Deep learning-based age estimation from clinical Computed Tomography image data of the thorax and abdomen in the adult population

Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep learning model for automated age estimation based on CT- scans of the thorax and abdomen generated in a clinical routine setting. These predictions...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 11; p. e0292993
Main Authors Kerber, Bjarne, Hepp, Tobias, Küstner, Thomas, Gatidis, Sergios
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 07.11.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0292993

Cover

Abstract Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep learning model for automated age estimation based on CT- scans of the thorax and abdomen generated in a clinical routine setting. These predictions could serve as imaging biomarkers to estimate a “biological” age, that better reflects a patient’s true physical condition. A pre-trained ResNet-18 model was modified to predict chronological age as well as to quantify its aleatoric uncertainty. The model was trained using 1653 non-pathological CT-scans of the thorax and abdomen of subjects aged between 20 and 85 years in a 5-fold cross-validation scheme. Generalization performance as well as robustness and reliability was assessed on a publicly available test dataset consisting of thorax-abdomen CT-scans of 421 subjects. Score-CAM saliency maps were generated for interpretation of model outputs. We achieved a mean absolute error of 5.76 ± 5.17 years with a mean uncertainty of 5.01 ± 1.44 years after 5-fold cross-validation. A mean absolute error of 6.50 ± 5.17 years with a mean uncertainty of 6.39 ± 1.46 years was obtained on the test dataset. CT-based age estimation accuracy was largely uniform across all age groups and between male and female subjects. The generated saliency maps highlighted especially the lumbar spine and abdominal aorta. This study demonstrates, that accurate and generalizable deep learning-based automated age estimation is feasible using clinical CT image data. The trained model proved to be robust and reliable. Methods of uncertainty estimation and saliency analysis improved the interpretability.
AbstractList Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep learning model for automated age estimation based on CT- scans of the thorax and abdomen generated in a clinical routine setting. These predictions could serve as imaging biomarkers to estimate a “biological” age, that better reflects a patient’s true physical condition. A pre-trained ResNet-18 model was modified to predict chronological age as well as to quantify its aleatoric uncertainty. The model was trained using 1653 non-pathological CT-scans of the thorax and abdomen of subjects aged between 20 and 85 years in a 5-fold cross-validation scheme. Generalization performance as well as robustness and reliability was assessed on a publicly available test dataset consisting of thorax-abdomen CT-scans of 421 subjects. Score-CAM saliency maps were generated for interpretation of model outputs. We achieved a mean absolute error of 5.76 ± 5.17 years with a mean uncertainty of 5.01 ± 1.44 years after 5-fold cross-validation. A mean absolute error of 6.50 ± 5.17 years with a mean uncertainty of 6.39 ± 1.46 years was obtained on the test dataset. CT-based age estimation accuracy was largely uniform across all age groups and between male and female subjects. The generated saliency maps highlighted especially the lumbar spine and abdominal aorta. This study demonstrates, that accurate and generalizable deep learning-based automated age estimation is feasible using clinical CT image data. The trained model proved to be robust and reliable. Methods of uncertainty estimation and saliency analysis improved the interpretability.
Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep learning model for automated age estimation based on CT- scans of the thorax and abdomen generated in a clinical routine setting. These predictions could serve as imaging biomarkers to estimate a "biological" age, that better reflects a patient's true physical condition. A pre-trained ResNet-18 model was modified to predict chronological age as well as to quantify its aleatoric uncertainty. The model was trained using 1653 non-pathological CT-scans of the thorax and abdomen of subjects aged between 20 and 85 years in a 5-fold cross-validation scheme. Generalization performance as well as robustness and reliability was assessed on a publicly available test dataset consisting of thorax-abdomen CT-scans of 421 subjects. Score-CAM saliency maps were generated for interpretation of model outputs. We achieved a mean absolute error of 5.76 ± 5.17 years with a mean uncertainty of 5.01 ± 1.44 years after 5-fold cross-validation. A mean absolute error of 6.50 ± 5.17 years with a mean uncertainty of 6.39 ± 1.46 years was obtained on the test dataset. CT-based age estimation accuracy was largely uniform across all age groups and between male and female subjects. The generated saliency maps highlighted especially the lumbar spine and abdominal aorta. This study demonstrates, that accurate and generalizable deep learning-based automated age estimation is feasible using clinical CT image data. The trained model proved to be robust and reliable. Methods of uncertainty estimation and saliency analysis improved the interpretability.Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep learning model for automated age estimation based on CT- scans of the thorax and abdomen generated in a clinical routine setting. These predictions could serve as imaging biomarkers to estimate a "biological" age, that better reflects a patient's true physical condition. A pre-trained ResNet-18 model was modified to predict chronological age as well as to quantify its aleatoric uncertainty. The model was trained using 1653 non-pathological CT-scans of the thorax and abdomen of subjects aged between 20 and 85 years in a 5-fold cross-validation scheme. Generalization performance as well as robustness and reliability was assessed on a publicly available test dataset consisting of thorax-abdomen CT-scans of 421 subjects. Score-CAM saliency maps were generated for interpretation of model outputs. We achieved a mean absolute error of 5.76 ± 5.17 years with a mean uncertainty of 5.01 ± 1.44 years after 5-fold cross-validation. A mean absolute error of 6.50 ± 5.17 years with a mean uncertainty of 6.39 ± 1.46 years was obtained on the test dataset. CT-based age estimation accuracy was largely uniform across all age groups and between male and female subjects. The generated saliency maps highlighted especially the lumbar spine and abdominal aorta. This study demonstrates, that accurate and generalizable deep learning-based automated age estimation is feasible using clinical CT image data. The trained model proved to be robust and reliable. Methods of uncertainty estimation and saliency analysis improved the interpretability.
Audience Academic
Author Gatidis, Sergios
Hepp, Tobias
Küstner, Thomas
Kerber, Bjarne
AuthorAffiliation Medical University of Vienna: Medizinische Universitat Wien, AUSTRIA
1 Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
2 Max Planck Institute for Intelligent Systems, Tuebingen, Germany
AuthorAffiliation_xml – name: Medical University of Vienna: Medizinische Universitat Wien, AUSTRIA
– name: 1 Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
– name: 2 Max Planck Institute for Intelligent Systems, Tuebingen, Germany
Author_xml – sequence: 1
  givenname: Bjarne
  orcidid: 0000-0002-1368-2181
  surname: Kerber
  fullname: Kerber, Bjarne
– sequence: 2
  givenname: Tobias
  surname: Hepp
  fullname: Hepp, Tobias
– sequence: 3
  givenname: Thomas
  surname: Küstner
  fullname: Küstner, Thomas
– sequence: 4
  givenname: Sergios
  surname: Gatidis
  fullname: Gatidis, Sergios
BookMark eNqNk21r1TAUx4tMcJt-A8GCIPriXpM-pI1vZFyfLgwGOn0bTtO0NyNNuiSV7aXf3HMflHUMkVJ6OPn9_8k5zTlJjqyzKkmeU7KkeUXfXrnJWzDLEdNLkvGM8_xRckx5ni1YRvKjO_GT5CSEK0LKvGbsOPn1QakxNQq81bZfNBBUm0KvUhWiHiBqZ9POuyGVRlstwaQrN4xTROrSDa73MG5uUyRR0kKE1HVp3Ch8nYebFCy6Na0blE213a1AO5mYjm6czM7-afK4AxPUs8P3NPn-6ePl6svi_OLzenV2vpCsInEBLSEVK1tQTc07zhsMoaPASyyqJoWqMOBEFgw5XuZ51WC6zjLKq4K2RX6avNj7jsYFcWhZEDlhPKuxHQSJ9Z5oHVyJ0WNV_lY40GKXcL4X4KOWRok2L2QGtCOsVgWhNRBVNRS7KkvWshrQ6_1ht6kZVCuVjR7MzHS-YvVG9O6noIRlnJXb874-OHh3PeHvEIMOUhkDVrkpiKyuq6Kqcloj-vIe-nB5B6oHrEDbzuHGcmsqzqqKcsIYoUgtH6DwadWgJV6wTmN-JngzEyAT1U3sYQpBrL99_X_24secfXWH3SgwcROcmbZ3JszBYg9K70LwqvvbZUrEdj7-dENs50Mc5gNl7-7JpI67G4kFa_Nv8W-MBBhP
CitedBy_id crossref_primary_10_3390_diagnostics15030257
crossref_primary_10_1007_s11357_024_01394_8
Cites_doi 10.1016/j.arr.2014.01.004
10.1007/s10140-020-01782-5
10.1016/j.mcna.2011.11.003
10.1016/j.amepre.2013.10.029
10.1109/ICNN.1994.374138
10.3390/jimaging6060052
10.1117/1.JMI.8.5.054003
10.1093/schbul/sbx172
10.1109/CVPRW50498.2020.00020
10.1016/j.jcmg.2021.01.008
10.5115/acb.2019.52.2.109
10.1007/978-3-030-24970-0_19
10.1016/j.tins.2017.10.001
10.1186/s40537-016-0043-6
10.1109/TMI.2019.2950092
10.1097/00000658-198704000-00002
10.3389/fnagi.2013.00090
10.1016/j.knosys.2015.01.010
10.1136/ard.50.3.162
10.1371/journal.pmed.1002683
10.1109/TMI.2021.3066857
10.1016/j.inffus.2023.03.007
10.1038/s41597-022-01718-3
10.1016/j.acra.2008.02.001
10.1097/00007632-200202010-00013
10.1038/s42256-019-0048-x
10.1016/j.amjcard.2008.08.031
10.1016/j.compmedimag.2021.101967
10.1016/j.neuroimage.2018.03.075
10.1016/j.cger.2010.08.006
10.1038/s41467-019-08987-4
10.1007/s10994-021-05946-3
10.1016/j.neuroimage.2020.117316
10.1007/s00330-020-06672-5
10.1109/TKDE.2009.191
ContentType Journal Article
Copyright COPYRIGHT 2023 Public Library of Science
2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2023 Kerber et al 2023 Kerber et al
2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2023 Kerber et al 2023 Kerber et al
– notice: 2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0292993
DatabaseName CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database


CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Deep learning-based age estimation from clinical Computed Tomography image data of the thorax and abdomen
EISSN 1932-6203
ExternalDocumentID 3069280530
oai_doaj_org_article_d34c2a1f068e4018a0e7b1005c56d68a
PMC10629654
A771906601
10_1371_journal_pone_0292993
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: ;
  grantid: EXC 2180 – #390900677, EXC 2064/1 - #390727645
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ID FETCH-LOGICAL-c670t-ad00765daeb89f99b5daaf1a95203804e752090c4600795337b38082219741d43
IEDL.DBID 8FG
ISSN 1932-6203
IngestDate Wed Aug 13 01:17:38 EDT 2025
Wed Aug 27 01:17:16 EDT 2025
Tue Sep 30 17:11:32 EDT 2025
Fri Sep 05 08:07:52 EDT 2025
Fri Jul 25 11:28:11 EDT 2025
Tue Jun 17 22:18:27 EDT 2025
Tue Jun 10 21:15:51 EDT 2025
Fri Jun 27 05:35:48 EDT 2025
Fri Jun 27 06:08:21 EDT 2025
Thu May 22 21:20:02 EDT 2025
Wed Oct 01 04:15:10 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c670t-ad00765daeb89f99b5daaf1a95203804e752090c4600795337b38082219741d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-1368-2181
OpenAccessLink https://www.proquest.com/docview/3069280530?pq-origsite=%requestingapplication%
PQID 3069280530
PQPubID 1436336
PageCount e0292993
ParticipantIDs plos_journals_3069280530
doaj_primary_oai_doaj_org_article_d34c2a1f068e4018a0e7b1005c56d68a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10629654
proquest_miscellaneous_2887477318
proquest_journals_3069280530
gale_infotracmisc_A771906601
gale_infotracacademiconefile_A771906601
gale_incontextgauss_ISR_A771906601
gale_incontextgauss_IOV_A771906601
gale_healthsolutions_A771906601
crossref_primary_10_1371_journal_pone_0292993
crossref_citationtrail_10_1371_journal_pone_0292993
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-07
PublicationDateYYYYMMDD 2023-11-07
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-07
  day: 07
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References R Dhingra (pone.0292993.ref001) 2012; 96
BG Becker (pone.0292993.ref017) 2018; 175
T Hajek (pone.0292993.ref008) 2019; 45
S Lapuschkin (pone.0292993.ref012) 2019; 10
JR Zech (pone.0292993.ref038) 2018; 15
L Torrey (pone.0292993.ref039) 2010
P Komutrattananont (pone.0292993.ref045) 2019; 52
pone.0292993.ref024
AE Chang (pone.0292993.ref032) 1987; 205
SJ Pan (pone.0292993.ref035) 2009; 22
pone.0292993.ref026
Z Shao (pone.0292993.ref044) 2002; 27
J van Amersfoort (pone.0292993.ref013) 2021
SS Mao (pone.0292993.ref043) 2008; 15
G Azarfar (pone.0292993.ref031) 2023
A Kendall (pone.0292993.ref025) 2017
K Weiss (pone.0292993.ref037) 2016; 3
D Doran (pone.0292993.ref040) 2017
E Hüllermeier (pone.0292993.ref014) 2021; 110
MC White (pone.0292993.ref003) 2014; 46
RL McClelland (pone.0292993.ref011) 2009; 103
W Shi (pone.0292993.ref016) 2020; 223
A Singh (pone.0292993.ref046) 2020; 6
K He (pone.0292993.ref022) 2016
M Früh (pone.0292993.ref027) 2021; 8
D Symmons (pone.0292993.ref042) 1991; 50
VK Raghu (pone.0292993.ref010) 2021; 14
JH Cole (pone.0292993.ref006) 2017; 40
T Hepp (pone.0292993.ref015) 2021; 92
A Paszke (pone.0292993.ref023) 2019; 32
T Langner (pone.0292993.ref018) 2019; 39
MP Recht (pone.0292993.ref028) 2020; 30
A Holzinger (pone.0292993.ref041) 2017
K Armanious (pone.0292993.ref007) 2021; 40
J Irvin (pone.0292993.ref029) 2019
CF Sabottke (pone.0292993.ref030) 2020; 27
RF Kilcoyne (pone.0292993.ref033) 1988
M Tanveer (pone.0292993.ref020) 2023; 96
A Reeve (pone.0292993.ref002) 2014; 14
K Franke (pone.0292993.ref009) 2013; 5
R Taori (pone.0292993.ref034) 2020; 33
NS Fedarko (pone.0292993.ref004) 2011; 27
S Gatidis (pone.0292993.ref021) 2022; 9
JH Cole (pone.0292993.ref005) 2019
J Lu (pone.0292993.ref036) 2015; 80
RR Selvaraju (pone.0292993.ref019) 2017
C. Rudin (pone.0292993.ref047) 2019; 1
References_xml – volume: 14
  start-page: 19
  year: 2014
  ident: pone.0292993.ref002
  article-title: Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor?
  publication-title: Ageing Research Reviews.
  doi: 10.1016/j.arr.2014.01.004
– volume: 27
  start-page: 463
  issue: 5
  year: 2020
  ident: pone.0292993.ref030
  article-title: Estimation of age in unidentified patients via chest radiography using convolutional neural network regression.
  publication-title: Emergency radiology.
  doi: 10.1007/s10140-020-01782-5
– volume: 96
  start-page: 87
  issue: 1
  year: 2012
  ident: pone.0292993.ref001
  article-title: Age as a risk factor. The Medical clinics of
  publication-title: North America
  doi: 10.1016/j.mcna.2011.11.003
– start-page: 13
  issue: 228
  year: 1988
  ident: pone.0292993.ref033
  article-title: Magnetic resonance imaging of soft tissue masses
  publication-title: Clinical orthopaedics and related research
– volume: 46
  start-page: S7
  issue: 3, Supplement 1
  year: 2014
  ident: pone.0292993.ref003
  article-title: Age and Cancer Risk: A Potentially Modifiable Relationship.
  publication-title: Am J Prev Med
  doi: 10.1016/j.amepre.2013.10.029
– ident: pone.0292993.ref024
  doi: 10.1109/ICNN.1994.374138
– volume: 6
  start-page: 52
  issue: 6
  year: 2020
  ident: pone.0292993.ref046
  article-title: Explainable deep learning models in medical image analysis.
  publication-title: Journal of Imaging.
  doi: 10.3390/jimaging6060052
– start-page: arXiv: 2102
  year: 2021
  ident: pone.0292993.ref013
  article-title: Improving deterministic uncertainty estimation in deep learning for classification and regression.
  publication-title: arXiv e-prints.
– volume: 8
  start-page: 054003
  issue: 5
  year: 2021
  ident: pone.0292993.ref027
  article-title: Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging
  publication-title: Journal of Medical Imaging
  doi: 10.1117/1.JMI.8.5.054003
– year: 2017
  ident: pone.0292993.ref040
  article-title: What does explainable AI really mean? A new conceptualization of perspectives
  publication-title: arXiv preprint arXiv:171000794
– volume: 45
  start-page: 190
  issue: 1
  year: 2019
  ident: pone.0292993.ref008
  article-title: Brain age in early stages of bipolar disorders or schizophrenia
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbx172
– ident: pone.0292993.ref026
  doi: 10.1109/CVPRW50498.2020.00020
– volume: 14
  start-page: 2226
  issue: 11
  year: 2021
  ident: pone.0292993.ref010
  article-title: Deep Learning to Estimate Biological Age From Chest Radiographs.
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2021.01.008
– year: 2017
  ident: pone.0292993.ref041
  article-title: What do we need to build explainable AI systems for the medical domain?
  publication-title: arXiv preprint arXiv:171209923.
– volume: 52
  start-page: 109
  issue: 2
  year: 2019
  ident: pone.0292993.ref045
  article-title: Morphology of the human aorta and age-related changes: anatomical facts
  publication-title: Anat Cell Biol
  doi: 10.5115/acb.2019.52.2.109
– start-page: 293
  year: 2019
  ident: pone.0292993.ref005
  article-title: Quantification of the biological age of the brain using neuroimaging
  publication-title: Biomarkers of human aging: Springer
  doi: 10.1007/978-3-030-24970-0_19
– volume: 40
  start-page: 681
  issue: 12
  year: 2017
  ident: pone.0292993.ref006
  article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2017.10.001
– volume: 3
  start-page: 9
  issue: 1
  year: 2016
  ident: pone.0292993.ref037
  article-title: A survey of transfer learning
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-016-0043-6
– year: 2019
  ident: pone.0292993.ref029
  article-title: Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison.
  publication-title: Proceedings of the AAAI conference on artificial intelligence
– volume: 39
  start-page: 1430
  issue: 5
  year: 2019
  ident: pone.0292993.ref018
  article-title: Identifying morphological indicators of aging with neural networks on large-scale whole-body MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2950092
– volume: 205
  start-page: 340
  issue: 4
  year: 1987
  ident: pone.0292993.ref032
  article-title: Magnetic resonance imaging versus computed tomography in the evaluation of soft tissue tumors of the extremities
  publication-title: Ann Surg
  doi: 10.1097/00000658-198704000-00002
– volume: 5
  start-page: 90
  year: 2013
  ident: pone.0292993.ref009
  article-title: Advanced BrainAGE in older adults with type 2 diabetes mellitus
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2013.00090
– volume: 80
  start-page: 14
  year: 2015
  ident: pone.0292993.ref036
  article-title: Transfer learning using computational intelligence: A survey.
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.01.010
– volume: 50
  start-page: 162
  issue: 3
  year: 1991
  ident: pone.0292993.ref042
  article-title: A longitudinal study of back pain and radiological changes in the lumbar spines of middle aged women. II. Radiographic findings
  publication-title: Ann Rheum Dis
  doi: 10.1136/ard.50.3.162
– volume: 33
  start-page: 18583
  year: 2020
  ident: pone.0292993.ref034
  article-title: Measuring robustness to natural distribution shifts in image classification.
  publication-title: Adv Neural Inf Process Syst
– volume: 15
  start-page: e1002683
  issue: 11
  year: 2018
  ident: pone.0292993.ref038
  article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study.
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002683
– volume: 32
  start-page: 8026
  year: 2019
  ident: pone.0292993.ref023
  article-title: Pytorch: An imperative style, high-performance deep learning library.
  publication-title: Adv Neural Inf Process Syst
– volume: 40
  start-page: 1778
  issue: 7
  year: 2021
  ident: pone.0292993.ref007
  article-title: Age-Net: An MRI-Based Iterative Framework for Brain Biological Age Estimation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3066857
– year: 2017
  ident: pone.0292993.ref019
  article-title: editors. Grad-cam: Visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 96
  start-page: 130
  year: 2023
  ident: pone.0292993.ref020
  article-title: Deep learning for brain age estimation: A systematic review
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.03.007
– volume: 9
  start-page: 601
  issue: 1
  year: 2022
  ident: pone.0292993.ref021
  article-title: A whole-body FDG-PET/CT Dataset with manually annotated Tumor Lesions.
  publication-title: Scientific Data
  doi: 10.1038/s41597-022-01718-3
– volume: 15
  start-page: 827
  issue: 7
  year: 2008
  ident: pone.0292993.ref043
  article-title: Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender.
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2008.02.001
– volume: 27
  start-page: 263
  issue: 3
  year: 2002
  ident: pone.0292993.ref044
  article-title: Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age.
  publication-title: Spine
  doi: 10.1097/00007632-200202010-00013
– volume: 1
  start-page: 206
  issue: 5
  year: 2019
  ident: pone.0292993.ref047
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-019-0048-x
– start-page: 242
  year: 2010
  ident: pone.0292993.ref039
  article-title: Transfer learning.
  publication-title: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques: IGI global;
– volume: 103
  start-page: 59
  issue: 1
  year: 2009
  ident: pone.0292993.ref011
  article-title: Arterial Age as a Function of Coronary Artery Calcium (from the Multi-Ethnic Study of Atherosclerosis [MESA]).
  publication-title: The American Journal of Cardiology.
  doi: 10.1016/j.amjcard.2008.08.031
– start-page: 1
  year: 2023
  ident: pone.0292993.ref031
  article-title: Deep learning-based age estimation from chest CT scans
  publication-title: Int J Comput Assist Radiol Surg
– volume: 92
  start-page: 101967
  year: 2021
  ident: pone.0292993.ref015
  article-title: Uncertainty estimation and explainability in deep learning-based age estimation of the human brain: Results from the German National Cohort MRI study
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2021.101967
– volume: 175
  start-page: 246
  year: 2018
  ident: pone.0292993.ref017
  article-title: Initiative AsDN. Gaussian process uncertainty in age estimation as a measure of brain abnormality
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.075
– volume: 27
  start-page: 27
  issue: 1
  year: 2011
  ident: pone.0292993.ref004
  article-title: The biology of aging and frailty
  publication-title: Clin Geriatr Med
  doi: 10.1016/j.cger.2010.08.006
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: pone.0292993.ref012
  article-title: Unmasking Clever Hans predictors and assessing what machines really learn
  publication-title: Nature communications
  doi: 10.1038/s41467-019-08987-4
– volume: 110
  start-page: 457
  issue: 3
  year: 2021
  ident: pone.0292993.ref014
  article-title: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods.
  publication-title: Machine Learning.
  doi: 10.1007/s10994-021-05946-3
– volume: 223
  start-page: 117316
  year: 2020
  ident: pone.0292993.ref016
  article-title: Fetal brain age estimation and anomaly detection using attention-based deep ensembles with uncertainty
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117316
– volume: 30
  start-page: 3576
  issue: 6
  year: 2020
  ident: pone.0292993.ref028
  article-title: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06672-5
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: pone.0292993.ref035
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on knowledge and data engineering
  doi: 10.1109/TKDE.2009.191
– year: 2016
  ident: pone.0292993.ref022
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 30
  year: 2017
  ident: pone.0292993.ref025
  article-title: What uncertainties do we need in bayesian deep learning for computer vision?
  publication-title: Adv Neural Inf Process Syst.
SSID ssj0053866
Score 2.4694493
Snippet Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0292993
SubjectTerms Abdomen
Age
Age determination
Aging
Analysis
Aorta
Automation
Biology and Life Sciences
Biomarkers
Chronology
Computed tomography
Computer and Information Sciences
CT imaging
Datasets
Decision-making
Deep learning
Emergency medical care
Estimation accuracy
Evaluation
Females
Health aspects
Machine learning
Magnetic resonance imaging
Medical imaging
Medical imaging equipment
Medicine and Health Sciences
Patients
Reliability analysis
Research and Analysis Methods
Risk factors
Salience
Science Policy
Spine
Spine (lumbar)
Thorax
Tomography
Uncertainty
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG5kT17E-CCrUVsR1MMk8-jpxzE-QhRU0ERya_o1MRBnBmcXvPrPrerpGTIgxIOHhWW6etitqq4HXfUVIc9rV1c1ZGyZM4WDBIW7zJaQpSiPd1ZKNk1EYvr4iR-fsg9n9dmVUV9YEzbCA4-MO_AVc6UpmpzLALmANHkQtgDdcTX3XMbQCNzYlEyNNhhOMeepUa4SxUGSy37ftWE_LyEkUNXCEUW8_tkqr_rLbliEnMuCySse6Og2uZVCR3o4_uQdciO0d8hOOpwDfZkQpF_dJb_fhtDTNBDiPENP5SkYDoqQGmOvIsW-Ejr1RdI03MHTk-5HArGmQAlbsISUdg2FQBE-oDC_qGnhbdYjdgO9aONKhPGg_TwN7B45PXp38uY4S7MWMsdFvsmMxzu52ptgpWqUsvDVNIVRdZlXMmdBYL1M7hji2WNJqrDwGKILkCgrPKvuk1UL3N0l1NpcCh-YcKpm3FrLrDTOO2Ug2gjWrUk1MV67BESO8zAudbxdE5CQjAzVKC6dxLUm2byrH4E4rqF_jTKdaRFGOz4A5dJJufR1yrUmT1Aj9NiTOhsDfSgEBFIcktk1eRYpEEqjxVqdc7MdBv3-87d_IPr6ZUH0IhE1HbDDmdQfAf8JIboWlHsLSjAIbrG8i_o7cWXQkBWqUsKhyGHnpNN_X346L-NLsf6uDd120CX4IiYEOIA1kYuzsGDwcqW9-B7xyoucl4rX7MH_EMlDcrOEODO2g4o9str83IZHEBdu7ONoAv4AydNh9Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaWcuGCWB7awgIGIR6HVHk4dnxAaHmsFqQFCbZob5btOGWlkmSbVlqO_HNmXCci0vI4VKricaqOZzwzmplvCHmS2zzLIWKLrE4sBCjcRiaFKEWWmLOSRVV5JKbjj_xozj6c5qc7pE-0BwZ2l4Z2OE9qvlrOLs5_vAKFf-mnNoik3zRrm9rN4hQMvsyetucRjpbCFGyYs3GFXAVzlaLoH7Mh1QAKz3noqfvTy0Y2y0P7Dxf4pF023cg7HddW_masDm-Q68HLpAdbsdglO66-SXaDHnf0eQCbfnGL_HzrXEvD7IhFhEatpHDHUETf2LY1UmxBoX0LJQ1zIEp60nwPeNcUKGELVpvSpqLgU8IHZOuC6hreZkqEeaBntV_xiB-0HQaH3Sbzw3cnb46iMJYhslzE60iXmL7LS-1MISspDXzVVaJlnsZZETMnsLQmtgyh77F6VRh4DI4IHD5LSpbdIZMauLtHqDFxIUrHhJU548YYZgptSys1OCbO2CnJesYrGzDLcXTGUvlEnIDYZctQhcelwnFNSTTsareYHf-gf41nOtAi4rZ_0KwWKiiwKjNmU51UMS8cxKSFjp0wCciPzXnJCz0lD1Ei1LZ9dbg31IEQ4HNxiHun5LGnQNSNGst6FnrTder9p6__QfTl84joWSCqGmCH1aGVAv4TonmNKPdHlHB32NHyHspvz5VOQQAp0wKUIoadvUxfvvxoWMaXYqle7ZpNp1IwW0wIsBVTUox0YcTg8Up99s1DmycxTyXP2d2___o9ci0FZ9P3hIp9MlmvNu4-OIdr88Ar9y_uNWdH
  priority: 102
  providerName: Scholars Portal
Title Deep learning-based age estimation from clinical Computed Tomography image data of the thorax and abdomen in the adult population
URI https://www.proquest.com/docview/3069280530
https://www.proquest.com/docview/2887477318
https://pubmed.ncbi.nlm.nih.gov/PMC10629654
https://doaj.org/article/d34c2a1f068e4018a0e7b1005c56d68a
http://dx.doi.org/10.1371/journal.pone.0292993
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdY98ILYnxoHaMYhAQ8ZMuHYztPaBsrA2kDjQ31LfJXyqSRhKWVeOU_5851CpEQ8NCoii-penc-39l3vyPkeW7yLIeILTIqMRCgcBPpFKKUwuKZVSGryiMxnZ7xk0v2fpbPwoZbF9Iqe5voDbVtDO6R74NrW6QSVCZ-3X6LsGsUnq6GFhobZDNJQZOwUnz6trfEMJc5D-VymUj2g3T22qZ2e3EKjkGRDZYjj9q_ts2j9rrpBo7nMG3yt3VoepfcCQ4kPVhJfIvccvU9shWmaEdfBhzpV_fJjzfOtTS0hZhHuF5ZCuaDIrDGqmKRYnUJ7asjaWjxYOlF8zVAWVOghEcwkZQ2FQV3ET6gNt-pquFt2iKCA72q_YgH86DtuifYA3I5Pb44OolCx4XIcBEvImXxZC63ymlZVEWh4auqElXkaZzJmDmBWTOxYYhqj4mpQsNt8DFAriyxLHtIRjVwd5tQrWMprGPCFDnjWmumpTLWFAp8DqfNmGQ940sT4MixK8Z16c_YBIQlK4aWKK4yiGtMovVT7QqO4x_0hyjTNS2Cafsbzc28DHOztBkzqUqqmEsH4aZUsRM6Af0xObdcqjF5ghpRripT1yahPBAC3CkOIe2YPPMUCKhRY8bOXC27rnz34fN_EH06HxC9CERVA-wwKlRJwH9CoK4B5e6AEsyCGQxvo_72XOnKXxMInux1-s_DT9fD-FLMwqtds-zKFFYkJgQsA2MiB3NhwODhSH31xaOWJzFPC56znb__-iNyOwU_0pd7il0yWtws3WPw-xZ6QjbETMBVHiUTP9EnZPPw-Ozj-cTvpMD1lMmfYrde8w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALojzUhUINAgGHtHk4dnJAqFCqXfpAgrbam7EdZ6lUktDsCjjyh_iNzCROIBICLj2stIrH3t3xeB7rmW8IeRSbOIohYvOMCgwEKNx4OoQoJc3wzipN8rxBYjo45JNj9mYWz1bIj64WBtMqO53YKOqsNPgf-Ra4tmmYgMj4L6rPHnaNwtvVroVGKxZ79tsXCNnq59Md2N_HYbj7-ujVxHNdBTzDhb_wVIa3T3GmrE7SPE01vFV5oNI49KPEZ1ZgZohvGCK3Y_Kl0PAY7Ch8dxZkLIJ1L5HLLPIZYvWLWR_gge7g3JXnRSLYctKwWZWF3fRDcETSaGD-mi4BvS0YVWdlPXB0h2mav9m93evkmnNY6XYrYatkxRY3yKpTCTV96nCrn90k33esrahrQzH30D5mFNQVRSCPtkKSYjUL7aoxqWspkdGj8pODzqZACVMwcZWWOQX3FF4gpl-pKmA1nSFiBD0tmpEGPIRWfQ-yW-T4QvbiNhkVwN01QrX2E5FZJkwaM661ZjpRJjOpAh_HajMmUcd4aRz8OXbhOJPNnZ6AMKhlqMTtkm67xsTrZ1Ut_Mc_6F_inva0CN7dPCjP59LpAplFzIQqyH2eWAhvE-VboQOQHxPzjCdqTDZQImRbCdurILktBLhvHELoMXnYUCCAR4EZQnO1rGs5fXvyH0Tv3w2InjiivAR2GOWqMuA3ITDYgHJ9QAlqyAyG11B-O67U8teBhZmdTP95-EE_jIti1l9hy2UtQ7CATAgwO2OSDM7CgMHDkeL0Y4OSHvg8THnM7vz90zfIlcnRwb7cnx7u3SVXQ_Bhm1JTsU5Gi_OlvQc-50Lfbw46JR8uWrP8BOTSk9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJQFwo1CAQc0s3DiZMDQoVl1VIoCFq0N-NXlkolCc2ugCN_i1_HTOIEIiHg0sNKq3jsVcbjeaxnviHkXqzjKIaIzdMy0BCgJNpTIUQpmcE7qyzN8waJ6dVBsnvEXszj-Rr50dXCYFplpxMbRW1Kjf-RT8C1zcIURMaf5C4t4s109qT67GEHKbxp7dpptCKyb799gfCtfrw3hb2-H4az54fPdj3XYcDTCfeXnjR4ExUbaVWa5Vmm4KvMA5nFoR-lPrMcs0R8zRDFHRMxuYLHYFPhPVhgWATrniPnecQiTCfj8z7YAz2SJK5UL-LBxEnGdlUWdtsPwSnJooEpbDoG9HZhVJ2U9cDpHaZs_mYDZ5fJJee80p1W2tbJmi2ukHWnHmr60GFYP7pKvk-trahrSbHw0FYaCqqLIqhHWy1JsbKFdpWZ1LWXMPSw_ORgtClQwhRMYqVlTsFVhQ-I7FcqC1hNGUSPoMdFM9IAidCq70d2jRydyV5cJ6MCuLtBqFJ-yo1lXGcxS5RSTKVSG51J8Hes0mMSdYwX2kGhY0eOE9Hc73EIiVqGCtwu4bZrTLx-VtVCgfyD_inuaU-LQN7Ng_J0IZxeECZiOpRB7iephVA3lb7lKgD50XFiklSOyRZKhGirYnt1JHY4B1cugXB6TO42FAjmUeCxWMhVXYu91-__g-jd2wHRA0eUl8AOLV2FBrwTgoQNKDcHlKCS9GB4A-W340otfh1emNnJ9J-H7_TDuChmABa2XNUiBGvIOAcTNCbp4CwMGDwcKY4_NojpgZ-EWRKzG3__9S1yAXSKeLl3sH-TXAzBnW2qTvkmGS1PV_YWuJ9Ldbs555R8OGvF8hP1cpgT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+age+estimation+from+clinical+Computed+Tomography+image+data+of+the+thorax+and+abdomen+in+the+adult+population&rft.jtitle=PloS+one&rft.au=Kerber%2C+Bjarne&rft.au=Hepp%2C+Tobias&rft.au=K%C3%BCstner%2C+Thomas&rft.au=Gatidis%2C+Sergios&rft.date=2023-11-07&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=11&rft.spage=e0292993&rft_id=info:doi/10.1371%2Fjournal.pone.0292993&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon