2014; 2
Park (10.1007/s11434-016-1146-3_bib2) 2000; 404
Li (10.1007/s11434-016-1146-3_bib6) 2014; 258
Xie (10.1007/s11434-016-1146-3_bib15) 2012; 209
Kong (10.1007/s11434-016-1146-3_bib33) 2014; 7
Chen (10.1007/s11434-016-1146-3_bib8) 2015; 5
Chen (10.1007/s11434-016-1146-3_bib9) 2014; 8
Atkinson (10.1007/s11434-016-1146-3_bib1) 2004; 3
Pecho (10.1007/s11434-016-1146-3_bib12) 2015; 8
Boccaccini (10.1007/s11434-016-1146-3_bib19) 2016; 162
Huang (10.1007/s11434-016-1146-3_bib29) 2008; 183
Holtappels (10.1007/s11434-016-1146-3_bib35) 2002; 22
Lin (10.1007/s11434-016-1146-3_bib24) 2009; 192
Holtappels (10.1007/s11434-016-1146-3_bib38) 2010
Le Bars (10.1007/s11434-016-1146-3_bib41) 2006; 550
Andersson (10.1007/s11434-016-1146-3_bib45) 2014; 77
Xu (10.1007/s11434-016-1146-3_bib7) 2015; 167
Fan (10.1007/s11434-016-1146-3_bib22) 2014; 77
Li (10.1007/s11434-016-1146-3_bib34) 2014; 14
Chiang (10.1007/s11434-016-1146-3_bib21) 2010; 195
Wu (10.1007/s11434-016-1146-3_bib27) 2010; 26
Peksen (10.1007/s11434-016-1146-3_bib18) 2015; 48
Clague (10.1007/s11434-016-1146-3_bib25) 2012; 210
Mahato (10.1007/s11434-016-1146-3_bib26) 2015; 72
Laurencin (10.1007/s11434-016-1146-3_bib17) 2008; 28
Liu (10.1007/s11434-016-1146-3_bib46) 2010; 195
Jiang (10.1007/s11434-016-1146-3_bib23) 2009; 34
Sohn (10.1007/s11434-016-1146-3_bib40) 2010; 35
Andersson (10.1007/s11434-016-1146-3_bib42) 2012; 55
Greco (10.1007/s11434-016-1146-3_bib16) 2014; 34
Andersson (10.1007/s11434-016-1146-3_bib10) 2014; 14
Fleischhauer (10.1007/s11434-016-1146-3_bib20) 2015; 275
Li (10.1007/s11434-016-1146-3_bib36) 2010; 15
Yuan (10.1007/s11434-016-1146-3_bib44) 2009; 45
Janardhanan (10.1007/s11434-016-1146-3_bib13) 2011; 56
Lin (10.1007/s11434-016-1146-3_bib28) 2003; 117
Ni (10.1007/s11434-016-1146-3_bib14) 2013; 70
Xu (10.1007/s11434-016-1146-3_bib47) 2015; 68
Stygar (10.1007/s11434-016-1146-3_bib30) 2012; 55
Grondin (10.1007/s11434-016-1146-3_bib31) 2008; 25
References_xml – volume: 1
  start-page: 5868
  year: 2013
  ident: bib3
  article-title: Ca-substituted, A-site deficient perovskite La
  publication-title: J Mater Chem A
– volume: 550
  start-page: 149
  year: 2006
  end-page: 173
  ident: bib41
  article-title: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification
  publication-title: J Fluid Mech
– volume: 230
  start-page: 109
  year: 2013
  end-page: 114
  ident: bib32
  article-title: Optimization of current collection to reduce the lateral conduction loss of thin-film-processed cathodes
  publication-title: J Power Sources
– volume: 7
  start-page: 295
  year: 2014
  end-page: 313
  ident: bib33
  article-title: Optimization of the interconnect ribs for a cathode-supported solid oxide fuel cell
  publication-title: Energies
– volume: 155
  start-page: B715
  year: 2008
  ident: bib37
  article-title: Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies
  publication-title: J Electrochem Soc
– volume: 5
  start-page: 1500537
  year: 2015
  ident: bib8
  article-title: Advances in cathode materials for solid oxide fuel cells: complex oxides without Alkaline earth metal elements
  publication-title: Adv Energy Mater
– volume: 162
  start-page: 250
  year: 2016
  end-page: 253
  ident: bib19
  article-title: Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector–electrode interfaces
  publication-title: Mater Lett
– volume: 192
  start-page: 515
  year: 2009
  end-page: 524
  ident: bib24
  article-title: Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design
  publication-title: J Power Sources
– volume: 183
  start-page: 205
  year: 2008
  end-page: 213
  ident: bib29
  article-title: On flow uniformity in various interconnects and its influence to cell performance of planar SOFC
  publication-title: J Power Sources
– volume: 35
  start-page: 11890
  year: 2010
  end-page: 11907
  ident: bib40
  article-title: A micro/macroscale model for intermediate temperature solid oxide fuel cells with prescribed fully-developed axial velocity profiles in gas channels
  publication-title: Int J Hydrog Energy
– volume: 56
  start-page: 9775
  year: 2011
  end-page: 9782
  ident: bib13
  article-title: Modeling diffusion limitation in solid-oxide fuel cells
  publication-title: Electrochim Acta
– volume: 8
  start-page: 5554
  year: 2015
  end-page: 5585
  ident: bib12
  article-title: 3D microstructure effects in Ni-YSZ anodes: prediction of effective transport properties and optimization of redox stability
  publication-title: Materials
– volume: 72
  start-page: 141
  year: 2015
  end-page: 337
  ident: bib26
  article-title: Progress in material selection for solid oxide fuel cell technology: a review
  publication-title: Prog Mater Sci
– volume: 210
  start-page: 224
  year: 2012
  end-page: 232
  ident: bib25
  article-title: Finite element and analytical stress analysis of a solid oxide fuel cell
  publication-title: J Power Sources
– volume: 25
  start-page: 841
  year: 2008
  end-page: 846
  ident: bib31
  article-title: Optimization of SOFC interconnect design using multiphysic computation
  publication-title: Comput Aided Chem Eng
– volume: 8
  start-page: 25
  year: 2014
  end-page: 33
  ident: bib9
  article-title: Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network
  publication-title: Nano Energy
– volume: 195
  start-page: 1895
  year: 2010
  end-page: 1904
  ident: bib21
  article-title: Thermal stress and thermo-electrochemical analysis of a planar anode-supported solid oxide fuel cell: effects of anode porosity
  publication-title: J Power Sources
– volume: 77
  start-page: 1008
  year: 2014
  end-page: 1022
  ident: bib45
  article-title: Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics
  publication-title: Int J Heat Mass Transf
– volume: 3
  start-page: 17
  year: 2004
  end-page: 27
  ident: bib1
  article-title: Advanced anodes for high-temperature fuel cells
  publication-title: Nat Mater
– volume: 70
  start-page: 116
  year: 2013
  end-page: 129
  ident: bib14
  article-title: Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming
  publication-title: Energy Convers Manag
– volume: 15
  start-page: 1077
  year: 2010
  end-page: 1085
  ident: bib36
  article-title: Chlorine contaminants poisoning of solid oxide fuel cells
  publication-title: J Solid State Electrochem
– volume: 14
  start-page: 999
  year: 2014
  end-page: 1005
  ident: bib34
  article-title: Effects of PH
  publication-title: Fuel Cells
– volume: 55
  start-page: 773
  year: 2012
  end-page: 788
  ident: bib42
  article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries
  publication-title: Int J Heat Mass Transf
– volume: 195
  start-page: 2310
  year: 2010
  end-page: 2318
  ident: bib46
  article-title: Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions
  publication-title: J Power Sources
– volume: 209
  start-page: 81
  year: 2012
  end-page: 89
  ident: bib15
  article-title: Multi-scale electrochemical reaction anode model for solid oxide fuel cells
  publication-title: J Power Sources
– volume: 48
  start-page: 1
  year: 2015
  end-page: 20
  ident: bib18
  article-title: Numerical thermomechanical modelling of solid oxide fuel cells
  publication-title: Prog Energy Combust Sci
– volume: 77
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib22
  article-title: Numerical study on thermal stresses of a planar solid oxide fuel cell
  publication-title: Int J Therm Sci
– volume: 28
  start-page: 1857
  year: 2008
  end-page: 1869
  ident: bib17
  article-title: A numerical tool to estimate SOFC mechanical degradation: case of the planar cell configuration
  publication-title: J Eur Ceram Soc
– volume: 232
  start-page: 42
  year: 2013
  end-page: 54
  ident: bib39
  article-title: SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants
  publication-title: J Power Sources
– volume: 34
  start-page: 8223
  year: 2009
  end-page: 8234
  ident: bib23
  article-title: Thermal-stress analyses of an operating planar solid oxide fuel cell with the bonded compliant seal design
  publication-title: Int J Hydrog Energy
– reference: COMSOL Multiphysics Version 5.0 User Guide. Stockholm, Sweden, 2014.
– volume: 68
  start-page: 3003
  year: 2015
  end-page: 3011
  ident: bib47
  article-title: Modeling of solid oxide fuel cell with anisotropic conductivity
  publication-title: ECS Transact
– volume: 34
  start-page: 2695
  year: 2014
  end-page: 2704
  ident: bib16
  article-title: Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack
  publication-title: J Eur Ceram Soc
– volume: 275
  start-page: 217
  year: 2015
  end-page: 226
  ident: bib20
  article-title: Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells
  publication-title: J Power Sources
– volume: 22
  start-page: 41
  year: 2002
  end-page: 48
  ident: bib35
  article-title: Fabrication and performance of advanced multi layer SOFC cathodes
  publication-title: J Eur Ceram Soc
– volume: 16
  start-page: 205
  year: 2016
  end-page: 218
  ident: bib5
  article-title: Pressurized operation of a planar solid oxide cell stack
  publication-title: Fuel Cells
– volume: 117
  start-page: 92
  year: 2003
  end-page: 97
  ident: bib28
  article-title: The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs
  publication-title: J Power Sources
– volume: 55
  start-page: 4421
  year: 2012
  end-page: 4426
  ident: bib30
  article-title: Effects of changes in MOLB-type SOFC cell geometry on temperature distribution and heat transfer rate in interconnects
  publication-title: Int J Heat Mass Transf
– volume: 258
  start-page: 1
  year: 2014
  end-page: 4
  ident: bib6
  article-title: Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell
  publication-title: J Power Sources
– volume: 167
  start-page: 147
  year: 2015
  end-page: 150
  ident: bib7
  article-title: Mechanism of phosphorus and chlorine passivating a nickel catalyst: a density functional theory study
  publication-title: Electrochim Acta
– volume: 14
  start-page: 177
  year: 2014
  end-page: 188
  ident: bib10
  article-title: SOFC cell design optimization using the finite element method based CFD approach
  publication-title: Fuel Cells
– volume: 404
  start-page: 265
  year: 2000
  end-page: 267
  ident: bib2
  article-title: Direct oxidation of hydrocarbons in a solid-oxide fuel cell
  publication-title: Nature
– volume: 26
  start-page: 293
  year: 2010
  end-page: 305
  ident: bib27
  article-title: Recent development of SOFC metallic interconnect
  publication-title: J Mater Sci Technol
– volume: 2
  start-page: 1834
  year: 2014
  end-page: 1846
  ident: bib4
  article-title: Thermal and mechanical stability of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells
  publication-title: J Mater Chem A
– volume: 303
  start-page: 305
  year: 2016
  end-page: 316
  ident: bib11
  article-title: Multi scale and physics models for intermediate and low temperatures H
  publication-title: J Power Sources
– year: 2010
  ident: bib38
  article-title: Solid oxide fuel cells (SOFC)
  publication-title: Handbook of fuel cells
– volume: 45
  start-page: 471
  year: 2009
  end-page: 484
  ident: bib44
  article-title: CFD approach to analyse transport phenomena coupled chemical reactions relevant for methane reformers
  publication-title: Heat Mass Transf
– volume: 28
  start-page: 1857
  year: 2008
  end-page: 1869
  ident: CR17
  article-title: A numerical tool to estimate SOFC mechanical degradation: case of the planar cell configuration
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2007.12.025
– volume: 77
  start-page: 1
  year: 2014
  end-page: 10
  ident: CR22
  article-title: Numerical study on thermal stresses of a planar solid oxide fuel cell
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2013.10.008
– ident: CR43
– volume: 162
  start-page: 250
  year: 2016
  end-page: 253
  ident: CR19
  article-title: Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector–electrode interfaces
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2015.07.137
– volume: 14
  start-page: 177
  year: 2014
  end-page: 188
  ident: CR10
  article-title: SOFC cell design optimization using the finite element method based CFD approach
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300160
– volume: 5
  start-page: 1500537
  year: 2015
  ident: CR8
  article-title: Advances in cathode materials for solid oxide fuel cells: complex oxides without Alkaline earth metal elements
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201500537
– volume: 275
  start-page: 217
  year: 2015
  end-page: 226
  ident: CR20
  article-title: Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.10.083
– volume: 3
  start-page: 17
  year: 2004
  end-page: 27
  ident: CR1
  article-title: Advanced anodes for high-temperature fuel cells
  publication-title: Nat Mater
  doi: 10.1038/nmat1040
– volume: 7
  start-page: 295
  year: 2014
  end-page: 313
  ident: CR33
  article-title: Optimization of the interconnect ribs for a cathode-supported solid oxide fuel cell
  publication-title: Energies
  doi: 10.3390/en7010295
– volume: 232
  start-page: 42
  year: 2013
  end-page: 54
  ident: CR39
  article-title: SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.12.122
– volume: 14
  start-page: 999
  year: 2014
  end-page: 1005
  ident: CR34
  article-title: Effects of PH and CH Cl contaminants on the performance of solid oxide fuel cells
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300248
– volume: 155
  start-page: B715
  year: 2008
  ident: CR37
  article-title: Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2913152
– volume: 55
  start-page: 773
  year: 2012
  end-page: 788
  ident: CR42
  article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2011.10.032
– volume: 210
  start-page: 224
  year: 2012
  end-page: 232
  ident: CR25
  article-title: Finite element and analytical stress analysis of a solid oxide fuel cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.03.027
– volume: 183
  start-page: 205
  year: 2008
  end-page: 213
  ident: CR29
  article-title: On flow uniformity in various interconnects and its influence to cell performance of planar SOFC
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.04.059
– volume: 22
  start-page: 41
  year: 2002
  end-page: 48
  ident: CR35
  article-title: Fabrication and performance of advanced multi layer SOFC cathodes
  publication-title: J Eur Ceram Soc
  doi: 10.1016/S0955-2219(01)00238-2
– volume: 34
  start-page: 2695
  year: 2014
  end-page: 2704
  ident: CR16
  article-title: Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2013.12.055
– volume: 70
  start-page: 116
  year: 2013
  end-page: 129
  ident: CR14
  article-title: Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.02.008
– volume: 48
  start-page: 1
  year: 2015
  end-page: 20
  ident: CR18
  article-title: Numerical thermomechanical modelling of solid oxide fuel cells
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2014.12.001
– volume: 167
  start-page: 147
  year: 2015
  end-page: 150
  ident: CR7
  article-title: Mechanism of phosphorus and chlorine passivating a nickel catalyst: a density functional theory study
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.01.222
– volume: 258
  start-page: 1
  year: 2014
  end-page: 4
  ident: CR6
  article-title: Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.02.041
– volume: 15
  start-page: 1077
  year: 2010
  end-page: 1085
  ident: CR36
  article-title: Chlorine contaminants poisoning of solid oxide fuel cells
  publication-title: J Solid State Electrochem
  doi: 10.1007/s10008-010-1166-x
– volume: 195
  start-page: 1895
  year: 2010
  end-page: 1904
  ident: CR21
  article-title: Thermal stress and thermo-electrochemical analysis of a planar anode-supported solid oxide fuel cell: effects of anode porosity
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.10.011
– volume: 195
  start-page: 2310
  year: 2010
  end-page: 2318
  ident: CR46
  article-title: Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.10.064
– volume: 56
  start-page: 9775
  year: 2011
  end-page: 9782
  ident: CR13
  article-title: Modeling diffusion limitation in solid-oxide fuel cells
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.08.038
– year: 2010
  ident: CR38
  article-title: Solid oxide fuel cells (SOFC)
  publication-title: Handbook of fuel cells
– volume: 16
  start-page: 205
  year: 2016
  end-page: 218
  ident: CR5
  article-title: Pressurized operation of a planar solid oxide cell stack
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201500180
– volume: 209
  start-page: 81
  year: 2012
  end-page: 89
  ident: CR15
  article-title: Multi-scale electrochemical reaction anode model for solid oxide fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.02.077
– volume: 34
  start-page: 8223
  year: 2009
  end-page: 8234
  ident: CR23
  article-title: Thermal-stress analyses of an operating planar solid oxide fuel cell with the bonded compliant seal design
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2009.07.089
– volume: 35
  start-page: 11890
  year: 2010
  end-page: 11907
  ident: CR40
  article-title: A micro/macroscale model for intermediate temperature solid oxide fuel cells with prescribed fully-developed axial velocity profiles in gas channels
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2010.08.063
– volume: 1
  start-page: 5868
  year: 2013
  ident: CR3
  article-title: Ca-substituted, A-site deficient perovskite La Sr TiO as a potential anode material for SOFCs
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta10844a
– volume: 45
  start-page: 471
  year: 2009
  end-page: 484
  ident: CR44
  article-title: CFD approach to analyse transport phenomena coupled chemical reactions relevant for methane reformers
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-008-0449-6
– volume: 77
  start-page: 1008
  year: 2014
  end-page: 1022
  ident: CR45
  article-title: Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.06.033
– volume: 550
  start-page: 149
  year: 2006
  end-page: 173
  ident: CR41
  article-title: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112005007998
– volume: 72
  start-page: 141
  year: 2015
  end-page: 337
  ident: CR26
  article-title: Progress in material selection for solid oxide fuel cell technology: a review
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2015.01.001
– volume: 26
  start-page: 293
  year: 2010
  end-page: 305
  ident: CR27
  article-title: Recent development of SOFC metallic interconnect
  publication-title: J Mater Sci Technol
  doi: 10.1016/S1005-0302(10)60049-7
– volume: 68
  start-page: 3003
  year: 2015
  end-page: 3011
  ident: CR47
  article-title: Modeling of solid oxide fuel cell with anisotropic conductivity
  publication-title: ECS Transact
  doi: 10.1149/06801.3003ecst
– volume: 55
  start-page: 4421
  year: 2012
  end-page: 4426
  ident: CR30
  article-title: Effects of changes in MOLB-type SOFC cell geometry on temperature distribution and heat transfer rate in interconnects
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.04.011
– volume: 25
  start-page: 841
  year: 2008
  end-page: 846
  ident: CR31
  article-title: Optimization of SOFC interconnect design using multiphysic computation
  publication-title: Comput Aided Chem Eng
  doi: 10.1016/S1570-7946(08)80146-0
– volume: 2
  start-page: 1834
  year: 2014
  end-page: 1846
  ident: CR4
  article-title: Thermal and mechanical stability of lanthanide-containing glass–ceramic sealants for solid oxide fuel cells
  publication-title: J Mater Chem A
  doi: 10.1039/C3TA13196C
– volume: 8
  start-page: 5554
  year: 2015
  end-page: 5585
  ident: CR12
  article-title: 3D microstructure effects in Ni–YSZ anodes: prediction of effective transport properties and optimization of redox stability
  publication-title: Materials
  doi: 10.3390/ma8095265
– volume: 117
  start-page: 92
  year: 2003
  end-page: 97
  ident: CR28
  article-title: The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(02)00726-7
– volume: 230
  start-page: 109
  year: 2013
  end-page: 114
  ident: CR32
  article-title: Optimization of current collection to reduce the lateral conduction loss of thin-film-processed cathodes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.12.059
– volume: 404
  start-page: 265
  year: 2000
  end-page: 267
  ident: CR2
  article-title: Direct oxidation of hydrocarbons in a solid-oxide fuel cell
  publication-title: Nature
  doi: 10.1038/35005040
– volume: 8
  start-page: 25
  year: 2014
  end-page: 33
  ident: CR9
  article-title: Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.05.010
– volume: 303
  start-page: 305
  year: 2016
  end-page: 316
  ident: CR11
  article-title: Multi scale and physics models for intermediate and low temperatures H -solid oxide fuel cells with H /e /O mixed conducting properties: part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.10.090
– volume: 192
  start-page: 515
  year: 2009
  end-page: 524
  ident: CR24
  article-title: Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.03.010
– volume: 77
  start-page: 1
  year: 2014
  ident: 10.1007/s11434-016-1146-3_bib22
  article-title: Numerical study on thermal stresses of a planar solid oxide fuel cell
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2013.10.008
– volume: 77
  start-page: 1008
  year: 2014
  ident: 10.1007/s11434-016-1146-3_bib45
  article-title: Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.06.033
– year: 2010
  ident: 10.1007/s11434-016-1146-3_bib38
  article-title: Solid oxide fuel cells (SOFC)
– volume: 34
  start-page: 2695
  year: 2014
  ident: 10.1007/s11434-016-1146-3_bib16
  article-title: Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2013.12.055
– volume: 404
  start-page: 265
  year: 2000
  ident: 10.1007/s11434-016-1146-3_bib2
  article-title: Direct oxidation of hydrocarbons in a solid-oxide fuel cell
  publication-title: Nature
  doi: 10.1038/35005040
– volume: 195
  start-page: 2310
  year: 2010
  ident: 10.1007/s11434-016-1146-3_bib46
  article-title: Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.10.064
– volume: 15
  start-page: 1077
  year: 2010
  ident: 10.1007/s11434-016-1146-3_bib36
  article-title: Chlorine contaminants poisoning of solid oxide fuel cells
  publication-title: J Solid State Electrochem
  doi: 10.1007/s10008-010-1166-x
– volume: 275
  start-page: 217
  year: 2015
  ident: 10.1007/s11434-016-1146-3_bib20
  article-title: Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.10.083
– volume: 14
  start-page: 999
  year: 2014
  ident: 10.1007/s11434-016-1146-3_bib34
  article-title: Effects of PH3 and CH3Cl contaminants on the performance of solid oxide fuel cells
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300248
– volume: 68
  start-page: 3003
  year: 2015
  ident: 10.1007/s11434-016-1146-3_bib47
  article-title: Modeling of solid oxide fuel cell with anisotropic conductivity
  publication-title: ECS Transact
  doi: 10.1149/06801.3003ecst
– volume: 155
  start-page: B715
  year: 2008
  ident: 10.1007/s11434-016-1146-3_bib37
  article-title: Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2913152
– volume: 1
  start-page: 5868
  year: 2013
  ident: 10.1007/s11434-016-1146-3_bib3
  article-title: Ca-substituted, A-site deficient perovskite La0.2Sr0.7TiO3 as a potential anode material for SOFCs
  publication-title: J Mater Chem A
  doi: 10.1039/c3ta10844a
– volume: 5
  start-page: 1500537
  year: 2015
  ident: 10.1007/s11434-016-1146-3_bib8
  article-title: Advances in cathode materials for solid oxide fuel cells: complex oxides without Alkaline earth metal elements
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201500537
– volume: 230
  start-page: 109
  year: 2013
  ident: 10.1007/s11434-016-1146-3_bib32
  article-title: Optimization of current collection to reduce the lateral conduction loss of thin-film-processed cathodes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.12.059
– volume: 117
  start-page: 92
  year: 2003
  ident: 10.1007/s11434-016-1146-3_bib28
  article-title: The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(02)00726-7
– volume: 25
  start-page: 841
  year: 2008
  ident: 10.1007/s11434-016-1146-3_bib31
  article-title: Optimization of SOFC interconnect design using multiphysic computation
  publication-title: Comput Aided Chem Eng
  doi: 10.1016/S1570-7946(08)80146-0
– volume: 35
  start-page: 11890
  year: 2010
  ident: 10.1007/s11434-016-1146-3_bib40
  article-title: A micro/macroscale model for intermediate temperature solid oxide fuel cells with prescribed fully-developed axial velocity profiles in gas channels
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2010.08.063
– volume: 56
  start-page: 9775
  year: 2011
  ident: 10.1007/s11434-016-1146-3_bib13
  article-title: Modeling diffusion limitation in solid-oxide fuel cells
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2011.08.038
– volume: 55
  start-page: 4421
  year: 2012
  ident: 10.1007/s11434-016-1146-3_bib30
  article-title: Effects of changes in MOLB-type SOFC cell geometry on temperature distribution and heat transfer rate in interconnects
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.04.011
– volume: 26
  start-page: 293
  year: 2010
  ident: 10.1007/s11434-016-1146-3_bib27
  article-title: Recent development of SOFC metallic interconnect
  publication-title: J Mater Sci Technol
  doi: 10.1016/S1005-0302(10)60049-7
– volume: 3
  start-page: 17
  year: 2004
  ident: 10.1007/s11434-016-1146-3_bib1
  article-title: Advanced anodes for high-temperature fuel cells
  publication-title: Nat Mater
  doi: 10.1038/nmat1040
– volume: 209
  start-page: 81
  year: 2012
  ident: 10.1007/s11434-016-1146-3_bib15
  article-title: Multi-scale electrochemical reaction anode model for solid oxide fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.02.077
– volume: 48
  start-page: 1
  year: 2015
  ident: 10.1007/s11434-016-1146-3_bib18
  article-title: Numerical thermomechanical modelling of solid oxide fuel cells
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2014.12.001
– volume: 210
  start-page: 224
  year: 2012
  ident: 10.1007/s11434-016-1146-3_bib25
  article-title: Finite element and analytical stress analysis of a solid oxide fuel cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.03.027
– volume: 7
  start-page: 295
  year: 2014
  ident: 10.1007/s11434-016-1146-3_bib33
  article-title: Optimization of the interconnect ribs for a cathode-supported solid oxide fuel cell
  publication-title: Energies
  doi: 10.3390/en7010295
– volume: 22
  start-page: 41
  year: 2002
  ident: 10.1007/s11434-016-1146-3_bib35
  article-title: Fabrication and performance of advanced multi layer SOFC cathodes
  publication-title: J Eur Ceram Soc
  doi: 10.1016/S0955-2219(01)00238-2
– volume: 70
  start-page: 116
  year: 2013
  ident: 10.1007/s11434-016-1146-3_bib14
  article-title: Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.02.008
– volume: 162
  start-page: 250
  year: 2016
  ident: 10.1007/s11434-016-1146-3_bib19
  article-title: Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector–electrode interfaces
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2015.07.137
– volume: 303
  start-page: 305
  year: 2016
  ident: 10.1007/s11434-016-1146-3_bib11
  article-title: Multi scale and physics models for intermediate and low temperatures H+-solid oxide fuel cells with H+/e−/O2− mixed conducting properties: part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.10.090
– volume: 183
  start-page: 205
  year: 2008
  ident: 10.1007/s11434-016-1146-3_bib29
  article-title: On flow uniformity in various interconnects and its influence to cell performance of planar SOFC
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.04.059
– volume: 16
  start-page: 205
  year: 2016
  ident: 10.1007/s11434-016-1146-3_bib5
  article-title: Pressurized operation of a planar solid oxide cell stack
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201500180
– volume: 8
  start-page: 25
  year: 2014
  ident: 10.1007/s11434-016-1146-3_bib9
  article-title: Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.05.010
– volume: 550
  start-page: 149
  year: 2006
  ident: 10.1007/s11434-016-1146-3_bib41
  article-title: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112005007998
– volume: 232
  start-page: 42
  year: 2013
  ident: 10.1007/s11434-016-1146-3_bib39
  article-title: SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.12.122
– volume: 195
  start-page: 1895
  year: 2010
  ident: 10.1007/s11434-016-1146-3_bib21
  article-title: Thermal stress and thermo-electrochemical analysis of a planar anode-supported solid oxide fuel cell: effects of anode porosity
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.10.011
– volume: 2
  start-page: 1834
  year: 2014
  ident: 10.1007/s11434-016-1146-3_bib4
  article-title: Thermal and mechanical stability of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells
  publication-title: J Mater Chem A
  doi: 10.1039/C3TA13196C
– volume: 192
  start-page: 515
  year: 2009
  ident: 10.1007/s11434-016-1146-3_bib24
  article-title: Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2009.03.010
– volume: 258
  start-page: 1
  year: 2014
  ident: 10.1007/s11434-016-1146-3_bib6
  article-title: Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.02.041
– volume: 45
  start-page: 471
  year: 2009
  ident: 10.1007/s11434-016-1146-3_bib44
  article-title: CFD approach to analyse transport phenomena coupled chemical reactions relevant for methane reformers
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-008-0449-6
– volume: 14
  start-page: 177
  year: 2014
  ident: 10.1007/s11434-016-1146-3_bib10
  article-title: SOFC cell design optimization using the finite element method based CFD approach
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300160
– volume: 8
  start-page: 5554
  year: 2015
  ident: 10.1007/s11434-016-1146-3_bib12
  article-title: 3D microstructure effects in Ni-YSZ anodes: prediction of effective transport properties and optimization of redox stability
  publication-title: Materials
  doi: 10.3390/ma8095265
– volume: 28
  start-page: 1857
  year: 2008
  ident: 10.1007/s11434-016-1146-3_bib17
  article-title: A numerical tool to estimate SOFC mechanical degradation: case of the planar cell configuration
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2007.12.025
– volume: 34
  start-page: 8223
  year: 2009
  ident: 10.1007/s11434-016-1146-3_bib23
  article-title: Thermal-stress analyses of an operating planar solid oxide fuel cell with the bonded compliant seal design
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2009.07.089
– volume: 72
  start-page: 141
  year: 2015
  ident: 10.1007/s11434-016-1146-3_bib26
  article-title: Progress in material selection for solid oxide fuel cell technology: a review
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2015.01.001
– ident: 10.1007/s11434-016-1146-3_bib43
– volume: 167
  start-page: 147
  year: 2015
  ident: 10.1007/s11434-016-1146-3_bib7
  article-title: Mechanism of phosphorus and chlorine passivating a nickel catalyst: a density functional theory study
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2015.01.222
– volume: 55
  start-page: 773
  year: 2012
  ident: 10.1007/s11434-016-1146-3_bib42
  article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2011.10.032
SSID ssj0001492407
ssib054405809
ssib060475419
Score 2.394236
Snippet The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction...
The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
springer
elsevier
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1333
SubjectTerms Chemistry/Food Science
Counterflow
Design
Design optimization
Earth Sciences
electrodes
electron transfer
Electron transport
Energiteknik
Energy Engineering
Engineering
Engineering and Technology
Finite element method
Fuel cells
Fuel technology
heat
Humanities and Social Sciences
Interconnect
Leakage
Life Sciences
Maskinteknik
Mechanical Engineering
Mechanical failure
Mechanical properties
Methane
momentum
multidisciplinary
Optimization
Physics
Reforming
Science
Science (multidisciplinary)
Shift reaction
Solid oxide fuel cell
Solid oxide fuel cells
steam
Teknik
temperature
Temperature distribution
Temperature effects
Thermal stress
Thermal stresses
Three dimensional models
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGd-GCGJ9lAxmJAx-K2jiOYx-niamA2GVMTFysxB-0UkjK2kr8-bznONnK1B049JLYjT_ep_3e7xHyJs9ymxkL3okwWcLzSiXSFFkC2oE5XlifhmIwX8_E7IJ_vswv98hJnwuDYZVR9ncyPUjr-GQSV3OyXCwm5wyPsBhWXsoCzvk9ss9A28sR2T_-9GV2dn3UwhX6LVhmboqVCaFPf78ZkujAZMBIDJFghm6SIcrCvG1-_gbdsUtb3bZGbwdVDjer_6CQBs11-pA8iCYnPe5mdUD2XPOIHESmXtG3EXn63WPy_bytF5a2fxbWUb9xNcVzfYqQElcGI2LMmtoQ8kFbEDW_Yg4nNbHqJ4yDgkGJP5D3Ne0SUdzqCbk4_fjtZJbEyguJEQVbJ6C0CqfKtLJKOeFKYYGvHayW48bmIAOU8CaXDnwf7523aAn4ghs-rZjwIESfklHTNu45oRX4iyL1wgoHloSrqjT1WWmnzGWlkdKPyeGw2nrZIWxoIZQsZDaVYzLt11-bCFqOtTNqfQ23jNunMVAtJFhnY_J-6NL_3x2Neb-peovsNGiUu7od9QSgI8-vNCLbwajBXx6T18Nr4FbcqrJx7QbbgAMHXppKd7dh4Xq4EAV85llHU8NEGOIHgpc8JsUWtQ0NEC18-02zmAfU8DzkQcPYPvR0eWPouyf6oyPd7Q8Ez1BHOKq5rjd65fTyxjmzltL6wqtSl6zymiteaiVLoXlqwSSXpRLMvPi_xT8k9xlyawj0OyKj9dXGvQTLcF29ipz_F7JfXjY
  priority: 102
  providerName: Elsevier
Title Solid oxide fuel cell interconnect design optimization considering the thermal stresses
URI http://lib.cqvip.com/qk/86894X/201617/669878308.html
https://dx.doi.org/10.1007/s11434-016-1146-3
https://link.springer.com/article/10.1007/s11434-016-1146-3
https://www.ncbi.nlm.nih.gov/pubmed/27635282
https://www.proquest.com/docview/1880878094
https://www.proquest.com/docview/1859730691
https://www.proquest.com/docview/2000207673
https://pubmed.ncbi.nlm.nih.gov/PMC5002044
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFRIcEF1eS0tlJA48FDUPx3GO1aplYUUPQNXCxUr8YBctSWl2JX4-M44Tdlu2EocohzixE49nvolnviHkZZqkOlEavBOukoClZR4IlSUBWIfYsEzbyBWD-XjCx6fsw3l67smiMRfmyv79QQN4PcE4CR5g_myQ3CbbKehdFOYRH3WikzIAHh0T1Y8W-KOvgqXlQqxGCFa629P811ORWWFaV99_gb3YZKGuI9DrgZT9buoV5lFnrY4fkPseZtLDVi52yC1TDci9FfLBAbnjgj9VMyA7foE39JVnoX79kJx9ruczTevfM22oXZo5xX_8FOklLhVGx6gF1S78g9agdn76fE6qfAVQ6IMCuMQDdP-ctkkppnlETo-PvozGga_CECiexYsADFhm8iIqdZ4bbgquYY0b-IqGKZ2CPsi5Vakw4AdZa6xGVGAzplhYxtyCQn1Mtqq6Mk8JLcF35JHlmhtAFaYso8gmhQ5jkxRKCDsku_0syIuWbUNynotMJKEYkrCbF6k8gTnW0ZjLv9TLOK0Sg9ZcsnUyJG_6W7rn3dCYdZMtPfxoYYUEobzptr1OMKRf_41EljsYNfjOQ_KivwwrF6eqqEy9xDbgzIEk59HmNrHbKs54Bt08aWWtf5EYuQTBYx6SbE0K-wbIHL5-pZpNHYN46nKiYWxvO3ldGfrmF_3WivR6B85LlJ6aairnS9kYebHyz1kKoW1m80IWcWkly1khc1FwySIN8FwUOY_Vs_8ayi65G-PidbF-e2Rrcbk0zwEcLsp9sn347uvkCM_vJ-MTPE8-nU32nbr4A69MXWY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdgCDEOiBUYZQOMxIEPRTSJ49hHVDEV2HZhExMXK_EHLSrJWFqJP5_3HCe0G53Eoac4sVO_j9-L3_s9Ql5maWZSbSA64TqNWFbKSOg8jcA7JJblxsW-GczRMZ-csk9n2Vkgi8ZamEvn9-8awOsp5knwCOtno_QmuYUHl0iTP-bjTnQyBsCjY6L60QJ_jFWwtdwIuxGCl-7ONP_1VGRWmNbV91_gLzZ5qKsI9GoiZX-aeol51Hurg_vkXoCZ9H0rFzvkhq0G5O4K-eCA3PbJn7oZkJ2g4A19FVioXz8gX7_U85mh9e-ZsdQt7ZziN36K9BIXGrNj9IIan_5BazA7P0M9J9WhAyjMQQFc4g9s_5y2RSm2eUhODz6cjCdR6MIQaZ4niwgcWG5lEZdGSsttwQ3ouIV_0TJtMrAHkjudCQtxkHPWGUQFLmeajcqEOzCoj8hWVVf2MaElxI48dtxwC6jClmUcu7Qwo8SmhRbCDclevwvqvGXbUJxLkYt0JIZk1O2L0oHAHPtozNVf6mXcVoVJa77YOh2SN_0t3fOuGcy6zVYBfrSwQoFQXnfbficYKuh_o5DlDlYNsfOQvOgvg-biVhWVrZc4BoI5iNhkvHlM4o-Kc57DNLutrPUvkiCXIETMQ5KvSWE_AJnD169Us6lnEM98TTSs7W0nrytL3_yi31qRXp_AR4kqUFNN1XypGqvOV745KyGMy50sVJGUTjHJCiVFwRWLDcBzUUie6Cf_tZTn5M7k5OhQHX48_rxHthNUZJ_3t0-2FhdL-xSA4qJ85k3EH4D_W5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegEwgegJWvsgFG4oEPZWsSx7EfJ1gZDCYkmDZ4MYk_aKEkZUklxF_PObGzdmOTEA99ihPb8eXufr273yH0OIkTFUsF6ITKOCBJzgMm0zgA6xBpkioTNs1g3u3RnX3y5jA5dH1OK5_t7kOSbU2DZWkq6s2ZMpvHhW9g5m32BA1sVW0QX0QrxLaQ6KGVrVefdre9SCUEHBLPUPWtBQQWw9iWc0PbpRCst491_u25lnFhXBZff8J6zrJcpz3T0wmWXZT1BCNpY8VG19EXv_82eeX7xrzON-TvE9SQ__GCbqBrzsPFW61IrqILuuijqwu8h310qck7lVUfrTrdUuEnjgD76U108KGcThQuf02Uxmaup9iGF7BltjiSNjFH1lg1mSe4BI33w5WSYumaj8IcGPxa-wOzM8VtPYyubqH90fbHFzuBawARSJpGdQC2M9U8C3PFuaY6owrUi4b9aSJVAqqIUyMTpgGCGaONsg6JSYkkwzyiBnT5bdQrykLfRTgH2EpDQxXV4NDoPA9DE2dqGOk4k4yZAVrrDlrMWqIPQSlnKYuHbICG_uiFdNzptoXHVByzPtsXLmy-XFPnHQ_Qs-4W_7xzBhMvT8J5Pq1HI8CwnXfbupc94VRPJSzBHqwaYPsAPeoug9KwR5UVupzbMYAjASzy8OwxUROlTmkK09xpxbnbSGRpDAGsD1C6JOjdAEtavnylmIwb8vKkKceGtT33Qryw9LM3-rn9apYnaACqcKxYYzGdi0qL2cLf3YIxZVLDM5FFuRGEk0xwllFBQgXIgGWcRvLePy3lIbr8_uVIvH29t7uGrkT2C2syDtdRrz6a6_vgotb5A6eG_gC29oVP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid+oxide+fuel+cell+interconnect+design+optimization+considering+the+thermal+stresses&rft.jtitle=Science+bulletin+%28Beijing%29&rft.au=Xu%2C+Min&rft.au=Li%2C+Tingshuai&rft.au=Yang%2C+Ming&rft.au=Andersson%2C+Martin&rft.date=2016-09-01&rft.issn=2095-9273&rft.volume=61&rft.issue=17&rft.spage=1333&rft.epage=1344&rft_id=info:doi/10.1007%2Fs11434-016-1146-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11434_016_1146_3
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86894X%2F86894X.jpg