Solid oxide fuel cell interconnect design optimization considering the thermal stresses
The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objec...
Saved in:
Published in | Science bulletin (Beijing) Vol. 61; no. 17; pp. 1333 - 1344 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Elsevier B.V
01.09.2016
Science China Press Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-9273 2095-9281 2095-9281 |
DOI | 10.1007/s11434-016-1146-3 |
Cover
Abstract | The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water–gas shift reaction were considered in our model. The results examine the relationship between the interconnect structures and thermal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell. |
---|---|
AbstractList | The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water-gas shift reaction were considered in our model. The results examine the relationship between the interconnect structures and thermal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell.The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water-gas shift reaction were considered in our model. The results examine the relationship between the interconnect structures and thermal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell. The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water–gas shift reaction were considered in our model. The results examine the relationship between the interconnect structures and thermal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell. The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water-gas shift reac- tion were considered in our model. The results examine the relationship between the interconnect structures and ther- mal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell. |
Author | Andersson, Martin Li, Tingshuai Yang, Ming Xu, Min |
AuthorAffiliation | School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
Author_xml | – sequence: 1 givenname: Min surname: Xu fullname: Xu, Min organization: School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 2 givenname: Tingshuai surname: Li fullname: Li, Tingshuai organization: School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 3 givenname: Ming surname: Yang fullname: Yang, Ming organization: School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 4 givenname: Martin surname: Andersson fullname: Andersson, Martin email: martin.andersson@energy.lth.se organization: Department of Energy Sciences, Faculty of Engineering, Lund University, P.O. Box 118, 221 00 Lund, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27635282$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQjVARLaU_gAuK4MIlYDuOP4SEhCq-pEocAHG0vPZk11XW3tpJ-fj1TLrLqu1hOVgZxe_NezN-j6ujmCJU1VNKXlFC5OtCKW95Q6hosBJN-6A6YUR3jWaKHu1r2R5XZ6VcEkIo14wT-ag6ZlK0HVPspPrxNQ3B1-lX8FD3Ewy1g2GoQxwhuxQjuLH2UMIy1mkzhnX4Y8eQYo13BSk5xGU9rmA-eW2HuowZSoHypHrY26HA2e57Wn3_8P7b-afm4svHz-fvLhonJBsbypQEbenCaw0CrPASf-B4wJ3vWsa06F2nQAjR99B7QhjrJXecLJjoadeeVnbbt_yEzbQwmxzWNv82yQazSXm0g0FDYLNbmWEyBQyihuBupihGKd_LXltj2aI3XHNrtLLCcOpVi5UWzKHG260GUtfgHcQxY987UnduYliZZbo2HdolnGODl7sGOV1NUEazDmXes42QpmIYmYFSyPa_UKo6LVsiNEXoi3vQyzTliNtGlCJKKqJn7We3ze9d_4sAAugW4HIqJUO_h1Bi5qSZbdIMJs3MSTOzS3mP48J4s1KcPwwHmWz3Xps5O5BvmT5AerMlASbpOiCpuADRgQ8ZA2p8CgfZz3dmVykur1B1P6EQGtfUEtX-BSmnB9c |
CitedBy_id | crossref_primary_10_1080_15567036_2019_1607951 crossref_primary_10_33961_jecst_2019_00276 crossref_primary_10_1080_15567036_2021_1916655 crossref_primary_10_1080_15435075_2022_2065881 crossref_primary_10_1080_15435075_2023_2177857 crossref_primary_10_1016_j_ijhydene_2023_07_084 crossref_primary_10_1016_j_physo_2024_100219 crossref_primary_10_1016_j_ijhydene_2022_10_147 crossref_primary_10_1016_j_enconman_2017_12_045 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_096 crossref_primary_10_1149_2_1001814jes crossref_primary_10_3390_cryst12121697 crossref_primary_10_1007_s11434_016_1150_7 crossref_primary_10_1142_S0217984920501584 crossref_primary_10_3390_cryst12070953 crossref_primary_10_1016_j_icheatmasstransfer_2025_108702 crossref_primary_10_1007_s11666_021_01171_5 crossref_primary_10_1002_ente_202001012 crossref_primary_10_1016_j_jpowsour_2022_232073 crossref_primary_10_1002_fuce_201800048 crossref_primary_10_1016_j_ijhydene_2024_10_114 crossref_primary_10_1149_2_1341802jes crossref_primary_10_1149_1945_7111_ab79aa crossref_primary_10_1007_s11581_020_03602_9 crossref_primary_10_1016_j_ijhydene_2025_02_045 crossref_primary_10_1016_j_jpowsour_2018_01_011 crossref_primary_10_1016_j_ijhydene_2023_06_140 crossref_primary_10_1016_j_ijhydene_2019_03_079 crossref_primary_10_1021_acs_iecr_8b04142 crossref_primary_10_1016_j_ijhydene_2021_12_014 crossref_primary_10_3390_app9020352 crossref_primary_10_1002_er_5036 crossref_primary_10_1016_j_scib_2024_01_028 crossref_primary_10_3390_en15010343 crossref_primary_10_1016_j_jeurceramsoc_2020_09_004 crossref_primary_10_1002_ep_13443 crossref_primary_10_1016_j_ijhydene_2019_02_155 crossref_primary_10_1016_j_ceramint_2023_03_088 crossref_primary_10_1016_j_jpowsour_2020_228868 crossref_primary_10_1016_j_seta_2022_102891 crossref_primary_10_1088_1742_6596_2178_1_012005 crossref_primary_10_1016_j_ijhydene_2022_08_236 crossref_primary_10_3390_en14051280 crossref_primary_10_1016_j_ijhydene_2017_05_189 crossref_primary_10_1016_j_ijhydene_2024_07_092 crossref_primary_10_1016_j_rser_2021_111369 crossref_primary_10_1021_acs_energyfuels_0c04217 crossref_primary_10_1016_j_ceramint_2024_07_413 crossref_primary_10_1016_j_ijoes_2024_100550 crossref_primary_10_1016_j_jpowsour_2022_230981 crossref_primary_10_1016_j_ijhydene_2019_10_139 crossref_primary_10_1002_er_7129 crossref_primary_10_1016_j_icheatmasstransfer_2020_104831 crossref_primary_10_1016_j_jpowsour_2020_228310 crossref_primary_10_3389_fchem_2020_609338 crossref_primary_10_1016_j_susmat_2025_e01317 |
Cites_doi | 10.1016/j.jeurceramsoc.2007.12.025 10.1016/j.ijthermalsci.2013.10.008 10.1016/j.matlet.2015.07.137 10.1002/fuce.201300160 10.1002/aenm.201500537 10.1016/j.jpowsour.2014.10.083 10.1038/nmat1040 10.3390/en7010295 10.1016/j.jpowsour.2012.12.122 10.1002/fuce.201300248 10.1149/1.2913152 10.1016/j.ijheatmasstransfer.2011.10.032 10.1016/j.jpowsour.2012.03.027 10.1016/j.jpowsour.2008.04.059 10.1016/S0955-2219(01)00238-2 10.1016/j.jeurceramsoc.2013.12.055 10.1016/j.enconman.2013.02.008 10.1016/j.pecs.2014.12.001 10.1016/j.electacta.2015.01.222 10.1016/j.jpowsour.2014.02.041 10.1007/s10008-010-1166-x 10.1016/j.jpowsour.2009.10.011 10.1016/j.jpowsour.2009.10.064 10.1016/j.electacta.2011.08.038 10.1002/fuce.201500180 10.1016/j.jpowsour.2012.02.077 10.1016/j.ijhydene.2009.07.089 10.1016/j.ijhydene.2010.08.063 10.1039/c3ta10844a 10.1007/s00231-008-0449-6 10.1016/j.ijheatmasstransfer.2014.06.033 10.1017/S0022112005007998 10.1016/j.pmatsci.2015.01.001 10.1016/S1005-0302(10)60049-7 10.1149/06801.3003ecst 10.1016/j.ijheatmasstransfer.2012.04.011 10.1016/S1570-7946(08)80146-0 10.1039/C3TA13196C 10.3390/ma8095265 10.1016/S0378-7753(02)00726-7 10.1016/j.jpowsour.2012.12.059 10.1038/35005040 10.1016/j.nanoen.2014.05.010 10.1016/j.jpowsour.2015.10.090 10.1016/j.jpowsour.2009.03.010 |
ContentType | Journal Article |
Copyright | 2016 Science China Press Science China Press and Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media 2016 |
Copyright_xml | – notice: 2016 Science China Press – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media 2016 |
CorporateAuthor | Institutioner vid LTH Department of Energy Sciences Departments at LTH Värmeöverföring Lunds universitet Institutionen för energivetenskaper Faculty of Engineering, LTH Lunds Tekniska Högskola Heat Transfer Lund University |
CorporateAuthor_xml | – name: Faculty of Engineering, LTH – name: Lund University – name: Heat Transfer – name: Värmeöverföring – name: Department of Energy Sciences – name: Institutioner vid LTH – name: Lunds Tekniska Högskola – name: Departments at LTH – name: Lunds universitet – name: Institutionen för energivetenskaper |
DBID | 2RA 92L CQIGP ~WA 6I. AAFTH C6C AAYXX CITATION NPM 7X8 7S9 L.6 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC |
DOI | 10.1007/s11434-016-1146-3 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering Physics |
DocumentTitleAlternate | Solid oxide fuel cell interconnect design optimization considering the thermal stresses |
EISSN | 2095-9281 |
EndPage | 1344 |
ExternalDocumentID | oai_portal_research_lu_se_publications_88df7f9a_a2bf_494a_98a6_41d8398a962c PMC5002044 27635282 10_1007_s11434_016_1146_3 S2095927316300391 669878308 |
Genre | Journal Article |
GroupedDBID | --M 0R~ 2RA 4.4 5VR 92L AACTN AAEDT AAEDW AAIAL AAIAV AAJKR AAKOC AALRI AANXM AAOAW AARTL AAXUO AAYIU AAYQN AAYTO ABBBX ABJNI ABJOX ABMAC ABQEM ABQYD ABTEG ABTHY ABTMW ABUDA ABYKQ ACBXY ACDAQ ACGFS ACIWK ACKNC ACPRK ACRLP ADBBV ADINQ ADKPE ADRFC AEBSH AEGNC AEHWI AEJHL AENEX AEOHA AEPYU AFKWA AFLOW AFNRJ AFRAH AFTJW AFUIB AFXIZ AFZHZ AFZKB AGJBK AGQMX AGUBO AGWZB AGYKE AHAVH AHBYD AHJVU AHSBF AIEXJ AIIXL AIKHN AITUG AJBFU AJBLW AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ ASPBG ATOGT AUKKA AVWKF AXJTR AZFZN BGNMA BJAXD BKOJK CCEZO CCVFK CHBEP CQIGP CSCUP EBS EFJIC EFLBG EJD FA0 FDB FIRID FRRFC FYGXN HG6 HX~ IXD KOM KOV M41 M4Y NU0 O9- ROL RSV SOJ SPC SPCBC SSE SSK SST SSU SSZ T5K TCJ TGP UG4 ~G- ~WA 6I. AAFTH -SA -S~ 5XA 5XB AAQFI AAXDM AAXKI AAYZH ADVLN AEIPS AFBBN AFJKZ AKRWK ANKPU C6C CAJEA CJPJV H13 Q-- U1G U5K AATTM AAYWO AAYXX ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFHIU AFPUW AGCQF AGRNS AHWEU AIGII AIIUN AIXLP AKBMS AKYEP APXCP BNPGV CITATION SSH NPM EFKBS 7X8 ACLOT 7S9 L.6 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC |
ID | FETCH-LOGICAL-c672t-1287e9a1bd99e6ea6d787e007e4cd532296fc58e666ffefd0022f74c40b26f153 |
IEDL.DBID | C6C |
ISSN | 2095-9273 2095-9281 |
IngestDate | Tue Sep 09 22:44:13 EDT 2025 Thu Aug 21 18:25:39 EDT 2025 Sun Sep 28 09:11:38 EDT 2025 Sun Sep 28 07:14:22 EDT 2025 Wed Aug 13 04:53:36 EDT 2025 Thu Apr 03 07:08:06 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Tue Jul 01 02:57:30 EDT 2025 Fri Feb 21 02:34:21 EST 2025 Fri Feb 23 02:33:52 EST 2024 Wed Feb 14 10:16:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Interconnect Finite element method Solid oxide fuel cell Thermal stresses Optimization |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c672t-1287e9a1bd99e6ea6d787e007e4cd532296fc58e666ffefd0022f74c40b26f153 |
Notes | The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction of cell lifetime. A comprehensive 3D model of the thermal stresses of an anode-supported planar SOFC is presented in this work. The main objective of this paper is to get an interconnect optimized design by evaluating the thermal stresses of an anode-supported SOFC for different designs, which would be a new criterion for interconnect design. The model incorporates the momentum, mass, heat, ion and electron transport, as well as steady-state mechanics. Heat from methane steam reforming and water-gas shift reac- tion were considered in our model. The results examine the relationship between the interconnect structures and ther- mal stresses in SOFC at certain mechanical properties. A wider interconnect of the anode side lowers the stress obviously. The simulation results also indicate that thermal stress of coflow design is smaller than that of counterflow, corresponding to the temperature distribution. This study shows that it is possible to design interconnects for an optimum thermal stress performance of the cell. Solid oxide fuel cell; Thermal stresses;Interconnect - Optimization; Finite element method 10-1298/N ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s11434-016-1146-3 |
PMID | 27635282 |
PQID | 1880878094 |
PQPubID | 2044236 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_88df7f9a_a2bf_494a_98a6_41d8398a962c pubmedcentral_primary_oai_pubmedcentral_nih_gov_5002044 proquest_miscellaneous_2000207673 proquest_miscellaneous_1859730691 proquest_journals_1880878094 pubmed_primary_27635282 crossref_primary_10_1007_s11434_016_1146_3 crossref_citationtrail_10_1007_s11434_016_1146_3 springer_journals_10_1007_s11434_016_1146_3 elsevier_sciencedirect_doi_10_1007_s11434_016_1146_3 chongqing_primary_669878308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Netherlands |
PublicationTitle | Science bulletin (Beijing) |
PublicationTitleAbbrev | Sci. Bull |
PublicationTitleAlternate | Chinese Science Bulletin |
PublicationYear | 2016 |
Publisher | Elsevier B.V Science China Press Springer Nature B.V |
Publisher_xml | – name: Elsevier B.V – name: Science China Press – name: Springer Nature B.V |
References | Jensen, Sun, Ebbesen (bib5) 2016; 16 Noh, Hwang, Yoon (bib32) 2013; 230 Sohn, Nam, Jeon (bib40) 2010; 35 Jiang, Chen (bib23) 2009; 34 Andersson, Nakajima, Kitahara (bib45) 2014; 77 Li, Xu, Chen (bib36) 2010; 15 Andersson, Yuan, Sundén (bib10) 2014; 14 Clague, Marquis, Brandon (bib25) 2012; 210 Li, Gao, Xu (bib34) 2014; 14 Reddy, Goel, Tulyaganov (bib4) 2014; 2 Chen, Zhou, Ding (bib8) 2015; 5 Chiang, Liu, Shiu (bib21) 2010; 195 Mahato, Banerjee, Gupta (bib26) 2015; 72 COMSOL Multiphysics Version 5.0 User Guide. Stockholm, Sweden, 2014. Li, Xu, Gao (bib6) 2014; 258 Huang, Shy, Lee (bib29) 2008; 183 Xu, Andersson, Li (bib47) 2015; 68 Chen, Lin, Zhang (bib9) 2014; 8 Grondin, Deseure, Zahid (bib31) 2008; 25 Janardhanan, Deutschmann (bib13) 2011; 56 Aljaberi, Irvine (bib3) 2013; 1 Fleischhauer, Terner, Bermejo (bib20) 2015; 275 Wu, Liu (bib27) 2010; 26 Stygar, Brylewski, Rękas (bib30) 2012; 55 Chen, Zhang, Lu (bib11) 2016; 303 Xu, Li, Wang (bib7) 2015; 167 Fan, Li, Zeng (bib22) 2014; 77 Atkinson, Barnett, Gorte (bib1) 2004; 3 Pecho, Stenzel, Iwanschitz (bib12) 2015; 8 Peksen (bib18) 2015; 48 Lin, Stevenson, Khaleel (bib28) 2003; 117 Ni (bib14) 2013; 70 Holtappels, Stimming (bib38) 2010 Le Bars, Grae Worster (bib41) 2006; 550 Liu, Kim, Chandra (bib46) 2010; 195 Laurencin, Delette, Lefebvre-Joud (bib17) 2008; 28 Xie, Xue (bib15) 2012; 209 Kong, Gao, Liu (bib33) 2014; 7 Andersson, Yuan, Sunden (bib39) 2013; 232 Greco, Frandsen, Nakajo (bib16) 2014; 34 Andersson, Yuan, Sundn (bib42) 2012; 55 Holtappels, Bagger (bib35) 2002; 22 Boccaccini, Sevecek, Frandsen (bib19) 2016; 162 Lin, Huang, Chiang (bib24) 2009; 192 Park, Vohs, Gorte (bib2) 2000; 404 Zhu, Kee (bib37) 2008; 155 Yuan, Huang, Sundén (bib44) 2009; 45 Aljaberi, Irvine (CR3) 2013; 1 Zhu, Kee (CR37) 2008; 155 Andersson, Yuan, Sundén (CR39) 2013; 232 Peksen (CR18) 2015; 48 Wu, Liu (CR27) 2010; 26 Janardhanan, Deutschmann (CR13) 2011; 56 Laurencin, Delette, Lefebvre-Joud (CR17) 2008; 28 Lin, Stevenson, Khaleel (CR28) 2003; 117 Xu, Andersson, Li (CR47) 2015; 68 Li, Gao, Xu (CR34) 2014; 14 Andersson, Nakajima, Kitahara (CR45) 2014; 77 Greco, Frandsen, Nakajo (CR16) 2014; 34 Lin, Huang, Chiang (CR24) 2009; 192 Xie, Xue (CR15) 2012; 209 Kong, Gao, Liu (CR33) 2014; 7 Chen, Lin, Zhang (CR9) 2014; 8 Chen, Zhang, Lu (CR11) 2016; 303 Ni (CR14) 2013; 70 Sohn, Nam, Jeon (CR40) 2010; 35 Chiang, Liu, Shiu (CR21) 2010; 195 Pecho, Stenzel, Iwanschitz (CR12) 2015; 8 Fan, Li, Zeng (CR22) 2014; 77 Noh, Hwang, Yoon (CR32) 2013; 230 Li, Xu, Gao (CR6) 2014; 258 Jiang, Chen (CR23) 2009; 34 Li, Xu, Chen (CR36) 2010; 15 Reddy, Goel, Tulyaganov (CR4) 2014; 2 Clague, Marquis, Brandon (CR25) 2012; 210 Andersson, Yuan, Sundn (CR42) 2012; 55 Mahato, Banerjee, Gupta (CR26) 2015; 72 Atkinson, Barnett, Gorte (CR1) 2004; 3 Stygar, Brylewski, Rękas (CR30) 2012; 55 Andersson, Yuan, Sundén (CR10) 2014; 14 Holtappels, Bagger (CR35) 2002; 22 Park, Vohs, Gorte (CR2) 2000; 404 Xu, Li, Wang (CR7) 2015; 167 Chen, Zhou, Ding (CR8) 2015; 5 Holtappels, Stimming, Vielstich, Gasteiger, Lamm (CR38) 2010 CR43 Huang, Shy, Lee (CR29) 2008; 183 Fleischhauer, Terner, Bermejo (CR20) 2015; 275 Le Bars, Grae Worster (CR41) 2006; 550 Jensen, Sun, Ebbesen (CR5) 2016; 16 Boccaccini, Sevecek, Frandsen (CR19) 2016; 162 Yuan, Huang, Sundén (CR44) 2009; 45 Grondin, Deseure, Zahid (CR31) 2008; 25 Liu, Kim, Chandra (CR46) 2010; 195 Aljaberi (10.1007/s11434-016-1146-3_bib3) 2013; 1 Jensen (10.1007/s11434-016-1146-3_bib5) 2016; 16 Noh (10.1007/s11434-016-1146-3_bib32) 2013; 230 Zhu (10.1007/s11434-016-1146-3_bib37) 2008; 155 10.1007/s11434-016-1146-3_bib43 Andersson (10.1007/s11434-016-1146-3_bib39) 2013; 232 Chen (10.1007/s11434-016-1146-3_bib11) 2016; 303 Reddy (10.1007/s11434-016-1146-3_bib4) 2014; 2 Park (10.1007/s11434-016-1146-3_bib2) 2000; 404 Li (10.1007/s11434-016-1146-3_bib6) 2014; 258 Xie (10.1007/s11434-016-1146-3_bib15) 2012; 209 Kong (10.1007/s11434-016-1146-3_bib33) 2014; 7 Chen (10.1007/s11434-016-1146-3_bib8) 2015; 5 Chen (10.1007/s11434-016-1146-3_bib9) 2014; 8 Atkinson (10.1007/s11434-016-1146-3_bib1) 2004; 3 Pecho (10.1007/s11434-016-1146-3_bib12) 2015; 8 Boccaccini (10.1007/s11434-016-1146-3_bib19) 2016; 162 Huang (10.1007/s11434-016-1146-3_bib29) 2008; 183 Holtappels (10.1007/s11434-016-1146-3_bib35) 2002; 22 Lin (10.1007/s11434-016-1146-3_bib24) 2009; 192 Holtappels (10.1007/s11434-016-1146-3_bib38) 2010 Le Bars (10.1007/s11434-016-1146-3_bib41) 2006; 550 Andersson (10.1007/s11434-016-1146-3_bib45) 2014; 77 Xu (10.1007/s11434-016-1146-3_bib7) 2015; 167 Fan (10.1007/s11434-016-1146-3_bib22) 2014; 77 Li (10.1007/s11434-016-1146-3_bib34) 2014; 14 Chiang (10.1007/s11434-016-1146-3_bib21) 2010; 195 Wu (10.1007/s11434-016-1146-3_bib27) 2010; 26 Peksen (10.1007/s11434-016-1146-3_bib18) 2015; 48 Clague (10.1007/s11434-016-1146-3_bib25) 2012; 210 Mahato (10.1007/s11434-016-1146-3_bib26) 2015; 72 Laurencin (10.1007/s11434-016-1146-3_bib17) 2008; 28 Liu (10.1007/s11434-016-1146-3_bib46) 2010; 195 Jiang (10.1007/s11434-016-1146-3_bib23) 2009; 34 Sohn (10.1007/s11434-016-1146-3_bib40) 2010; 35 Andersson (10.1007/s11434-016-1146-3_bib42) 2012; 55 Greco (10.1007/s11434-016-1146-3_bib16) 2014; 34 Andersson (10.1007/s11434-016-1146-3_bib10) 2014; 14 Fleischhauer (10.1007/s11434-016-1146-3_bib20) 2015; 275 Li (10.1007/s11434-016-1146-3_bib36) 2010; 15 Yuan (10.1007/s11434-016-1146-3_bib44) 2009; 45 Janardhanan (10.1007/s11434-016-1146-3_bib13) 2011; 56 Lin (10.1007/s11434-016-1146-3_bib28) 2003; 117 Ni (10.1007/s11434-016-1146-3_bib14) 2013; 70 Xu (10.1007/s11434-016-1146-3_bib47) 2015; 68 Stygar (10.1007/s11434-016-1146-3_bib30) 2012; 55 Grondin (10.1007/s11434-016-1146-3_bib31) 2008; 25 |
References_xml | – volume: 1 start-page: 5868 year: 2013 ident: bib3 article-title: Ca-substituted, A-site deficient perovskite La publication-title: J Mater Chem A – volume: 550 start-page: 149 year: 2006 end-page: 173 ident: bib41 article-title: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification publication-title: J Fluid Mech – volume: 230 start-page: 109 year: 2013 end-page: 114 ident: bib32 article-title: Optimization of current collection to reduce the lateral conduction loss of thin-film-processed cathodes publication-title: J Power Sources – volume: 7 start-page: 295 year: 2014 end-page: 313 ident: bib33 article-title: Optimization of the interconnect ribs for a cathode-supported solid oxide fuel cell publication-title: Energies – volume: 155 start-page: B715 year: 2008 ident: bib37 article-title: Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies publication-title: J Electrochem Soc – volume: 5 start-page: 1500537 year: 2015 ident: bib8 article-title: Advances in cathode materials for solid oxide fuel cells: complex oxides without Alkaline earth metal elements publication-title: Adv Energy Mater – volume: 162 start-page: 250 year: 2016 end-page: 253 ident: bib19 article-title: Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector–electrode interfaces publication-title: Mater Lett – volume: 192 start-page: 515 year: 2009 end-page: 524 ident: bib24 article-title: Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design publication-title: J Power Sources – volume: 183 start-page: 205 year: 2008 end-page: 213 ident: bib29 article-title: On flow uniformity in various interconnects and its influence to cell performance of planar SOFC publication-title: J Power Sources – volume: 35 start-page: 11890 year: 2010 end-page: 11907 ident: bib40 article-title: A micro/macroscale model for intermediate temperature solid oxide fuel cells with prescribed fully-developed axial velocity profiles in gas channels publication-title: Int J Hydrog Energy – volume: 56 start-page: 9775 year: 2011 end-page: 9782 ident: bib13 article-title: Modeling diffusion limitation in solid-oxide fuel cells publication-title: Electrochim Acta – volume: 8 start-page: 5554 year: 2015 end-page: 5585 ident: bib12 article-title: 3D microstructure effects in Ni-YSZ anodes: prediction of effective transport properties and optimization of redox stability publication-title: Materials – volume: 72 start-page: 141 year: 2015 end-page: 337 ident: bib26 article-title: Progress in material selection for solid oxide fuel cell technology: a review publication-title: Prog Mater Sci – volume: 210 start-page: 224 year: 2012 end-page: 232 ident: bib25 article-title: Finite element and analytical stress analysis of a solid oxide fuel cell publication-title: J Power Sources – volume: 25 start-page: 841 year: 2008 end-page: 846 ident: bib31 article-title: Optimization of SOFC interconnect design using multiphysic computation publication-title: Comput Aided Chem Eng – volume: 8 start-page: 25 year: 2014 end-page: 33 ident: bib9 article-title: Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network publication-title: Nano Energy – volume: 195 start-page: 1895 year: 2010 end-page: 1904 ident: bib21 article-title: Thermal stress and thermo-electrochemical analysis of a planar anode-supported solid oxide fuel cell: effects of anode porosity publication-title: J Power Sources – volume: 77 start-page: 1008 year: 2014 end-page: 1022 ident: bib45 article-title: Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics publication-title: Int J Heat Mass Transf – volume: 3 start-page: 17 year: 2004 end-page: 27 ident: bib1 article-title: Advanced anodes for high-temperature fuel cells publication-title: Nat Mater – volume: 70 start-page: 116 year: 2013 end-page: 129 ident: bib14 article-title: Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming publication-title: Energy Convers Manag – volume: 15 start-page: 1077 year: 2010 end-page: 1085 ident: bib36 article-title: Chlorine contaminants poisoning of solid oxide fuel cells publication-title: J Solid State Electrochem – volume: 14 start-page: 999 year: 2014 end-page: 1005 ident: bib34 article-title: Effects of PH publication-title: Fuel Cells – volume: 55 start-page: 773 year: 2012 end-page: 788 ident: bib42 article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries publication-title: Int J Heat Mass Transf – volume: 195 start-page: 2310 year: 2010 end-page: 2318 ident: bib46 article-title: Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions publication-title: J Power Sources – volume: 209 start-page: 81 year: 2012 end-page: 89 ident: bib15 article-title: Multi-scale electrochemical reaction anode model for solid oxide fuel cells publication-title: J Power Sources – volume: 48 start-page: 1 year: 2015 end-page: 20 ident: bib18 article-title: Numerical thermomechanical modelling of solid oxide fuel cells publication-title: Prog Energy Combust Sci – volume: 77 start-page: 1 year: 2014 end-page: 10 ident: bib22 article-title: Numerical study on thermal stresses of a planar solid oxide fuel cell publication-title: Int J Therm Sci – volume: 28 start-page: 1857 year: 2008 end-page: 1869 ident: bib17 article-title: A numerical tool to estimate SOFC mechanical degradation: case of the planar cell configuration publication-title: J Eur Ceram Soc – volume: 232 start-page: 42 year: 2013 end-page: 54 ident: bib39 article-title: SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants publication-title: J Power Sources – volume: 34 start-page: 8223 year: 2009 end-page: 8234 ident: bib23 article-title: Thermal-stress analyses of an operating planar solid oxide fuel cell with the bonded compliant seal design publication-title: Int J Hydrog Energy – reference: COMSOL Multiphysics Version 5.0 User Guide. Stockholm, Sweden, 2014. – volume: 68 start-page: 3003 year: 2015 end-page: 3011 ident: bib47 article-title: Modeling of solid oxide fuel cell with anisotropic conductivity publication-title: ECS Transact – volume: 34 start-page: 2695 year: 2014 end-page: 2704 ident: bib16 article-title: Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack publication-title: J Eur Ceram Soc – volume: 275 start-page: 217 year: 2015 end-page: 226 ident: bib20 article-title: Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells publication-title: J Power Sources – volume: 22 start-page: 41 year: 2002 end-page: 48 ident: bib35 article-title: Fabrication and performance of advanced multi layer SOFC cathodes publication-title: J Eur Ceram Soc – volume: 16 start-page: 205 year: 2016 end-page: 218 ident: bib5 article-title: Pressurized operation of a planar solid oxide cell stack publication-title: Fuel Cells – volume: 117 start-page: 92 year: 2003 end-page: 97 ident: bib28 article-title: The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs publication-title: J Power Sources – volume: 55 start-page: 4421 year: 2012 end-page: 4426 ident: bib30 article-title: Effects of changes in MOLB-type SOFC cell geometry on temperature distribution and heat transfer rate in interconnects publication-title: Int J Heat Mass Transf – volume: 258 start-page: 1 year: 2014 end-page: 4 ident: bib6 article-title: Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell publication-title: J Power Sources – volume: 167 start-page: 147 year: 2015 end-page: 150 ident: bib7 article-title: Mechanism of phosphorus and chlorine passivating a nickel catalyst: a density functional theory study publication-title: Electrochim Acta – volume: 14 start-page: 177 year: 2014 end-page: 188 ident: bib10 article-title: SOFC cell design optimization using the finite element method based CFD approach publication-title: Fuel Cells – volume: 404 start-page: 265 year: 2000 end-page: 267 ident: bib2 article-title: Direct oxidation of hydrocarbons in a solid-oxide fuel cell publication-title: Nature – volume: 26 start-page: 293 year: 2010 end-page: 305 ident: bib27 article-title: Recent development of SOFC metallic interconnect publication-title: J Mater Sci Technol – volume: 2 start-page: 1834 year: 2014 end-page: 1846 ident: bib4 article-title: Thermal and mechanical stability of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells publication-title: J Mater Chem A – volume: 303 start-page: 305 year: 2016 end-page: 316 ident: bib11 article-title: Multi scale and physics models for intermediate and low temperatures H publication-title: J Power Sources – year: 2010 ident: bib38 article-title: Solid oxide fuel cells (SOFC) publication-title: Handbook of fuel cells – volume: 45 start-page: 471 year: 2009 end-page: 484 ident: bib44 article-title: CFD approach to analyse transport phenomena coupled chemical reactions relevant for methane reformers publication-title: Heat Mass Transf – volume: 28 start-page: 1857 year: 2008 end-page: 1869 ident: CR17 article-title: A numerical tool to estimate SOFC mechanical degradation: case of the planar cell configuration publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2007.12.025 – volume: 77 start-page: 1 year: 2014 end-page: 10 ident: CR22 article-title: Numerical study on thermal stresses of a planar solid oxide fuel cell publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2013.10.008 – ident: CR43 – volume: 162 start-page: 250 year: 2016 end-page: 253 ident: CR19 article-title: Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector–electrode interfaces publication-title: Mater Lett doi: 10.1016/j.matlet.2015.07.137 – volume: 14 start-page: 177 year: 2014 end-page: 188 ident: CR10 article-title: SOFC cell design optimization using the finite element method based CFD approach publication-title: Fuel Cells doi: 10.1002/fuce.201300160 – volume: 5 start-page: 1500537 year: 2015 ident: CR8 article-title: Advances in cathode materials for solid oxide fuel cells: complex oxides without Alkaline earth metal elements publication-title: Adv Energy Mater doi: 10.1002/aenm.201500537 – volume: 275 start-page: 217 year: 2015 end-page: 226 ident: CR20 article-title: Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.10.083 – volume: 3 start-page: 17 year: 2004 end-page: 27 ident: CR1 article-title: Advanced anodes for high-temperature fuel cells publication-title: Nat Mater doi: 10.1038/nmat1040 – volume: 7 start-page: 295 year: 2014 end-page: 313 ident: CR33 article-title: Optimization of the interconnect ribs for a cathode-supported solid oxide fuel cell publication-title: Energies doi: 10.3390/en7010295 – volume: 232 start-page: 42 year: 2013 end-page: 54 ident: CR39 article-title: SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.12.122 – volume: 14 start-page: 999 year: 2014 end-page: 1005 ident: CR34 article-title: Effects of PH and CH Cl contaminants on the performance of solid oxide fuel cells publication-title: Fuel Cells doi: 10.1002/fuce.201300248 – volume: 155 start-page: B715 year: 2008 ident: CR37 article-title: Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies publication-title: J Electrochem Soc doi: 10.1149/1.2913152 – volume: 55 start-page: 773 year: 2012 end-page: 788 ident: CR42 article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2011.10.032 – volume: 210 start-page: 224 year: 2012 end-page: 232 ident: CR25 article-title: Finite element and analytical stress analysis of a solid oxide fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.03.027 – volume: 183 start-page: 205 year: 2008 end-page: 213 ident: CR29 article-title: On flow uniformity in various interconnects and its influence to cell performance of planar SOFC publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.04.059 – volume: 22 start-page: 41 year: 2002 end-page: 48 ident: CR35 article-title: Fabrication and performance of advanced multi layer SOFC cathodes publication-title: J Eur Ceram Soc doi: 10.1016/S0955-2219(01)00238-2 – volume: 34 start-page: 2695 year: 2014 end-page: 2704 ident: CR16 article-title: Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2013.12.055 – volume: 70 start-page: 116 year: 2013 end-page: 129 ident: CR14 article-title: Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.02.008 – volume: 48 start-page: 1 year: 2015 end-page: 20 ident: CR18 article-title: Numerical thermomechanical modelling of solid oxide fuel cells publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2014.12.001 – volume: 167 start-page: 147 year: 2015 end-page: 150 ident: CR7 article-title: Mechanism of phosphorus and chlorine passivating a nickel catalyst: a density functional theory study publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.01.222 – volume: 258 start-page: 1 year: 2014 end-page: 4 ident: CR6 article-title: Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.02.041 – volume: 15 start-page: 1077 year: 2010 end-page: 1085 ident: CR36 article-title: Chlorine contaminants poisoning of solid oxide fuel cells publication-title: J Solid State Electrochem doi: 10.1007/s10008-010-1166-x – volume: 195 start-page: 1895 year: 2010 end-page: 1904 ident: CR21 article-title: Thermal stress and thermo-electrochemical analysis of a planar anode-supported solid oxide fuel cell: effects of anode porosity publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.10.011 – volume: 195 start-page: 2310 year: 2010 end-page: 2318 ident: CR46 article-title: Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.10.064 – volume: 56 start-page: 9775 year: 2011 end-page: 9782 ident: CR13 article-title: Modeling diffusion limitation in solid-oxide fuel cells publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.08.038 – year: 2010 ident: CR38 article-title: Solid oxide fuel cells (SOFC) publication-title: Handbook of fuel cells – volume: 16 start-page: 205 year: 2016 end-page: 218 ident: CR5 article-title: Pressurized operation of a planar solid oxide cell stack publication-title: Fuel Cells doi: 10.1002/fuce.201500180 – volume: 209 start-page: 81 year: 2012 end-page: 89 ident: CR15 article-title: Multi-scale electrochemical reaction anode model for solid oxide fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.02.077 – volume: 34 start-page: 8223 year: 2009 end-page: 8234 ident: CR23 article-title: Thermal-stress analyses of an operating planar solid oxide fuel cell with the bonded compliant seal design publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2009.07.089 – volume: 35 start-page: 11890 year: 2010 end-page: 11907 ident: CR40 article-title: A micro/macroscale model for intermediate temperature solid oxide fuel cells with prescribed fully-developed axial velocity profiles in gas channels publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2010.08.063 – volume: 1 start-page: 5868 year: 2013 ident: CR3 article-title: Ca-substituted, A-site deficient perovskite La Sr TiO as a potential anode material for SOFCs publication-title: J Mater Chem A doi: 10.1039/c3ta10844a – volume: 45 start-page: 471 year: 2009 end-page: 484 ident: CR44 article-title: CFD approach to analyse transport phenomena coupled chemical reactions relevant for methane reformers publication-title: Heat Mass Transf doi: 10.1007/s00231-008-0449-6 – volume: 77 start-page: 1008 year: 2014 end-page: 1022 ident: CR45 article-title: Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.06.033 – volume: 550 start-page: 149 year: 2006 end-page: 173 ident: CR41 article-title: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification publication-title: J Fluid Mech doi: 10.1017/S0022112005007998 – volume: 72 start-page: 141 year: 2015 end-page: 337 ident: CR26 article-title: Progress in material selection for solid oxide fuel cell technology: a review publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2015.01.001 – volume: 26 start-page: 293 year: 2010 end-page: 305 ident: CR27 article-title: Recent development of SOFC metallic interconnect publication-title: J Mater Sci Technol doi: 10.1016/S1005-0302(10)60049-7 – volume: 68 start-page: 3003 year: 2015 end-page: 3011 ident: CR47 article-title: Modeling of solid oxide fuel cell with anisotropic conductivity publication-title: ECS Transact doi: 10.1149/06801.3003ecst – volume: 55 start-page: 4421 year: 2012 end-page: 4426 ident: CR30 article-title: Effects of changes in MOLB-type SOFC cell geometry on temperature distribution and heat transfer rate in interconnects publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.04.011 – volume: 25 start-page: 841 year: 2008 end-page: 846 ident: CR31 article-title: Optimization of SOFC interconnect design using multiphysic computation publication-title: Comput Aided Chem Eng doi: 10.1016/S1570-7946(08)80146-0 – volume: 2 start-page: 1834 year: 2014 end-page: 1846 ident: CR4 article-title: Thermal and mechanical stability of lanthanide-containing glass–ceramic sealants for solid oxide fuel cells publication-title: J Mater Chem A doi: 10.1039/C3TA13196C – volume: 8 start-page: 5554 year: 2015 end-page: 5585 ident: CR12 article-title: 3D microstructure effects in Ni–YSZ anodes: prediction of effective transport properties and optimization of redox stability publication-title: Materials doi: 10.3390/ma8095265 – volume: 117 start-page: 92 year: 2003 end-page: 97 ident: CR28 article-title: The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs publication-title: J Power Sources doi: 10.1016/S0378-7753(02)00726-7 – volume: 230 start-page: 109 year: 2013 end-page: 114 ident: CR32 article-title: Optimization of current collection to reduce the lateral conduction loss of thin-film-processed cathodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.12.059 – volume: 404 start-page: 265 year: 2000 end-page: 267 ident: CR2 article-title: Direct oxidation of hydrocarbons in a solid-oxide fuel cell publication-title: Nature doi: 10.1038/35005040 – volume: 8 start-page: 25 year: 2014 end-page: 33 ident: CR9 article-title: Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.05.010 – volume: 303 start-page: 305 year: 2016 end-page: 316 ident: CR11 article-title: Multi scale and physics models for intermediate and low temperatures H -solid oxide fuel cells with H /e /O mixed conducting properties: part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.10.090 – volume: 192 start-page: 515 year: 2009 end-page: 524 ident: CR24 article-title: Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.03.010 – volume: 77 start-page: 1 year: 2014 ident: 10.1007/s11434-016-1146-3_bib22 article-title: Numerical study on thermal stresses of a planar solid oxide fuel cell publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2013.10.008 – volume: 77 start-page: 1008 year: 2014 ident: 10.1007/s11434-016-1146-3_bib45 article-title: Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.06.033 – year: 2010 ident: 10.1007/s11434-016-1146-3_bib38 article-title: Solid oxide fuel cells (SOFC) – volume: 34 start-page: 2695 year: 2014 ident: 10.1007/s11434-016-1146-3_bib16 article-title: Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2013.12.055 – volume: 404 start-page: 265 year: 2000 ident: 10.1007/s11434-016-1146-3_bib2 article-title: Direct oxidation of hydrocarbons in a solid-oxide fuel cell publication-title: Nature doi: 10.1038/35005040 – volume: 195 start-page: 2310 year: 2010 ident: 10.1007/s11434-016-1146-3_bib46 article-title: Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.10.064 – volume: 15 start-page: 1077 year: 2010 ident: 10.1007/s11434-016-1146-3_bib36 article-title: Chlorine contaminants poisoning of solid oxide fuel cells publication-title: J Solid State Electrochem doi: 10.1007/s10008-010-1166-x – volume: 275 start-page: 217 year: 2015 ident: 10.1007/s11434-016-1146-3_bib20 article-title: Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.10.083 – volume: 14 start-page: 999 year: 2014 ident: 10.1007/s11434-016-1146-3_bib34 article-title: Effects of PH3 and CH3Cl contaminants on the performance of solid oxide fuel cells publication-title: Fuel Cells doi: 10.1002/fuce.201300248 – volume: 68 start-page: 3003 year: 2015 ident: 10.1007/s11434-016-1146-3_bib47 article-title: Modeling of solid oxide fuel cell with anisotropic conductivity publication-title: ECS Transact doi: 10.1149/06801.3003ecst – volume: 155 start-page: B715 year: 2008 ident: 10.1007/s11434-016-1146-3_bib37 article-title: Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies publication-title: J Electrochem Soc doi: 10.1149/1.2913152 – volume: 1 start-page: 5868 year: 2013 ident: 10.1007/s11434-016-1146-3_bib3 article-title: Ca-substituted, A-site deficient perovskite La0.2Sr0.7TiO3 as a potential anode material for SOFCs publication-title: J Mater Chem A doi: 10.1039/c3ta10844a – volume: 5 start-page: 1500537 year: 2015 ident: 10.1007/s11434-016-1146-3_bib8 article-title: Advances in cathode materials for solid oxide fuel cells: complex oxides without Alkaline earth metal elements publication-title: Adv Energy Mater doi: 10.1002/aenm.201500537 – volume: 230 start-page: 109 year: 2013 ident: 10.1007/s11434-016-1146-3_bib32 article-title: Optimization of current collection to reduce the lateral conduction loss of thin-film-processed cathodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.12.059 – volume: 117 start-page: 92 year: 2003 ident: 10.1007/s11434-016-1146-3_bib28 article-title: The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs publication-title: J Power Sources doi: 10.1016/S0378-7753(02)00726-7 – volume: 25 start-page: 841 year: 2008 ident: 10.1007/s11434-016-1146-3_bib31 article-title: Optimization of SOFC interconnect design using multiphysic computation publication-title: Comput Aided Chem Eng doi: 10.1016/S1570-7946(08)80146-0 – volume: 35 start-page: 11890 year: 2010 ident: 10.1007/s11434-016-1146-3_bib40 article-title: A micro/macroscale model for intermediate temperature solid oxide fuel cells with prescribed fully-developed axial velocity profiles in gas channels publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2010.08.063 – volume: 56 start-page: 9775 year: 2011 ident: 10.1007/s11434-016-1146-3_bib13 article-title: Modeling diffusion limitation in solid-oxide fuel cells publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.08.038 – volume: 55 start-page: 4421 year: 2012 ident: 10.1007/s11434-016-1146-3_bib30 article-title: Effects of changes in MOLB-type SOFC cell geometry on temperature distribution and heat transfer rate in interconnects publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.04.011 – volume: 26 start-page: 293 year: 2010 ident: 10.1007/s11434-016-1146-3_bib27 article-title: Recent development of SOFC metallic interconnect publication-title: J Mater Sci Technol doi: 10.1016/S1005-0302(10)60049-7 – volume: 3 start-page: 17 year: 2004 ident: 10.1007/s11434-016-1146-3_bib1 article-title: Advanced anodes for high-temperature fuel cells publication-title: Nat Mater doi: 10.1038/nmat1040 – volume: 209 start-page: 81 year: 2012 ident: 10.1007/s11434-016-1146-3_bib15 article-title: Multi-scale electrochemical reaction anode model for solid oxide fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.02.077 – volume: 48 start-page: 1 year: 2015 ident: 10.1007/s11434-016-1146-3_bib18 article-title: Numerical thermomechanical modelling of solid oxide fuel cells publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2014.12.001 – volume: 210 start-page: 224 year: 2012 ident: 10.1007/s11434-016-1146-3_bib25 article-title: Finite element and analytical stress analysis of a solid oxide fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.03.027 – volume: 7 start-page: 295 year: 2014 ident: 10.1007/s11434-016-1146-3_bib33 article-title: Optimization of the interconnect ribs for a cathode-supported solid oxide fuel cell publication-title: Energies doi: 10.3390/en7010295 – volume: 22 start-page: 41 year: 2002 ident: 10.1007/s11434-016-1146-3_bib35 article-title: Fabrication and performance of advanced multi layer SOFC cathodes publication-title: J Eur Ceram Soc doi: 10.1016/S0955-2219(01)00238-2 – volume: 70 start-page: 116 year: 2013 ident: 10.1007/s11434-016-1146-3_bib14 article-title: Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.02.008 – volume: 162 start-page: 250 year: 2016 ident: 10.1007/s11434-016-1146-3_bib19 article-title: Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector–electrode interfaces publication-title: Mater Lett doi: 10.1016/j.matlet.2015.07.137 – volume: 303 start-page: 305 year: 2016 ident: 10.1007/s11434-016-1146-3_bib11 article-title: Multi scale and physics models for intermediate and low temperatures H+-solid oxide fuel cells with H+/e−/O2− mixed conducting properties: part A, generalized percolation theory for LSCF-SDC-BZCY 3-component cathodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.10.090 – volume: 183 start-page: 205 year: 2008 ident: 10.1007/s11434-016-1146-3_bib29 article-title: On flow uniformity in various interconnects and its influence to cell performance of planar SOFC publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.04.059 – volume: 16 start-page: 205 year: 2016 ident: 10.1007/s11434-016-1146-3_bib5 article-title: Pressurized operation of a planar solid oxide cell stack publication-title: Fuel Cells doi: 10.1002/fuce.201500180 – volume: 8 start-page: 25 year: 2014 ident: 10.1007/s11434-016-1146-3_bib9 article-title: Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.05.010 – volume: 550 start-page: 149 year: 2006 ident: 10.1007/s11434-016-1146-3_bib41 article-title: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification publication-title: J Fluid Mech doi: 10.1017/S0022112005007998 – volume: 232 start-page: 42 year: 2013 ident: 10.1007/s11434-016-1146-3_bib39 article-title: SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.12.122 – volume: 195 start-page: 1895 year: 2010 ident: 10.1007/s11434-016-1146-3_bib21 article-title: Thermal stress and thermo-electrochemical analysis of a planar anode-supported solid oxide fuel cell: effects of anode porosity publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.10.011 – volume: 2 start-page: 1834 year: 2014 ident: 10.1007/s11434-016-1146-3_bib4 article-title: Thermal and mechanical stability of lanthanide-containing glass-ceramic sealants for solid oxide fuel cells publication-title: J Mater Chem A doi: 10.1039/C3TA13196C – volume: 192 start-page: 515 year: 2009 ident: 10.1007/s11434-016-1146-3_bib24 article-title: Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.03.010 – volume: 258 start-page: 1 year: 2014 ident: 10.1007/s11434-016-1146-3_bib6 article-title: Investigation into the effects of sulfur on syngas reforming inside a solid oxide fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.02.041 – volume: 45 start-page: 471 year: 2009 ident: 10.1007/s11434-016-1146-3_bib44 article-title: CFD approach to analyse transport phenomena coupled chemical reactions relevant for methane reformers publication-title: Heat Mass Transf doi: 10.1007/s00231-008-0449-6 – volume: 14 start-page: 177 year: 2014 ident: 10.1007/s11434-016-1146-3_bib10 article-title: SOFC cell design optimization using the finite element method based CFD approach publication-title: Fuel Cells doi: 10.1002/fuce.201300160 – volume: 8 start-page: 5554 year: 2015 ident: 10.1007/s11434-016-1146-3_bib12 article-title: 3D microstructure effects in Ni-YSZ anodes: prediction of effective transport properties and optimization of redox stability publication-title: Materials doi: 10.3390/ma8095265 – volume: 28 start-page: 1857 year: 2008 ident: 10.1007/s11434-016-1146-3_bib17 article-title: A numerical tool to estimate SOFC mechanical degradation: case of the planar cell configuration publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2007.12.025 – volume: 34 start-page: 8223 year: 2009 ident: 10.1007/s11434-016-1146-3_bib23 article-title: Thermal-stress analyses of an operating planar solid oxide fuel cell with the bonded compliant seal design publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2009.07.089 – volume: 72 start-page: 141 year: 2015 ident: 10.1007/s11434-016-1146-3_bib26 article-title: Progress in material selection for solid oxide fuel cell technology: a review publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2015.01.001 – ident: 10.1007/s11434-016-1146-3_bib43 – volume: 167 start-page: 147 year: 2015 ident: 10.1007/s11434-016-1146-3_bib7 article-title: Mechanism of phosphorus and chlorine passivating a nickel catalyst: a density functional theory study publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.01.222 – volume: 55 start-page: 773 year: 2012 ident: 10.1007/s11434-016-1146-3_bib42 article-title: SOFC modeling considering electrochemical reactions at the active three phase boundaries publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2011.10.032 |
SSID | ssj0001492407 ssib054405809 ssib060475419 |
Score | 2.394236 |
Snippet | The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction... The mechanical failure of solid oxide fuel cell (SOFC) components may cause cracks with consequences such as gas leakage, structure instability and reduction... |
SourceID | swepub pubmedcentral proquest pubmed crossref springer elsevier chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1333 |
SubjectTerms | Chemistry/Food Science Counterflow Design Design optimization Earth Sciences electrodes electron transfer Electron transport Energiteknik Energy Engineering Engineering Engineering and Technology Finite element method Fuel cells Fuel technology heat Humanities and Social Sciences Interconnect Leakage Life Sciences Maskinteknik Mechanical Engineering Mechanical failure Mechanical properties Methane momentum multidisciplinary Optimization Physics Reforming Science Science (multidisciplinary) Shift reaction Solid oxide fuel cell Solid oxide fuel cells steam Teknik temperature Temperature distribution Temperature effects Thermal stress Thermal stresses Three dimensional models |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGd-GCGJ9lAxmJAx-K2jiOYx-niamA2GVMTFysxB-0UkjK2kr8-bznONnK1B049JLYjT_ep_3e7xHyJs9ymxkL3okwWcLzSiXSFFkC2oE5XlifhmIwX8_E7IJ_vswv98hJnwuDYZVR9ncyPUjr-GQSV3OyXCwm5wyPsBhWXsoCzvk9ss9A28sR2T_-9GV2dn3UwhX6LVhmboqVCaFPf78ZkujAZMBIDJFghm6SIcrCvG1-_gbdsUtb3bZGbwdVDjer_6CQBs11-pA8iCYnPe5mdUD2XPOIHESmXtG3EXn63WPy_bytF5a2fxbWUb9xNcVzfYqQElcGI2LMmtoQ8kFbEDW_Yg4nNbHqJ4yDgkGJP5D3Ne0SUdzqCbk4_fjtZJbEyguJEQVbJ6C0CqfKtLJKOeFKYYGvHayW48bmIAOU8CaXDnwf7523aAn4ghs-rZjwIESfklHTNu45oRX4iyL1wgoHloSrqjT1WWmnzGWlkdKPyeGw2nrZIWxoIZQsZDaVYzLt11-bCFqOtTNqfQ23jNunMVAtJFhnY_J-6NL_3x2Neb-peovsNGiUu7od9QSgI8-vNCLbwajBXx6T18Nr4FbcqrJx7QbbgAMHXppKd7dh4Xq4EAV85llHU8NEGOIHgpc8JsUWtQ0NEC18-02zmAfU8DzkQcPYPvR0eWPouyf6oyPd7Q8Ez1BHOKq5rjd65fTyxjmzltL6wqtSl6zymiteaiVLoXlqwSSXpRLMvPi_xT8k9xlyawj0OyKj9dXGvQTLcF29ipz_F7JfXjY priority: 102 providerName: Elsevier |
Title | Solid oxide fuel cell interconnect design optimization considering the thermal stresses |
URI | http://lib.cqvip.com/qk/86894X/201617/669878308.html https://dx.doi.org/10.1007/s11434-016-1146-3 https://link.springer.com/article/10.1007/s11434-016-1146-3 https://www.ncbi.nlm.nih.gov/pubmed/27635282 https://www.proquest.com/docview/1880878094 https://www.proquest.com/docview/1859730691 https://www.proquest.com/docview/2000207673 https://pubmed.ncbi.nlm.nih.gov/PMC5002044 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFRIcEF1eS0tlJA48FDUPx3GO1aplYUUPQNXCxUr8YBctSWl2JX4-M44Tdlu2EocohzixE49nvolnviHkZZqkOlEavBOukoClZR4IlSUBWIfYsEzbyBWD-XjCx6fsw3l67smiMRfmyv79QQN4PcE4CR5g_myQ3CbbKehdFOYRH3WikzIAHh0T1Y8W-KOvgqXlQqxGCFa629P811ORWWFaV99_gb3YZKGuI9DrgZT9buoV5lFnrY4fkPseZtLDVi52yC1TDci9FfLBAbnjgj9VMyA7foE39JVnoX79kJx9ruczTevfM22oXZo5xX_8FOklLhVGx6gF1S78g9agdn76fE6qfAVQ6IMCuMQDdP-ctkkppnlETo-PvozGga_CECiexYsADFhm8iIqdZ4bbgquYY0b-IqGKZ2CPsi5Vakw4AdZa6xGVGAzplhYxtyCQn1Mtqq6Mk8JLcF35JHlmhtAFaYso8gmhQ5jkxRKCDsku_0syIuWbUNynotMJKEYkrCbF6k8gTnW0ZjLv9TLOK0Sg9ZcsnUyJG_6W7rn3dCYdZMtPfxoYYUEobzptr1OMKRf_41EljsYNfjOQ_KivwwrF6eqqEy9xDbgzIEk59HmNrHbKs54Bt08aWWtf5EYuQTBYx6SbE0K-wbIHL5-pZpNHYN46nKiYWxvO3ldGfrmF_3WivR6B85LlJ6aairnS9kYebHyz1kKoW1m80IWcWkly1khc1FwySIN8FwUOY_Vs_8ayi65G-PidbF-e2Rrcbk0zwEcLsp9sn347uvkCM_vJ-MTPE8-nU32nbr4A69MXWY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdgCDEOiBUYZQOMxIEPRTSJ49hHVDEV2HZhExMXK_EHLSrJWFqJP5_3HCe0G53Eoac4sVO_j9-L3_s9Ql5maWZSbSA64TqNWFbKSOg8jcA7JJblxsW-GczRMZ-csk9n2Vkgi8ZamEvn9-8awOsp5knwCOtno_QmuYUHl0iTP-bjTnQyBsCjY6L60QJ_jFWwtdwIuxGCl-7ONP_1VGRWmNbV91_gLzZ5qKsI9GoiZX-aeol51Hurg_vkXoCZ9H0rFzvkhq0G5O4K-eCA3PbJn7oZkJ2g4A19FVioXz8gX7_U85mh9e-ZsdQt7ZziN36K9BIXGrNj9IIan_5BazA7P0M9J9WhAyjMQQFc4g9s_5y2RSm2eUhODz6cjCdR6MIQaZ4niwgcWG5lEZdGSsttwQ3ouIV_0TJtMrAHkjudCQtxkHPWGUQFLmeajcqEOzCoj8hWVVf2MaElxI48dtxwC6jClmUcu7Qwo8SmhRbCDclevwvqvGXbUJxLkYt0JIZk1O2L0oHAHPtozNVf6mXcVoVJa77YOh2SN_0t3fOuGcy6zVYBfrSwQoFQXnfbficYKuh_o5DlDlYNsfOQvOgvg-biVhWVrZc4BoI5iNhkvHlM4o-Kc57DNLutrPUvkiCXIETMQ5KvSWE_AJnD169Us6lnEM98TTSs7W0nrytL3_yi31qRXp_AR4kqUFNN1XypGqvOV745KyGMy50sVJGUTjHJCiVFwRWLDcBzUUie6Cf_tZTn5M7k5OhQHX48_rxHthNUZJ_3t0-2FhdL-xSA4qJ85k3EH4D_W5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegEwgegJWvsgFG4oEPZWsSx7EfJ1gZDCYkmDZ4MYk_aKEkZUklxF_PObGzdmOTEA99ihPb8eXufr273yH0OIkTFUsF6ITKOCBJzgMm0zgA6xBpkioTNs1g3u3RnX3y5jA5dH1OK5_t7kOSbU2DZWkq6s2ZMpvHhW9g5m32BA1sVW0QX0QrxLaQ6KGVrVefdre9SCUEHBLPUPWtBQQWw9iWc0PbpRCst491_u25lnFhXBZff8J6zrJcpz3T0wmWXZT1BCNpY8VG19EXv_82eeX7xrzON-TvE9SQ__GCbqBrzsPFW61IrqILuuijqwu8h310qck7lVUfrTrdUuEnjgD76U108KGcThQuf02Uxmaup9iGF7BltjiSNjFH1lg1mSe4BI33w5WSYumaj8IcGPxa-wOzM8VtPYyubqH90fbHFzuBawARSJpGdQC2M9U8C3PFuaY6owrUi4b9aSJVAqqIUyMTpgGCGaONsg6JSYkkwzyiBnT5bdQrykLfRTgH2EpDQxXV4NDoPA9DE2dqGOk4k4yZAVrrDlrMWqIPQSlnKYuHbICG_uiFdNzptoXHVByzPtsXLmy-XFPnHQ_Qs-4W_7xzBhMvT8J5Pq1HI8CwnXfbupc94VRPJSzBHqwaYPsAPeoug9KwR5UVupzbMYAjASzy8OwxUROlTmkK09xpxbnbSGRpDAGsD1C6JOjdAEtavnylmIwb8vKkKceGtT33Qryw9LM3-rn9apYnaACqcKxYYzGdi0qL2cLf3YIxZVLDM5FFuRGEk0xwllFBQgXIgGWcRvLePy3lIbr8_uVIvH29t7uGrkT2C2syDtdRrz6a6_vgotb5A6eG_gC29oVP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid+oxide+fuel+cell+interconnect+design+optimization+considering+the+thermal+stresses&rft.jtitle=Science+bulletin+%28Beijing%29&rft.au=Xu%2C+Min&rft.au=Li%2C+Tingshuai&rft.au=Yang%2C+Ming&rft.au=Andersson%2C+Martin&rft.date=2016-09-01&rft.issn=2095-9273&rft.volume=61&rft.issue=17&rft.spage=1333&rft.epage=1344&rft_id=info:doi/10.1007%2Fs11434-016-1146-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11434_016_1146_3 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86894X%2F86894X.jpg |