A hybrid machine learning feature selection model—HMLFSM to enhance gene classification applied to multiple colon cancers dataset
Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invas...
Saved in:
| Published in | PloS one Vol. 18; no. 11; p. e0286791 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
San Francisco
Public Library of Science
02.11.2023
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0286791 |
Cover
| Abstract | Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invasive colon cancer classification using genetic data or patient demographics and medical history. One approach is to use ML to analyse genetic data, or patient demographics and medical history, to predict the likelihood of colon cancer. However, due to the challenges imposed by variable gene expression and the high dimensionality of cancer-related datasets, traditional transductive ML applications have limited accuracy and risk overfitting. In this paper, we propose a new hybrid feature selection model called HMLFSM–Hybrid Machine Learning Feature Selection Model to improve colon cancer gene classification. We developed a multifilter hybrid model including a two-phase feature selection approach, combining Information Gain (IG) and Genetic Algorithms (GA), and minimum Redundancy Maximum Relevance (mRMR) coupling with Particle Swarm Optimization (PSO). We critically tested our model on three colon cancer genetic datasets and found that the new framework outperformed other models with significant accuracy improvements (95%, ~97%, and ~94% accuracies for datasets 1, 2, and 3 respectively). The results show that our approach improves the classification accuracy of colon cancer detection by highlighting important and relevant genes, eliminating irrelevant ones, and revealing the genes that have a direct influence on the classification process. For colon cancer gene analysis, and along with our experiments and literature review, we found that selective input feature extraction prior to feature selection is essential for improving predictive performance. |
|---|---|
| AbstractList | Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invasive colon cancer classification using genetic data or patient demographics and medical history. One approach is to use ML to analyse genetic data, or patient demographics and medical history, to predict the likelihood of colon cancer. However, due to the challenges imposed by variable gene expression and the high dimensionality of cancer-related datasets, traditional transductive ML applications have limited accuracy and risk overfitting. In this paper, we propose a new hybrid feature selection model called HMLFSM–Hybrid Machine Learning Feature Selection Model to improve colon cancer gene classification. We developed a multifilter hybrid model including a two-phase feature selection approach, combining Information Gain (IG) and Genetic Algorithms (GA), and minimum Redundancy Maximum Relevance (mRMR) coupling with Particle Swarm Optimization (PSO). We critically tested our model on three colon cancer genetic datasets and found that the new framework outperformed other models with significant accuracy improvements (95%, ~97%, and ~94% accuracies for datasets 1, 2, and 3 respectively). The results show that our approach improves the classification accuracy of colon cancer detection by highlighting important and relevant genes, eliminating irrelevant ones, and revealing the genes that have a direct influence on the classification process. For colon cancer gene analysis, and along with our experiments and literature review, we found that selective input feature extraction prior to feature selection is essential for improving predictive performance. Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invasive colon cancer classification using genetic data or patient demographics and medical history. One approach is to use ML to analyse genetic data, or patient demographics and medical history, to predict the likelihood of colon cancer. However, due to the challenges imposed by variable gene expression and the high dimensionality of cancer-related datasets, traditional transductive ML applications have limited accuracy and risk overfitting. In this paper, we propose a new hybrid feature selection model called HMLFSM-Hybrid Machine Learning Feature Selection Model to improve colon cancer gene classification. We developed a multifilter hybrid model including a two-phase feature selection approach, combining Information Gain (IG) and Genetic Algorithms (GA), and minimum Redundancy Maximum Relevance (mRMR) coupling with Particle Swarm Optimization (PSO). We critically tested our model on three colon cancer genetic datasets and found that the new framework outperformed other models with significant accuracy improvements (95%, ~97%, and ~94% accuracies for datasets 1, 2, and 3 respectively). The results show that our approach improves the classification accuracy of colon cancer detection by highlighting important and relevant genes, eliminating irrelevant ones, and revealing the genes that have a direct influence on the classification process. For colon cancer gene analysis, and along with our experiments and literature review, we found that selective input feature extraction prior to feature selection is essential for improving predictive performance.Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as colonoscopies, can be invasive and uncomfortable for patients. Machine Learning (ML) algorithms have emerged as a promising approach for non-invasive colon cancer classification using genetic data or patient demographics and medical history. One approach is to use ML to analyse genetic data, or patient demographics and medical history, to predict the likelihood of colon cancer. However, due to the challenges imposed by variable gene expression and the high dimensionality of cancer-related datasets, traditional transductive ML applications have limited accuracy and risk overfitting. In this paper, we propose a new hybrid feature selection model called HMLFSM-Hybrid Machine Learning Feature Selection Model to improve colon cancer gene classification. We developed a multifilter hybrid model including a two-phase feature selection approach, combining Information Gain (IG) and Genetic Algorithms (GA), and minimum Redundancy Maximum Relevance (mRMR) coupling with Particle Swarm Optimization (PSO). We critically tested our model on three colon cancer genetic datasets and found that the new framework outperformed other models with significant accuracy improvements (95%, ~97%, and ~94% accuracies for datasets 1, 2, and 3 respectively). The results show that our approach improves the classification accuracy of colon cancer detection by highlighting important and relevant genes, eliminating irrelevant ones, and revealing the genes that have a direct influence on the classification process. For colon cancer gene analysis, and along with our experiments and literature review, we found that selective input feature extraction prior to feature selection is essential for improving predictive performance. |
| Audience | Academic |
| Author | Lu, Joan Xu, Qiang Kentour, Mohamed Sawsa, Ahlam Al-Rajab, Murad Joy, Mike Shuweikeh, Emad Arasaradnam, Ramesh |
| AuthorAffiliation | 2 School of Computing and Engineering, University of Huddersfield, Huddersfield, United Kingdom 5 University Hospital Coventry & Warwickshire, Coventry, United Kingdom 1 College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates Menoufia University, EGYPT 3 Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom 4 University of Warwick, Coventry, United Kingdom |
| AuthorAffiliation_xml | – name: 2 School of Computing and Engineering, University of Huddersfield, Huddersfield, United Kingdom – name: 5 University Hospital Coventry & Warwickshire, Coventry, United Kingdom – name: Menoufia University, EGYPT – name: 1 College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates – name: 4 University of Warwick, Coventry, United Kingdom – name: 3 Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom |
| Author_xml | – sequence: 1 givenname: Murad orcidid: 0000-0002-4353-6257 surname: Al-Rajab fullname: Al-Rajab, Murad – sequence: 2 givenname: Joan surname: Lu fullname: Lu, Joan – sequence: 3 givenname: Qiang surname: Xu fullname: Xu, Qiang – sequence: 4 givenname: Mohamed surname: Kentour fullname: Kentour, Mohamed – sequence: 5 givenname: Ahlam surname: Sawsa fullname: Sawsa, Ahlam – sequence: 6 givenname: Emad surname: Shuweikeh fullname: Shuweikeh, Emad – sequence: 7 givenname: Mike surname: Joy fullname: Joy, Mike – sequence: 8 givenname: Ramesh surname: Arasaradnam fullname: Arasaradnam, Ramesh |
| BookMark | eNqNktFqFDEUhgepYFt9A8EBQfRi1yQzk0y8kVKsLbQUrHobssmZ3ZRMMiYZtXeCr-AT-iRmuqt0S5GSiwkn3__POfmzV-w476AonmI0xxXDry_9GJy08yGX54i0lHH8oNjFvCIzSlC1c2P_qNiL8RKhpmop3S1-HpSrq0UwuuylWhkHpQUZnHHLsgOZxgBlBAsqGe_K3muwv3_8Oj47Pbo4K5Mvwa2kU1AuISuVlTGazih5TcthsAb0hPWjTWawGfE2n6hJE2KpZZIR0uPiYSdthCeb737x6ejdx8Pj2en5-5PDg9OZogylGa4QYlw1qqkVwgulaYswpw0AWyDKWl4vuCa66xildcs40o0kShLedbxdYKj2i2dr38H6KDaXFkWFKMec4Jpm4mRNaC8vxRBML8OV8NKI64IPSyFDMsqCQKA06iQlGld10xFOGtwoKnnHtaypyl7N2mt0g7z6Jq39Z4iRmHL724KYchOb3LLu7abLcdGDVuBSkHarme0TZ1Zi6b9mV0qmmLPDy41D8F9GiEn0JiqwVjrwYxSkbWlFGGpZRp_fQu--lg21lHly4zqff6wmU3HAGCaYMd5kan4HlZeG3qg8YmdyfUvwakuQmQTf01KOMYqTiw_3Z88_b7MvbrArkDatorfj9CrjNlivQRV8jAG6-yb05pZMmXT95vPAxv5f_AcchS4o |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3519216 crossref_primary_10_1080_17425255_2024_2412629 |
| Cites_doi | 10.1371/journal.pone.0161501 10.1016/j.compbiomed.2022.105458 10.1371/journal.pone.0249094 10.1007/s11831-021-09556-z 10.1016/S0306-4379(02)00072-8 10.1155/2021/9025470 10.1038/s41568-021-00399-1 10.1371/journal.pone.0214406 10.1007/s00500-007-0251-2 10.1073/pnas.96.12.6745 10.1016/j.genrep.2021.101419 10.1016/j.imu.2021.100605 10.1016/j.csbj.2014.11.005 10.1016/j.eij.2011.04.003 10.1109/SICN47020.2019.9019357 10.9790/3021-0281112119 10.1109/ISCV54655.2022.9806115 10.1049/icp.2021.2680 10.1007/s10115-010-0288-x 10.1109/IADCC.2015.7154710 10.1186/s13062-020-00290-3 10.1016/j.asoc.2016.11.026 10.4103/0973-1482.95166 10.1142/S1469026805001465 10.1109/SIU49456.2020.9302351 10.1016/j.eswa.2022.117695 10.1016/j.csbj.2021.07.003 10.1007/s00500-007-0272-x 10.1109/ICIAFS.2018.8913362 10.1109/TCBB.2014.2344655 10.1109/ICCIT.2007.153 10.1016/j.marpetgeo.2022.105783 10.1007/s42452-020-3051-2 10.1038/s43856-022-00225-1 10.1109/ICET.2014.7021014 10.1186/1475-925X-13-94 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 Public Library of Science 2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2023 Al-Rajab et al 2023 Al-Rajab et al 2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: 2023 Al-Rajab et al 2023 Al-Rajab et al – notice: 2023 Al-Rajab et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0286791 |
| DatabaseName | CrossRef Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Public Health |
| DocumentTitleAlternate | HMLFSM |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3069192146 oai_doaj_org_article_0ecd0fa62d1345f292515c6a9f9da46c 10.1371/journal.pone.0286791 PMC10621932 A771217795 10_1371_journal_pone_0286791 |
| GeographicLocations | United Kingdom Taiwan |
| GeographicLocations_xml | – name: United Kingdom – name: Taiwan |
| GrantInformation_xml | – fundername: ; grantid: 19300568 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c670t-130079c5c54c01bcd6801965ee7b067894b9d2dff76648790d5a2ca29ff98b1e3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:19:10 EDT 2025 Fri Oct 03 12:46:10 EDT 2025 Sun Oct 26 04:07:30 EDT 2025 Tue Sep 30 17:11:40 EDT 2025 Sun Sep 28 12:36:53 EDT 2025 Tue Oct 07 07:59:45 EDT 2025 Mon Oct 20 23:10:02 EDT 2025 Mon Oct 20 17:16:38 EDT 2025 Thu Oct 16 16:24:57 EDT 2025 Thu Oct 16 16:10:27 EDT 2025 Thu May 22 21:31:22 EDT 2025 Wed Oct 01 04:15:06 EDT 2025 Thu Apr 24 23:06:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c670t-130079c5c54c01bcd6801965ee7b067894b9d2dff76648790d5a2ca29ff98b1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-4353-6257 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0286791&type=printable |
| PQID | 3069192146 |
| PQPubID | 1436336 |
| PageCount | e0286791 |
| ParticipantIDs | plos_journals_3069192146 doaj_primary_oai_doaj_org_article_0ecd0fa62d1345f292515c6a9f9da46c unpaywall_primary_10_1371_journal_pone_0286791 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10621932 proquest_miscellaneous_2886327087 proquest_journals_3069192146 gale_infotracmisc_A771217795 gale_infotracacademiconefile_A771217795 gale_incontextgauss_ISR_A771217795 gale_incontextgauss_IOV_A771217795 gale_healthsolutions_A771217795 crossref_primary_10_1371_journal_pone_0286791 crossref_citationtrail_10_1371_journal_pone_0286791 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-02 |
| PublicationDateYYYYMMDD | 2023-11-02 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | San Francisco |
| PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationYear | 2023 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | A. Sharma (pone.0286791.ref006) 2021; 28 KR Foster (pone.0286791.ref001) 2014; 5 SEK ÖZCAN S˙IM (pone.0286791.ref019) 2021; 16 MB Al Snousy (pone.0286791.ref048) 2011; 12 MA Talukder (pone.0286791.ref025) 2022; 205 El Akadi (pone.0286791.ref044) 2011; 26 pone.0286791.ref039 K Kourou (pone.0286791.ref007) 2014; 13 B. Schroeder (pone.0286791.ref008) 2022 B Zhang (pone.0286791.ref027) 2019; 144 DA Notterman (pone.0286791.ref046) 2001; 61 D Sengupta (pone.0286791.ref002) A.S.M. Shafi (pone.0286791.ref014) 2020; 2 LW Shutao (pone.0286791.ref031) 2008; 12 MJ Abdi (pone.0286791.ref034) 2012; 2012 pone.0286791.ref045 E D’Hondt (pone.0286791.ref004) 2022; 2 ELJ Garcia-Nieto (pone.0286791.ref043) 2007 pone.0286791.ref047 M Tiwari (pone.0286791.ref012) 2012; 8 pone.0286791.ref041 pone.0286791.ref042 M-W Huang (pone.0286791.ref010) 2017; 12 O Elemento (pone.0286791.ref005) 2021; 21 Olvi Mangasarian (pone.0286791.ref009) 1970; 43 KA Cahnyaningrum (pone.0286791.ref026) 2020 E Ali (pone.0286791.ref040) 2011; 26 MA Fahami (pone.0286791.ref036) 2021; 24 U Alon (pone.0286791.ref037) 1999; 96 R Rafique (pone.0286791.ref050) 2021; 19 S Mohr (pone.0286791.ref013) 2002 S Rathore (pone.0286791.ref049) 2014; 11 M Mohamad (pone.0286791.ref032) 2005; 5 F Eibe (pone.0286791.ref038) 2016 pone.0286791.ref051 Y Lu (pone.0286791.ref016) 2003; 28 M Al-Rajab (pone.0286791.ref017) 2021; 16 M. Shehab (pone.0286791.ref015) 2022; 145 L Shutao (pone.0286791.ref033) 2008; 12 Essam H. Houssein (pone.0286791.ref030) 2022 AK Groen (pone.0286791.ref018) 2001; 35 S Li (pone.0286791.ref035) 2008; 12 C.M Saporetti (pone.0286791.ref003) 2022; 143 AB Tufail (pone.0286791.ref011) 2021; 2021 pone.0286791.ref029 pone.0286791.ref023 Essam H. Houssein (pone.0286791.ref028); 9 pone.0286791.ref020 pone.0286791.ref021 Hanaa Salem (pone.0286791.ref022) 2017; 50 E Nazari (pone.0286791.ref024) 2021; 25 |
| References_xml | – volume: 12 start-page: e0161501 issue: 1 year: 2017 ident: pone.0286791.ref010 article-title: SVM and SVM Ensembles in Breast Cancer Prediction publication-title: PLoS ONE doi: 10.1371/journal.pone.0161501 – start-page: 1 year: 2020 ident: pone.0286791.ref026 article-title: Microarray Gene Expression Classification for Cancer Detection using Artificial Neural Networks and Genetic Algorithm Hybrid Intelligence publication-title: International Conference on Data Science and Its Applications (ICoDSA) – volume: 145 start-page: 105458 year: 2022 ident: pone.0286791.ref015 article-title: Machine learning in medical applications: A review of state-of-the-art Methods publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105458 – volume: 16 start-page: e0249094 issue: 4 year: 2021 ident: pone.0286791.ref017 article-title: A framework model using multifilter feature selection to enhance colon cancer classification publication-title: PLoS ONE doi: 10.1371/journal.pone.0249094 – volume: 28 start-page: 4875 year: 2021 ident: pone.0286791.ref006 article-title: A Systematic Review of Applications of Machine Learning in Cancer Prediction and Diagnosis publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-021-09556-z – volume: 28 start-page: 243 issue: 4 year: 2003 ident: pone.0286791.ref016 article-title: Cancer classification using gene expression data publication-title: Information Systems doi: 10.1016/S0306-4379(02)00072-8 – volume: 2021 start-page: 9025470 year: 2021 ident: pone.0286791.ref011 article-title: Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions publication-title: Comput Math Methods Med doi: 10.1155/2021/9025470 – volume: 21 start-page: 747 year: 2021 ident: pone.0286791.ref005 article-title: Artificial intelligence in cancer research, diagnosis and therapy publication-title: Nat Rev Cancer doi: 10.1038/s41568-021-00399-1 – volume: 144 start-page: e0214406 year: 2019 ident: pone.0286791.ref027 article-title: Classification of high dimensional biomedical data based on feature selection using redundant removal publication-title: PLOS ONE doi: 10.1371/journal.pone.0214406 – volume: 12 start-page: 693 issue: 7 year: 2008 ident: pone.0286791.ref033 article-title: Gene selection using genetic algorithm and support vector machines publication-title: Soft Computing doi: 10.1007/s00500-007-0251-2 – volume-title: Koch Institute. Using machine learning to identify undiagnosable cancers year: 2022 ident: pone.0286791.ref008 – volume: 96 start-page: 6745 year: 1999 ident: pone.0286791.ref037 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.12.6745 – volume: 25 start-page: 101419 year: 2021 ident: pone.0286791.ref024 article-title: Machine learning approaches for classification of colorectal cancer with and without feature selection method on Microarray Data publication-title: Gene Reports doi: 10.1016/j.genrep.2021.101419 – volume: 12 start-page: 693 issue: 7 year: 2008 ident: pone.0286791.ref031 article-title: Gene selection using genetic algorithm and support vector machines publication-title: Soft Comput doi: 10.1007/s00500-007-0251-2 – volume: 61 start-page: 3124 issue: 7 year: 2001 ident: pone.0286791.ref046 article-title: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays publication-title: Cancer Research. – volume-title: Data Mining: Practical Machine Learning Tools and Techniques year: 2016 ident: pone.0286791.ref038 article-title: r – volume: 24 start-page: 100605 year: 2021 ident: pone.0286791.ref036 article-title: Detection of effective genes in colon cancer: A machine learning approach publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2021.100605 – volume: 13 start-page: 8 year: 2014 ident: pone.0286791.ref007 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2014.11.005 – year: 2002 ident: pone.0286791.ref013 article-title: Microarrays as Cancer Keys: An Array of Possibilities. publication-title: Journal of Clinical Oncology – volume: 12 start-page: 73 issue: 2 year: 2011 ident: pone.0286791.ref048 article-title: Suite of decision tree-based classification algorithms on cancer gene expression data publication-title: Egyptian Informatics Journal doi: 10.1016/j.eij.2011.04.003 – ident: pone.0286791.ref051 doi: 10.1109/SICN47020.2019.9019357 – volume: 9 start-page: 64895 issue: 2021 ident: pone.0286791.ref028 article-title: A hybrid barnacles mating optimizer algorithm with support vector machines for gene selection of microarray cancer classification publication-title: IEEE Access – ident: pone.0286791.ref039 doi: 10.9790/3021-0281112119 – ident: pone.0286791.ref020 doi: 10.1109/ISCV54655.2022.9806115 – ident: pone.0286791.ref047 – ident: pone.0286791.ref029 doi: 10.1049/icp.2021.2680 – volume: 26 start-page: 487 year: 2011 ident: pone.0286791.ref040 article-title: A two-Stage gene selection scheme utilizing MRMR filter and GA wrapper publication-title: Knowledge and Information Systems doi: 10.1007/s10115-010-0288-x – ident: pone.0286791.ref041 doi: 10.1109/IADCC.2015.7154710 – volume: 16 start-page: 7 year: 2021 ident: pone.0286791.ref019 publication-title: Biology Direct doi: 10.1186/s13062-020-00290-3 – volume: 43 year: 1970 ident: pone.0286791.ref009 article-title: Breast Cancer Diagnosis and Prognosis Via Linear Programming publication-title: Operations Research – volume: 50 start-page: 124 year: 2017 ident: pone.0286791.ref022 article-title: Classification of human cancer diseases by gene expression profiles publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.11.026 – volume: 8 start-page: 3 issue: 1 year: 2012 ident: pone.0286791.ref012 article-title: Microarrays and cancer diagnosis publication-title: J Cancer Res Ther doi: 10.4103/0973-1482.95166 – volume: 5 start-page: 91 year: 2005 ident: pone.0286791.ref032 article-title: A hybrid of genetic algorithm and support vector Machine for features selection and classification of gene expression microarray publication-title: International Journal of Computational Intelligence and its Applications doi: 10.1142/S1469026805001465 – ident: pone.0286791.ref023 doi: 10.1109/SIU49456.2020.9302351 – volume: 205 start-page: 117695 year: 2022 ident: pone.0286791.ref025 article-title: Machine learning-based lung and colon cancer detection using Deep feature extraction and ensemble learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117695 – volume: 2012 start-page: 7 year: 2012 ident: pone.0286791.ref034 article-title: A Novel Weighted Support Vector Machine Based on Particle Swarm Optimization for Gene Selection and Tumor Classification publication-title: COMPUTATIONAL and Mathematical Methods in Medicine – volume: 19 start-page: 4003 year: 2021 ident: pone.0286791.ref050 article-title: Machine learning in the prediction of cancer therapy publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2021.07.003 – start-page: 405 volume-title: Intelligent Data-Centric Systems, Machine Learning, Big Data, and IoT for Medical Informatics ident: pone.0286791.ref002 – volume: 12 start-page: 1039 issue: 11 year: 2008 ident: pone.0286791.ref035 article-title: Gene selection using hybrid particle swarm optimization and genetic algorithm publication-title: Soft Comput doi: 10.1007/s00500-007-0272-x – start-page: 1 year: 2022 ident: pone.0286791.ref030 article-title: Gene selection for microarray cancer classification based on manta rays foraging optimization and support vector machines publication-title: Arabian Journal for Science and Engineering – volume: 35 start-page: 295 issue: 2 year: 2001 ident: pone.0286791.ref018 article-title: The pros and cons of gene expression analysis by microarrays – ident: pone.0286791.ref021 doi: 10.1109/ICIAFS.2018.8913362 – volume: 26 start-page: 487 year: 2011 ident: pone.0286791.ref044 article-title: A two-stage gene selection scheme utilizing MRMR filter and GA wrapper publication-title: Knowledge and Information Systems doi: 10.1007/s10115-010-0288-x – volume: 11 start-page: 1131 issue: 6 year: 2014 ident: pone.0286791.ref049 article-title: GECC: gene expression based ensemble Classification of colon samples publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) doi: 10.1109/TCBB.2014.2344655 – start-page: 284 year: 2007 ident: pone.0286791.ref043 article-title: Gene Selection In Cancer Classification using PSO/SVM and GA/SVM Hybrid Algorithms publication-title: IN IEEE Congress On Evolutionary Computation, 2007. CEC 2007 – ident: pone.0286791.ref042 doi: 10.1109/ICCIT.2007.153 – volume: 143 year: 2022 ident: pone.0286791.ref003 article-title: Hybrid machine learning, models for estimating total organic carbon from mineral constituents in core samples of shale gas fields publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2022.105783 – volume: 2 start-page: 1243 year: 2020 ident: pone.0286791.ref014 article-title: Detection of colon cancer based on microarray Dataset using machine learning as a feature selection and classification techniques publication-title: SN Appl. Sci doi: 10.1007/s42452-020-3051-2 – volume: 2 start-page: 162 year: 2022 ident: pone.0286791.ref004 article-title: Identifying and evaluating barriers for the implementation of machine learning in the intensive care unit publication-title: Communications Medicine doi: 10.1038/s43856-022-00225-1 – ident: pone.0286791.ref045 doi: 10.1109/ICET.2014.7021014 – volume: 5 start-page: 94 issue: 13 year: 2014 ident: pone.0286791.ref001 article-title: Machine learning, medical diagnosis, and biomedical engineering research—commentary publication-title: Biomed Eng Online doi: 10.1186/1475-925X-13-94 |
| SSID | ssj0053866 |
| Score | 2.4583647 |
| SecondaryResourceType | review_article |
| Snippet | Colon cancer is a significant global health problem, and early detection is critical for improving survival rates. Traditional detection methods, such as... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | e0286791 |
| SubjectTerms | Accuracy Algorithms Analysis Biology and Life Sciences Breast cancer Cancer Cancer research Classification Colon cancer Colonoscopy Colorectal cancer Computer and Information Sciences Datasets Demography Diagnosis Evaluation Feature extraction Feature selection Gene expression Genes Genetic algorithms Genetic analysis Genetic aspects Genetic research Global health Immunoglobulins Invasiveness Learning algorithms Literature reviews Machine learning Mathematical optimization Medical research Medicine and Health Sciences Particle swarm optimization Performance prediction Physical Sciences Prostate cancer Public health Redundancy Research and Analysis Methods Search engines Support vector machines Survival |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQX-AFMX5oYQMMQgIe0iVOYsePBVEVREFiDO3Nchx7RSpptbRCe-Q_585xowYhbQ-81ucove98vlPuviPkpa3AbpirYixJiHOX5nEFgUmss0pkuYUIucZG4flnPjvLP54X53ujvrAmrKMH7hR3klhTJ05zVqdZXjgm4UIuDNfSyVrn3KD3TUq5S6Y6HwynmPPQKJeJ9CTgMl6vGjuGG5V7Ts69i8jz9fdeebRertpByPl3weTtbbPWV7_0crl3G03vkbshjKST7vUPyC3b3CcH4aC29HVgk37zgPye0MUVtmXRn75u0tIwKOKCOutZPWnrZ-EAQNTPxYln80_T0zndrKhtFmgVFKzMUoOBNlYWeTCp7uJXFNtVJVKkwG6owT2XLcXq09ZuHpKz6ftv72ZxmLsQGy4SnE4PgYM0hSlyk6SVqXnpiQetFRVebjKvZM1q5wTnkO_IpC40M5pJ52RZpTZ7REYNaPqQUO4cK0rmtEldnvFKa17XJQDopMPUJSLZDgRlAik5zsZYKv-lTUBy0ilUIXQqQBeRuN-17kg5rpF_i_j2skip7X8AQ1PB0NR1hhaRZ2gdqutP7R2DmgiRQl4nZBGRF14CaTUarNu50Nu2VR--fL-B0OnXgdCrIORWoA6jQ68E_Cek6xpIHg8kwTmYwfIh2vJOK62CDFEiBV7OYefOvv-9_LxfxodiLV5jV9tWsbLkGRNJKSJSDs7FQMHDlebHwnOXpwlnmDNEZNwfoRth-Ph_YHhE7jAIUn0vKTsmo83l1j6BoHJTPfX-4w8ewHlO priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dbtMwFLZGdwESQmyAFhhgEBJwkS5xEju5QKhDqwqiBW0M7S5y_NMilaQ0rdDukHgFnpAnwcdxyoIQ7LY-rtrz58_JOd9B6IkqjN8QXfhQkuDHOoz9wgATn0cFi2JlELKERuHxhI5O4zdnydkWmrS9MFBW2eZEm6hlJeAZ-YGBthlwd8X05eKLD1Oj4O1qO0KDu9EK8oWlGLuCtgkwY_XQ9uHR5P1xm5tNdFPqGugiFh44e_UXVan65qSllqvzwgFlefw32bq3mFd1B4r-WUh5dV0u-PlXPp9fOKWGN9ENBy_xoPGHHbSlyl10vXk2h5uWo1204wK6xs8c6_TzW-j7AM_OoX0Lf7b1lQq7gRJTrJVl_8S1nZljDInt_Jyf336Mxm-HJ2O8qrAqZ-A_2PijwgIgOdQgWbNj3iBdEGvrFzGQZZdYwJ5ljaFOtVar2-h0ePTh1ch3Exp8QVkAc-wNxMhEIpJYBGEhJE0tRaFSrIBjMIuLTBKpNaPU3IyyQCacCE4yrbO0CFV0B_VKo_s9hKnWJEmJ5iLUcUQLzqmUaZgInWm45Hgoas2SC0dfDlM05rl9J8fMNaZRcQ7GzJ0xPeRvdi0a-o7_yB-CxTeyQL5tP6iW09zFch4oIQPNKZFhFCeaZAYjJoLyTGeSx1R46CH4S950sm5SSD5gzDglY1niocdWAgg4SqjwmfJ1Xeev3328hNDJcUfoqRPSlVGH4K6rwvwnIPbqSO53JE0aEZ3lPfDuVit1_jvgzM7W4_--_GizDF8KVXulqtZ1TtKURoQFKfNQ2omUjoK7K-WnmWU5DwNK4Hbhof4mqC5lw7v__rn30DVigKrtJyX7qLdartV9AyxXxQOXLX4BbL99nQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaW7gEuwPKjDSxgEOLnkGziJHZ8LIiqILoglqLlgCLHsbeIklabVGg5ICRegSfkSfA4TkVWIJYDt6iesZLxeDzTmfmM0F1VGL0huvChJMFPdJT4hXFMfBEXLE6U8ZBLaBSe7NHxNHl2kB5soHddL4yToIkR54vaZvLhYVGpXSfJXcArarOnQRSzqOMIloYoMKclZTy6ZxGH4J-xBhqQzqBNmhpXfYA2p3svh2_bTDPxKQlj1073p5l6x5VF9V_b7gG8Wc8xPVlWeXZVLcXxJzGf_3JmjS6gL93XtqUqH4JVUwTy8wkgyP8mjovovPN28bCdZQttqOoS2nL2pMYPHOj1w8vo2xDPjqF7DH-05Z0Ku_ssDrFWFnwU1_bKHqNH2F7f8-Pr9_Hk-Wh_gpsFVtUM1Beb7aCwhIgASqCs1mHROtpA1pVPYsDqrrAEnqMaQ5lsrZoraDp68vrx2HcXRPiSsrDxIRXHuExlmsgwKmRJM4uQqBQr4BTmScFLUmrNKDWBGQ_LVBApCNeaZ0Wk4qtoUBk5bSNMtSZpRrSQkU5iWghByzKLUqm5hhjLQ3GnB7l06Olwicc8tylBZqKoVqQ5CD53gveQv-Zatughf6F_BCq2pgXsb_uDWfncrXgeKlmGWlBSRnGSasKNi5pKKrjmpUio9NAtUNC8baRdW7B8yFhkAlDGUw_dsRSA_1FBgdGhWNV1_vTFm1MQ7b_qEd13RHphxCGFa-ow3wSK2aPc6VEaKyZ7w9ug2Z1U6tyEshyw-hJqOLst9vvh2-thmBSKBiu1WNU5yTIaExZmzENZb2v2BNwfqd7PLMh6FFICRsJDwXoXn2oNr_0rw3V0jhjP2Ta4kh00aI5W6obxdJviprNXPwEnPbH5 priority: 102 providerName: Unpaywall |
| Title | A hybrid machine learning feature selection model—HMLFSM to enhance gene classification applied to multiple colon cancers dataset |
| URI | https://www.proquest.com/docview/3069192146 https://www.proquest.com/docview/2886327087 https://pubmed.ncbi.nlm.nih.gov/PMC10621932 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0286791&type=printable https://doaj.org/article/0ecd0fa62d1345f292515c6a9f9da46c http://dx.doi.org/10.1371/journal.pone.0286791 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaW7gEuiOWhDSzFICTgkCpxEjs-INRdbSmIltUuReUUOY7dIpWkNK2gR_45HjeJCFpELznE40idh2emnvkGoecqNXpDdOpCSYIbaj90UxOYuCJIWRAqEyFn0Cg8GtPhJHw_jaYHqJ7ZWjGwvDa1g3lSk9Wi9_P79o0x-Nd2agPz6029ZZGrnvGXlEE7-6HxVRyGOYzC5l7BWLe9vYSoxaXEC6pmun99peWsLKZ_c3J3louibIWlfxdV3tzkS7H9IRaLPzzW4A66XYWauL_TjSN0oPK76Kgy5hK_rBCnX91Dv_p4voXWLfzN1lYqXA2TmGGtLPInLu28HCNEbGfnuMPRh8HVCK8LrPI5aA42mqiwhGAcqo-swLHYxbhAVlcuYoDJzrGEPasSQ4Vqqdb30WRw_uls6FazGVxJmQcT7E1wwWUko1B6fiozGltwQqVYCg6QhynPSKY1o9TkRNzLIkGkIFxrHqe-Ch6gTm44fYww1ZpEMdFC-joMaCoEzbLYj6TmGtIbBwW1EBJZAZfD_IxFYm_jmElgdgxNQHRJJToHuc2u5Q644z_0pyDfhhZgt-2LYjVLKitOPCUzTwtKMj8II024iQ4jSQXXPBMhlQ56AtqR7HpYm8Mj6TPmm9yP8chBzywFQG_kUNszE5uyTN59_LwH0dVli-hFRaQLww4pqn4K85sA0qtFedKiNAeIbC0fgy7XXCkTk0VygMkLqdlZ6_f1y0-bZfgo1OvlqtiUCYljGhDmxcxBccsuWgxur-Rf5xbf3PcoAQt1UK8xob1k-HAfvj1Ct4gJVG0_KTlBnfVqox6bwHKddtENNmXmGZ_58By87aLD0_PxxWXX_lXTtWeJeTcZX_S__Aa0W4Dw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWclgkhNgFtIWFNQgEHNJNnMRJDgiVn6pl20Vif9SbcRy7RSpJaVqtekPiFXgOHoonweP8sEEI9rLXemylnvH4m2TmG4Qey1jbDVGxBSkJlqccz4o1MLG4GweuJzVCTqBQeHRI-yfeu7E_3kA_qloYSKusfKJx1Ekm4B35voa2EXB3efTl_IsFXaPg62rVQqMwiwO5PtMhW_5i8Ebr9wkhvbfHr_tW2VXAEjSwofe6vhYj4QvfE7YTi4SGhlZPyiAG1x15cZSQRKmAUo3mIzvxORGcREpFYexIV697BV319DLQMSEY1wGe9h2UluV5buDsl9bQmWep7Oh7nBom0HPXn-kSUN8FrfksyxtA9880zc1VOufrMz6bnbsDezfRjRK84m5hbVtoQ6bb6Hrx5g8XBU3baKt0Fzl-VnJaP7-FvnXxdA3FYfizyd6UuGxXMcFKGm5RnJuOPNpMsOnO8_Pr9_5o2Dsa4WWGZToF68Ta2iUWAPghw8kYFeYFjgaxKjsSAxV3igXMWeQYsmBzubyNTi5FU3dQK9V7v4MwVYr4IVFcOMpzacw5TZLQ8YWKFIRQbeRWamGiJEeHHh0zZr74BTpIKraYgTJZqcw2supZ84Ic5D_yr0DjtSxQe5sfssWElZ6C2VIktuKUJI7r-YpEGoH6gvJIRQn3qGijPbAXVtTJ1g6KdYPA0fFlEPlt9MhIAL1HCvlDE77KczZ4f3oBoaMPDaGnpZDK9HYIXtZs6P8EtGENyd2GpHZSojG8A9Zd7UrOfh9nPbOy-L8PP6yHYVHICUxltsoZCUPqksAOgzYKGyelscHNkfTT1HCoOzYlELu0Uac-VBfS4d1_P-4e2uwfj4ZsODg8uIeuEQ2JTeUq2UWt5WIl72sIu4wfGL-B0cfLdlS_AC0TsyQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELVKkQAJIVpAXSjUIBBwyDZxEjs-IFQoqy7tFkQp2ltwHLtFWpKl2VXVGxK_wNfwOXwJHscJDULQS6_xOEo8z-OZZOYNQg9VZnBDdOZBSoIX6SDyMuOYeCLMWBgp4yHnUCg82qVb-9HrcTxeQD-aWhhIq2xsojXUeSnhG_m6cW05cHdFdF27tIi3m4Pn0y8edJCCP61NO40aItvq5NiEb9Wz4abR9SNCBq_ev9zyXIcBT1LmQx92c0RyGcs4kn6QyZwmlmJPKZaBGedRxnOSa80oNZ499_NYECkI15onWaBCc98L6CILQw7phGzcBnvGjlDqSvVCFqw7ZPSnZaH65kynlhX01FFoOwa058LidFJWHaf3z5TNy_NiKk6OxWRy6jwcXEfXnCOLN2rkLaEFVSyjq_VXQFwXNy2jJWc6KvzE8Vs_vYG-beDDEygUw59tJqfCrnXFAdbK8oziynbnMZDBtlPPz6_ft0Y7g70RnpVYFYeAVGyQr7AE5x-ynSzAsKh9ahBrMiUx0HIXWMKcowpDRmylZjfR_rlo6hZaLMzaryBMtSZxQrSQgY5CmglB8zwJYqm5hnCqh8JGLal0ROnQr2OS2r9_zARM9RKnoMzUKbOHvHbWtCYK-Y_8C9B4Kws03_ZCeXSQOquR-krmvhaU5EEYxZpw443GkgqueS4iKntoDfCS1jWzrbFKNxgLTKzJeNxDD6wEUH0UsGkOxLyq0uGbD2cQ2nvXEXrshHRplkMKV79h3gkoxDqSqx1JY7BkZ3gF0N2sSpX-3tpmZoP4vw_fb4fhppAfWKhyXqUkSWhImJ-wHko6O6WzwN2R4tOh5VMPfEogjumhfrupzqTD2_9-3DV0yZiodGe4u30HXSHGO7ZFrGQVLc6O5uqu8WZn2T1rNjD6eN526he4ebdn |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaW7gEuwPKjDSxgEOLnkGziJHZ8LIiqILoglqLlgCLHsbeIklabVGg5ICRegSfkSfA4TkVWIJYDt6iesZLxeDzTmfmM0F1VGL0huvChJMFPdJT4hXFMfBEXLE6U8ZBLaBSe7NHxNHl2kB5soHddL4yToIkR54vaZvLhYVGpXSfJXcArarOnQRSzqOMIloYoMKclZTy6ZxGH4J-xBhqQzqBNmhpXfYA2p3svh2_bTDPxKQlj1073p5l6x5VF9V_b7gG8Wc8xPVlWeXZVLcXxJzGf_3JmjS6gL93XtqUqH4JVUwTy8wkgyP8mjovovPN28bCdZQttqOoS2nL2pMYPHOj1w8vo2xDPjqF7DH-05Z0Ku_ssDrFWFnwU1_bKHqNH2F7f8-Pr9_Hk-Wh_gpsFVtUM1Beb7aCwhIgASqCs1mHROtpA1pVPYsDqrrAEnqMaQ5lsrZoraDp68vrx2HcXRPiSsrDxIRXHuExlmsgwKmRJM4uQqBQr4BTmScFLUmrNKDWBGQ_LVBApCNeaZ0Wk4qtoUBk5bSNMtSZpRrSQkU5iWghByzKLUqm5hhjLQ3GnB7l06Olwicc8tylBZqKoVqQ5CD53gveQv-Zatughf6F_BCq2pgXsb_uDWfncrXgeKlmGWlBSRnGSasKNi5pKKrjmpUio9NAtUNC8baRdW7B8yFhkAlDGUw_dsRSA_1FBgdGhWNV1_vTFm1MQ7b_qEd13RHphxCGFa-ow3wSK2aPc6VEaKyZ7w9ug2Z1U6tyEshyw-hJqOLst9vvh2-thmBSKBiu1WNU5yTIaExZmzENZb2v2BNwfqd7PLMh6FFICRsJDwXoXn2oNr_0rw3V0jhjP2Ta4kh00aI5W6obxdJviprNXPwEnPbH5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+machine+learning+feature+selection+model-HMLFSM+to+enhance+gene+classification+applied+to+multiple+colon+cancers+dataset&rft.jtitle=PloS+one&rft.au=Al-Rajab%2C+Murad&rft.au=Lu%2C+Joan&rft.au=Xu%2C+Qiang&rft.au=Kentour%2C+Mohamed&rft.date=2023-11-02&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=11&rft.spage=e0286791&rft_id=info:doi/10.1371%2Fjournal.pone.0286791&rft.externalDBID=ISR&rft.externalDocID=A771217795 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |