Deep learning-based age estimation from clinical Computed Tomography image data of the thorax and abdomen in the adult population
Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep learning model for automated age estimation based on CT- scans of the thorax and abdomen generated in a clinical routine setting. These predictions...
Saved in:
Published in | PloS one Vol. 18; no. 11; p. e0292993 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
San Francisco
Public Library of Science
07.11.2023
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0292993 |
Cover
Abstract | Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep learning model for automated age estimation based on CT- scans of the thorax and abdomen generated in a clinical routine setting. These predictions could serve as imaging biomarkers to estimate a “biological” age, that better reflects a patient’s true physical condition. A pre-trained ResNet-18 model was modified to predict chronological age as well as to quantify its aleatoric uncertainty. The model was trained using 1653 non-pathological CT-scans of the thorax and abdomen of subjects aged between 20 and 85 years in a 5-fold cross-validation scheme. Generalization performance as well as robustness and reliability was assessed on a publicly available test dataset consisting of thorax-abdomen CT-scans of 421 subjects. Score-CAM saliency maps were generated for interpretation of model outputs. We achieved a mean absolute error of 5.76 ± 5.17 years with a mean uncertainty of 5.01 ± 1.44 years after 5-fold cross-validation. A mean absolute error of 6.50 ± 5.17 years with a mean uncertainty of 6.39 ± 1.46 years was obtained on the test dataset. CT-based age estimation accuracy was largely uniform across all age groups and between male and female subjects. The generated saliency maps highlighted especially the lumbar spine and abdominal aorta. This study demonstrates, that accurate and generalizable deep learning-based automated age estimation is feasible using clinical CT image data. The trained model proved to be robust and reliable. Methods of uncertainty estimation and saliency analysis improved the interpretability. |
---|---|
AbstractList | Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep learning model for automated age estimation based on CT- scans of the thorax and abdomen generated in a clinical routine setting. These predictions could serve as imaging biomarkers to estimate a “biological” age, that better reflects a patient’s true physical condition. A pre-trained ResNet-18 model was modified to predict chronological age as well as to quantify its aleatoric uncertainty. The model was trained using 1653 non-pathological CT-scans of the thorax and abdomen of subjects aged between 20 and 85 years in a 5-fold cross-validation scheme. Generalization performance as well as robustness and reliability was assessed on a publicly available test dataset consisting of thorax-abdomen CT-scans of 421 subjects. Score-CAM saliency maps were generated for interpretation of model outputs. We achieved a mean absolute error of 5.76 ± 5.17 years with a mean uncertainty of 5.01 ± 1.44 years after 5-fold cross-validation. A mean absolute error of 6.50 ± 5.17 years with a mean uncertainty of 6.39 ± 1.46 years was obtained on the test dataset. CT-based age estimation accuracy was largely uniform across all age groups and between male and female subjects. The generated saliency maps highlighted especially the lumbar spine and abdominal aorta. This study demonstrates, that accurate and generalizable deep learning-based automated age estimation is feasible using clinical CT image data. The trained model proved to be robust and reliable. Methods of uncertainty estimation and saliency analysis improved the interpretability. Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep learning model for automated age estimation based on CT- scans of the thorax and abdomen generated in a clinical routine setting. These predictions could serve as imaging biomarkers to estimate a "biological" age, that better reflects a patient's true physical condition. A pre-trained ResNet-18 model was modified to predict chronological age as well as to quantify its aleatoric uncertainty. The model was trained using 1653 non-pathological CT-scans of the thorax and abdomen of subjects aged between 20 and 85 years in a 5-fold cross-validation scheme. Generalization performance as well as robustness and reliability was assessed on a publicly available test dataset consisting of thorax-abdomen CT-scans of 421 subjects. Score-CAM saliency maps were generated for interpretation of model outputs. We achieved a mean absolute error of 5.76 ± 5.17 years with a mean uncertainty of 5.01 ± 1.44 years after 5-fold cross-validation. A mean absolute error of 6.50 ± 5.17 years with a mean uncertainty of 6.39 ± 1.46 years was obtained on the test dataset. CT-based age estimation accuracy was largely uniform across all age groups and between male and female subjects. The generated saliency maps highlighted especially the lumbar spine and abdominal aorta. This study demonstrates, that accurate and generalizable deep learning-based automated age estimation is feasible using clinical CT image data. The trained model proved to be robust and reliable. Methods of uncertainty estimation and saliency analysis improved the interpretability.Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep learning model for automated age estimation based on CT- scans of the thorax and abdomen generated in a clinical routine setting. These predictions could serve as imaging biomarkers to estimate a "biological" age, that better reflects a patient's true physical condition. A pre-trained ResNet-18 model was modified to predict chronological age as well as to quantify its aleatoric uncertainty. The model was trained using 1653 non-pathological CT-scans of the thorax and abdomen of subjects aged between 20 and 85 years in a 5-fold cross-validation scheme. Generalization performance as well as robustness and reliability was assessed on a publicly available test dataset consisting of thorax-abdomen CT-scans of 421 subjects. Score-CAM saliency maps were generated for interpretation of model outputs. We achieved a mean absolute error of 5.76 ± 5.17 years with a mean uncertainty of 5.01 ± 1.44 years after 5-fold cross-validation. A mean absolute error of 6.50 ± 5.17 years with a mean uncertainty of 6.39 ± 1.46 years was obtained on the test dataset. CT-based age estimation accuracy was largely uniform across all age groups and between male and female subjects. The generated saliency maps highlighted especially the lumbar spine and abdominal aorta. This study demonstrates, that accurate and generalizable deep learning-based automated age estimation is feasible using clinical CT image data. The trained model proved to be robust and reliable. Methods of uncertainty estimation and saliency analysis improved the interpretability. |
Audience | Academic |
Author | Gatidis, Sergios Hepp, Tobias Küstner, Thomas Kerber, Bjarne |
AuthorAffiliation | Medical University of Vienna: Medizinische Universitat Wien, AUSTRIA 1 Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany 2 Max Planck Institute for Intelligent Systems, Tuebingen, Germany |
AuthorAffiliation_xml | – name: Medical University of Vienna: Medizinische Universitat Wien, AUSTRIA – name: 1 Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany – name: 2 Max Planck Institute for Intelligent Systems, Tuebingen, Germany |
Author_xml | – sequence: 1 givenname: Bjarne orcidid: 0000-0002-1368-2181 surname: Kerber fullname: Kerber, Bjarne – sequence: 2 givenname: Tobias surname: Hepp fullname: Hepp, Tobias – sequence: 3 givenname: Thomas surname: Küstner fullname: Küstner, Thomas – sequence: 4 givenname: Sergios surname: Gatidis fullname: Gatidis, Sergios |
BookMark | eNqNk21r1TAUx4tMcJt-A8GCIPriXpM-pI1vZFyfLgwGOn0bTtO0NyNNuiSV7aXf3HMflHUMkVJ6OPn9_8k5zTlJjqyzKkmeU7KkeUXfXrnJWzDLEdNLkvGM8_xRckx5ni1YRvKjO_GT5CSEK0LKvGbsOPn1QakxNQq81bZfNBBUm0KvUhWiHiBqZ9POuyGVRlstwaQrN4xTROrSDa73MG5uUyRR0kKE1HVp3Ch8nYebFCy6Na0blE213a1AO5mYjm6czM7-afK4AxPUs8P3NPn-6ePl6svi_OLzenV2vpCsInEBLSEVK1tQTc07zhsMoaPASyyqJoWqMOBEFgw5XuZ51WC6zjLKq4K2RX6avNj7jsYFcWhZEDlhPKuxHQSJ9Z5oHVyJ0WNV_lY40GKXcL4X4KOWRok2L2QGtCOsVgWhNRBVNRS7KkvWshrQ6_1ht6kZVCuVjR7MzHS-YvVG9O6noIRlnJXb874-OHh3PeHvEIMOUhkDVrkpiKyuq6Kqcloj-vIe-nB5B6oHrEDbzuHGcmsqzqqKcsIYoUgtH6DwadWgJV6wTmN-JngzEyAT1U3sYQpBrL99_X_24secfXWH3SgwcROcmbZ3JszBYg9K70LwqvvbZUrEdj7-dENs50Mc5gNl7-7JpI67G4kFa_Nv8W-MBBhP |
CitedBy_id | crossref_primary_10_3390_diagnostics15030257 crossref_primary_10_1007_s11357_024_01394_8 |
Cites_doi | 10.1016/j.arr.2014.01.004 10.1007/s10140-020-01782-5 10.1016/j.mcna.2011.11.003 10.1016/j.amepre.2013.10.029 10.1109/ICNN.1994.374138 10.3390/jimaging6060052 10.1117/1.JMI.8.5.054003 10.1093/schbul/sbx172 10.1109/CVPRW50498.2020.00020 10.1016/j.jcmg.2021.01.008 10.5115/acb.2019.52.2.109 10.1007/978-3-030-24970-0_19 10.1016/j.tins.2017.10.001 10.1186/s40537-016-0043-6 10.1109/TMI.2019.2950092 10.1097/00000658-198704000-00002 10.3389/fnagi.2013.00090 10.1016/j.knosys.2015.01.010 10.1136/ard.50.3.162 10.1371/journal.pmed.1002683 10.1109/TMI.2021.3066857 10.1016/j.inffus.2023.03.007 10.1038/s41597-022-01718-3 10.1016/j.acra.2008.02.001 10.1097/00007632-200202010-00013 10.1038/s42256-019-0048-x 10.1016/j.amjcard.2008.08.031 10.1016/j.compmedimag.2021.101967 10.1016/j.neuroimage.2018.03.075 10.1016/j.cger.2010.08.006 10.1038/s41467-019-08987-4 10.1007/s10994-021-05946-3 10.1016/j.neuroimage.2020.117316 10.1007/s00330-020-06672-5 10.1109/TKDE.2009.191 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 Public Library of Science 2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2023 Kerber et al 2023 Kerber et al 2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: 2023 Kerber et al 2023 Kerber et al – notice: 2023 Kerber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0292993 |
DatabaseName | CrossRef Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Deep learning-based age estimation from clinical Computed Tomography image data of the thorax and abdomen |
EISSN | 1932-6203 |
ExternalDocumentID | 3069280530 oai_doaj_org_article_d34c2a1f068e4018a0e7b1005c56d68a PMC10629654 A771906601 10_1371_journal_pone_0292993 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: ; grantid: EXC 2180 – #390900677, EXC 2064/1 - #390727645 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM |
ID | FETCH-LOGICAL-c670t-ad00765daeb89f99b5daaf1a95203804e752090c4600795337b38082219741d43 |
IEDL.DBID | 8FG |
ISSN | 1932-6203 |
IngestDate | Wed Aug 13 01:17:38 EDT 2025 Wed Aug 27 01:17:16 EDT 2025 Tue Sep 30 17:11:32 EDT 2025 Fri Sep 05 08:07:52 EDT 2025 Fri Jul 25 11:28:11 EDT 2025 Tue Jun 17 22:18:27 EDT 2025 Tue Jun 10 21:15:51 EDT 2025 Fri Jun 27 05:35:48 EDT 2025 Fri Jun 27 06:08:21 EDT 2025 Thu May 22 21:20:02 EDT 2025 Wed Oct 01 04:15:10 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c670t-ad00765daeb89f99b5daaf1a95203804e752090c4600795337b38082219741d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-1368-2181 |
OpenAccessLink | https://www.proquest.com/docview/3069280530?pq-origsite=%requestingapplication% |
PQID | 3069280530 |
PQPubID | 1436336 |
PageCount | e0292993 |
ParticipantIDs | plos_journals_3069280530 doaj_primary_oai_doaj_org_article_d34c2a1f068e4018a0e7b1005c56d68a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10629654 proquest_miscellaneous_2887477318 proquest_journals_3069280530 gale_infotracmisc_A771906601 gale_infotracacademiconefile_A771906601 gale_incontextgauss_ISR_A771906601 gale_incontextgauss_IOV_A771906601 gale_healthsolutions_A771906601 crossref_primary_10_1371_journal_pone_0292993 crossref_citationtrail_10_1371_journal_pone_0292993 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-07 |
PublicationDateYYYYMMDD | 2023-11-07 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | San Francisco |
PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationYear | 2023 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | R Dhingra (pone.0292993.ref001) 2012; 96 BG Becker (pone.0292993.ref017) 2018; 175 T Hajek (pone.0292993.ref008) 2019; 45 S Lapuschkin (pone.0292993.ref012) 2019; 10 JR Zech (pone.0292993.ref038) 2018; 15 L Torrey (pone.0292993.ref039) 2010 P Komutrattananont (pone.0292993.ref045) 2019; 52 pone.0292993.ref024 AE Chang (pone.0292993.ref032) 1987; 205 SJ Pan (pone.0292993.ref035) 2009; 22 pone.0292993.ref026 Z Shao (pone.0292993.ref044) 2002; 27 J van Amersfoort (pone.0292993.ref013) 2021 SS Mao (pone.0292993.ref043) 2008; 15 G Azarfar (pone.0292993.ref031) 2023 A Kendall (pone.0292993.ref025) 2017 K Weiss (pone.0292993.ref037) 2016; 3 D Doran (pone.0292993.ref040) 2017 E Hüllermeier (pone.0292993.ref014) 2021; 110 MC White (pone.0292993.ref003) 2014; 46 RL McClelland (pone.0292993.ref011) 2009; 103 W Shi (pone.0292993.ref016) 2020; 223 A Singh (pone.0292993.ref046) 2020; 6 K He (pone.0292993.ref022) 2016 M Früh (pone.0292993.ref027) 2021; 8 D Symmons (pone.0292993.ref042) 1991; 50 VK Raghu (pone.0292993.ref010) 2021; 14 JH Cole (pone.0292993.ref006) 2017; 40 T Hepp (pone.0292993.ref015) 2021; 92 A Paszke (pone.0292993.ref023) 2019; 32 T Langner (pone.0292993.ref018) 2019; 39 MP Recht (pone.0292993.ref028) 2020; 30 A Holzinger (pone.0292993.ref041) 2017 K Armanious (pone.0292993.ref007) 2021; 40 J Irvin (pone.0292993.ref029) 2019 CF Sabottke (pone.0292993.ref030) 2020; 27 RF Kilcoyne (pone.0292993.ref033) 1988 M Tanveer (pone.0292993.ref020) 2023; 96 A Reeve (pone.0292993.ref002) 2014; 14 K Franke (pone.0292993.ref009) 2013; 5 R Taori (pone.0292993.ref034) 2020; 33 NS Fedarko (pone.0292993.ref004) 2011; 27 S Gatidis (pone.0292993.ref021) 2022; 9 JH Cole (pone.0292993.ref005) 2019 J Lu (pone.0292993.ref036) 2015; 80 RR Selvaraju (pone.0292993.ref019) 2017 C. Rudin (pone.0292993.ref047) 2019; 1 |
References_xml | – volume: 14 start-page: 19 year: 2014 ident: pone.0292993.ref002 article-title: Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor? publication-title: Ageing Research Reviews. doi: 10.1016/j.arr.2014.01.004 – volume: 27 start-page: 463 issue: 5 year: 2020 ident: pone.0292993.ref030 article-title: Estimation of age in unidentified patients via chest radiography using convolutional neural network regression. publication-title: Emergency radiology. doi: 10.1007/s10140-020-01782-5 – volume: 96 start-page: 87 issue: 1 year: 2012 ident: pone.0292993.ref001 article-title: Age as a risk factor. The Medical clinics of publication-title: North America doi: 10.1016/j.mcna.2011.11.003 – start-page: 13 issue: 228 year: 1988 ident: pone.0292993.ref033 article-title: Magnetic resonance imaging of soft tissue masses publication-title: Clinical orthopaedics and related research – volume: 46 start-page: S7 issue: 3, Supplement 1 year: 2014 ident: pone.0292993.ref003 article-title: Age and Cancer Risk: A Potentially Modifiable Relationship. publication-title: Am J Prev Med doi: 10.1016/j.amepre.2013.10.029 – ident: pone.0292993.ref024 doi: 10.1109/ICNN.1994.374138 – volume: 6 start-page: 52 issue: 6 year: 2020 ident: pone.0292993.ref046 article-title: Explainable deep learning models in medical image analysis. publication-title: Journal of Imaging. doi: 10.3390/jimaging6060052 – start-page: arXiv: 2102 year: 2021 ident: pone.0292993.ref013 article-title: Improving deterministic uncertainty estimation in deep learning for classification and regression. publication-title: arXiv e-prints. – volume: 8 start-page: 054003 issue: 5 year: 2021 ident: pone.0292993.ref027 article-title: Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging publication-title: Journal of Medical Imaging doi: 10.1117/1.JMI.8.5.054003 – year: 2017 ident: pone.0292993.ref040 article-title: What does explainable AI really mean? A new conceptualization of perspectives publication-title: arXiv preprint arXiv:171000794 – volume: 45 start-page: 190 issue: 1 year: 2019 ident: pone.0292993.ref008 article-title: Brain age in early stages of bipolar disorders or schizophrenia publication-title: Schizophr Bull doi: 10.1093/schbul/sbx172 – ident: pone.0292993.ref026 doi: 10.1109/CVPRW50498.2020.00020 – volume: 14 start-page: 2226 issue: 11 year: 2021 ident: pone.0292993.ref010 article-title: Deep Learning to Estimate Biological Age From Chest Radiographs. publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2021.01.008 – year: 2017 ident: pone.0292993.ref041 article-title: What do we need to build explainable AI systems for the medical domain? publication-title: arXiv preprint arXiv:171209923. – volume: 52 start-page: 109 issue: 2 year: 2019 ident: pone.0292993.ref045 article-title: Morphology of the human aorta and age-related changes: anatomical facts publication-title: Anat Cell Biol doi: 10.5115/acb.2019.52.2.109 – start-page: 293 year: 2019 ident: pone.0292993.ref005 article-title: Quantification of the biological age of the brain using neuroimaging publication-title: Biomarkers of human aging: Springer doi: 10.1007/978-3-030-24970-0_19 – volume: 40 start-page: 681 issue: 12 year: 2017 ident: pone.0292993.ref006 article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers publication-title: Trends Neurosci doi: 10.1016/j.tins.2017.10.001 – volume: 3 start-page: 9 issue: 1 year: 2016 ident: pone.0292993.ref037 article-title: A survey of transfer learning publication-title: Journal of Big Data doi: 10.1186/s40537-016-0043-6 – year: 2019 ident: pone.0292993.ref029 article-title: Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. publication-title: Proceedings of the AAAI conference on artificial intelligence – volume: 39 start-page: 1430 issue: 5 year: 2019 ident: pone.0292993.ref018 article-title: Identifying morphological indicators of aging with neural networks on large-scale whole-body MRI publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2950092 – volume: 205 start-page: 340 issue: 4 year: 1987 ident: pone.0292993.ref032 article-title: Magnetic resonance imaging versus computed tomography in the evaluation of soft tissue tumors of the extremities publication-title: Ann Surg doi: 10.1097/00000658-198704000-00002 – volume: 5 start-page: 90 year: 2013 ident: pone.0292993.ref009 article-title: Advanced BrainAGE in older adults with type 2 diabetes mellitus publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2013.00090 – volume: 80 start-page: 14 year: 2015 ident: pone.0292993.ref036 article-title: Transfer learning using computational intelligence: A survey. publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.01.010 – volume: 50 start-page: 162 issue: 3 year: 1991 ident: pone.0292993.ref042 article-title: A longitudinal study of back pain and radiological changes in the lumbar spines of middle aged women. II. Radiographic findings publication-title: Ann Rheum Dis doi: 10.1136/ard.50.3.162 – volume: 33 start-page: 18583 year: 2020 ident: pone.0292993.ref034 article-title: Measuring robustness to natural distribution shifts in image classification. publication-title: Adv Neural Inf Process Syst – volume: 15 start-page: e1002683 issue: 11 year: 2018 ident: pone.0292993.ref038 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. publication-title: PLoS Med doi: 10.1371/journal.pmed.1002683 – volume: 32 start-page: 8026 year: 2019 ident: pone.0292993.ref023 article-title: Pytorch: An imperative style, high-performance deep learning library. publication-title: Adv Neural Inf Process Syst – volume: 40 start-page: 1778 issue: 7 year: 2021 ident: pone.0292993.ref007 article-title: Age-Net: An MRI-Based Iterative Framework for Brain Biological Age Estimation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3066857 – year: 2017 ident: pone.0292993.ref019 article-title: editors. Grad-cam: Visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE international conference on computer vision – volume: 96 start-page: 130 year: 2023 ident: pone.0292993.ref020 article-title: Deep learning for brain age estimation: A systematic review publication-title: Information Fusion doi: 10.1016/j.inffus.2023.03.007 – volume: 9 start-page: 601 issue: 1 year: 2022 ident: pone.0292993.ref021 article-title: A whole-body FDG-PET/CT Dataset with manually annotated Tumor Lesions. publication-title: Scientific Data doi: 10.1038/s41597-022-01718-3 – volume: 15 start-page: 827 issue: 7 year: 2008 ident: pone.0292993.ref043 article-title: Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. publication-title: Acad Radiol doi: 10.1016/j.acra.2008.02.001 – volume: 27 start-page: 263 issue: 3 year: 2002 ident: pone.0292993.ref044 article-title: Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. publication-title: Spine doi: 10.1097/00007632-200202010-00013 – volume: 1 start-page: 206 issue: 5 year: 2019 ident: pone.0292993.ref047 article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead publication-title: Nature Machine Intelligence doi: 10.1038/s42256-019-0048-x – start-page: 242 year: 2010 ident: pone.0292993.ref039 article-title: Transfer learning. publication-title: Handbook of research on machine learning applications and trends: algorithms, methods, and techniques: IGI global; – volume: 103 start-page: 59 issue: 1 year: 2009 ident: pone.0292993.ref011 article-title: Arterial Age as a Function of Coronary Artery Calcium (from the Multi-Ethnic Study of Atherosclerosis [MESA]). publication-title: The American Journal of Cardiology. doi: 10.1016/j.amjcard.2008.08.031 – start-page: 1 year: 2023 ident: pone.0292993.ref031 article-title: Deep learning-based age estimation from chest CT scans publication-title: Int J Comput Assist Radiol Surg – volume: 92 start-page: 101967 year: 2021 ident: pone.0292993.ref015 article-title: Uncertainty estimation and explainability in deep learning-based age estimation of the human brain: Results from the German National Cohort MRI study publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2021.101967 – volume: 175 start-page: 246 year: 2018 ident: pone.0292993.ref017 article-title: Initiative AsDN. Gaussian process uncertainty in age estimation as a measure of brain abnormality publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.075 – volume: 27 start-page: 27 issue: 1 year: 2011 ident: pone.0292993.ref004 article-title: The biology of aging and frailty publication-title: Clin Geriatr Med doi: 10.1016/j.cger.2010.08.006 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: pone.0292993.ref012 article-title: Unmasking Clever Hans predictors and assessing what machines really learn publication-title: Nature communications doi: 10.1038/s41467-019-08987-4 – volume: 110 start-page: 457 issue: 3 year: 2021 ident: pone.0292993.ref014 article-title: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. publication-title: Machine Learning. doi: 10.1007/s10994-021-05946-3 – volume: 223 start-page: 117316 year: 2020 ident: pone.0292993.ref016 article-title: Fetal brain age estimation and anomaly detection using attention-based deep ensembles with uncertainty publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117316 – volume: 30 start-page: 3576 issue: 6 year: 2020 ident: pone.0292993.ref028 article-title: Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations publication-title: Eur Radiol doi: 10.1007/s00330-020-06672-5 – volume: 22 start-page: 1345 issue: 10 year: 2009 ident: pone.0292993.ref035 article-title: A survey on transfer learning publication-title: IEEE Transactions on knowledge and data engineering doi: 10.1109/TKDE.2009.191 – year: 2016 ident: pone.0292993.ref022 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 30 year: 2017 ident: pone.0292993.ref025 article-title: What uncertainties do we need in bayesian deep learning for computer vision? publication-title: Adv Neural Inf Process Syst. |
SSID | ssj0053866 |
Score | 2.4694493 |
Snippet | Aging is an important risk factor for disease, leading to morphological change that can be assessed on Computed Tomography (CT) scans. We propose a deep... |
SourceID | plos doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e0292993 |
SubjectTerms | Abdomen Age Age determination Aging Analysis Aorta Automation Biology and Life Sciences Biomarkers Chronology Computed tomography Computer and Information Sciences CT imaging Datasets Decision-making Deep learning Emergency medical care Estimation accuracy Evaluation Females Health aspects Machine learning Magnetic resonance imaging Medical imaging Medical imaging equipment Medicine and Health Sciences Patients Reliability analysis Research and Analysis Methods Risk factors Salience Science Policy Spine Spine (lumbar) Thorax Tomography Uncertainty |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG5kT17E-CCrUVsR1MMk8-jpxzE-QhRU0ERya_o1MRBnBmcXvPrPrerpGTIgxIOHhWW6etitqq4HXfUVIc9rV1c1ZGyZM4WDBIW7zJaQpSiPd1ZKNk1EYvr4iR-fsg9n9dmVUV9YEzbCA4-MO_AVc6UpmpzLALmANHkQtgDdcTX3XMbQCNzYlEyNNhhOMeepUa4SxUGSy37ftWE_LyEkUNXCEUW8_tkqr_rLbliEnMuCySse6Og2uZVCR3o4_uQdciO0d8hOOpwDfZkQpF_dJb_fhtDTNBDiPENP5SkYDoqQGmOvIsW-Ejr1RdI03MHTk-5HArGmQAlbsISUdg2FQBE-oDC_qGnhbdYjdgO9aONKhPGg_TwN7B45PXp38uY4S7MWMsdFvsmMxzu52ptgpWqUsvDVNIVRdZlXMmdBYL1M7hji2WNJqrDwGKILkCgrPKvuk1UL3N0l1NpcCh-YcKpm3FrLrDTOO2Ug2gjWrUk1MV67BESO8zAudbxdE5CQjAzVKC6dxLUm2byrH4E4rqF_jTKdaRFGOz4A5dJJufR1yrUmT1Aj9NiTOhsDfSgEBFIcktk1eRYpEEqjxVqdc7MdBv3-87d_IPr6ZUH0IhE1HbDDmdQfAf8JIboWlHsLSjAIbrG8i_o7cWXQkBWqUsKhyGHnpNN_X346L-NLsf6uDd120CX4IiYEOIA1kYuzsGDwcqW9-B7xyoucl4rX7MH_EMlDcrOEODO2g4o9str83IZHEBdu7ONoAv4AydNh9Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaWcuGCWB7awgIGIR6HVHk4dnxAaHmsFqQFCbZob5btOGWlkmSbVlqO_HNmXCci0vI4VKricaqOZzwzmplvCHmS2zzLIWKLrE4sBCjcRiaFKEWWmLOSRVV5JKbjj_xozj6c5qc7pE-0BwZ2l4Z2OE9qvlrOLs5_vAKFf-mnNoik3zRrm9rN4hQMvsyetucRjpbCFGyYs3GFXAVzlaLoH7Mh1QAKz3noqfvTy0Y2y0P7Dxf4pF023cg7HddW_masDm-Q68HLpAdbsdglO66-SXaDHnf0eQCbfnGL_HzrXEvD7IhFhEatpHDHUETf2LY1UmxBoX0LJQ1zIEp60nwPeNcUKGELVpvSpqLgU8IHZOuC6hreZkqEeaBntV_xiB-0HQaH3Sbzw3cnb46iMJYhslzE60iXmL7LS-1MISspDXzVVaJlnsZZETMnsLQmtgyh77F6VRh4DI4IHD5LSpbdIZMauLtHqDFxIUrHhJU548YYZgptSys1OCbO2CnJesYrGzDLcXTGUvlEnIDYZctQhcelwnFNSTTsareYHf-gf41nOtAi4rZ_0KwWKiiwKjNmU51UMS8cxKSFjp0wCciPzXnJCz0lD1Ei1LZ9dbg31IEQ4HNxiHun5LGnQNSNGst6FnrTder9p6__QfTl84joWSCqGmCH1aGVAv4TonmNKPdHlHB32NHyHspvz5VOQQAp0wKUIoadvUxfvvxoWMaXYqle7ZpNp1IwW0wIsBVTUox0YcTg8Up99s1DmycxTyXP2d2___o9ci0FZ9P3hIp9MlmvNu4-OIdr88Ar9y_uNWdH priority: 102 providerName: Scholars Portal |
Title | Deep learning-based age estimation from clinical Computed Tomography image data of the thorax and abdomen in the adult population |
URI | https://www.proquest.com/docview/3069280530 https://www.proquest.com/docview/2887477318 https://pubmed.ncbi.nlm.nih.gov/PMC10629654 https://doaj.org/article/d34c2a1f068e4018a0e7b1005c56d68a http://dx.doi.org/10.1371/journal.pone.0292993 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdY98ILYnxoHaMYhAQ8ZMuHYztPaBsrA2kDjQ31LfJXyqSRhKWVeOU_5851CpEQ8NCoii-penc-39l3vyPkeW7yLIeILTIqMRCgcBPpFKKUwuKZVSGryiMxnZ7xk0v2fpbPwoZbF9Iqe5voDbVtDO6R74NrW6QSVCZ-3X6LsGsUnq6GFhobZDNJQZOwUnz6trfEMJc5D-VymUj2g3T22qZ2e3EKjkGRDZYjj9q_ts2j9rrpBo7nMG3yt3VoepfcCQ4kPVhJfIvccvU9shWmaEdfBhzpV_fJjzfOtTS0hZhHuF5ZCuaDIrDGqmKRYnUJ7asjaWjxYOlF8zVAWVOghEcwkZQ2FQV3ET6gNt-pquFt2iKCA72q_YgH86DtuifYA3I5Pb44OolCx4XIcBEvImXxZC63ymlZVEWh4auqElXkaZzJmDmBWTOxYYhqj4mpQsNt8DFAriyxLHtIRjVwd5tQrWMprGPCFDnjWmumpTLWFAp8DqfNmGQ940sT4MixK8Z16c_YBIQlK4aWKK4yiGtMovVT7QqO4x_0hyjTNS2Cafsbzc28DHOztBkzqUqqmEsH4aZUsRM6Af0xObdcqjF5ghpRripT1yahPBAC3CkOIe2YPPMUCKhRY8bOXC27rnz34fN_EH06HxC9CERVA-wwKlRJwH9CoK4B5e6AEsyCGQxvo_72XOnKXxMInux1-s_DT9fD-FLMwqtds-zKFFYkJgQsA2MiB3NhwODhSH31xaOWJzFPC56znb__-iNyOwU_0pd7il0yWtws3WPw-xZ6QjbETMBVHiUTP9EnZPPw-Ozj-cTvpMD1lMmfYrde8w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALojzUhUINAgGHtHk4dnJAqFCqXfpAgrbam7EdZ6lUktDsCjjyh_iNzCROIBICLj2stIrH3t3xeB7rmW8IeRSbOIohYvOMCgwEKNx4OoQoJc3wzipN8rxBYjo45JNj9mYWz1bIj64WBtMqO53YKOqsNPgf-Ra4tmmYgMj4L6rPHnaNwtvVroVGKxZ79tsXCNnq59Md2N_HYbj7-ujVxHNdBTzDhb_wVIa3T3GmrE7SPE01vFV5oNI49KPEZ1ZgZohvGCK3Y_Kl0PAY7Ch8dxZkLIJ1L5HLLPIZYvWLWR_gge7g3JXnRSLYctKwWZWF3fRDcETSaGD-mi4BvS0YVWdlPXB0h2mav9m93evkmnNY6XYrYatkxRY3yKpTCTV96nCrn90k33esrahrQzH30D5mFNQVRSCPtkKSYjUL7aoxqWspkdGj8pODzqZACVMwcZWWOQX3FF4gpl-pKmA1nSFiBD0tmpEGPIRWfQ-yW-T4QvbiNhkVwN01QrX2E5FZJkwaM661ZjpRJjOpAh_HajMmUcd4aRz8OXbhOJPNnZ6AMKhlqMTtkm67xsTrZ1Ut_Mc_6F_inva0CN7dPCjP59LpAplFzIQqyH2eWAhvE-VboQOQHxPzjCdqTDZQImRbCdurILktBLhvHELoMXnYUCCAR4EZQnO1rGs5fXvyH0Tv3w2InjiivAR2GOWqMuA3ITDYgHJ9QAlqyAyG11B-O67U8teBhZmdTP95-EE_jIti1l9hy2UtQ7CATAgwO2OSDM7CgMHDkeL0Y4OSHvg8THnM7vz90zfIlcnRwb7cnx7u3SVXQ_Bhm1JTsU5Gi_OlvQc-50Lfbw46JR8uWrP8BOTSk9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJQFwo1CAQc0s3DiZMDQoVl1VIoCFq0N-NXlkolCc2ugCN_i1_HTOIEIiHg0sNKq3jsVcbjeaxnviHkXqzjKIaIzdMy0BCgJNpTIUQpmcE7qyzN8waJ6dVBsnvEXszj-Rr50dXCYFplpxMbRW1Kjf-RT8C1zcIURMaf5C4t4s109qT67GEHKbxp7dpptCKyb799gfCtfrw3hb2-H4az54fPdj3XYcDTCfeXnjR4ExUbaVWa5Vmm4KvMA5nFoR-lPrMcs0R8zRDFHRMxuYLHYFPhPVhgWATrniPnecQiTCfj8z7YAz2SJK5UL-LBxEnGdlUWdtsPwSnJooEpbDoG9HZhVJ2U9cDpHaZs_mYDZ5fJJee80p1W2tbJmi2ukHWnHmr60GFYP7pKvk-trahrSbHw0FYaCqqLIqhHWy1JsbKFdpWZ1LWXMPSw_ORgtClQwhRMYqVlTsFVhQ-I7FcqC1hNGUSPoMdFM9IAidCq70d2jRydyV5cJ6MCuLtBqFJ-yo1lXGcxS5RSTKVSG51J8Hes0mMSdYwX2kGhY0eOE9Hc73EIiVqGCtwu4bZrTLx-VtVCgfyD_inuaU-LQN7Ng_J0IZxeECZiOpRB7iephVA3lb7lKgD50XFiklSOyRZKhGirYnt1JHY4B1cugXB6TO42FAjmUeCxWMhVXYu91-__g-jd2wHRA0eUl8AOLV2FBrwTgoQNKDcHlKCS9GB4A-W340otfh1emNnJ9J-H7_TDuChmABa2XNUiBGvIOAcTNCbp4CwMGDwcKY4_NojpgZ-EWRKzG3__9S1yAXSKeLl3sH-TXAzBnW2qTvkmGS1PV_YWuJ9Ldbs555R8OGvF8hP1cpgT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+age+estimation+from+clinical+Computed+Tomography+image+data+of+the+thorax+and+abdomen+in+the+adult+population&rft.jtitle=PloS+one&rft.au=Kerber%2C+Bjarne&rft.au=Hepp%2C+Tobias&rft.au=K%C3%BCstner%2C+Thomas&rft.au=Gatidis%2C+Sergios&rft.date=2023-11-07&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=11&rft.spage=e0292993&rft_id=info:doi/10.1371%2Fjournal.pone.0292993&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |