End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1
In eukaryotes, permanent inhibition of the non‐homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of...
Saved in:
Published in | The EMBO journal Vol. 32; no. 6; pp. 805 - 815 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
20.03.2013
Nature Publishing Group UK Springer Nature B.V EMBO Press Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 1460-2075 |
DOI | 10.1038/emboj.2013.24 |
Cover
Abstract | In eukaryotes, permanent inhibition of the non‐homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non‐essential Swi2/Snf2‐related translocase and a Small Ubiquitin‐related Modifier (SUMO)‐Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere–telomere fusions. Uls1 requirement is alleviated by the absence of poly‐SUMO chains and by
rap1
alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly‐SUMO conjugates. We propose that one of Uls1 functions is to clear non‐functional poly‐SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly‐SUMOylated proteins on DNA in eukaryotes.
A STUbL with DNA‐dependent ATPase activity protects telomeres by preventing accumulation of poly‐sumoylated Rap1 on chromosome ends. |
---|---|
AbstractList | In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes. In eukaryotes, permanent inhibition of the non‐homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non‐essential Swi2/Snf2‐related translocase and a Small Ubiquitin‐related Modifier (SUMO)‐Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere–telomere fusions. Uls1 requirement is alleviated by the absence of poly‐SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly‐SUMO conjugates. We propose that one of Uls1 functions is to clear non‐functional poly‐SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly‐SUMOylated proteins on DNA in eukaryotes. A STUbL with DNA‐dependent ATPase activity protects telomeres by preventing accumulation of poly‐sumoylated Rap1 on chromosome ends. In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes.In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes. A STUbL with DNA-dependent ATPase activity protects telomeres by preventing accumulation of poly-sumoylated Rap1 on chromosome ends. In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere–telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes. In eukaryotes, permanent inhibition of the non‐homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non‐essential Swi2/Snf2‐related translocase and a Small Ubiquitin‐related Modifier (SUMO)‐Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere–telomere fusions. Uls1 requirement is alleviated by the absence of poly‐SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly‐SUMO conjugates. We propose that one of Uls1 functions is to clear non‐functional poly‐SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly‐SUMOylated proteins on DNA in eukaryotes. A STUbL with DNA‐dependent ATPase activity protects telomeres by preventing accumulation of poly‐sumoylated Rap1 on chromosome ends. In eukaryotes, permanent inhibition of the nonhomologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2- related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates.We propose that one of Uls1 functions is to clear non-functional poly- SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly- SUMOylated proteins on DNA in eukaryotes. |
Author | Pobiega, Sabrina Marcand, Stéphane Lescasse, Rachel Callebaut, Isabelle |
Author_xml | – sequence: 1 givenname: Rachel surname: Lescasse fullname: Lescasse, Rachel organization: CEA, Direction des sciences du vivant/Institut de radiobiologie cellulaire et moléculaire/Service instabilité génétique réparation recombinaison/Laboratoire télomère et réparation du chromosome, Fontenay-aux-roses, France – sequence: 2 givenname: Sabrina surname: Pobiega fullname: Pobiega, Sabrina organization: CEA, Direction des sciences du vivant/Institut de radiobiologie cellulaire et moléculaire/Service instabilité génétique réparation recombinaison/Laboratoire télomère et réparation du chromosome, Fontenay-aux-roses, France – sequence: 3 givenname: Isabelle surname: Callebaut fullname: Callebaut, Isabelle organization: CNRS, UMR 7590, Institut de minéralogie et de physique des milieux condensés, Université Pierre et Marie Curie, Paris, France – sequence: 4 givenname: Stéphane surname: Marcand fullname: Marcand, Stéphane email: stephane.marcand@cea.fr organization: CEA, Direction des sciences du vivant/Institut de radiobiologie cellulaire et moléculaire/Service instabilité génétique réparation recombinaison/Laboratoire télomère et réparation du chromosome, Fontenay-aux-roses, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23417015$$D View this record in MEDLINE/PubMed https://hal.science/hal-00804424$$DView record in HAL |
BookMark | eNqNks9v0zAUxy00xLrBkSuKxAUOKX6JYzsXpP0oG9CxA6smcbGcxGldXLuzk43-9yRtGaPSgJMt-_t5732_9gHas84qhF4CHgJO-Tu1KNx8mGBIhwl5ggZAKI4TzLI9NMAJhZgAz_fRQQhzjHHGGTxD-0lKgGHIBkiPbBXPnbbaTiNtZ7rQjXY2kk3UKOMWyqsQeXXT6n7TzFTUeGmDcaUMKpK2ipbOrL5OLi7jSi2VrZRtorbQHdBoGxk97XUTE-A5elpLE9SL7XqIJh9GVyfn8fjy7OPJ0TguKQMS55wXRZnTuoYsqaua85KozgLFmMiMFaxmwLMyI0lFcUFwVWY5JzWtmCJEFkl6iIabuq1dytWdNEYsvV5IvxKARZ-ZWGcm-sxEQjrg_QZYtsVCVWXnwMvfkJNa_Hlj9UxM3a1IKSYM8q7A202B2Q52fjQW_RnGHBOSkFvotG-2zby7aVVoxEKHUhkjrXJtEJASTjhgkv-HFHLIcrqe4PWOdO5ab7uY1yqWcwy90VcPjd6P-us3dIJ4Iyi9C8Gr-p_JpTv6Ujey_z9dTto8SmUb6k4btfp7CzG6OP7U79fc9mFDh9ip8g9MPtJoa0eHRv24byT9d0FZyjJx_eVM0Otvn-Hq9FTw9CdvyQd3 |
CODEN | EMJODG |
CitedBy_id | crossref_primary_10_1186_s13008_015_0010_1 crossref_primary_10_1101_gad_218776_113 crossref_primary_10_3390_ijms22105391 crossref_primary_10_3390_biom6010014 crossref_primary_10_1016_j_dnarep_2019_04_005 crossref_primary_10_1038_ncomms5217 crossref_primary_10_1016_j_ceb_2016_03_011 crossref_primary_10_1016_j_molcel_2019_05_021 crossref_primary_10_1016_j_molcel_2020_09_002 crossref_primary_10_1016_j_bbamcr_2013_08_022 crossref_primary_10_1016_j_dnarep_2014_05_008 crossref_primary_10_1002_1873_3468_14751 crossref_primary_10_1242_jcs_230193 crossref_primary_10_1038_nsmb_2805 crossref_primary_10_1038_s41467_021_23035_w crossref_primary_10_1002_jor_25131 crossref_primary_10_1016_j_celrep_2018_07_102 crossref_primary_10_1016_j_gde_2014_06_009 crossref_primary_10_1080_19491034_2024_2398450 crossref_primary_10_7554_eLife_57720 crossref_primary_10_1016_j_celrep_2021_108691 crossref_primary_10_1016_j_dnarep_2022_103356 crossref_primary_10_1093_nar_gkab502 crossref_primary_10_3390_biom12101467 crossref_primary_10_1371_journal_pone_0214102 crossref_primary_10_1093_nar_gkw1369 crossref_primary_10_12688_wellcomeopenres_9935_1 crossref_primary_10_1534_genetics_116_196568 crossref_primary_10_1093_nar_gkx503 crossref_primary_10_1101_gad_328534_119 crossref_primary_10_1101_gr_185793_114 crossref_primary_10_12688_wellcomeopenres_9935_2 crossref_primary_10_3390_ijms22094510 crossref_primary_10_1038_ncomms9827 crossref_primary_10_1016_j_isci_2021_102231 crossref_primary_10_1371_journal_pgen_1006776 crossref_primary_10_3389_fgene_2017_00067 crossref_primary_10_1016_j_molcel_2017_04_017 |
Cites_doi | 10.1074/jbc.M112.410985 10.1074/jbc.M706025200 10.1073/pnas.0704534104 10.1038/ncb2263 10.1074/jbc.M802690200 10.1126/science.1180823 10.1016/j.molcel.2008.10.010 10.1371/journal.pgen.1000966 10.1093/nar/gkr1166 10.1038/emboj.2010.155 10.1101/gad.988802 10.1016/j.molcel.2010.08.028 10.1073/pnas.1934561100 10.1007/978-1-61779-474-2_18 10.1038/nsmb.1974 10.1038/sj.emboj.7600778 10.1074/jbc.M110.170167 10.1038/nsmb.2100 10.1038/nature10985 10.1371/journal.pgen.1002024 10.1128/MCB.17.9.5461 10.1038/nsmb1259 10.1016/j.molcel.2009.01.027 10.1126/science.1162790 10.1038/nature05649 10.1146/annurev-genet-102108-134841 10.1016/j.jmb.2008.04.078 10.1038/ncb1275 10.1101/gad.571510 10.1093/nar/gkr297 10.1371/journal.pone.0049151 10.1101/gad.11.6.748 10.1101/gad.455108 10.1073/pnas.0605442104 10.1074/jbc.M706505200 10.1016/j.molcel.2007.03.023 10.1038/emboj.2009.275 10.1126/science.1218498 10.1038/nsmb.2225 10.1126/science.1185100 10.1007/978-1-59745-566-4_6 10.1093/nar/gkr587 10.1016/j.molcel.2011.11.028 10.1016/S0092-8674(00)80932-0 10.1016/S0092-8674(04)00334-4 10.1101/gad.400907 10.1038/sj.emboj.7600779 10.1038/nmeth.1231 10.1038/nsmb.1947 10.1073/pnas.0401263101 10.1073/pnas.0500537102 10.1074/jbc.M308357200 |
ContentType | Journal Article |
Copyright | European Molecular Biology Organization 2013 Copyright © 2013 European Molecular Biology Organization Copyright Nature Publishing Group Mar 20, 2013 Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization |
Copyright_xml | – notice: European Molecular Biology Organization 2013 – notice: Copyright © 2013 European Molecular Biology Organization – notice: Copyright Nature Publishing Group Mar 20, 2013 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 1XC 5PM ADTOC UNPAY |
DOI | 10.1038/emboj.2013.24 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Maintenance of Rap1 function by Uls1 |
EISSN | 1460-2075 |
EndPage | 815 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:3604719 PMC3604719 oai_HAL_hal_00804424v1 2928180391 23417015 10_1038_emboj_2013_24 EMBJ201324 ark_67375_WNG_6WZK1TDD_8 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 29G 2WC 33P 36B 39C 4.4 53G 5VS 70F 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAESR AAEVG AAHBH AAIHA AAJSJ AAMMB AANHP AANLZ AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABUWG ABZEH ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYN AEUYR AFBPY AFFNX AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C6C CCPQU CS3 D1J DCZOG DIK DPXWK DRFUL DRSTM DU5 DWQXO E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HYE KQ8 LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ NAO O9- OK1 P2P P2W PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X RHI RNS ROL RPM SV3 TN5 TR2 UKHRP WBKPD WH7 WIH WIK WIN WOHZO WXSBR YSK ZCA ZZTAW ~KM 24P 3V. 88A AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV M0L RHF WYJ ABJNI AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 .55 1XC 3O- AAONW ACKIV AI. AZBYB C1A CAG COF FA8 FEDTE HVGLF H~9 R.K RNI RZO VH1 WOQ X7M XSW Y6R YYP ZGI ZXP 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c6714-988bbc96ff152fdf88c4e1896004a57b7f7185c542d60b40dc5984f6d7e44ab23 |
IEDL.DBID | AAJSJ |
ISSN | 0261-4189 1460-2075 |
IngestDate | Wed Aug 20 00:16:10 EDT 2025 Tue Sep 30 17:00:03 EDT 2025 Fri Sep 12 12:29:21 EDT 2025 Sat Sep 27 19:36:31 EDT 2025 Sat Sep 27 22:17:06 EDT 2025 Fri Jul 25 10:52:13 EDT 2025 Mon Jul 21 05:48:51 EDT 2025 Wed Oct 01 02:49:12 EDT 2025 Thu Apr 24 22:57:14 EDT 2025 Wed Jan 22 16:20:05 EST 2025 Fri Feb 21 02:37:44 EST 2025 Sun Sep 21 06:19:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | SUMO NHEJ STUbL telomere |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6714-988bbc96ff152fdf88c4e1896004a57b7f7185c542d60b40dc5984f6d7e44ab23 |
Notes | istex:89F428B057B7E5A835737CC539B0F493B1C1E705 ark:/67375/WNG-6WZK1TDD-8 ArticleID:EMBJ201324 Supplementary DataReview Process File ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 PMCID: PMC3604719 |
ORCID | 0000-0003-3124-887X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3604719 |
PMID | 23417015 |
PQID | 1319798014 |
PQPubID | 35985 |
PageCount | 11 |
ParticipantIDs | unpaywall_primary_10_1038_emboj_2013_24 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3604719 hal_primary_oai_HAL_hal_00804424v1 proquest_miscellaneous_1348481049 proquest_miscellaneous_1319159619 proquest_journals_1319798014 pubmed_primary_23417015 crossref_primary_10_1038_emboj_2013_24 crossref_citationtrail_10_1038_emboj_2013_24 wiley_primary_10_1038_emboj_2013_24_EMBJ201324 springer_journals_10_1038_emboj_2013_24 istex_primary_ark_67375_WNG_6WZK1TDD_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 20, 2013 |
PublicationDateYYYYMMDD | 2013-03-20 |
PublicationDate_xml | – month: 03 year: 2013 text: March 20, 2013 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: London – name: England – name: New York |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2013 |
Publisher | John Wiley & Sons, Ltd Nature Publishing Group UK Springer Nature B.V EMBO Press Nature Publishing Group |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: EMBO Press – name: Nature Publishing Group |
References | Chen Y, Rai R, Zhou ZR, Kanoh J, Ribeyre C, Yang Y, Zheng H, Damay P, Wang F, Tsujii H, Hiraoka Y, Shore D, Hu HY, Chang S, Lei M (2011) A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nat Struct Mol Biol 18: 213-221 Luo K, Vega-Palas MA, Grunstein M (2002) Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16: 1528-1539 Wotton D, Shore D (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11: 748-760 Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C, Krauskopf A, Kupiec M, McEachern MJ (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci USA 101: 8658-8663 Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X (2011) Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell 45: 422-432 Ferreira HC, Luke B, Schober H, Kalck V, Lingner J, Gasser SM (2011) The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nat Cell Biol 13: 867-874 Hang LE, Liu X, Cheung I, Yang Y, Zhao X (2011) SUMOylation regulates telomere length homeostasis by targeting Cdc13. Nat Struct Mol Biol 18: 920-926 Mullen JR, Brill SJ (2008) Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates. J Biol Chem 283: 19912-19921 Celli GB, de Lange T (2005) DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 7: 712-718 Williams TL, Levy DL, Maki-Yonekura S, Yonekura K, Blackburn EH (2010) Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site. J Biol Chem 285: 35814-35824 Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M (2007) The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282: 34176-34184 Bae NS, Baumann P (2007) A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell 26: 323-334 Sarthy J, Bae NS, Scrafford J, Baumann P (2009) Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J 28: 3390-3399 Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336: 593-597 Pobiega S, Marcand S (2010) Dicentric breakage at telomere fusions. Genes Dev 24: 720-733 Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 102: 4777-4782 Guglielmi B, Soutourina J, Esnault C, Werner M (2007) TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo. Proc Natl Acad Sci USA 104: 16062-16067 Ulrich HD (2008) The fast-growing business of SUMO chains. Mol Cell 32: 301-305 Vogt B, Hofmann K (2012) Bioinformatical detection of recognition factors for ubiquitin and SUMO. Methods Mol Biol 832: 249-261 Cal-Bakowska M, Litwin I, Bocer T, Wysocki R, Dziadkowiec D (2011) The Swi2-Snf2-like protein Uls1 is involved in replication stress response. Nucleic Acids Res 39: 8765-8777 Negrini S, Ribaud V, Bianchi A, Shore D (2007) DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation. Genes Dev 21: 292-302 Pardo B, Marcand S (2005) Rap1 prevents telomere fusions by nonhomologous end joining. EMBO J 24: 3117-3127 Zhang Z, Buchman AR (1997) Identification of a member of a DNA-dependent ATPase family that causes interference with silencing. Mol Cell Biol 17: 5461-5472 Sun H, Hunter T (2012) Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. J Biol Chem 287: 42071-42083 Ulrich HD, Davies AA (2009) In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae. Methods Mol Biol 497: 81-103 Lickwar CR, Mueller F, Hanlon SE, McNally JG, Lieb JD (2012) Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484: 251-255 Miller KM, Ferreira MG, Cooper JP (2005) Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres. EMBO J 24: 3128-3135 Ribeyre C, Shore D (2012) Anticheckpoint pathways at telomeres in yeast. Nat Struct Mol Biol 19: 307-313 Fujita I, Tanaka M, Kanoh J (2012) Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe. PLoS ONE 7: e49151 Yan Z, Costanzo M, Heisler LE, Paw J, Kaper F, Andrews BJ, Boone C, Giaever G, Nislow C (2008) Yeast Barcoders: a chemogenomic application of a universal donor-strain collection carrying bar-code identifiers. Nat Methods 5: 719-725 Matot B, Le Bihan YV, Lescasse R, Perez J, Miron S, David G, Castaing B, Weber P, Raynal B, Zinn-Justin S, Gasparini S, Le Du MH (2012) The orientation of the C-terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA. Nucleic Acids Res 40: 3197-3207 Shah PP, Zheng X, Epshtein A, Carey JN, Bishop DK, Klein HL (2010) Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth. Mol Cell 39: 862-872 McGee JS, Phillips JA, Chan A, Sabourin M, Paeschke K, Zakian VA (2011) Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair. Nat Struct Mol Biol 17: 1438-1445 van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92: 401-413 Anbalagan S, Bonetti D, Lucchini G, Longhese MP (2011) Rif1 supports the function of the CST complex in yeast telomere capping. PLoS Genet 7: e1002024 Xhemalce B, Riising EM, Baumann P, Dejean A, Arcangioli B, Seeler JS (2007) Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc Natl Acad Sci USA 104: 893-898 Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z et al (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446: 806-810 Potts PR, Yu H (2007) The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 14: 581-590 Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327: 1657-1661 Mieczkowski PA, Mieczkowska JO, Dominska M, Petes TD (2003) Genetic regulation of telomere-telomere fusions in the yeast Saccharomyces cerevisae. Proc Natl Acad Sci USA 100: 10854-10859 Feeser EA, Wolberger C (2008) Structural and functional studies of the Rap1 C-terminus reveal novel separation-of-function mutants. J Mol Biol 380: 520-531 Chi P, Kwon Y, Visnapuu ML, Lam I, Santa Maria SR, Zheng X, Epshtein A, Greene EC, Sung P, Klein HL (2011) Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors. Nucleic Acids Res 39: 6511-6522 Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJ, Dohmen RJ (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282: 34167-34175 Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J St, Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M et al (2010) The genetic landscape of a cell. Science 327: 425-431 Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117: 323-335 Bonetti D, Clerici M, Anbalagan S, Martina M, Lucchini G, Longhese MP (2010) Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet 6: e1000966 Vodenicharov MD, Laterreur N, Wellinger RJ (2010) Telomere capping in non-dividing yeast cells requires Yku and Rap1. EMBO J 29: 3007-3019 Marcand S, Pardo B, Gratias A, Cahun S, Callebaut I (2008) Multiple pathways inhibit NHEJ at telomeres. Genes Dev 22: 1153-1158 Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278: 44113-44120 Rog O, Miller KM, Ferreira MG, Cooper JP (2009) Sumoylation of RecQ helicase controls the fate of dysfunctional telomeres. Mol Cell 33: 559-569 Jain D, Cooper JP (2010) Telomeric strategies: means to an end. Annu Rev Genet 44: 243-269 Nagai S, Dubrana K, Tsai-Pflugfelder M, Davidson MB, Roberts TM, Brown GW, Varela E, Hediger F, Gasser SM, Krogan NJ (2008) Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322: 597-602 van Steensel, Smogorzewska, de Lange (CR43) 1998; 92 Wotton, Shore (CR47) 1997; 11 Xhemalce, Riising, Baumann, Dejean, Arcangioli, Seeler (CR48) 2007; 104 Sarthy, Bae, Scrafford, Baumann (CR34) 2009; 28 Shah, Zheng, Epshtein, Carey, Bishop, Klein (CR37) 2010; 39 Sfeir, de Lange (CR35) 2012; 336 Matot, Le Bihan, Lescasse, Perez, Miron, David, Castaing, Weber, Raynal, Zinn‐Justin, Gasparini, Le Du (CR22) 2012; 40 Pardo, Marcand (CR29) 2005; 24 Collins, Miller, Maas, Roguev, Fillingham, Chu, Schuldiner, Gebbia, Recht, Shales, Ding, Xu, Han, Ingvarsdottir, Cheng, Andrews, Boone, Berger, Hieter, Zhang (CR10) 2007; 446 Luo, Vega‐Palas, Grunstein (CR20) 2002; 16 Marcand, Pardo, Gratias, Cahun, Callebaut (CR21) 2008; 22 Negrini, Ribaud, Bianchi, Shore (CR28) 2007; 21 Ulrich (CR40) 2008; 32 Rog, Miller, Ferreira, Cooper (CR33) 2009; 33 Askree, Yehuda, Smolikov, Gurevich, Hawk, Coker, Krauskopf, Kupiec, McEachern (CR2) 2004; 101 Williams, Levy, Maki‐Yonekura, Yonekura, Blackburn (CR46) 2010; 285 Vodenicharov, Laterreur, Wellinger (CR44) 2010; 29 Ferreira, Luke, Schober, Kalck, Lingner, Gasser (CR14) 2011; 13 Lickwar, Mueller, Hanlon, McNally, Lieb (CR19) 2012; 484 Sun, Hunter (CR38) 2012; 287 Ulrich, Davies (CR41) 2009; 497 Yan, Costanzo, Heisler, Paw, Kaper, Andrews, Boone, Giaever, Nislow (CR50) 2008; 5 Uzunova, Gottsche, Miteva, Weisshaar, Glanemann, Schnellhardt, Niessen, Scheel, Hofmann, Johnson, Praefcke, Dohmen (CR42) 2007; 282 Vogt, Hofmann (CR45) 2012; 832 McGee, Phillips, Chan, Sabourin, Paeschke, Zakian (CR23) 2011; 17 Potts, Yu (CR31) 2007; 14 Sfeir, Kabir, van Overbeek, Celli, de Lange (CR36) 2010; 327 Costanzo, Baryshnikova, Bellay, Kim, Spear, Sevier, Ding, Koh, Toufighi, Mostafavi, Prinz, Onge, VanderSluis, Makhnevych, Vizeacoumar, Alizadeh, Bahr, Brost, Chen, Cokol (CR11) 2010; 327 Celli, de Lange (CR7) 2005; 7 Mullen, Brill (CR26) 2008; 283 Fujita, Tanaka, Kanoh (CR15) 2012; 7 Miller, Ferreira, Cooper (CR25) 2005; 24 Cremona, Sarangi, Yang, Hang, Rahman, Zhao (CR12) 2011; 45 Mieczkowski, Mieczkowska, Dominska, Petes (CR24) 2003; 100 Xie, Kerscher, Kroetz, McConchie, Sung, Hochstrasser (CR49) 2007; 282 Bonetti, Clerici, Anbalagan, Martina, Lucchini, Longhese (CR4) 2010; 6 Chi, Kwon, Visnapuu, Lam, Santa Maria, Zheng, Epshtein, Greene, Sung, Klein (CR9) 2011; 39 Anbalagan, Bonetti, Lucchini, Longhese (CR1) 2011; 7 Chen, Rai, Zhou, Kanoh, Ribeyre, Yang, Zheng, Damay, Wang, Tsujii, Hiraoka, Shore, Hu, Chang, Lei (CR8) 2011; 18 Zhao, Blobel (CR52) 2005; 102 Ribeyre, Shore (CR32) 2012; 19 Guglielmi, Soutourina, Esnault, Werner (CR16) 2007; 104 Hang, Liu, Cheung, Yang, Zhao (CR17) 2011; 18 Pobiega, Marcand (CR30) 2010; 24 Feeser, Wolberger (CR13) 2008; 380 Bae, Baumann (CR3) 2007; 26 Cal‐Bakowska, Litwin, Bocer, Wysocki, Dziadkowiec (CR6) 2011; 39 Nagai, Dubrana, Tsai‐Pflugfelder, Davidson, Roberts, Brown, Varela, Hediger, Gasser, Krogan (CR27) 2008; 322 Zhang, Buchman (CR51) 1997; 17 Bylebyl, Belichenko, Johnson (CR5) 2003; 278 Teixeira, Arneric, Sperisen, Lingner (CR39) 2004; 117 Jain, Cooper (CR18) 2010; 44 2004; 101 2002; 16 2007; 104 2012; 484 2012; 287 2007; 446 2010; 327 2007; 282 2010; 39 2009; 497 2012; 19 2010; 285 2011; 13 2008; 32 2008; 5 2008; 322 2011; 39 2011; 17 2003; 278 2011; 18 2011; 7 2008; 283 2007; 14 2005; 24 2008; 380 2009; 28 2010; 44 2009; 33 2010; 24 1997; 11 2010; 29 2005; 102 2005; 7 1997; 17 1998; 92 2011; 45 2008; 22 2012; 7 2007; 21 2012; 336 2004; 117 2012; 832 2003; 100 2010; 6 2007; 26 2012; 40 Sun H (emboj201324-b38) 2012; 287 Uzunova K (emboj201324-b42) 2007; 282 Celli GB (emboj201324-b7) 2005; 7 Pardo B (emboj201324-b29) 2005; 24 Ulrich HD (emboj201324-b41) 2009; 497 Cal-Bakowska M (emboj201324-b6) 2011; 39 Yan Z (emboj201324-b50) 2008; 5 Zhao X (emboj201324-b52) 2005; 102 Negrini S (emboj201324-b28) 2007; 21 Collins SR (emboj201324-b10) 2007; 446 Rog O (emboj201324-b33) 2009; 33 Shah PP (emboj201324-b37) 2010; 39 Bylebyl GR (emboj201324-b5) 2003; 278 Fujita I (emboj201324-b15) 2012; 7 Xie Y (emboj201324-b49) 2007; 282 Sfeir A (emboj201324-b36) 2010; 327 Anbalagan S (emboj201324-b1) 2011; 7 Vodenicharov MD (emboj201324-b44) 2010; 29 Sarthy J (emboj201324-b34) 2009; 28 Pobiega S (emboj201324-b30) 2010; 24 Chi P (emboj201324-b9) 2011; 39 Wotton D (emboj201324-b47) 1997; 11 Cremona CA (emboj201324-b12) 2011; 45 Zhang Z (emboj201324-b51) 1997; 17 Chen Y (emboj201324-b8) 2011; 18 Guglielmi B (emboj201324-b16) 2007; 104 Ferreira HC (emboj201324-b14) 2011; 13 Luo K (emboj201324-b20) 2002; 16 Jain D (emboj201324-b18) 2010; 44 Lickwar CR (emboj201324-b19) 2012; 484 Williams TL (emboj201324-b46) 2010; 285 Bonetti D (emboj201324-b4) 2010; 6 McGee JS (emboj201324-b23) 2011; 17 Mieczkowski PA (emboj201324-b24) 2003; 100 Sfeir A (emboj201324-b35) 2012; 336 Marcand S (emboj201324-b21) 2008; 22 Ribeyre C (emboj201324-b32) 2012; 19 Xhemalce B (emboj201324-b48) 2007; 104 Teixeira MT (emboj201324-b39) 2004; 117 Feeser EA (emboj201324-b13) 2008; 380 van Steensel B (emboj201324-b43) 1998; 92 Askree SH (emboj201324-b2) 2004; 101 Matot B (emboj201324-b22) 2012; 40 Miller KM (emboj201324-b25) 2005; 24 Hang LE (emboj201324-b17) 2011; 18 Nagai S (emboj201324-b27) 2008; 322 Potts PR (emboj201324-b31) 2007; 14 Bae NS (emboj201324-b3) 2007; 26 Vogt B (emboj201324-b45) 2012; 832 Mullen JR (emboj201324-b26) 2008; 283 Costanzo M (emboj201324-b11) 2010; 327 Ulrich HD (emboj201324-b40) 2008; 32 18622398 - Nat Methods. 2008 Aug;5(8):719-25 19285940 - Mol Cell. 2009 Mar 13;33(5):559-69 20628356 - EMBO J. 2010 Sep 1;29(17):3007-19 23435563 - EMBO J. 2013 Mar 20;32(6):775-7 18948542 - Science. 2008 Oct 24;322(5901):597-602 15738391 - Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4777-82 18538788 - J Mol Biol. 2008 Jul 11;380(3):520-31 22498630 - Nature. 2012 Apr 12;484(7393):251-5 15109493 - Cell. 2004 Apr 30;117(3):323-35 21047259 - Annu Rev Genet. 2010;44:243-69 20826803 - J Biol Chem. 2010 Nov 12;285(46):35814-24 22350891 - Methods Mol Biol. 2012;832:249-61 21743457 - Nat Struct Mol Biol. 2011 Aug;18(8):920-6 23086935 - J Biol Chem. 2012 Dec 7;287(50):42071-83 17589526 - Nat Struct Mol Biol. 2007 Jul;14(7):581-90 19763083 - EMBO J. 2009 Nov 4;28(21):3390-9 18451106 - Genes Dev. 2008 May 1;22(9):1153-8 21764775 - Nucleic Acids Res. 2011 Nov 1;39(20):8765-77 12941945 - J Biol Chem. 2003 Nov 7;278(45):44113-20 22343724 - Nat Struct Mol Biol. 2012 Mar;19(3):307-13 21057524 - Nat Struct Mol Biol. 2010 Dec;17(12):1438-45 20523746 - PLoS Genet. 2010 May;6(5):e1000966 21666682 - Nat Cell Biol. 2011 Jul;13(7):867-74 18995828 - Mol Cell. 2008 Nov 7;32(3):301-5 20093466 - Science. 2010 Jan 22;327(5964):425-31 22139930 - Nucleic Acids Res. 2012 Apr;40(7):3197-207 9271422 - Mol Cell Biol. 1997 Sep;17(9):5461-72 17209013 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):893-8 20339076 - Science. 2010 Mar 26;327(5973):1657-61 17499040 - Mol Cell. 2007 May 11;26(3):323-34 9476899 - Cell. 1998 Feb 6;92(3):401-13 16096639 - EMBO J. 2005 Sep 7;24(17):3128-35 17728242 - J Biol Chem. 2007 Nov 23;282(47):34167-75 21217703 - Nat Struct Mol Biol. 2011 Feb;18(2):213-21 17314980 - Nature. 2007 Apr 12;446(7137):806-10 17901206 - Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16062-7 21437267 - PLoS Genet. 2011 Mar;7(3):e1002024 23133674 - PLoS One. 2012;7(11):e49151 22285753 - Mol Cell. 2012 Feb 10;45(3):422-32 12080091 - Genes Dev. 2002 Jun 15;16(12):1528-39 12963812 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10854-9 9087429 - Genes Dev. 1997 Mar 15;11(6):748-60 22556254 - Science. 2012 May 4;336(6081):593-7 17289918 - Genes Dev. 2007 Feb 1;21(3):292-302 18499666 - J Biol Chem. 2008 Jul 18;283(29):19912-21 21558173 - Nucleic Acids Res. 2011 Aug;39(15):6511-22 15161972 - Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8658-63 19107412 - Methods Mol Biol. 2009;497:81-103 20360388 - Genes Dev. 2010 Apr 1;24(7):720-33 17848550 - J Biol Chem. 2007 Nov 23;282(47):34176-84 15968270 - Nat Cell Biol. 2005 Jul;7(7):712-8 16096640 - EMBO J. 2005 Sep 7;24(17):3117-27 20864034 - Mol Cell. 2010 Sep 24;39(6):862-72 |
References_xml | – reference: Lickwar CR, Mueller F, Hanlon SE, McNally JG, Lieb JD (2012) Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484: 251-255 – reference: Ribeyre C, Shore D (2012) Anticheckpoint pathways at telomeres in yeast. Nat Struct Mol Biol 19: 307-313 – reference: Pobiega S, Marcand S (2010) Dicentric breakage at telomere fusions. Genes Dev 24: 720-733 – reference: Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327: 1657-1661 – reference: Guglielmi B, Soutourina J, Esnault C, Werner M (2007) TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo. Proc Natl Acad Sci USA 104: 16062-16067 – reference: McGee JS, Phillips JA, Chan A, Sabourin M, Paeschke K, Zakian VA (2011) Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair. Nat Struct Mol Biol 17: 1438-1445 – reference: Negrini S, Ribaud V, Bianchi A, Shore D (2007) DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation. Genes Dev 21: 292-302 – reference: Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336: 593-597 – reference: Vogt B, Hofmann K (2012) Bioinformatical detection of recognition factors for ubiquitin and SUMO. Methods Mol Biol 832: 249-261 – reference: Ulrich HD, Davies AA (2009) In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae. Methods Mol Biol 497: 81-103 – reference: Bonetti D, Clerici M, Anbalagan S, Martina M, Lucchini G, Longhese MP (2010) Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet 6: e1000966 – reference: Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117: 323-335 – reference: Ulrich HD (2008) The fast-growing business of SUMO chains. Mol Cell 32: 301-305 – reference: Fujita I, Tanaka M, Kanoh J (2012) Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe. PLoS ONE 7: e49151 – reference: Yan Z, Costanzo M, Heisler LE, Paw J, Kaper F, Andrews BJ, Boone C, Giaever G, Nislow C (2008) Yeast Barcoders: a chemogenomic application of a universal donor-strain collection carrying bar-code identifiers. Nat Methods 5: 719-725 – reference: Ferreira HC, Luke B, Schober H, Kalck V, Lingner J, Gasser SM (2011) The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nat Cell Biol 13: 867-874 – reference: Rog O, Miller KM, Ferreira MG, Cooper JP (2009) Sumoylation of RecQ helicase controls the fate of dysfunctional telomeres. Mol Cell 33: 559-569 – reference: Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M (2007) The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282: 34176-34184 – reference: Miller KM, Ferreira MG, Cooper JP (2005) Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres. EMBO J 24: 3128-3135 – reference: Xhemalce B, Riising EM, Baumann P, Dejean A, Arcangioli B, Seeler JS (2007) Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc Natl Acad Sci USA 104: 893-898 – reference: Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 102: 4777-4782 – reference: Sun H, Hunter T (2012) Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. J Biol Chem 287: 42071-42083 – reference: Cal-Bakowska M, Litwin I, Bocer T, Wysocki R, Dziadkowiec D (2011) The Swi2-Snf2-like protein Uls1 is involved in replication stress response. Nucleic Acids Res 39: 8765-8777 – reference: Hang LE, Liu X, Cheung I, Yang Y, Zhao X (2011) SUMOylation regulates telomere length homeostasis by targeting Cdc13. Nat Struct Mol Biol 18: 920-926 – reference: Vodenicharov MD, Laterreur N, Wellinger RJ (2010) Telomere capping in non-dividing yeast cells requires Yku and Rap1. EMBO J 29: 3007-3019 – reference: Chen Y, Rai R, Zhou ZR, Kanoh J, Ribeyre C, Yang Y, Zheng H, Damay P, Wang F, Tsujii H, Hiraoka Y, Shore D, Hu HY, Chang S, Lei M (2011) A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nat Struct Mol Biol 18: 213-221 – reference: Marcand S, Pardo B, Gratias A, Cahun S, Callebaut I (2008) Multiple pathways inhibit NHEJ at telomeres. Genes Dev 22: 1153-1158 – reference: Chi P, Kwon Y, Visnapuu ML, Lam I, Santa Maria SR, Zheng X, Epshtein A, Greene EC, Sung P, Klein HL (2011) Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors. Nucleic Acids Res 39: 6511-6522 – reference: Mieczkowski PA, Mieczkowska JO, Dominska M, Petes TD (2003) Genetic regulation of telomere-telomere fusions in the yeast Saccharomyces cerevisae. Proc Natl Acad Sci USA 100: 10854-10859 – reference: Zhang Z, Buchman AR (1997) Identification of a member of a DNA-dependent ATPase family that causes interference with silencing. Mol Cell Biol 17: 5461-5472 – reference: Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278: 44113-44120 – reference: Pardo B, Marcand S (2005) Rap1 prevents telomere fusions by nonhomologous end joining. EMBO J 24: 3117-3127 – reference: Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J St, Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M et al (2010) The genetic landscape of a cell. Science 327: 425-431 – reference: Shah PP, Zheng X, Epshtein A, Carey JN, Bishop DK, Klein HL (2010) Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth. Mol Cell 39: 862-872 – reference: Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X (2011) Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell 45: 422-432 – reference: Matot B, Le Bihan YV, Lescasse R, Perez J, Miron S, David G, Castaing B, Weber P, Raynal B, Zinn-Justin S, Gasparini S, Le Du MH (2012) The orientation of the C-terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA. Nucleic Acids Res 40: 3197-3207 – reference: Askree SH, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C, Krauskopf A, Kupiec M, McEachern MJ (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci USA 101: 8658-8663 – reference: Celli GB, de Lange T (2005) DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 7: 712-718 – reference: Jain D, Cooper JP (2010) Telomeric strategies: means to an end. Annu Rev Genet 44: 243-269 – reference: Potts PR, Yu H (2007) The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 14: 581-590 – reference: Mullen JR, Brill SJ (2008) Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates. J Biol Chem 283: 19912-19921 – reference: Wotton D, Shore D (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11: 748-760 – reference: Luo K, Vega-Palas MA, Grunstein M (2002) Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16: 1528-1539 – reference: Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJ, Dohmen RJ (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282: 34167-34175 – reference: van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92: 401-413 – reference: Anbalagan S, Bonetti D, Lucchini G, Longhese MP (2011) Rif1 supports the function of the CST complex in yeast telomere capping. PLoS Genet 7: e1002024 – reference: Feeser EA, Wolberger C (2008) Structural and functional studies of the Rap1 C-terminus reveal novel separation-of-function mutants. J Mol Biol 380: 520-531 – reference: Bae NS, Baumann P (2007) A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell 26: 323-334 – reference: Williams TL, Levy DL, Maki-Yonekura S, Yonekura K, Blackburn EH (2010) Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site. J Biol Chem 285: 35814-35824 – reference: Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z et al (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446: 806-810 – reference: Nagai S, Dubrana K, Tsai-Pflugfelder M, Davidson MB, Roberts TM, Brown GW, Varela E, Hediger F, Gasser SM, Krogan NJ (2008) Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322: 597-602 – reference: Sarthy J, Bae NS, Scrafford J, Baumann P (2009) Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J 28: 3390-3399 – volume: 39 start-page: 6511 year: 2011 end-page: 6522 ident: CR9 article-title: Analyses of the yeast Rad51 recombinase A265V mutant reveal different roles of Swi2‐like factors publication-title: Nucleic Acids Res – volume: 100 start-page: 10854 year: 2003 end-page: 10859 ident: CR24 article-title: Genetic regulation of telomere‐telomere fusions in the yeast Saccharomyces cerevisae publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 3117 year: 2005 end-page: 3127 ident: CR29 article-title: Rap1 prevents telomere fusions by nonhomologous end joining publication-title: EMBO J – volume: 327 start-page: 1657 year: 2010 end-page: 1661 ident: CR36 article-title: Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal publication-title: Science – volume: 832 start-page: 249 year: 2012 end-page: 261 ident: CR45 article-title: Bioinformatical detection of recognition factors for ubiquitin and SUMO publication-title: Methods Mol Biol – volume: 24 start-page: 3128 year: 2005 end-page: 3135 ident: CR25 article-title: Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres publication-title: EMBO J – volume: 283 start-page: 19912 year: 2008 end-page: 19921 ident: CR26 article-title: Activation of the Slx5‐Slx8 ubiquitin ligase by poly‐small ubiquitin‐like modifier conjugates publication-title: J Biol Chem – volume: 29 start-page: 3007 year: 2010 end-page: 3019 ident: CR44 article-title: Telomere capping in non‐dividing yeast cells requires Yku and Rap1 publication-title: EMBO J – volume: 380 start-page: 520 year: 2008 end-page: 531 ident: CR13 article-title: Structural and functional studies of the Rap1 C‐terminus reveal novel separation‐of‐function mutants publication-title: J Mol Biol – volume: 14 start-page: 581 year: 2007 end-page: 590 ident: CR31 article-title: The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere‐binding proteins publication-title: Nat Struct Mol Biol – volume: 18 start-page: 920 year: 2011 end-page: 926 ident: CR17 article-title: SUMOylation regulates telomere length homeostasis by targeting Cdc13 publication-title: Nat Struct Mol Biol – volume: 484 start-page: 251 year: 2012 end-page: 255 ident: CR19 article-title: Genome‐wide protein‐DNA binding dynamics suggest a molecular clutch for transcription factor function publication-title: Nature – volume: 44 start-page: 243 year: 2010 end-page: 269 ident: CR18 article-title: Telomeric strategies: means to an end publication-title: Annu Rev Genet – volume: 322 start-page: 597 year: 2008 end-page: 602 ident: CR27 article-title: Functional targeting of DNA damage to a nuclear pore‐associated SUMO‐dependent ubiquitin ligase publication-title: Science – volume: 7 start-page: 712 year: 2005 end-page: 718 ident: CR7 article-title: DNA processing is not required for ATM‐mediated telomere damage response after TRF2 deletion publication-title: Nat Cell Biol – volume: 45 start-page: 422 year: 2011 end-page: 432 ident: CR12 article-title: Extensive DNA damage‐induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint publication-title: Mol Cell – volume: 39 start-page: 8765 year: 2011 end-page: 8777 ident: CR6 article-title: The Swi2‐Snf2‐like protein Uls1 is involved in replication stress response publication-title: Nucleic Acids Res – volume: 21 start-page: 292 year: 2007 end-page: 302 ident: CR28 article-title: DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation publication-title: Genes Dev – volume: 497 start-page: 81 year: 2009 end-page: 103 ident: CR41 article-title: detection and characterization of sumoylation targets in Saccharomyces cerevisiae publication-title: Methods Mol Biol – volume: 327 start-page: 425 year: 2010 end-page: 431 ident: CR11 article-title: The genetic landscape of a cell publication-title: Science – volume: 336 start-page: 593 year: 2012 end-page: 597 ident: CR35 article-title: Removal of shelterin reveals the telomere end‐protection problem publication-title: Science – volume: 28 start-page: 3390 year: 2009 end-page: 3399 ident: CR34 article-title: Human RAP1 inhibits non‐homologous end joining at telomeres publication-title: EMBO J – volume: 287 start-page: 42071 year: 2012 end-page: 42083 ident: CR38 article-title: Poly‐small ubiquitin‐like modifier (PolySUMO)‐binding proteins identified through a string search publication-title: J Biol Chem – volume: 39 start-page: 862 year: 2010 end-page: 872 ident: CR37 article-title: Swi2/Snf2‐related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth publication-title: Mol Cell – volume: 5 start-page: 719 year: 2008 end-page: 725 ident: CR50 article-title: Yeast Barcoders: a chemogenomic application of a universal donor‐strain collection carrying bar‐code identifiers publication-title: Nat Methods – volume: 26 start-page: 323 year: 2007 end-page: 334 ident: CR3 article-title: A RAP1/TRF2 complex inhibits nonhomologous end‐joining at human telomeric DNA ends publication-title: Mol Cell – volume: 22 start-page: 1153 year: 2008 end-page: 1158 ident: CR21 article-title: Multiple pathways inhibit NHEJ at telomeres publication-title: Genes Dev – volume: 17 start-page: 1438 year: 2011 end-page: 1445 ident: CR23 article-title: Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double‐strand break repair publication-title: Nat Struct Mol Biol – volume: 104 start-page: 16062 year: 2007 end-page: 16067 ident: CR16 article-title: TFIIS elongation factor and Mediator act in conjunction during transcription initiation publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: e49151 year: 2012 ident: CR15 article-title: Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe publication-title: PLoS ONE – volume: 33 start-page: 559 year: 2009 end-page: 569 ident: CR33 article-title: Sumoylation of RecQ helicase controls the fate of dysfunctional telomeres publication-title: Mol Cell – volume: 17 start-page: 5461 year: 1997 end-page: 5472 ident: CR51 article-title: Identification of a member of a DNA‐dependent ATPase family that causes interference with silencing publication-title: Mol Cell Biol – volume: 18 start-page: 213 year: 2011 end-page: 221 ident: CR8 article-title: A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms publication-title: Nat Struct Mol Biol – volume: 282 start-page: 34176 year: 2007 end-page: 34184 ident: CR49 article-title: The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation publication-title: J Biol Chem – volume: 282 start-page: 34167 year: 2007 end-page: 34175 ident: CR42 article-title: Ubiquitin‐dependent proteolytic control of SUMO conjugates publication-title: J Biol Chem – volume: 11 start-page: 748 year: 1997 end-page: 760 ident: CR47 article-title: A novel Rap1p‐interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae publication-title: Genes Dev – volume: 104 start-page: 893 year: 2007 end-page: 898 ident: CR48 article-title: Role of SUMO in the dynamics of telomere maintenance in fission yeast publication-title: Proc Natl Acad Sci USA – volume: 92 start-page: 401 year: 1998 end-page: 413 ident: CR43 article-title: TRF2 protects human telomeres from end‐to‐end fusions publication-title: Cell – volume: 285 start-page: 35814 year: 2010 end-page: 35824 ident: CR46 article-title: Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site publication-title: J Biol Chem – volume: 16 start-page: 1528 year: 2002 end-page: 1539 ident: CR20 article-title: Rap1‐Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast publication-title: Genes Dev – volume: 278 start-page: 44113 year: 2003 end-page: 44120 ident: CR5 article-title: The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast publication-title: J Biol Chem – volume: 19 start-page: 307 year: 2012 end-page: 313 ident: CR32 article-title: Anticheckpoint pathways at telomeres in yeast publication-title: Nat Struct Mol Biol – volume: 446 start-page: 806 year: 2007 end-page: 810 ident: CR10 article-title: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map publication-title: Nature – volume: 6 start-page: e1000966 year: 2010 ident: CR4 article-title: Shelterin‐like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres publication-title: PLoS Genet – volume: 13 start-page: 867 year: 2011 end-page: 874 ident: CR14 article-title: The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast publication-title: Nat Cell Biol – volume: 117 start-page: 323 year: 2004 end-page: 335 ident: CR39 article-title: Telomere length homeostasis is achieved via a switch between telomerase‐ extendible and ‐nonextendible states publication-title: Cell – volume: 102 start-page: 4777 year: 2005 end-page: 4782 ident: CR52 article-title: A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization publication-title: Proc Natl Acad Sci USA – volume: 40 start-page: 3197 year: 2012 end-page: 3207 ident: CR22 article-title: The orientation of the C‐terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA publication-title: Nucleic Acids Res – volume: 32 start-page: 301 year: 2008 end-page: 305 ident: CR40 article-title: The fast‐growing business of SUMO chains publication-title: Mol Cell – volume: 101 start-page: 8658 year: 2004 end-page: 8663 ident: CR2 article-title: A genome‐wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 720 year: 2010 end-page: 733 ident: CR30 article-title: Dicentric breakage at telomere fusions publication-title: Genes Dev – volume: 7 start-page: e1002024 year: 2011 ident: CR1 article-title: Rif1 supports the function of the CST complex in yeast telomere capping publication-title: PLoS Genet – volume: 7 start-page: e1002024 year: 2011 article-title: Rif1 supports the function of the CST complex in yeast telomere capping publication-title: PLoS Genet – volume: 13 start-page: 867 year: 2011 end-page: 874 article-title: The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast publication-title: Nat Cell Biol – volume: 832 start-page: 249 year: 2012 end-page: 261 article-title: Bioinformatical detection of recognition factors for ubiquitin and SUMO publication-title: Methods Mol Biol – volume: 283 start-page: 19912 year: 2008 end-page: 19921 article-title: Activation of the Slx5‐Slx8 ubiquitin ligase by poly‐small ubiquitin‐like modifier conjugates publication-title: J Biol Chem – volume: 26 start-page: 323 year: 2007 end-page: 334 article-title: A RAP1/TRF2 complex inhibits nonhomologous end‐joining at human telomeric DNA ends publication-title: Mol Cell – volume: 322 start-page: 597 year: 2008 end-page: 602 article-title: Functional targeting of DNA damage to a nuclear pore‐associated SUMO‐dependent ubiquitin ligase publication-title: Science – volume: 100 start-page: 10854 year: 2003 end-page: 10859 article-title: Genetic regulation of telomere‐telomere fusions in the yeast Saccharomyces cerevisae publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 1153 year: 2008 end-page: 1158 article-title: Multiple pathways inhibit NHEJ at telomeres publication-title: Genes Dev – volume: 39 start-page: 862 year: 2010 end-page: 872 article-title: Swi2/Snf2‐related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth publication-title: Mol Cell – volume: 101 start-page: 8658 year: 2004 end-page: 8663 article-title: A genome‐wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length publication-title: Proc Natl Acad Sci USA – volume: 40 start-page: 3197 year: 2012 end-page: 3207 article-title: The orientation of the C‐terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA publication-title: Nucleic Acids Res – volume: 21 start-page: 292 year: 2007 end-page: 302 article-title: DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation publication-title: Genes Dev – volume: 278 start-page: 44113 year: 2003 end-page: 44120 article-title: The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast publication-title: J Biol Chem – volume: 17 start-page: 1438 year: 2011 end-page: 1445 article-title: Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double‐strand break repair publication-title: Nat Struct Mol Biol – volume: 32 start-page: 301 year: 2008 end-page: 305 article-title: The fast‐growing business of SUMO chains publication-title: Mol Cell – volume: 33 start-page: 559 year: 2009 end-page: 569 article-title: Sumoylation of RecQ helicase controls the fate of dysfunctional telomeres publication-title: Mol Cell – volume: 6 start-page: e1000966 year: 2010 article-title: Shelterin‐like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres publication-title: PLoS Genet – volume: 39 start-page: 6511 year: 2011 end-page: 6522 article-title: Analyses of the yeast Rad51 recombinase A265V mutant reveal different roles of Swi2‐like factors publication-title: Nucleic Acids Res – volume: 18 start-page: 920 year: 2011 end-page: 926 article-title: SUMOylation regulates telomere length homeostasis by targeting Cdc13 publication-title: Nat Struct Mol Biol – volume: 327 start-page: 425 year: 2010 end-page: 431 article-title: The genetic landscape of a cell publication-title: Science – volume: 117 start-page: 323 year: 2004 end-page: 335 article-title: Telomere length homeostasis is achieved via a switch between telomerase‐ extendible and ‐nonextendible states publication-title: Cell – volume: 29 start-page: 3007 year: 2010 end-page: 3019 article-title: Telomere capping in non‐dividing yeast cells requires Yku and Rap1 publication-title: EMBO J – volume: 336 start-page: 593 year: 2012 end-page: 597 article-title: Removal of shelterin reveals the telomere end‐protection problem publication-title: Science – volume: 380 start-page: 520 year: 2008 end-page: 531 article-title: Structural and functional studies of the Rap1 C‐terminus reveal novel separation‐of‐function mutants publication-title: J Mol Biol – volume: 7 start-page: 712 year: 2005 end-page: 718 article-title: DNA processing is not required for ATM‐mediated telomere damage response after TRF2 deletion publication-title: Nat Cell Biol – volume: 18 start-page: 213 year: 2011 end-page: 221 article-title: A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms publication-title: Nat Struct Mol Biol – volume: 92 start-page: 401 year: 1998 end-page: 413 article-title: TRF2 protects human telomeres from end‐to‐end fusions publication-title: Cell – volume: 104 start-page: 16062 year: 2007 end-page: 16067 article-title: TFIIS elongation factor and Mediator act in conjunction during transcription initiation publication-title: Proc Natl Acad Sci USA – volume: 497 start-page: 81 year: 2009 end-page: 103 article-title: detection and characterization of sumoylation targets in Saccharomyces cerevisiae publication-title: Methods Mol Biol – volume: 17 start-page: 5461 year: 1997 end-page: 5472 article-title: Identification of a member of a DNA‐dependent ATPase family that causes interference with silencing publication-title: Mol Cell Biol – volume: 282 start-page: 34167 year: 2007 end-page: 34175 article-title: Ubiquitin‐dependent proteolytic control of SUMO conjugates publication-title: J Biol Chem – volume: 44 start-page: 243 year: 2010 end-page: 269 article-title: Telomeric strategies: means to an end publication-title: Annu Rev Genet – volume: 446 start-page: 806 year: 2007 end-page: 810 article-title: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map publication-title: Nature – volume: 16 start-page: 1528 year: 2002 end-page: 1539 article-title: Rap1‐Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast publication-title: Genes Dev – volume: 28 start-page: 3390 year: 2009 end-page: 3399 article-title: Human RAP1 inhibits non‐homologous end joining at telomeres publication-title: EMBO J – volume: 5 start-page: 719 year: 2008 end-page: 725 article-title: Yeast Barcoders: a chemogenomic application of a universal donor‐strain collection carrying bar‐code identifiers publication-title: Nat Methods – volume: 19 start-page: 307 year: 2012 end-page: 313 article-title: Anticheckpoint pathways at telomeres in yeast publication-title: Nat Struct Mol Biol – volume: 287 start-page: 42071 year: 2012 end-page: 42083 article-title: Poly‐small ubiquitin‐like modifier (PolySUMO)‐binding proteins identified through a string search publication-title: J Biol Chem – volume: 24 start-page: 3128 year: 2005 end-page: 3135 article-title: Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres publication-title: EMBO J – volume: 24 start-page: 720 year: 2010 end-page: 733 article-title: Dicentric breakage at telomere fusions publication-title: Genes Dev – volume: 102 start-page: 4777 year: 2005 end-page: 4782 article-title: A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization publication-title: Proc Natl Acad Sci USA – volume: 45 start-page: 422 year: 2011 end-page: 432 article-title: Extensive DNA damage‐induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint publication-title: Mol Cell – volume: 327 start-page: 1657 year: 2010 end-page: 1661 article-title: Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal publication-title: Science – volume: 282 start-page: 34176 year: 2007 end-page: 34184 article-title: The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation publication-title: J Biol Chem – volume: 39 start-page: 8765 year: 2011 end-page: 8777 article-title: The Swi2‐Snf2‐like protein Uls1 is involved in replication stress response publication-title: Nucleic Acids Res – volume: 7 start-page: e49151 year: 2012 article-title: Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe publication-title: PLoS ONE – volume: 104 start-page: 893 year: 2007 end-page: 898 article-title: Role of SUMO in the dynamics of telomere maintenance in fission yeast publication-title: Proc Natl Acad Sci USA – volume: 285 start-page: 35814 year: 2010 end-page: 35824 article-title: Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site publication-title: J Biol Chem – volume: 11 start-page: 748 year: 1997 end-page: 760 article-title: A novel Rap1p‐interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae publication-title: Genes Dev – volume: 484 start-page: 251 year: 2012 end-page: 255 article-title: Genome‐wide protein‐DNA binding dynamics suggest a molecular clutch for transcription factor function publication-title: Nature – volume: 24 start-page: 3117 year: 2005 end-page: 3127 article-title: Rap1 prevents telomere fusions by nonhomologous end joining publication-title: EMBO J – volume: 14 start-page: 581 year: 2007 end-page: 590 article-title: The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere‐binding proteins publication-title: Nat Struct Mol Biol – volume: 287 start-page: 42071 year: 2012 ident: emboj201324-b38 publication-title: J Biol Chem doi: 10.1074/jbc.M112.410985 – volume: 282 start-page: 34176 year: 2007 ident: emboj201324-b49 publication-title: J Biol Chem doi: 10.1074/jbc.M706025200 – volume: 104 start-page: 16062 year: 2007 ident: emboj201324-b16 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0704534104 – volume: 13 start-page: 867 year: 2011 ident: emboj201324-b14 publication-title: Nat Cell Biol doi: 10.1038/ncb2263 – volume: 283 start-page: 19912 year: 2008 ident: emboj201324-b26 publication-title: J Biol Chem doi: 10.1074/jbc.M802690200 – volume: 327 start-page: 425 year: 2010 ident: emboj201324-b11 publication-title: Science doi: 10.1126/science.1180823 – volume: 32 start-page: 301 year: 2008 ident: emboj201324-b40 publication-title: Mol Cell doi: 10.1016/j.molcel.2008.10.010 – volume: 6 start-page: e1000966 year: 2010 ident: emboj201324-b4 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000966 – volume: 40 start-page: 3197 year: 2012 ident: emboj201324-b22 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1166 – volume: 29 start-page: 3007 year: 2010 ident: emboj201324-b44 publication-title: EMBO J doi: 10.1038/emboj.2010.155 – volume: 16 start-page: 1528 year: 2002 ident: emboj201324-b20 publication-title: Genes Dev doi: 10.1101/gad.988802 – volume: 39 start-page: 862 year: 2010 ident: emboj201324-b37 publication-title: Mol Cell doi: 10.1016/j.molcel.2010.08.028 – volume: 100 start-page: 10854 year: 2003 ident: emboj201324-b24 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1934561100 – volume: 832 start-page: 249 year: 2012 ident: emboj201324-b45 publication-title: Methods Mol Biol doi: 10.1007/978-1-61779-474-2_18 – volume: 18 start-page: 213 year: 2011 ident: emboj201324-b8 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1974 – volume: 24 start-page: 3117 year: 2005 ident: emboj201324-b29 publication-title: EMBO J doi: 10.1038/sj.emboj.7600778 – volume: 285 start-page: 35814 year: 2010 ident: emboj201324-b46 publication-title: J Biol Chem doi: 10.1074/jbc.M110.170167 – volume: 18 start-page: 920 year: 2011 ident: emboj201324-b17 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2100 – volume: 484 start-page: 251 year: 2012 ident: emboj201324-b19 publication-title: Nature doi: 10.1038/nature10985 – volume: 7 start-page: e1002024 year: 2011 ident: emboj201324-b1 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002024 – volume: 17 start-page: 5461 year: 1997 ident: emboj201324-b51 publication-title: Mol Cell Biol doi: 10.1128/MCB.17.9.5461 – volume: 14 start-page: 581 year: 2007 ident: emboj201324-b31 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1259 – volume: 33 start-page: 559 year: 2009 ident: emboj201324-b33 publication-title: Mol Cell doi: 10.1016/j.molcel.2009.01.027 – volume: 322 start-page: 597 year: 2008 ident: emboj201324-b27 publication-title: Science doi: 10.1126/science.1162790 – volume: 446 start-page: 806 year: 2007 ident: emboj201324-b10 publication-title: Nature doi: 10.1038/nature05649 – volume: 44 start-page: 243 year: 2010 ident: emboj201324-b18 publication-title: Annu Rev Genet doi: 10.1146/annurev-genet-102108-134841 – volume: 380 start-page: 520 year: 2008 ident: emboj201324-b13 publication-title: J Mol Biol doi: 10.1016/j.jmb.2008.04.078 – volume: 7 start-page: 712 year: 2005 ident: emboj201324-b7 publication-title: Nat Cell Biol doi: 10.1038/ncb1275 – volume: 24 start-page: 720 year: 2010 ident: emboj201324-b30 publication-title: Genes Dev doi: 10.1101/gad.571510 – volume: 39 start-page: 6511 year: 2011 ident: emboj201324-b9 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr297 – volume: 7 start-page: e49151 year: 2012 ident: emboj201324-b15 publication-title: PLoS ONE doi: 10.1371/journal.pone.0049151 – volume: 11 start-page: 748 year: 1997 ident: emboj201324-b47 publication-title: Genes Dev doi: 10.1101/gad.11.6.748 – volume: 22 start-page: 1153 year: 2008 ident: emboj201324-b21 publication-title: Genes Dev doi: 10.1101/gad.455108 – volume: 104 start-page: 893 year: 2007 ident: emboj201324-b48 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605442104 – volume: 282 start-page: 34167 year: 2007 ident: emboj201324-b42 publication-title: J Biol Chem doi: 10.1074/jbc.M706505200 – volume: 26 start-page: 323 year: 2007 ident: emboj201324-b3 publication-title: Mol Cell doi: 10.1016/j.molcel.2007.03.023 – volume: 28 start-page: 3390 year: 2009 ident: emboj201324-b34 publication-title: EMBO J doi: 10.1038/emboj.2009.275 – volume: 336 start-page: 593 year: 2012 ident: emboj201324-b35 publication-title: Science doi: 10.1126/science.1218498 – volume: 19 start-page: 307 year: 2012 ident: emboj201324-b32 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2225 – volume: 327 start-page: 1657 year: 2010 ident: emboj201324-b36 publication-title: Science doi: 10.1126/science.1185100 – volume: 497 start-page: 81 year: 2009 ident: emboj201324-b41 publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-566-4_6 – volume: 39 start-page: 8765 year: 2011 ident: emboj201324-b6 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr587 – volume: 45 start-page: 422 year: 2011 ident: emboj201324-b12 publication-title: Mol Cell doi: 10.1016/j.molcel.2011.11.028 – volume: 92 start-page: 401 year: 1998 ident: emboj201324-b43 publication-title: Cell doi: 10.1016/S0092-8674(00)80932-0 – volume: 117 start-page: 323 year: 2004 ident: emboj201324-b39 publication-title: Cell doi: 10.1016/S0092-8674(04)00334-4 – volume: 21 start-page: 292 year: 2007 ident: emboj201324-b28 publication-title: Genes Dev doi: 10.1101/gad.400907 – volume: 24 start-page: 3128 year: 2005 ident: emboj201324-b25 publication-title: EMBO J doi: 10.1038/sj.emboj.7600779 – volume: 5 start-page: 719 year: 2008 ident: emboj201324-b50 publication-title: Nat Methods doi: 10.1038/nmeth.1231 – volume: 17 start-page: 1438 year: 2011 ident: emboj201324-b23 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1947 – volume: 101 start-page: 8658 year: 2004 ident: emboj201324-b2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0401263101 – volume: 102 start-page: 4777 year: 2005 ident: emboj201324-b52 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0500537102 – volume: 278 start-page: 44113 year: 2003 ident: emboj201324-b5 publication-title: J Biol Chem doi: 10.1074/jbc.M308357200 – reference: 18995828 - Mol Cell. 2008 Nov 7;32(3):301-5 – reference: 19763083 - EMBO J. 2009 Nov 4;28(21):3390-9 – reference: 18538788 - J Mol Biol. 2008 Jul 11;380(3):520-31 – reference: 17209013 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):893-8 – reference: 17314980 - Nature. 2007 Apr 12;446(7137):806-10 – reference: 23435563 - EMBO J. 2013 Mar 20;32(6):775-7 – reference: 19107412 - Methods Mol Biol. 2009;497:81-103 – reference: 23133674 - PLoS One. 2012;7(11):e49151 – reference: 22285753 - Mol Cell. 2012 Feb 10;45(3):422-32 – reference: 20360388 - Genes Dev. 2010 Apr 1;24(7):720-33 – reference: 20628356 - EMBO J. 2010 Sep 1;29(17):3007-19 – reference: 21764775 - Nucleic Acids Res. 2011 Nov 1;39(20):8765-77 – reference: 20339076 - Science. 2010 Mar 26;327(5973):1657-61 – reference: 12941945 - J Biol Chem. 2003 Nov 7;278(45):44113-20 – reference: 17848550 - J Biol Chem. 2007 Nov 23;282(47):34176-84 – reference: 20093466 - Science. 2010 Jan 22;327(5964):425-31 – reference: 21217703 - Nat Struct Mol Biol. 2011 Feb;18(2):213-21 – reference: 15161972 - Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8658-63 – reference: 20523746 - PLoS Genet. 2010 May;6(5):e1000966 – reference: 21057524 - Nat Struct Mol Biol. 2010 Dec;17(12):1438-45 – reference: 9087429 - Genes Dev. 1997 Mar 15;11(6):748-60 – reference: 18451106 - Genes Dev. 2008 May 1;22(9):1153-8 – reference: 20826803 - J Biol Chem. 2010 Nov 12;285(46):35814-24 – reference: 12963812 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10854-9 – reference: 21437267 - PLoS Genet. 2011 Mar;7(3):e1002024 – reference: 17499040 - Mol Cell. 2007 May 11;26(3):323-34 – reference: 19285940 - Mol Cell. 2009 Mar 13;33(5):559-69 – reference: 17728242 - J Biol Chem. 2007 Nov 23;282(47):34167-75 – reference: 23086935 - J Biol Chem. 2012 Dec 7;287(50):42071-83 – reference: 21743457 - Nat Struct Mol Biol. 2011 Aug;18(8):920-6 – reference: 20864034 - Mol Cell. 2010 Sep 24;39(6):862-72 – reference: 22343724 - Nat Struct Mol Biol. 2012 Mar;19(3):307-13 – reference: 9271422 - Mol Cell Biol. 1997 Sep;17(9):5461-72 – reference: 16096639 - EMBO J. 2005 Sep 7;24(17):3128-35 – reference: 22139930 - Nucleic Acids Res. 2012 Apr;40(7):3197-207 – reference: 17289918 - Genes Dev. 2007 Feb 1;21(3):292-302 – reference: 15109493 - Cell. 2004 Apr 30;117(3):323-35 – reference: 18948542 - Science. 2008 Oct 24;322(5901):597-602 – reference: 15968270 - Nat Cell Biol. 2005 Jul;7(7):712-8 – reference: 12080091 - Genes Dev. 2002 Jun 15;16(12):1528-39 – reference: 18499666 - J Biol Chem. 2008 Jul 18;283(29):19912-21 – reference: 21666682 - Nat Cell Biol. 2011 Jul;13(7):867-74 – reference: 22350891 - Methods Mol Biol. 2012;832:249-61 – reference: 22556254 - Science. 2012 May 4;336(6081):593-7 – reference: 15738391 - Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4777-82 – reference: 21047259 - Annu Rev Genet. 2010;44:243-69 – reference: 21558173 - Nucleic Acids Res. 2011 Aug;39(15):6511-22 – reference: 16096640 - EMBO J. 2005 Sep 7;24(17):3117-27 – reference: 18622398 - Nat Methods. 2008 Aug;5(8):719-25 – reference: 17589526 - Nat Struct Mol Biol. 2007 Jul;14(7):581-90 – reference: 9476899 - Cell. 1998 Feb 6;92(3):401-13 – reference: 22498630 - Nature. 2012 Apr 12;484(7393):251-5 – reference: 17901206 - Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16062-7 |
SSID | ssj0005871 |
Score | 2.2886362 |
Snippet | In eukaryotes, permanent inhibition of the non‐homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding... In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding... In eukaryotes, permanent inhibition of the nonhomologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding... A STUbL with DNA-dependent ATPase activity protects telomeres by preventing accumulation of poly-sumoylated Rap1 on chromosome ends. In eukaryotes, permanent... |
SourceID | unpaywall pubmedcentral hal proquest pubmed crossref wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 805 |
SubjectTerms | Biochemistry, Molecular Biology Deoxyribonucleic acid DNA DNA End-Joining Repair DNA Helicases - metabolism DNA Helicases - physiology Down-Regulation EMBO13 EMBO31 Eukaryotes Inhibition Life Sciences NHEJ Organisms, Genetically Modified Peptidyl Transferases - metabolism Peptidyl Transferases - physiology Protein Binding Protein Multimerization - physiology Proteins rap1 GTP-Binding Proteins - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - physiology Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism Silent Information Regulator Proteins, Saccharomyces cerevisiae - physiology Small Ubiquitin-Related Modifier Proteins - metabolism Small Ubiquitin-Related Modifier Proteins - physiology STUbL SUMO SUMO-1 Protein - metabolism Sumoylation - physiology Telomerase telomere Telomere - metabolism Ubiquitin-Protein Ligases - metabolism Ubiquitin-Protein Ligases - physiology Yeasts |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfYJjR4QDC-AgMFhNgL2RrHSZwnNLaOarDxsmrVXizbsWlGlpQ2Bfrfc3Y-RsUoL1XUXKLk7pe739mnO4TeYG0WJwLfkz1BPBJI4omI-14YY6mpH2Fuu-2fnEaDITkehaNmwW3WlFW2PtE66rSUZo18zwesxInpdfJ-8t0zU6PM7mozQmMNbfhAVQyq41F8XeJBbcJl11iIT5Omx2YvoHvqSpSXprIr2MVkKSatjU1F5IZR8q-baOff1ZPdFupdtDkvJnzxk-f5Mtm10eroPrrX0Ex3v8bFA3RLFVvodj14crGFNg_aOW8PUdYvUu-ytIMi3KwYZ8JWcbm8ciuVl1cKEnJ3qkzFMBwAX3QrE99MEJwplxepOynzBXjnL147Ubdy5yKDC6qscPPsq5Eb5jP_ERoe9c8OBl4zgMGTUewTL6FUCJlEWkOU16mmVBIFegSSRHgYi1hDZAtlSHAagal7qQwTSnSUxooQLnDwGK0XZaGeIhfjlEY0FVoLTuCXQuodKfAvqZZYJdJB71oTMNl0JzdDMnJmd8kDyqzFmLEYw8RBbzvxSd2W41-Cr8GenYxppj3Y_8zMf4YsE4LJDx_uZs3difHpN1PwFofs_PQji84vPvlnh4eMOmi7xQNrvvUZu0amg151p8GIZuuFF6qc1zJAHCFbXSVDzGwDSNkc9KSGWPdAGMhGDMzNQfES-JZebPlMkY1tt_Ag6gEBgXvutDD949FvVtlOh-L_KXfXYny1FOuffDg2x5g8W62_5-gOttNGAnDe22i9ms7VC-B8lXhpP-zfR-tTlg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLa2VmjwwGXcAgMFhNjLkjaOk7iPZeuoBisIrdrgxYodh2ZLk6pNgfLrOXYuojAGvFRRfRLF9pdzPsdfzkHoBY7VywnXsUSXE4u4gljcDx3LC7CIqePjUGfbPx75wzE5OvPONpBTfwujRfuCJ3aWTu0smWht5WwqOrVOrOP6XXCovU3U9tWeUgu1x6P3_Y_1uxTi6LJ34AC6gIDAq_Jqdl3akVOenys1l2tjshaHNidKBdlWA_vtMqr5u2Ky2Ta9gbaW2SxcfQ3TdJ3g6gh1eAt9qPtWClMu7GXBbfH9l7SP_9X52-hmxVfNftl0B23IbBtdKytYrrbR1n5dMO4uSgZZZJ3nuuKEmWSThGs5mBkWZiHTfCphZW_OpZIewwEQT7NQgVJF04U0wywyZ3m6Ajf_zqpL8xbmkidwQpFkZpp8VnbjdOHcQ-PDwcn-0KoqOVjCDxxi9SjlXPT8OAa6EEcxpYJImCiYQBJ6AQ9iCJGe8AiOfMBMNxJej5LYjwJJSMixex-1sjyTD5GJcUR9GvE45iGBXwpreF-Co4pigWVPGGivnlcmqjTnqtpGyvR2u0uZhgFTMGCYGOhlYz4r83v8yfA5gKSxUVm5h_23TP2nWDchmHxx4GoaQ41ZOL9QyrnAY6ej18w__fTGOTk4YNRAOzXIWOU0FswBdxj0VDofAz1rmmES1R5OmMl8WdoAA4Vl71U2RBVJgLWfgR6UuG1uCANrCYACGihYQ_Rax9ZbAIg67XiFPQPt1tj_6dYvH7Ld5tH42-Da-sG52ooNjl8dqWNMHv3zpR-j61hXMHHBHeygVjFfyifAIwv-tPIcPwAwY3Ay priority: 102 providerName: Unpaywall |
Title | End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1 |
URI | https://api.istex.fr/ark:/67375/WNG-6WZK1TDD-8/fulltext.pdf https://link.springer.com/article/10.1038/emboj.2013.24 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2013.24 https://www.ncbi.nlm.nih.gov/pubmed/23417015 https://www.proquest.com/docview/1319798014 https://www.proquest.com/docview/1319159619 https://www.proquest.com/docview/1348481049 https://hal.science/hal-00804424 https://pubmed.ncbi.nlm.nih.gov/PMC3604719 https://www.ncbi.nlm.nih.gov/pmc/articles/3604719 |
UnpaywallVersion | submittedVersion |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1460-2075 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: HH5 dateStart: 19820101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1460-2075 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: DIK dateStart: 19820101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: GX1 dateStart: 19820101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: RPM dateStart: 19820101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: NAO dateStart: 20031001 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: 7X7 dateStart: 20000104 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1460-2075 dateEnd: 20131211 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: BENPR dateStart: 20000104 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: 8C1 dateStart: 20000104 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: (Open Access) Springer Nature eJournals customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: C6C dateStart: 20031001 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: AAJSJ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELfYKjR4QDD-BcYUEGIvZDSO4ziPXddRFVYmWLXCixUnDs1Ik6pNgb7xEfiMfBLObhKIGIOX_L1Yju9897v4cofQUxyrjxOObYVtQSzihMQSNLAt18NhzGyKA51t_3hI-yMyGLvj8mf1RRlWuU5pqdV0FR32Qk5Ffq4isZx9TDZQi3kOhnnY6nQG7wa_YjqY9rD0RxViM79Mqtl2WLOBhhHamKgQyJYa1a8X4cw_wyXrNdPraGuZzYLVlyBNm-hWm6ejm-hGiSvNzvpNbqErMttGV9eVJlfbaKtbFXa7jaa9LPrx7ft5rmtDmEk2SYQO3DKDwixkmk8l-ODmXKogYTgAiGgWyqQpu7eQZpBF5ixPV6CQ30A7VRndwlyKBB4pksxMk4-KcpQu7DtodNQ77fatsuqCFVLPJpbPmBChT-MYTHscxYyFRMJYAjIigesJLwZz5oYuwREF_raj0PUZiWnkSUICgZ27aDPLM3kfmRhHjLJIxLEICGwZ-NtUglKJ4hBLPzTQ84oNPCxTkqvKGCnXS-MO45prXHGNY2KgZzX5bJ2L42-ET4CnNY3KoN3vvObqmkLIhGDy2YbWNMtrsmD-SUW5eS4_G77k9OzDK_v08JAzA-1UMsHLCb7gNqguz1epdwz0uL4NjFTrLUEm8-WaBtAiuKiX0RBV0AD8NAPdW4tZ3SEMCMMDuGYgryGAjRdr3smSiU4R7tA2oA5oc68S1d-6fvGQ7dWS_K_B3ddyfjkV7x0fDNQxJg_-uxMP0TWsq404oLx30GYxX8pHgPkKsYs2vLEHW9a1d8tZD_uD3vDkLVzt0i6cjYYnnfc_ARgKW20 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUdpjCgYHyMhQQDNBL3dqybCsHhilNSto8uCTTDBdhyzJxce2QOJT8KX4jKyV2yVDCqZeMJ95oZO1691tpsx9Cr0msNicc2xRWSE3qCGqGXmCbrk9EzGyPBLrbfqfrNfv0ZOAO1tCv8r8wqqyy9InaUUe5UHvk-zbYil9TvU7ej76bijVKna6WFBpzs2jJ2QWkbJN3x3XQ7xtCjhq9w6a5YBUwhefb1KwxFoai5sUxhK44ihkTVNoMkLxFA9cP_RjctStcSiIP5m9Fwq0xGnuRLykNQtXoAFz-BnUsqnr1-wP_sqSE6QRP7-lQGHLR09Ny2L48D_MzVUnm7BG6FANvDFUF5oZS6s-rYO7f1ZrVke1ttDnNRsHsIkjTZXCto-PRXXRnAWvxwdwO76E1mW2hm3Oiy9kW2jwseeXuo6SRReZZrokpcJINk1BXjeGgwIVM83M5lhM8lqpCGS4An-JCxVMVdCcSB1mER3k6g2jwySwZfAs8DRP4QZFkOE2-Krl-OrEfoP61qOYhWs_yTD5GmJCIeSwK4zgMKHwySPU9Cf4sigWRNWGg3VIFXCy6oStSjpTrU3mHca0xrjTGCTXQ20p8NG8D8i_BV6DPSkY1724etLn6ToFzSgn9YcNoWt2VWDD-pgrsfJefdj9y7_Rzy-7V65wZaLu0B77wLRN--SYY6GV1G5SojnqCTObTuQwAVciOV8lQxaUAKaKBHs1NrJoQAXDjA1I0kL9kfEsPtnwnS4a6O7njWQB4YMyd0kz_mPrVS7ZTWfH_FndP2_hqKd7ofDhR14Q-Wb1-L9Bms9dp8_Zxt_UU3SKa6cSBwLGN1ovxVD4DvFmEz_VLjtGX6_YqvwFLhY-a |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwENb0MVA4MFBehgKGYegFh1iWZflY8qD0ETg00w4XjWVLxMWxM4kD5MZP4DfyS1gpscFDKVwynnijkbWr3W-tL7sIPcdKv5zwXCduC-IQLyaOoJHr-AGOFXMpjky1_eMB3R-SgzP_bA251X9hDGnflLQ0brpih72SY1GcayaW18KkNUnUOtpkAewOfT5LO79YHczkWOa1CnFZuCqr2fZYc4hGGFofaRLkpl7XrxchzT8Jk_Wp6XW0Nc8n0eJLlGVNfGsCVP8murFClvbe8lluoTWZb6Mry16Ti2201alau91G416e_Pj2_bww3SHsNB-lwlC37Ki0S5kVYwlZuD2VmiYMFwAS7VIHNR35ZtKO8sSeFNkCXPI7GKdqpFvac5HCT8o0t7P0o5YcZjP3Dhr2eyedfWfVd8GJaeASJ2RMiDikSkFwV4liLCYS1hKwEYn8QAQKApof-wQnFDTcTmI_ZETRJJCERAJ7d9FGXuTyPrIxThhliVBKRAQ-GWTcVIJbSVSMZRhb6GWlBh6vipLr3hgZN4fjHuNGa1xrjWNioRe1-GRZjeNvgs9Ap7WMrqG9v3fE9XcaIxOCyWcXRjMqr8Wi6SfNcwt8fjp4w-nph0P3pNvlzEI7lU3w1RafcRecVxDq4jsWelrfBkXqE5col8V8KQN4EZLUy2SIbmkAmZqF7i3NrJ4QBowRAGCzUNAwwMaDNe_k6cgUCfdoG3AHjLlbmepvU794yXZrS_7X4raMnV8uxXvHrw_0NSYP_nsST9DV990-P3o7OHyIrmHTesQDT76DNsrpXD4CAFiKx2bL_wTW0Fg4 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLa2VmjwwGXcAgMFhNjLkjaOk7iPZeuoBisIrdrgxYodh2ZLk6pNgfLrOXYuojAGvFRRfRLF9pdzPsdfzkHoBY7VywnXsUSXE4u4gljcDx3LC7CIqePjUGfbPx75wzE5OvPONpBTfwujRfuCJ3aWTu0smWht5WwqOrVOrOP6XXCovU3U9tWeUgu1x6P3_Y_1uxTi6LJ34AC6gIDAq_Jqdl3akVOenys1l2tjshaHNidKBdlWA_vtMqr5u2Ky2Ta9gbaW2SxcfQ3TdJ3g6gh1eAt9qPtWClMu7GXBbfH9l7SP_9X52-hmxVfNftl0B23IbBtdKytYrrbR1n5dMO4uSgZZZJ3nuuKEmWSThGs5mBkWZiHTfCphZW_OpZIewwEQT7NQgVJF04U0wywyZ3m6Ajf_zqpL8xbmkidwQpFkZpp8VnbjdOHcQ-PDwcn-0KoqOVjCDxxi9SjlXPT8OAa6EEcxpYJImCiYQBJ6AQ9iCJGe8AiOfMBMNxJej5LYjwJJSMixex-1sjyTD5GJcUR9GvE45iGBXwpreF-Co4pigWVPGGivnlcmqjTnqtpGyvR2u0uZhgFTMGCYGOhlYz4r83v8yfA5gKSxUVm5h_23TP2nWDchmHxx4GoaQ41ZOL9QyrnAY6ej18w__fTGOTk4YNRAOzXIWOU0FswBdxj0VDofAz1rmmES1R5OmMl8WdoAA4Vl71U2RBVJgLWfgR6UuG1uCANrCYACGihYQ_Rax9ZbAIg67XiFPQPt1tj_6dYvH7Ld5tH42-Da-sG52ooNjl8dqWNMHv3zpR-j61hXMHHBHeygVjFfyifAIwv-tPIcPwAwY3Ay |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End%E2%80%90joining+inhibition+at+telomeres+requires+the+translocase+and+polySUMO%E2%80%90dependent+ubiquitin+ligase+Uls1&rft.jtitle=The+EMBO+journal&rft.au=Lescasse%2C+Rachel&rft.au=Pobiega%2C+Sabrina&rft.au=Callebaut%2C+Isabelle&rft.au=Marcand%2C+St%C3%A9phane&rft.date=2013-03-20&rft.pub=Nature+Publishing+Group+UK&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=32&rft.issue=6&rft.spage=805&rft.epage=815&rft_id=info:doi/10.1038%2Femboj.2013.24&rft.externalDocID=10_1038_emboj_2013_24 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |