A hybrid machine learning feature selection model—HMLFSM to enhance gene classification applied to multiple colon cancers dataset

Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invas...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 11; p. e0286791
Main Authors Al-Rajab, Murad, Lu, Joan, Xu, Qiang, Kentour, Mohamed, Sawsa, Ahlam, Shuweikeh, Emad, Joy, Mike, Arasaradnam, Ramesh
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 02.11.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0286791

Cover

Abstract Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invasive colon cancer classification using genetic data or patient demographics and medical history. One approach is to use ML to analyse genetic data, or patient demographics and medical history, to predict the likelihood of colon cancer. However, due to the challenges imposed by variable gene expression and the high dimensionality of cancer-related datasets, traditional transductive ML applications have limited accuracy and risk overfitting. In this paper, we propose a new hybrid feature selection model called HMLFSM–Hybrid Machine Learning Feature Selection Model to improve colon cancer gene classification. We developed a multifilter hybrid model including a two-phase feature selection approach, combining Information Gain (IG) and Genetic Algorithms (GA), and minimum Redundancy Maximum Relevance (mRMR) coupling with Particle Swarm Optimization (PSO). We critically tested our model on three colon cancer genetic datasets and found that the new framework outperformed other models with significant accuracy improvements (95%, ~97%, and ~94% accuracies for datasets 1, 2, and 3 respectively). The results show that our approach improves the classification accuracy of colon cancer detection by highlighting important and relevant genes, eliminating irrelevant ones, and revealing the genes that have a direct influence on the classification process. For colon cancer gene analysis, and along with our experiments and literature review, we found that selective input feature extraction prior to feature selection is essential for improving predictive performance.
AbstractList Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invasive colon cancer classification using genetic data or patient demographics and medical history. One approach is to use ML to analyse genetic data, or patient demographics and medical history, to predict the likelihood of colon cancer. However, due to the challenges imposed by variable gene expression and the high dimensionality of cancer-related datasets, traditional transductive ML applications have limited accuracy and risk overfitting. In this paper, we propose a new hybrid feature selection model called HMLFSM–Hybrid Machine Learning Feature Selection Model to improve colon cancer gene classification. We developed a multifilter hybrid model including a two-phase feature selection approach, combining Information Gain (IG) and Genetic Algorithms (GA), and minimum Redundancy Maximum Relevance (mRMR) coupling with Particle Swarm Optimization (PSO). We critically tested our model on three colon cancer genetic datasets and found that the new framework outperformed other models with significant accuracy improvements (95%, ~97%, and ~94% accuracies for datasets 1, 2, and 3 respectively). The results show that our approach improves the classification accuracy of colon cancer detection by highlighting important and relevant genes, eliminating irrelevant ones, and revealing the genes that have a direct influence on the classification process. For colon cancer gene analysis, and along with our experiments and literature review, we found that selective input feature extraction prior to feature selection is essential for improving predictive performance.
Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invasive colon cancer classification using genetic data or patient demographics and medical history. One approach is to use ML to analyse genetic data, or patient demographics and medical history, to predict the likelihood of colon cancer. However, due to the challenges imposed by variable gene expression and the high dimensionality of cancer-related datasets, traditional transductive ML applications have limited accuracy and risk overfitting. In this paper, we propose a new hybrid feature selection model called HMLFSM-Hybrid Machine Learning Feature Selection Model to improve colon cancer gene classification. We developed a multifilter hybrid model including a two-phase feature selection approach, combining Information Gain (IG) and Genetic Algorithms (GA), and minimum Redundancy Maximum Relevance (mRMR) coupling with Particle Swarm Optimization (PSO). We critically tested our model on three colon cancer genetic datasets and found that the new framework outperformed other models with significant accuracy improvements (95%, ~97%, and ~94% accuracies for datasets 1, 2, and 3 respectively). The results show that our approach improves the classification accuracy of colon cancer detection by highlighting important and relevant genes, eliminating irrelevant ones, and revealing the genes that have a direct influence on the classification process. For colon cancer gene analysis, and along with our experiments and literature review, we found that selective input feature extraction prior to feature selection is essential for improving predictive performance.Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invasive colon cancer classification using genetic data or patient demographics and medical history. One approach is to use ML to analyse genetic data, or patient demographics and medical history, to predict the likelihood of colon cancer. However, due to the challenges imposed by variable gene expression and the high dimensionality of cancer-related datasets, traditional transductive ML applications have limited accuracy and risk overfitting. In this paper, we propose a new hybrid feature selection model called HMLFSM-Hybrid Machine Learning Feature Selection Model to improve colon cancer gene classification. We developed a multifilter hybrid model including a two-phase feature selection approach, combining Information Gain (IG) and Genetic Algorithms (GA), and minimum Redundancy Maximum Relevance (mRMR) coupling with Particle Swarm Optimization (PSO). We critically tested our model on three colon cancer genetic datasets and found that the new framework outperformed other models with significant accuracy improvements (95%, ~97%, and ~94% accuracies for datasets 1, 2, and 3 respectively). The results show that our approach improves the classification accuracy of colon cancer detection by highlighting important and relevant genes, eliminating irrelevant ones, and revealing the genes that have a direct influence on the classification process. For colon cancer gene analysis, and along with our experiments and literature review, we found that selective input feature extraction prior to feature selection is essential for improving predictive performance.
Audience Academic
Author Lu, Joan
Xu, Qiang
Kentour, Mohamed
Sawsa, Ahlam
Al-Rajab, Murad
Joy, Mike
Shuweikeh, Emad
Arasaradnam, Ramesh
AuthorAffiliation 2 School of Computing and Engineering, University of Huddersfield, Huddersfield, United Kingdom
5 University Hospital Coventry & Warwickshire, Coventry, United Kingdom
1 College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
Menoufia University, EGYPT
3 Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
4 University of Warwick, Coventry, United Kingdom
AuthorAffiliation_xml – name: 2 School of Computing and Engineering, University of Huddersfield, Huddersfield, United Kingdom
– name: 5 University Hospital Coventry & Warwickshire, Coventry, United Kingdom
– name: Menoufia University, EGYPT
– name: 1 College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
– name: 4 University of Warwick, Coventry, United Kingdom
– name: 3 Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
Author_xml – sequence: 1
  givenname: Murad
  orcidid: 0000-0002-4353-6257
  surname: Al-Rajab
  fullname: Al-Rajab, Murad
– sequence: 2
  givenname: Joan
  surname: Lu
  fullname: Lu, Joan
– sequence: 3
  givenname: Qiang
  surname: Xu
  fullname: Xu, Qiang
– sequence: 4
  givenname: Mohamed
  surname: Kentour
  fullname: Kentour, Mohamed
– sequence: 5
  givenname: Ahlam
  surname: Sawsa
  fullname: Sawsa, Ahlam
– sequence: 6
  givenname: Emad
  surname: Shuweikeh
  fullname: Shuweikeh, Emad
– sequence: 7
  givenname: Mike
  surname: Joy
  fullname: Joy, Mike
– sequence: 8
  givenname: Ramesh
  surname: Arasaradnam
  fullname: Arasaradnam, Ramesh
BookMark eNqNktFqFDEUhgepYFt9A8EBQfRi1yQzk0y8kVKsLbQUrHobssmZ3ZRMMiYZtXeCr-AT-iRmuqt0S5GSiwkn3__POfmzV-w476AonmI0xxXDry_9GJy08yGX54i0lHH8oNjFvCIzSlC1c2P_qNiL8RKhpmop3S1-HpSrq0UwuuylWhkHpQUZnHHLsgOZxgBlBAsqGe_K3muwv3_8Oj47Pbo4K5Mvwa2kU1AuISuVlTGazih5TcthsAb0hPWjTWawGfE2n6hJE2KpZZIR0uPiYSdthCeb737x6ejdx8Pj2en5-5PDg9OZogylGa4QYlw1qqkVwgulaYswpw0AWyDKWl4vuCa66xildcs40o0kShLedbxdYKj2i2dr38H6KDaXFkWFKMec4Jpm4mRNaC8vxRBML8OV8NKI64IPSyFDMsqCQKA06iQlGld10xFOGtwoKnnHtaypyl7N2mt0g7z6Jq39Z4iRmHL724KYchOb3LLu7abLcdGDVuBSkHarme0TZ1Zi6b9mV0qmmLPDy41D8F9GiEn0JiqwVjrwYxSkbWlFGGpZRp_fQu--lg21lHly4zqff6wmU3HAGCaYMd5kan4HlZeG3qg8YmdyfUvwakuQmQTf01KOMYqTiw_3Z88_b7MvbrArkDatorfj9CrjNlivQRV8jAG6-yb05pZMmXT95vPAxv5f_AcchS4o
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3519216
crossref_primary_10_1080_17425255_2024_2412629
Cites_doi 10.1371/journal.pone.0161501
10.1016/j.compbiomed.2022.105458
10.1371/journal.pone.0249094
10.1007/s11831-021-09556-z
10.1016/S0306-4379(02)00072-8
10.1155/2021/9025470
10.1038/s41568-021-00399-1
10.1371/journal.pone.0214406
10.1007/s00500-007-0251-2
10.1073/pnas.96.12.6745
10.1016/j.genrep.2021.101419
10.1016/j.imu.2021.100605
10.1016/j.csbj.2014.11.005
10.1016/j.eij.2011.04.003
10.1109/SICN47020.2019.9019357
10.9790/3021-0281112119
10.1109/ISCV54655.2022.9806115
10.1049/icp.2021.2680
10.1007/s10115-010-0288-x
10.1109/IADCC.2015.7154710
10.1186/s13062-020-00290-3
10.1016/j.asoc.2016.11.026
10.4103/0973-1482.95166
10.1142/S1469026805001465
10.1109/SIU49456.2020.9302351
10.1016/j.eswa.2022.117695
10.1016/j.csbj.2021.07.003
10.1007/s00500-007-0272-x
10.1109/ICIAFS.2018.8913362
10.1109/TCBB.2014.2344655
10.1109/ICCIT.2007.153
10.1016/j.marpetgeo.2022.105783
10.1007/s42452-020-3051-2
10.1038/s43856-022-00225-1
10.1109/ICET.2014.7021014
10.1186/1475-925X-13-94
ContentType Journal Article
Copyright COPYRIGHT 2023 Public Library of Science
2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2023 Al-Rajab et al 2023 Al-Rajab et al
2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2023 Al-Rajab et al 2023 Al-Rajab et al
– notice: 2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0286791
DatabaseName CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Agricultural Science Database


MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Public Health
DocumentTitleAlternate HMLFSM
EISSN 1932-6203
ExternalDocumentID 3069192146
oai_doaj_org_article_0ecd0fa62d1345f292515c6a9f9da46c
10.1371/journal.pone.0286791
PMC10621932
A771217795
10_1371_journal_pone_0286791
GeographicLocations United Kingdom
Taiwan
GeographicLocations_xml – name: United Kingdom
– name: Taiwan
GrantInformation_xml – fundername: ;
  grantid: 19300568
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c670t-130079c5c54c01bcd6801965ee7b067894b9d2dff76648790d5a2ca29ff98b1e3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:10 EDT 2025
Fri Oct 03 12:46:10 EDT 2025
Sun Oct 26 04:07:30 EDT 2025
Tue Sep 30 17:11:40 EDT 2025
Sun Sep 28 12:36:53 EDT 2025
Tue Oct 07 07:59:45 EDT 2025
Mon Oct 20 23:10:02 EDT 2025
Mon Oct 20 17:16:38 EDT 2025
Thu Oct 16 16:24:57 EDT 2025
Thu Oct 16 16:10:27 EDT 2025
Thu May 22 21:31:22 EDT 2025
Wed Oct 01 04:15:06 EDT 2025
Thu Apr 24 23:06:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c670t-130079c5c54c01bcd6801965ee7b067894b9d2dff76648790d5a2ca29ff98b1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-4353-6257
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0286791&type=printable
PQID 3069192146
PQPubID 1436336
PageCount e0286791
ParticipantIDs plos_journals_3069192146
doaj_primary_oai_doaj_org_article_0ecd0fa62d1345f292515c6a9f9da46c
unpaywall_primary_10_1371_journal_pone_0286791
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10621932
proquest_miscellaneous_2886327087
proquest_journals_3069192146
gale_infotracmisc_A771217795
gale_infotracacademiconefile_A771217795
gale_incontextgauss_ISR_A771217795
gale_incontextgauss_IOV_A771217795
gale_healthsolutions_A771217795
crossref_primary_10_1371_journal_pone_0286791
crossref_citationtrail_10_1371_journal_pone_0286791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-02
PublicationDateYYYYMMDD 2023-11-02
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-02
  day: 02
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A. Sharma (pone.0286791.ref006) 2021; 28
KR Foster (pone.0286791.ref001) 2014; 5
SEK ÖZCAN S˙IM (pone.0286791.ref019) 2021; 16
MB Al Snousy (pone.0286791.ref048) 2011; 12
MA Talukder (pone.0286791.ref025) 2022; 205
El Akadi (pone.0286791.ref044) 2011; 26
pone.0286791.ref039
K Kourou (pone.0286791.ref007) 2014; 13
B. Schroeder (pone.0286791.ref008) 2022
B Zhang (pone.0286791.ref027) 2019; 144
DA Notterman (pone.0286791.ref046) 2001; 61
D Sengupta (pone.0286791.ref002)
A.S.M. Shafi (pone.0286791.ref014) 2020; 2
LW Shutao (pone.0286791.ref031) 2008; 12
MJ Abdi (pone.0286791.ref034) 2012; 2012
pone.0286791.ref045
E D’Hondt (pone.0286791.ref004) 2022; 2
ELJ Garcia-Nieto (pone.0286791.ref043) 2007
pone.0286791.ref047
M Tiwari (pone.0286791.ref012) 2012; 8
pone.0286791.ref041
pone.0286791.ref042
M-W Huang (pone.0286791.ref010) 2017; 12
O Elemento (pone.0286791.ref005) 2021; 21
Olvi Mangasarian (pone.0286791.ref009) 1970; 43
KA Cahnyaningrum (pone.0286791.ref026) 2020
E Ali (pone.0286791.ref040) 2011; 26
MA Fahami (pone.0286791.ref036) 2021; 24
U Alon (pone.0286791.ref037) 1999; 96
R Rafique (pone.0286791.ref050) 2021; 19
S Mohr (pone.0286791.ref013) 2002
S Rathore (pone.0286791.ref049) 2014; 11
M Mohamad (pone.0286791.ref032) 2005; 5
F Eibe (pone.0286791.ref038) 2016
pone.0286791.ref051
Y Lu (pone.0286791.ref016) 2003; 28
M Al-Rajab (pone.0286791.ref017) 2021; 16
M. Shehab (pone.0286791.ref015) 2022; 145
L Shutao (pone.0286791.ref033) 2008; 12
Essam H. Houssein (pone.0286791.ref030) 2022
AK Groen (pone.0286791.ref018) 2001; 35
S Li (pone.0286791.ref035) 2008; 12
C.M Saporetti (pone.0286791.ref003) 2022; 143
AB Tufail (pone.0286791.ref011) 2021; 2021
pone.0286791.ref029
pone.0286791.ref023
Essam H. Houssein (pone.0286791.ref028); 9
pone.0286791.ref020
pone.0286791.ref021
Hanaa Salem (pone.0286791.ref022) 2017; 50
E Nazari (pone.0286791.ref024) 2021; 25
References_xml – volume: 12
  start-page: e0161501
  issue: 1
  year: 2017
  ident: pone.0286791.ref010
  article-title: SVM and SVM Ensembles in Breast Cancer Prediction
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0161501
– start-page: 1
  year: 2020
  ident: pone.0286791.ref026
  article-title: Microarray Gene Expression Classification for Cancer Detection using Artificial Neural Networks and Genetic Algorithm Hybrid Intelligence
  publication-title: International Conference on Data Science and Its Applications (ICoDSA)
– volume: 145
  start-page: 105458
  year: 2022
  ident: pone.0286791.ref015
  article-title: Machine learning in medical applications: A review of state-of-the-art Methods
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105458
– volume: 16
  start-page: e0249094
  issue: 4
  year: 2021
  ident: pone.0286791.ref017
  article-title: A framework model using multifilter feature selection to enhance colon cancer classification
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0249094
– volume: 28
  start-page: 4875
  year: 2021
  ident: pone.0286791.ref006
  article-title: A Systematic Review of Applications of Machine Learning in Cancer Prediction and Diagnosis
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-021-09556-z
– volume: 28
  start-page: 243
  issue: 4
  year: 2003
  ident: pone.0286791.ref016
  article-title: Cancer classification using gene expression data
  publication-title: Information Systems
  doi: 10.1016/S0306-4379(02)00072-8
– volume: 2021
  start-page: 9025470
  year: 2021
  ident: pone.0286791.ref011
  article-title: Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions
  publication-title: Comput Math Methods Med
  doi: 10.1155/2021/9025470
– volume: 21
  start-page: 747
  year: 2021
  ident: pone.0286791.ref005
  article-title: Artificial intelligence in cancer research, diagnosis and therapy
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-021-00399-1
– volume: 144
  start-page: e0214406
  year: 2019
  ident: pone.0286791.ref027
  article-title: Classification of high dimensional biomedical data based on feature selection using redundant removal
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0214406
– volume: 12
  start-page: 693
  issue: 7
  year: 2008
  ident: pone.0286791.ref033
  article-title: Gene selection using genetic algorithm and support vector machines
  publication-title: Soft Computing
  doi: 10.1007/s00500-007-0251-2
– volume-title: Koch Institute. Using machine learning to identify undiagnosable cancers
  year: 2022
  ident: pone.0286791.ref008
– volume: 96
  start-page: 6745
  year: 1999
  ident: pone.0286791.ref037
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.12.6745
– volume: 25
  start-page: 101419
  year: 2021
  ident: pone.0286791.ref024
  article-title: Machine learning approaches for classification of colorectal cancer with and without feature selection method on Microarray Data
  publication-title: Gene Reports
  doi: 10.1016/j.genrep.2021.101419
– volume: 12
  start-page: 693
  issue: 7
  year: 2008
  ident: pone.0286791.ref031
  article-title: Gene selection using genetic algorithm and support vector machines
  publication-title: Soft Comput
  doi: 10.1007/s00500-007-0251-2
– volume: 61
  start-page: 3124
  issue: 7
  year: 2001
  ident: pone.0286791.ref046
  article-title: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays
  publication-title: Cancer Research.
– volume-title: Data Mining: Practical Machine Learning Tools and Techniques
  year: 2016
  ident: pone.0286791.ref038
  article-title: r
– volume: 24
  start-page: 100605
  year: 2021
  ident: pone.0286791.ref036
  article-title: Detection of effective genes in colon cancer: A machine learning approach
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2021.100605
– volume: 13
  start-page: 8
  year: 2014
  ident: pone.0286791.ref007
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2014.11.005
– year: 2002
  ident: pone.0286791.ref013
  article-title: Microarrays as Cancer Keys: An Array of Possibilities.
  publication-title: Journal of Clinical Oncology
– volume: 12
  start-page: 73
  issue: 2
  year: 2011
  ident: pone.0286791.ref048
  article-title: Suite of decision tree-based classification algorithms on cancer gene expression data
  publication-title: Egyptian Informatics Journal
  doi: 10.1016/j.eij.2011.04.003
– ident: pone.0286791.ref051
  doi: 10.1109/SICN47020.2019.9019357
– volume: 9
  start-page: 64895
  issue: 2021
  ident: pone.0286791.ref028
  article-title: A hybrid barnacles mating optimizer algorithm with support vector machines for gene selection of microarray cancer classification
  publication-title: IEEE Access
– ident: pone.0286791.ref039
  doi: 10.9790/3021-0281112119
– ident: pone.0286791.ref020
  doi: 10.1109/ISCV54655.2022.9806115
– ident: pone.0286791.ref047
– ident: pone.0286791.ref029
  doi: 10.1049/icp.2021.2680
– volume: 26
  start-page: 487
  year: 2011
  ident: pone.0286791.ref040
  article-title: A two-Stage gene selection scheme utilizing MRMR filter and GA wrapper
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-010-0288-x
– ident: pone.0286791.ref041
  doi: 10.1109/IADCC.2015.7154710
– volume: 16
  start-page: 7
  year: 2021
  ident: pone.0286791.ref019
  publication-title: Biology Direct
  doi: 10.1186/s13062-020-00290-3
– volume: 43
  year: 1970
  ident: pone.0286791.ref009
  article-title: Breast Cancer Diagnosis and Prognosis Via Linear Programming
  publication-title: Operations Research
– volume: 50
  start-page: 124
  year: 2017
  ident: pone.0286791.ref022
  article-title: Classification of human cancer diseases by gene expression profiles
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.11.026
– volume: 8
  start-page: 3
  issue: 1
  year: 2012
  ident: pone.0286791.ref012
  article-title: Microarrays and cancer diagnosis
  publication-title: J Cancer Res Ther
  doi: 10.4103/0973-1482.95166
– volume: 5
  start-page: 91
  year: 2005
  ident: pone.0286791.ref032
  article-title: A hybrid of genetic algorithm and support vector Machine for features selection and classification of gene expression microarray
  publication-title: International Journal of Computational Intelligence and its Applications
  doi: 10.1142/S1469026805001465
– ident: pone.0286791.ref023
  doi: 10.1109/SIU49456.2020.9302351
– volume: 205
  start-page: 117695
  year: 2022
  ident: pone.0286791.ref025
  article-title: Machine learning-based lung and colon cancer detection using Deep feature extraction and ensemble learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117695
– volume: 2012
  start-page: 7
  year: 2012
  ident: pone.0286791.ref034
  article-title: A Novel Weighted Support Vector Machine Based on Particle Swarm Optimization for Gene Selection and Tumor Classification
  publication-title: COMPUTATIONAL and Mathematical Methods in Medicine
– volume: 19
  start-page: 4003
  year: 2021
  ident: pone.0286791.ref050
  article-title: Machine learning in the prediction of cancer therapy
  publication-title: Computational and Structural Biotechnology Journal
  doi: 10.1016/j.csbj.2021.07.003
– start-page: 405
  volume-title: Intelligent Data-Centric Systems, Machine Learning, Big Data, and IoT for Medical Informatics
  ident: pone.0286791.ref002
– volume: 12
  start-page: 1039
  issue: 11
  year: 2008
  ident: pone.0286791.ref035
  article-title: Gene selection using hybrid particle swarm optimization and genetic algorithm
  publication-title: Soft Comput
  doi: 10.1007/s00500-007-0272-x
– start-page: 1
  year: 2022
  ident: pone.0286791.ref030
  article-title: Gene selection for microarray cancer classification based on manta rays foraging optimization and support vector machines
  publication-title: Arabian Journal for Science and Engineering
– volume: 35
  start-page: 295
  issue: 2
  year: 2001
  ident: pone.0286791.ref018
  article-title: The pros and cons of gene expression analysis by microarrays
– ident: pone.0286791.ref021
  doi: 10.1109/ICIAFS.2018.8913362
– volume: 26
  start-page: 487
  year: 2011
  ident: pone.0286791.ref044
  article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-010-0288-x
– volume: 11
  start-page: 1131
  issue: 6
  year: 2014
  ident: pone.0286791.ref049
  article-title: GECC: gene expression based ensemble Classification of colon samples
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB)
  doi: 10.1109/TCBB.2014.2344655
– start-page: 284
  year: 2007
  ident: pone.0286791.ref043
  article-title: Gene Selection In Cancer Classification using PSO/SVM and GA/SVM Hybrid Algorithms
  publication-title: IN IEEE Congress On Evolutionary Computation, 2007. CEC 2007
– ident: pone.0286791.ref042
  doi: 10.1109/ICCIT.2007.153
– volume: 143
  year: 2022
  ident: pone.0286791.ref003
  article-title: Hybrid machine learning, models for estimating total organic carbon from mineral constituents in core samples of shale gas fields
  publication-title: Marine and Petroleum Geology
  doi: 10.1016/j.marpetgeo.2022.105783
– volume: 2
  start-page: 1243
  year: 2020
  ident: pone.0286791.ref014
  article-title: Detection of colon cancer based on microarray Dataset using machine learning as a feature selection and classification techniques
  publication-title: SN Appl. Sci
  doi: 10.1007/s42452-020-3051-2
– volume: 2
  start-page: 162
  year: 2022
  ident: pone.0286791.ref004
  article-title: Identifying and evaluating barriers for the implementation of machine learning in the intensive care unit
  publication-title: Communications Medicine
  doi: 10.1038/s43856-022-00225-1
– ident: pone.0286791.ref045
  doi: 10.1109/ICET.2014.7021014
– volume: 5
  start-page: 94
  issue: 13
  year: 2014
  ident: pone.0286791.ref001
  article-title: Machine learning, medical diagnosis, and biomedical engineering research—commentary
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-13-94
SSID ssj0053866
Score 2.4583647
SecondaryResourceType review_article
Snippet Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0286791
SubjectTerms Accuracy
Algorithms
Analysis
Biology and Life Sciences
Breast cancer
Cancer
Cancer research
Classification
Colon cancer
Colonoscopy
Colorectal cancer
Computer and Information Sciences
Datasets
Demography
Diagnosis
Evaluation
Feature extraction
Feature selection
Gene expression
Genes
Genetic algorithms
Genetic analysis
Genetic aspects
Genetic research
Global health
Immunoglobulins
Invasiveness
Learning algorithms
Literature reviews
Machine learning
Mathematical optimization
Medical research
Medicine and Health Sciences
Particle swarm optimization
Performance prediction
Physical Sciences
Prostate cancer
Public health
Redundancy
Research and Analysis Methods
Search engines
Support vector machines
Survival
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQX-AFMX5oYQMMQgIe0iVOYsePBVEVREFiDO3Nchx7RSpptbRCe-Q_585xowYhbQ-81ucove98vlPuviPkpa3AbpirYixJiHOX5nEFgUmss0pkuYUIucZG4flnPjvLP54X53ujvrAmrKMH7hR3klhTJ05zVqdZXjgm4UIuDNfSyVrn3KD3TUq5S6Y6HwynmPPQKJeJ9CTgMl6vGjuGG5V7Ts69i8jz9fdeebRertpByPl3weTtbbPWV7_0crl3G03vkbshjKST7vUPyC3b3CcH4aC29HVgk37zgPye0MUVtmXRn75u0tIwKOKCOutZPWnrZ-EAQNTPxYln80_T0zndrKhtFmgVFKzMUoOBNlYWeTCp7uJXFNtVJVKkwG6owT2XLcXq09ZuHpKz6ftv72ZxmLsQGy4SnE4PgYM0hSlyk6SVqXnpiQetFRVebjKvZM1q5wTnkO_IpC40M5pJ52RZpTZ7REYNaPqQUO4cK0rmtEldnvFKa17XJQDopMPUJSLZDgRlAik5zsZYKv-lTUBy0ilUIXQqQBeRuN-17kg5rpF_i_j2skip7X8AQ1PB0NR1hhaRZ2gdqutP7R2DmgiRQl4nZBGRF14CaTUarNu50Nu2VR--fL-B0OnXgdCrIORWoA6jQ68E_Cek6xpIHg8kwTmYwfIh2vJOK62CDFEiBV7OYefOvv-9_LxfxodiLV5jV9tWsbLkGRNJKSJSDs7FQMHDlebHwnOXpwlnmDNEZNwfoRth-Ph_YHhE7jAIUn0vKTsmo83l1j6BoHJTPfX-4w8ewHlO
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbtMwFLZGdwESQmyAFhhgEBJwkS5xEju5QKhDqwqiBW0M7S5y_NMilaQ0rdDukHgFnpAnwcdxyoIQ7LY-rtrz58_JOd9B6IkqjN8QXfhQkuDHOoz9wgATn0cFi2JlELKERuHxhI5O4zdnydkWmrS9MFBW2eZEm6hlJeAZ-YGBthlwd8X05eKLD1Oj4O1qO0KDu9EK8oWlGLuCtgkwY_XQ9uHR5P1xm5tNdFPqGugiFh44e_UXVan65qSllqvzwgFlefw32bq3mFd1B4r-WUh5dV0u-PlXPp9fOKWGN9ENBy_xoPGHHbSlyl10vXk2h5uWo1204wK6xs8c6_TzW-j7AM_OoX0Lf7b1lQq7gRJTrJVl_8S1nZljDInt_Jyf336Mxm-HJ2O8qrAqZ-A_2PijwgIgOdQgWbNj3iBdEGvrFzGQZZdYwJ5ljaFOtVar2-h0ePTh1ch3Exp8QVkAc-wNxMhEIpJYBGEhJE0tRaFSrIBjMIuLTBKpNaPU3IyyQCacCE4yrbO0CFV0B_VKo_s9hKnWJEmJ5iLUcUQLzqmUaZgInWm45Hgoas2SC0dfDlM05rl9J8fMNaZRcQ7GzJ0xPeRvdi0a-o7_yB-CxTeyQL5tP6iW09zFch4oIQPNKZFhFCeaZAYjJoLyTGeSx1R46CH4S950sm5SSD5gzDglY1niocdWAgg4SqjwmfJ1Xeev3328hNDJcUfoqRPSlVGH4K6rwvwnIPbqSO53JE0aEZ3lPfDuVit1_jvgzM7W4_--_GizDF8KVXulqtZ1TtKURoQFKfNQ2omUjoK7K-WnmWU5DwNK4Hbhof4mqC5lw7v__rn30DVigKrtJyX7qLdartV9AyxXxQOXLX4BbL99nQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaW7gEuwPKjDSxgEOLnkGziJHZ8LIiqILoglqLlgCLHsbeIklabVGg5ICRegSfkSfA4TkVWIJYDt6iesZLxeDzTmfmM0F1VGL0huvChJMFPdJT4hXFMfBEXLE6U8ZBLaBSe7NHxNHl2kB5soHddL4yToIkR54vaZvLhYVGpXSfJXcArarOnQRSzqOMIloYoMKclZTy6ZxGH4J-xBhqQzqBNmhpXfYA2p3svh2_bTDPxKQlj1073p5l6x5VF9V_b7gG8Wc8xPVlWeXZVLcXxJzGf_3JmjS6gL93XtqUqH4JVUwTy8wkgyP8mjovovPN28bCdZQttqOoS2nL2pMYPHOj1w8vo2xDPjqF7DH-05Z0Ku_ssDrFWFnwU1_bKHqNH2F7f8-Pr9_Hk-Wh_gpsFVtUM1Beb7aCwhIgASqCs1mHROtpA1pVPYsDqrrAEnqMaQ5lsrZoraDp68vrx2HcXRPiSsrDxIRXHuExlmsgwKmRJM4uQqBQr4BTmScFLUmrNKDWBGQ_LVBApCNeaZ0Wk4qtoUBk5bSNMtSZpRrSQkU5iWghByzKLUqm5hhjLQ3GnB7l06Olwicc8tylBZqKoVqQ5CD53gveQv-Zatughf6F_BCq2pgXsb_uDWfncrXgeKlmGWlBSRnGSasKNi5pKKrjmpUio9NAtUNC8baRdW7B8yFhkAlDGUw_dsRSA_1FBgdGhWNV1_vTFm1MQ7b_qEd13RHphxCGFa-ow3wSK2aPc6VEaKyZ7w9ug2Z1U6tyEshyw-hJqOLst9vvh2-thmBSKBiu1WNU5yTIaExZmzENZb2v2BNwfqd7PLMh6FFICRsJDwXoXn2oNr_0rw3V0jhjP2Ta4kh00aI5W6obxdJviprNXPwEnPbH5
  priority: 102
  providerName: Unpaywall
Title A hybrid machine learning feature selection model—HMLFSM to enhance gene classification applied to multiple colon cancers dataset
URI https://www.proquest.com/docview/3069192146
https://www.proquest.com/docview/2886327087
https://pubmed.ncbi.nlm.nih.gov/PMC10621932
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0286791&type=printable
https://doaj.org/article/0ecd0fa62d1345f292515c6a9f9da46c
http://dx.doi.org/10.1371/journal.pone.0286791
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaW7gEuiOWhDSzFICTgkCpxEjs-INRdbSmIltUuReUUOY7dIpWkNK2gR_45HjeJCFpELznE40idh2emnvkGoecqNXpDdOpCSYIbaj90UxOYuCJIWRAqEyFn0Cg8GtPhJHw_jaYHqJ7ZWjGwvDa1g3lSk9Wi9_P79o0x-Nd2agPz6029ZZGrnvGXlEE7-6HxVRyGOYzC5l7BWLe9vYSoxaXEC6pmun99peWsLKZ_c3J3louibIWlfxdV3tzkS7H9IRaLPzzW4A66XYWauL_TjSN0oPK76Kgy5hK_rBCnX91Dv_p4voXWLfzN1lYqXA2TmGGtLPInLu28HCNEbGfnuMPRh8HVCK8LrPI5aA42mqiwhGAcqo-swLHYxbhAVlcuYoDJzrGEPasSQ4Vqqdb30WRw_uls6FazGVxJmQcT7E1wwWUko1B6fiozGltwQqVYCg6QhynPSKY1o9TkRNzLIkGkIFxrHqe-Ch6gTm44fYww1ZpEMdFC-joMaCoEzbLYj6TmGtIbBwW1EBJZAZfD_IxFYm_jmElgdgxNQHRJJToHuc2u5Q644z_0pyDfhhZgt-2LYjVLKitOPCUzTwtKMj8II024iQ4jSQXXPBMhlQ56AtqR7HpYm8Mj6TPmm9yP8chBzywFQG_kUNszE5uyTN59_LwH0dVli-hFRaQLww4pqn4K85sA0qtFedKiNAeIbC0fgy7XXCkTk0VygMkLqdlZ6_f1y0-bZfgo1OvlqtiUCYljGhDmxcxBccsuWgxur-Rf5xbf3PcoAQt1UK8xob1k-HAfvj1Ct4gJVG0_KTlBnfVqox6bwHKddtENNmXmGZ_58By87aLD0_PxxWXX_lXTtWeJeTcZX_S__Aa0W4Dw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWclgkhNgFtIWFNQgEHNJNnMRJDgiVn6pl20Vif9SbcRy7RSpJaVqtekPiFXgOHoonweP8sEEI9rLXemylnvH4m2TmG4Qey1jbDVGxBSkJlqccz4o1MLG4GweuJzVCTqBQeHRI-yfeu7E_3kA_qloYSKusfKJx1Ekm4B35voa2EXB3efTl_IsFXaPg62rVQqMwiwO5PtMhW_5i8Ebr9wkhvbfHr_tW2VXAEjSwofe6vhYj4QvfE7YTi4SGhlZPyiAG1x15cZSQRKmAUo3mIzvxORGcREpFYexIV697BV319DLQMSEY1wGe9h2UluV5buDsl9bQmWep7Oh7nBom0HPXn-kSUN8FrfksyxtA9880zc1VOufrMz6bnbsDezfRjRK84m5hbVtoQ6bb6Hrx5g8XBU3baKt0Fzl-VnJaP7-FvnXxdA3FYfizyd6UuGxXMcFKGm5RnJuOPNpMsOnO8_Pr9_5o2Dsa4WWGZToF68Ta2iUWAPghw8kYFeYFjgaxKjsSAxV3igXMWeQYsmBzubyNTi5FU3dQK9V7v4MwVYr4IVFcOMpzacw5TZLQ8YWKFIRQbeRWamGiJEeHHh0zZr74BTpIKraYgTJZqcw2supZ84Ic5D_yr0DjtSxQe5sfssWElZ6C2VIktuKUJI7r-YpEGoH6gvJIRQn3qGijPbAXVtTJ1g6KdYPA0fFlEPlt9MhIAL1HCvlDE77KczZ4f3oBoaMPDaGnpZDK9HYIXtZs6P8EtGENyd2GpHZSojG8A9Zd7UrOfh9nPbOy-L8PP6yHYVHICUxltsoZCUPqksAOgzYKGyelscHNkfTT1HCoOzYlELu0Uac-VBfS4d1_P-4e2uwfj4ZsODg8uIeuEQ2JTeUq2UWt5WIl72sIu4wfGL-B0cfLdlS_AC0TsyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELVKkQAJIVpAXSjUIBBwyDZxEjs-IFQoqy7tFkQp2ltwHLtFWpKl2VXVGxK_wNfwOXwJHscJDULQS6_xOEo8z-OZZOYNQg9VZnBDdOZBSoIX6SDyMuOYeCLMWBgp4yHnUCg82qVb-9HrcTxeQD-aWhhIq2xsojXUeSnhG_m6cW05cHdFdF27tIi3m4Pn0y8edJCCP61NO40aItvq5NiEb9Wz4abR9SNCBq_ev9zyXIcBT1LmQx92c0RyGcs4kn6QyZwmlmJPKZaBGedRxnOSa80oNZ499_NYECkI15onWaBCc98L6CILQw7phGzcBnvGjlDqSvVCFqw7ZPSnZaH65kynlhX01FFoOwa058LidFJWHaf3z5TNy_NiKk6OxWRy6jwcXEfXnCOLN2rkLaEFVSyjq_VXQFwXNy2jJWc6KvzE8Vs_vYG-beDDEygUw59tJqfCrnXFAdbK8oziynbnMZDBtlPPz6_ft0Y7g70RnpVYFYeAVGyQr7AE5x-ynSzAsKh9ahBrMiUx0HIXWMKcowpDRmylZjfR_rlo6hZaLMzaryBMtSZxQrSQgY5CmglB8zwJYqm5hnCqh8JGLal0ROnQr2OS2r9_zARM9RKnoMzUKbOHvHbWtCYK-Y_8C9B4Kws03_ZCeXSQOquR-krmvhaU5EEYxZpw443GkgqueS4iKntoDfCS1jWzrbFKNxgLTKzJeNxDD6wEUH0UsGkOxLyq0uGbD2cQ2nvXEXrshHRplkMKV79h3gkoxDqSqx1JY7BkZ3gF0N2sSpX-3tpmZoP4vw_fb4fhppAfWKhyXqUkSWhImJ-wHko6O6WzwN2R4tOh5VMPfEogjumhfrupzqTD2_9-3DV0yZiodGe4u30HXSHGO7ZFrGQVLc6O5uqu8WZn2T1rNjD6eN526he4ebdn
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaW7gEuwPKjDSxgEOLnkGziJHZ8LIiqILoglqLlgCLHsbeIklabVGg5ICRegSfkSfA4TkVWIJYDt6iesZLxeDzTmfmM0F1VGL0huvChJMFPdJT4hXFMfBEXLE6U8ZBLaBSe7NHxNHl2kB5soHddL4yToIkR54vaZvLhYVGpXSfJXcArarOnQRSzqOMIloYoMKclZTy6ZxGH4J-xBhqQzqBNmhpXfYA2p3svh2_bTDPxKQlj1073p5l6x5VF9V_b7gG8Wc8xPVlWeXZVLcXxJzGf_3JmjS6gL93XtqUqH4JVUwTy8wkgyP8mjovovPN28bCdZQttqOoS2nL2pMYPHOj1w8vo2xDPjqF7DH-05Z0Ku_ssDrFWFnwU1_bKHqNH2F7f8-Pr9_Hk-Wh_gpsFVtUM1Beb7aCwhIgASqCs1mHROtpA1pVPYsDqrrAEnqMaQ5lsrZoraDp68vrx2HcXRPiSsrDxIRXHuExlmsgwKmRJM4uQqBQr4BTmScFLUmrNKDWBGQ_LVBApCNeaZ0Wk4qtoUBk5bSNMtSZpRrSQkU5iWghByzKLUqm5hhjLQ3GnB7l06Olwicc8tylBZqKoVqQ5CD53gveQv-Zatughf6F_BCq2pgXsb_uDWfncrXgeKlmGWlBSRnGSasKNi5pKKrjmpUio9NAtUNC8baRdW7B8yFhkAlDGUw_dsRSA_1FBgdGhWNV1_vTFm1MQ7b_qEd13RHphxCGFa-ow3wSK2aPc6VEaKyZ7w9ug2Z1U6tyEshyw-hJqOLst9vvh2-thmBSKBiu1WNU5yTIaExZmzENZb2v2BNwfqd7PLMh6FFICRsJDwXoXn2oNr_0rw3V0jhjP2Ta4kh00aI5W6obxdJviprNXPwEnPbH5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+machine+learning+feature+selection+model-HMLFSM+to+enhance+gene+classification+applied+to+multiple+colon+cancers+dataset&rft.jtitle=PloS+one&rft.au=Al-Rajab%2C+Murad&rft.au=Lu%2C+Joan&rft.au=Xu%2C+Qiang&rft.au=Kentour%2C+Mohamed&rft.date=2023-11-02&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=11&rft.spage=e0286791&rft_id=info:doi/10.1371%2Fjournal.pone.0286791&rft.externalDBID=ISR&rft.externalDocID=A771217795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon