A simple planning problem for COVID-19 lockdown: a dynamic programming approach
A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Program...
Saved in:
Published in | Economic theory Vol. 77; no. 1-2; pp. 169 - 196 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2024
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0938-2259 1432-0479 1432-0479 |
DOI | 10.1007/s00199-023-01493-1 |
Cover
Abstract | A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton–Jacobi–Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach. |
---|---|
AbstractList | A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton–Jacobi–Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach. A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton-Jacobi-Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach. Keywords Controlled SIRD model * Optimal lockdown policies * Optimal control with state space constraints * Optimality conditions * Viscosity solutions Mathematics Subject Classification 49K15 * 49L20 * 49L25 JEL Classification C61 * E23 * I12 * I15 * I18 A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton-Jacobi-Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach.A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton-Jacobi-Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach. |
Audience | Academic |
Author | Gozzi, Fausto Zanco, Giovanni Lippi, Francesco Calvia, Alessandro |
Author_xml | – sequence: 1 givenname: Alessandro orcidid: 0000-0003-4448-6877 surname: Calvia fullname: Calvia, Alessandro email: acalvia@luiss.it organization: Dipartimento di Economia e Finanza, LUISS University – sequence: 2 givenname: Fausto surname: Gozzi fullname: Gozzi, Fausto organization: Dipartimento di Economia e Finanza, LUISS University – sequence: 3 givenname: Francesco surname: Lippi fullname: Lippi, Francesco organization: Dipartimento di Economia e Finanza, LUISS University, Einaudi Institute for Economics and Finance – sequence: 4 givenname: Giovanni surname: Zanco fullname: Zanco, Giovanni organization: Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Università di Siena |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37360773$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URKeFP8ACRWLDgpRrO45jNtVoeFWqNBtgazmOk3FJ7GAnoP57HKalnQpVlvz8zrF8fE_QkfPOIPQSwxkG4O8iABYiB0JzwIWgOX6CVrigJIeCiyO0AkGrnBAmjtFJjFcAwFhZPUPHlNMSOKcrtF1n0Q5jb7KxV85Z12Vj8HVvhqz1Idtsv198yLHIeq9_NP63e5-prLl2arB6AbughmERqTGtlN49R09b1Ufz4mY8Rd8-ffy6-ZJfbj9fbNaXuS5LMeWGGoJ1xVVVg1Y6zXnRUlNQ1pStqgsjSgKYGdUw1gIjFQZeNia9stCtKoCeovO97zjXg2m0cVNQvRyDHVS4ll5ZeXji7E52_pfEgFMKlCSHNzcOwf-cTZzkYKM2fYrB-DlKUlEgBAtgCX39AL3yc3DpfZIITBnnFdA7qlO9kda1Pl2sF1O55hUtiOCkSNTZf6jUGpMyTR_c2rR_IHh7T1DP0ToTUxdtt5tip-YYD_FX94P5l8jtlyeg2gM6-BiDaaW2k5qsX3KyfQpILtUl99UlU3XJv9UlcZKSB9Jb90dFdC-KCXadCXfhPaL6A4TF3pw |
CitedBy_id | crossref_primary_10_1007_s00199_023_01541_w crossref_primary_10_1007_s00199_023_01506_z crossref_primary_10_1007_s00199_023_01531_y crossref_primary_10_1080_24725579_2024_2428953 crossref_primary_10_1007_s00199_022_01475_9 crossref_primary_10_1007_s40505_024_00286_6 crossref_primary_10_3390_math12070933 crossref_primary_10_1007_s10203_023_00406_0 |
Cites_doi | 10.2139/ssrn.3566865 10.1007/s00199-019-01214-7 10.1007/BF00932465 10.1257/aeri.20200590 10.1007/s00199-005-0025-y 10.1016/j.jet.2021.105293 10.1016/j.matcom.2016.11.010 10.1016/j.jmateco.2020.102453 10.1016/0362-546X(89)90056-4 10.3386/w26981 10.1090/S0273-0979-1992-00266-5 10.1137/0324032 10.1016/j.jmateco.2007.05.002 10.1016/j.jmateco.2021.102490 10.1090/S0002-9947-1983-0690039-8 10.3386/w27483 10.1093/ej/ueac026 10.1093/rfs/hhab076 10.1137/17M1139989 10.1007/978-1-4612-6380-7_1 10.1038/s41467-022-30642-8 10.1007/s00199-022-01475-9 10.1101/2020.10.27.20221085 10.1257/aeri.20200201 10.1093/rfs/hhab040 10.21034/sr.595 10.1016/j.jmateco.2020.102455 10.1111/jpet.12486 10.1007/s00285-021-01628-9 10.1007/b138356 10.1093/ej/uead024 10.1016/j.mbs.2017.07.011 10.1016/j.jmateco.2013.10.004 10.1016/j.jmateco.2020.09.008 10.1007/s00199-022-01468-8 10.1007/978-0-8176-4755-1 10.1016/j.jmateco.2021.102476 10.1007/s00199-023-01485-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. COPYRIGHT 2024 Springer The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: COPYRIGHT 2024 Springer – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM N95 3V. 7WY 7WZ 7XB 87Z 8AO 8BJ 8FK 8FL 8G5 ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FQK FRNLG F~G GNUQQ GUQSH JBE K60 K6~ L.- M0C M2O MBDVC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s00199-023-01493-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale Business: Insights ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Pharma Collection International Bibliography of the Social Sciences (IBSS) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Central International Bibliography of the Social Sciences Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep International Bibliography of the Social Sciences ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global (OCUL) Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ABI/INFORM Global (Corporate) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 1432-0479 |
EndPage | 196 |
ExternalDocumentID | PMC10105532 A783429724 37360773 10_1007_s00199_023_01493_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 101054421-DCS funderid: http://dx.doi.org/10.13039/501100000781 – fundername: Ministero dell’Istruzione, dell’Università e della Ricerca grantid: 2017FKHBA8 001 funderid: http://dx.doi.org/10.13039/501100003407 – fundername: ; grantid: 2017FKHBA8 001 – fundername: ; grantid: 101054421-DCS |
GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3R3 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 8AO 8FL 8G5 8H~ 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHCP AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDZT ABECU ABECW ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABKVW ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ABYRZ ABYYQ ACAOD ACBXY ACDTI ACGFO ACGFS ACHQT ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACNXV ACOKC ACOMO ACPIV ACREN ACUHF ACVFL ACXJH ACYUM ACZOJ ADGDI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMHG ADPTO ADRFC ADTPH ADULT ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AEOHA AEPYU AESKC AETLH AEUPB AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAJD AHAVH AHBYD AHEXP AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APTMU ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC AZRUE B-. BA0 BAAKF BAPOH BBWZM BDATZ BENPR BEZIV BGNMA BHNFS BPHCQ BSONS C6C CAG CBXGM CCPQU CHNMF COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBA EBE EBLON EBO EBR EBS EBU EIOEI EJD EMK EOH EPL ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GPZZG GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HECYW HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IBB IEA IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JAB JBMMH JBSCW JBU JCJTX JENOY JHFFW JKQEH JLEZI JLXEF JPL JPPEU JSODD JST JZLTJ K1G K60 K6~ KDC KOV KOW LAS LLZTM M0C M2O M4Y MA- N2Q N95 N9A NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM P19 P2P P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R-Y R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SA0 SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XI7 YLTOR Z45 Z7X Z81 Z83 Z88 Z8R Z8U Z8W Z92 ZL0 ZMTXR ZY4 ZYFGU ~8M ~EX ~KM AAOAC AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ASMEE ATHPR AYFIA CITATION PHGZM PHGZT PUEGO NPM ACMFV AEIIB PMFND 7XB 8BJ 8FK FQK JBE L.- MBDVC PKEHL PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c669t-e3e21c87a8b0cac21c74f3e435d6fab4e962015ead55f05281076de1494cfa403 |
IEDL.DBID | BENPR |
ISSN | 0938-2259 1432-0479 |
IngestDate | Tue Sep 30 17:15:07 EDT 2025 Wed Oct 01 15:04:55 EDT 2025 Fri Jul 25 22:19:14 EDT 2025 Tue Jun 17 21:58:18 EDT 2025 Tue Jun 10 20:59:52 EDT 2025 Fri Jun 27 03:21:29 EDT 2025 Wed Feb 19 02:23:22 EST 2025 Wed Oct 01 04:33:05 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 Fri Feb 21 02:41:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Controlled SIRD model E23 I12 Optimal lockdown policies I15 Viscosity solutions Optimality conditions I18 49L20 Optimal control with state space constraints 49K15 49L25 C61 |
Language | English |
License | The Author(s) 2023. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c669t-e3e21c87a8b0cac21c74f3e435d6fab4e962015ead55f05281076de1494cfa403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4448-6877 |
OpenAccessLink | https://doi.org/10.1007/s00199-023-01493-1 |
PMID | 37360773 |
PQID | 2913577803 |
PQPubID | 30972 |
PageCount | 28 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10105532 proquest_miscellaneous_2830221905 proquest_journals_2913577803 gale_infotracmisc_A783429724 gale_infotracacademiconefile_A783429724 gale_businessinsightsgauss_A783429724 pubmed_primary_37360773 crossref_citationtrail_10_1007_s00199_023_01493_1 crossref_primary_10_1007_s00199_023_01493_1 springer_journals_10_1007_s00199_023_01493_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Economic theory |
PublicationTitleAbbrev | Econ Theory |
PublicationTitleAlternate | Econ Theory |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | GollierCCost-benefit analysis of age-specific deconfinement strategiesJ. Public Econ. Theory20202261746177110.1111/jpet.12486 CannarsaPSonerHMGeneralized one-sided estimates for solutions of Hamilton–Jacobi equations and applicationsNonlinear Anal. Theory Methods Appl. Int. Multidiscip. J.198913330532310.1016/0362-546X(89)90056-4 CrandallMGLionsP-LViscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1983277114210.1090/S0002-9947-1983-0690039-8 Acemoglu, D., Makhdoumi, A., Malekian, A., Ozdaglar, A.: Testing, voluntary social distancing and the spread of an infection. Technical report, National Bureau of Economic Research (2020) GoenkaALiuLInfectious diseases, human capital and economic growthEcon. Theory20207014710.1007/s00199-019-01214-7 Atkeson, A.G.: What will be the economic impact of COVID-19 in the US? Rough estimates of disease scenarios. Staff Report 595, Federal Reserve bank of Minneapolis (2020) GoenkaALiuLNguyenM-HSIR economic epidemiological models with disease induced mortalityJ. Math. Econ.20219310247610.1016/j.jmateco.2021.102476 CalviaAOptimal control of continuous-time Markov chains with noise-free observationSIAM J. Control Optim.20185632000203510.1137/17M1139989 AlvarezFArgenteDLippiFA simple planning problem for COVID-19 lock-down, testing, and tracingAm. Econ. Rev. Insights2021333678210.1257/aeri.20200201 GoenkaALiuLNguyenM-HInfectious diseases and economic growthJ. Math. Econ.201450345310.1016/j.jmateco.2013.10.004 EichenbaumMSRebeloSTrabandtMThe macroeconomics of epidemicsRev. Financ. Stud.202134115149518710.1093/rfs/hhab040 SonerHMOptimal control with state-space constraint. ISIAM J. Control Optim.198624355256110.1137/0324032 FedericoSFerrariGTorrenteM-LOptimal vaccination in a sirs epidemic modelEcon. Theory202210.1007/s00199-022-01475-9 LeitmannGStalfordHA sufficiency theorem for optimal controlJ. Optim. Theory Appl.1971816917410.1007/BF00932465 ZamanGKangYHChoGJungIHOptimal strategy of vaccination & treatment in an SIR epidemic modelMath. Comput. Simul.2017136637710.1016/j.matcom.2016.11.010ISSN 0378-4754 FabbriGGozziFZancoGVerification results for age-structured models of economic-epidemics dynamicsJ. Math. Econ.20219310.1016/j.jmateco.2020.102455 Fabbri, G., Gozzi, F., Swiech, A.: Stochastic optimal control in infinite dimension. In: 82 of Probability Theory and Stochastic Modelling, vol. 82. Springer, Cham (2017). Dynamic programming and HJB equations, with a contribution by Marco Fuhrman and Gianmario Tessitore FreniGGozziFSalvadoriNExistence of optimal strategies in linear multisector modelsEcon. Theory2006291254810.1007/s00199-005-0025-y SoraviaPOptimality principles and representation formulas for viscosity solutions of Hamilton–Jacobi equations. I. Equations of unbounded and degenerate control problems without uniquenessAdv. Differ. Equ.199942275296 Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions. In: Stochastic Modelling and Applied Probability, vol. 25, 4th edn. Springer, New York (2006) CrandallMGIshiiHLionsP-LUser’s guide to viscosity solutions of second order partial differential equationsAm. Math. Soc. Bull. New Ser.199227116710.1090/S0273-0979-1992-00266-5 Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control. In: Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser Boston, Inc., Boston, MA (2004) FreniGGozziFPignottiCOptimal strategies in linear multisector models: value function and optimality conditionsJ. Math. Econ.2008441558610.1016/j.jmateco.2007.05.002 Alvarez, F.E., Argente, D., Lippi, F.: A simple planning problem for COVID-19 lockdown. Technical report, National Bureau of Economic Research (2020) GoenkaALiuLNguyenM-HModelling optimal lockdowns with waning immunityEcon. Theory2022265810.1007/s00199-022-01468-8 Ciminelli, G., Garcia-Mandicó, S.: How healthcare congestion increases COVID-19 mortality: evidence from Lombardy, Italy. medRxiv (2020) FabbriGFedericoSFiaschiDGozziFMobility decisions, economic dynamics and epidemicEcon. Theory202310.1007/s00199-023-01485-1 AspriABerettaEGandolfiAWasmerEMortality containment vs. economics opening: optimal policies in a SEIARD modelJ. Math. Econ.202193102490, 1910.1016/j.jmateco.2021.102490 AshTBentoAMKaffineDRaoABentoAIDisease-economy trade-offs under alternative epidemic control strategiesNat. Commun.2022131331910.1038/s41467-022-30642-8 ElhiaMRachikMBenlahmarEOptimal control of an SIR model with delay in state and control variablesInt. Sch. Res. Not.201340354917 AcemogluDChernozhukovVWerningIWhinstonMDOptimal targeted lockdowns in a multigroup sir modelAm. Econ. Rev. Insights20213448750210.1257/aeri.20200590 PiguillemFShiLOptimal Covid-19 quarantine and testing policiesEcon. J.20221326472534256210.1093/ej/ueac026 Pollinger, S.: Optimal contact tracing and social distancing policies to suppress a new infectious disease. Econ. J. (2023). https://doi.org/10.1093/ej/uead024 SoraviaPOptimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints. Differential and integral equationsInt. J. Theory Appl.1999122275293 BolzoniLBonaciniESoresinaCGroppiMTime-optimal control strategies in SIR epidemic modelsMath. Biosci.2017292869610.1016/j.mbs.2017.07.011 Fleming, W.H., Rishel, R.W.: Deterministic and stochastic optimal control. In: Applications of Mathematics, no. 1. Springer-Verlag, Berlin, New York (1975) BalderramaRPeressuttiJPinascoJPVazquezFde la VegaCSOptimal control for a SIR epidemic model with limited quarantineNat. Sci. Rep.20221212583:1 Favero, C.: Why is COVID-19 mortality in Lombardy so high? Evidence from the simulation of a SEIHCR model. Covid Economics, Vetted and Real-Time Papers (2020) Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. In: Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, (1997). With appendices by Maurizio Falcone and Pierpaolo Soravia KetchesonDIOptimal control of an SIR epidemic through finite-time non-pharmaceutical interventionJ. Math. Biol.2021831710.1007/s00285-021-01628-9 BambiMGozziFInternal habits formation and optimalityJ. Math. Econ.20209116517210.1016/j.jmateco.2020.09.008 FarboodiMJaroschGShimerRInternal and external effects of social distancing in a pandemicJ. Econ. Theory202119610529310.1016/j.jet.2021.105293 JonesCPhilipponTVenkateswaranVOptimal mitigation policies in a pandemic: social distancing and working from homeRev. Financ. Stud.202134115188522310.1093/rfs/hhab076 FedericoSFerrariGTaming the spread of an epidemic by lockdown policiesJ. Math. Econ.20219310245310.1016/j.jmateco.2020.102453 F Piguillem (1493_CR39) 2022; 132 P Cannarsa (1493_CR14) 1989; 13 G Freni (1493_CR29) 2006; 29 1493_CR24 R Balderrama (1493_CR8) 2022; 12 MS Eichenbaum (1493_CR18) 2021; 34 1493_CR28 1493_CR27 A Goenka (1493_CR32) 2014; 50 C Gollier (1493_CR35) 2020; 22 M Bambi (1493_CR9) 2020; 91 A Calvia (1493_CR12) 2018; 56 1493_CR20 A Goenka (1493_CR34) 2022; 26 1493_CR40 C Jones (1493_CR36) 2021; 34 S Federico (1493_CR25) 2021; 93 S Federico (1493_CR26) 2022 A Goenka (1493_CR31) 2020; 70 DI Ketcheson (1493_CR37) 2021; 83 P Soravia (1493_CR43) 1999; 12 F Alvarez (1493_CR3) 2021; 3 L Bolzoni (1493_CR11) 2017; 292 G Leitmann (1493_CR38) 1971; 8 MG Crandall (1493_CR17) 1992; 27 G Fabbri (1493_CR22) 2023 1493_CR13 M Elhia (1493_CR19) 2013; 403549 A Aspri (1493_CR6) 2021; 93 G Fabbri (1493_CR21) 2021; 93 1493_CR10 1493_CR15 P Soravia (1493_CR42) 1999; 4 G Zaman (1493_CR44) 2017; 136 G Freni (1493_CR30) 2008; 44 A Goenka (1493_CR33) 2021; 93 HM Soner (1493_CR41) 1986; 24 M Farboodi (1493_CR23) 2021; 196 MG Crandall (1493_CR16) 1983; 277 D Acemoglu (1493_CR2) 2021; 3 1493_CR7 1493_CR1 T Ash (1493_CR5) 2022; 13 1493_CR4 |
References_xml | – reference: FabbriGGozziFZancoGVerification results for age-structured models of economic-epidemics dynamicsJ. Math. Econ.20219310.1016/j.jmateco.2020.102455 – reference: Atkeson, A.G.: What will be the economic impact of COVID-19 in the US? Rough estimates of disease scenarios. Staff Report 595, Federal Reserve bank of Minneapolis (2020) – reference: BolzoniLBonaciniESoresinaCGroppiMTime-optimal control strategies in SIR epidemic modelsMath. Biosci.2017292869610.1016/j.mbs.2017.07.011 – reference: Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. In: Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, (1997). With appendices by Maurizio Falcone and Pierpaolo Soravia – reference: FabbriGFedericoSFiaschiDGozziFMobility decisions, economic dynamics and epidemicEcon. Theory202310.1007/s00199-023-01485-1 – reference: Pollinger, S.: Optimal contact tracing and social distancing policies to suppress a new infectious disease. Econ. J. (2023). https://doi.org/10.1093/ej/uead024 – reference: ZamanGKangYHChoGJungIHOptimal strategy of vaccination & treatment in an SIR epidemic modelMath. Comput. Simul.2017136637710.1016/j.matcom.2016.11.010ISSN 0378-4754 – reference: Fleming, W.H., Rishel, R.W.: Deterministic and stochastic optimal control. In: Applications of Mathematics, no. 1. Springer-Verlag, Berlin, New York (1975) – reference: FreniGGozziFSalvadoriNExistence of optimal strategies in linear multisector modelsEcon. Theory2006291254810.1007/s00199-005-0025-y – reference: FarboodiMJaroschGShimerRInternal and external effects of social distancing in a pandemicJ. Econ. Theory202119610529310.1016/j.jet.2021.105293 – reference: AshTBentoAMKaffineDRaoABentoAIDisease-economy trade-offs under alternative epidemic control strategiesNat. Commun.2022131331910.1038/s41467-022-30642-8 – reference: GoenkaALiuLNguyenM-HModelling optimal lockdowns with waning immunityEcon. Theory2022265810.1007/s00199-022-01468-8 – reference: Acemoglu, D., Makhdoumi, A., Malekian, A., Ozdaglar, A.: Testing, voluntary social distancing and the spread of an infection. Technical report, National Bureau of Economic Research (2020) – reference: AspriABerettaEGandolfiAWasmerEMortality containment vs. economics opening: optimal policies in a SEIARD modelJ. Math. Econ.202193102490, 1910.1016/j.jmateco.2021.102490 – reference: CrandallMGIshiiHLionsP-LUser’s guide to viscosity solutions of second order partial differential equationsAm. Math. Soc. Bull. New Ser.199227116710.1090/S0273-0979-1992-00266-5 – reference: PiguillemFShiLOptimal Covid-19 quarantine and testing policiesEcon. J.20221326472534256210.1093/ej/ueac026 – reference: BalderramaRPeressuttiJPinascoJPVazquezFde la VegaCSOptimal control for a SIR epidemic model with limited quarantineNat. Sci. Rep.20221212583:1 – reference: CannarsaPSonerHMGeneralized one-sided estimates for solutions of Hamilton–Jacobi equations and applicationsNonlinear Anal. Theory Methods Appl. Int. Multidiscip. J.198913330532310.1016/0362-546X(89)90056-4 – reference: ElhiaMRachikMBenlahmarEOptimal control of an SIR model with delay in state and control variablesInt. Sch. Res. Not.201340354917 – reference: FedericoSFerrariGTaming the spread of an epidemic by lockdown policiesJ. Math. Econ.20219310245310.1016/j.jmateco.2020.102453 – reference: Fabbri, G., Gozzi, F., Swiech, A.: Stochastic optimal control in infinite dimension. In: 82 of Probability Theory and Stochastic Modelling, vol. 82. Springer, Cham (2017). Dynamic programming and HJB equations, with a contribution by Marco Fuhrman and Gianmario Tessitore – reference: Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions. In: Stochastic Modelling and Applied Probability, vol. 25, 4th edn. Springer, New York (2006) – reference: LeitmannGStalfordHA sufficiency theorem for optimal controlJ. Optim. Theory Appl.1971816917410.1007/BF00932465 – reference: CrandallMGLionsP-LViscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1983277114210.1090/S0002-9947-1983-0690039-8 – reference: SoraviaPOptimality principles and representation formulas for viscosity solutions of Hamilton–Jacobi equations. I. Equations of unbounded and degenerate control problems without uniquenessAdv. Differ. Equ.199942275296 – reference: Favero, C.: Why is COVID-19 mortality in Lombardy so high? Evidence from the simulation of a SEIHCR model. Covid Economics, Vetted and Real-Time Papers (2020) – reference: CalviaAOptimal control of continuous-time Markov chains with noise-free observationSIAM J. Control Optim.20185632000203510.1137/17M1139989 – reference: SoraviaPOptimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints. Differential and integral equationsInt. J. Theory Appl.1999122275293 – reference: Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control. In: Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser Boston, Inc., Boston, MA (2004) – reference: FreniGGozziFPignottiCOptimal strategies in linear multisector models: value function and optimality conditionsJ. Math. Econ.2008441558610.1016/j.jmateco.2007.05.002 – reference: JonesCPhilipponTVenkateswaranVOptimal mitigation policies in a pandemic: social distancing and working from homeRev. Financ. Stud.202134115188522310.1093/rfs/hhab076 – reference: KetchesonDIOptimal control of an SIR epidemic through finite-time non-pharmaceutical interventionJ. Math. Biol.2021831710.1007/s00285-021-01628-9 – reference: SonerHMOptimal control with state-space constraint. ISIAM J. Control Optim.198624355256110.1137/0324032 – reference: FedericoSFerrariGTorrenteM-LOptimal vaccination in a sirs epidemic modelEcon. Theory202210.1007/s00199-022-01475-9 – reference: GollierCCost-benefit analysis of age-specific deconfinement strategiesJ. Public Econ. Theory20202261746177110.1111/jpet.12486 – reference: AcemogluDChernozhukovVWerningIWhinstonMDOptimal targeted lockdowns in a multigroup sir modelAm. Econ. Rev. Insights20213448750210.1257/aeri.20200590 – reference: GoenkaALiuLNguyenM-HInfectious diseases and economic growthJ. Math. Econ.201450345310.1016/j.jmateco.2013.10.004 – reference: AlvarezFArgenteDLippiFA simple planning problem for COVID-19 lock-down, testing, and tracingAm. Econ. Rev. Insights2021333678210.1257/aeri.20200201 – reference: GoenkaALiuLInfectious diseases, human capital and economic growthEcon. Theory20207014710.1007/s00199-019-01214-7 – reference: Ciminelli, G., Garcia-Mandicó, S.: How healthcare congestion increases COVID-19 mortality: evidence from Lombardy, Italy. medRxiv (2020) – reference: Alvarez, F.E., Argente, D., Lippi, F.: A simple planning problem for COVID-19 lockdown. Technical report, National Bureau of Economic Research (2020) – reference: BambiMGozziFInternal habits formation and optimalityJ. Math. Econ.20209116517210.1016/j.jmateco.2020.09.008 – reference: GoenkaALiuLNguyenM-HSIR economic epidemiological models with disease induced mortalityJ. Math. Econ.20219310247610.1016/j.jmateco.2021.102476 – reference: EichenbaumMSRebeloSTrabandtMThe macroeconomics of epidemicsRev. Financ. Stud.202134115149518710.1093/rfs/hhab040 – ident: 1493_CR24 doi: 10.2139/ssrn.3566865 – volume: 70 start-page: 1 year: 2020 ident: 1493_CR31 publication-title: Econ. Theory doi: 10.1007/s00199-019-01214-7 – volume: 8 start-page: 169 year: 1971 ident: 1493_CR38 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00932465 – volume: 3 start-page: 487 issue: 4 year: 2021 ident: 1493_CR2 publication-title: Am. Econ. Rev. Insights doi: 10.1257/aeri.20200590 – volume: 29 start-page: 25 issue: 1 year: 2006 ident: 1493_CR29 publication-title: Econ. Theory doi: 10.1007/s00199-005-0025-y – volume: 196 start-page: 105293 year: 2021 ident: 1493_CR23 publication-title: J. Econ. Theory doi: 10.1016/j.jet.2021.105293 – volume: 136 start-page: 63 year: 2017 ident: 1493_CR44 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2016.11.010 – volume: 93 start-page: 102453 year: 2021 ident: 1493_CR25 publication-title: J. Math. Econ. doi: 10.1016/j.jmateco.2020.102453 – volume: 13 start-page: 305 issue: 3 year: 1989 ident: 1493_CR14 publication-title: Nonlinear Anal. Theory Methods Appl. Int. Multidiscip. J. doi: 10.1016/0362-546X(89)90056-4 – ident: 1493_CR4 doi: 10.3386/w26981 – volume: 27 start-page: 1 issue: 1 year: 1992 ident: 1493_CR17 publication-title: Am. Math. Soc. Bull. New Ser. doi: 10.1090/S0273-0979-1992-00266-5 – volume: 24 start-page: 552 issue: 3 year: 1986 ident: 1493_CR41 publication-title: SIAM J. Control Optim. doi: 10.1137/0324032 – ident: 1493_CR28 – volume: 44 start-page: 55 issue: 1 year: 2008 ident: 1493_CR30 publication-title: J. Math. Econ. doi: 10.1016/j.jmateco.2007.05.002 – volume: 12 start-page: 12583:1 year: 2022 ident: 1493_CR8 publication-title: Nat. Sci. Rep. – volume: 93 start-page: 102490, 19 year: 2021 ident: 1493_CR6 publication-title: J. Math. Econ. doi: 10.1016/j.jmateco.2021.102490 – volume: 277 start-page: 1 issue: 1 year: 1983 ident: 1493_CR16 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1983-0690039-8 – ident: 1493_CR1 doi: 10.3386/w27483 – volume: 132 start-page: 2534 issue: 647 year: 2022 ident: 1493_CR39 publication-title: Econ. J. doi: 10.1093/ej/ueac026 – volume: 34 start-page: 5188 issue: 11 year: 2021 ident: 1493_CR36 publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/hhab076 – volume: 12 start-page: 275 issue: 2 year: 1999 ident: 1493_CR43 publication-title: Int. J. Theory Appl. – volume: 56 start-page: 2000 issue: 3 year: 2018 ident: 1493_CR12 publication-title: SIAM J. Control Optim. doi: 10.1137/17M1139989 – ident: 1493_CR27 doi: 10.1007/978-1-4612-6380-7_1 – volume: 13 start-page: 3319 issue: 1 year: 2022 ident: 1493_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30642-8 – year: 2022 ident: 1493_CR26 publication-title: Econ. Theory doi: 10.1007/s00199-022-01475-9 – ident: 1493_CR15 doi: 10.1101/2020.10.27.20221085 – volume: 3 start-page: 367 issue: 3 year: 2021 ident: 1493_CR3 publication-title: Am. Econ. Rev. Insights doi: 10.1257/aeri.20200201 – volume: 34 start-page: 5149 issue: 11 year: 2021 ident: 1493_CR18 publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/hhab040 – ident: 1493_CR7 doi: 10.21034/sr.595 – volume: 93 year: 2021 ident: 1493_CR21 publication-title: J. Math. Econ. doi: 10.1016/j.jmateco.2020.102455 – volume: 22 start-page: 1746 issue: 6 year: 2020 ident: 1493_CR35 publication-title: J. Public Econ. Theory doi: 10.1111/jpet.12486 – volume: 83 start-page: 7 issue: 1 year: 2021 ident: 1493_CR37 publication-title: J. Math. Biol. doi: 10.1007/s00285-021-01628-9 – ident: 1493_CR13 doi: 10.1007/b138356 – ident: 1493_CR20 – ident: 1493_CR40 doi: 10.1093/ej/uead024 – volume: 292 start-page: 86 year: 2017 ident: 1493_CR11 publication-title: Math. Biosci. doi: 10.1016/j.mbs.2017.07.011 – volume: 403549 start-page: 1 year: 2013 ident: 1493_CR19 publication-title: Int. Sch. Res. Not. – volume: 4 start-page: 275 issue: 2 year: 1999 ident: 1493_CR42 publication-title: Adv. Differ. Equ. – volume: 50 start-page: 34 year: 2014 ident: 1493_CR32 publication-title: J. Math. Econ. doi: 10.1016/j.jmateco.2013.10.004 – volume: 91 start-page: 165 year: 2020 ident: 1493_CR9 publication-title: J. Math. Econ. doi: 10.1016/j.jmateco.2020.09.008 – volume: 26 start-page: 58 year: 2022 ident: 1493_CR34 publication-title: Econ. Theory doi: 10.1007/s00199-022-01468-8 – ident: 1493_CR10 doi: 10.1007/978-0-8176-4755-1 – volume: 93 start-page: 102476 year: 2021 ident: 1493_CR33 publication-title: J. Math. Econ. doi: 10.1016/j.jmateco.2021.102476 – year: 2023 ident: 1493_CR22 publication-title: Econ. Theory doi: 10.1007/s00199-023-01485-1 |
SSID | ssj0005568 |
Score | 2.4197125 |
Snippet | A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 169 |
SubjectTerms | COVID-19 Disease transmission Dynamic programming Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Game Theory Microeconomics Optimization Prevention programs Public Finance Research Article Shelter in place Social and Behav. Sciences Value Viscosity |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDI8mOGwXxNgHZTBlEtMOW6U23-X29AZikxiXMXGL0jYZT0BB63v__-w2LfRpm7RLVSlOlThObDf2z4QcGhdM5p1MCxdYKoyDcxDsiLTWNWOmVCXrygGdfVOnF-LrpbyMMDmYC7N2f49gnznmyTOM-hEFT8HT2ZRw8GL43lzNH8I5-rQ3cNBh5cGmjwkyf_7GRAmtH8WPdNF6nOTaZWmng062yVY0HumsX-3n5IlvdsjTIbe4fUHOZ7RdIN4vvY_FiGisGEPBOKXz8x9fPqd5QUGDXdfgfx9RR-u-Jj2NkVq32GlAGn9JLk6Ov89P01gyIa2UKpap557lldHOlFnlKnjXInAPNlGtgiuFLxRofAniI2XIJDPg_anaA1dEFZzI-Cuy0dw1fpdQXpoMvlaDA1gICWwF009KHYJUToVKJCQfeGiriCeOZS1u7IiE3PHdAt9tx3ebJ-Tj2Oe-R9P4J_V7XBoby3HCo8UfFu1Pt2pbO8MSIazQDEbyoaPDLQkjgHn3mQUwDwS3mlDuTyhhK1XT5kEIbNzKrWVFzqXWwIyEvBubsSeGpzX-bgU0iKIGZ38mE_K6l5lxflxzlWkNvc1EmkYCBPietjSLqw7oO-_Kl3KWkE-D4D2M6-982_s_8jfkGQNLrQ9F3ycby18rfwCW1rJ8222x32GkGus priority: 102 providerName: Springer Nature |
Title | A simple planning problem for COVID-19 lockdown: a dynamic programming approach |
URI | https://link.springer.com/article/10.1007/s00199-023-01493-1 https://www.ncbi.nlm.nih.gov/pubmed/37360773 https://www.proquest.com/docview/2913577803 https://www.proquest.com/docview/2830221905 https://pubmed.ncbi.nlm.nih.gov/PMC10105532 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO Business Source Ultimate customDbUrl: eissn: 1432-0479 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0005568 issn: 0938-2259 databaseCode: AKVCP dateStart: 19910101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005568 issn: 0938-2259 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-0479 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0005568 issn: 0938-2259 databaseCode: BENPR dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005568 issn: 0938-2259 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005568 issn: 0938-2259 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEB7udh_0Rfxt9VwiKD5osE2apBVE6rrnqbgn4sr5VNI21UPtrnb3_3eSprt2wXsphUwgmU4yX9KZ-QAeJrpOQqMFTXXNaJxo3AcRR9BKVYwlhSyYowP6MJcni_jdmTg7gHmfC2PDKvs90W3U1bK0d-TPWBpxoVQS8per39SyRtm_qz2FhvbUCtULV2LsEMbMsiqPYPxqNv_4aRf00SXH4TEe7QORv0-jccl0Fu2kFH0YtccGTqOBq9rfsP_xWPvRlHu_VJ2nOr4KVzzEJFlnE9fgwDTX4VKfgdzegNOMtOe2KjBZecoi4nllCEJYMj398vY1jVKCfu5Hhaf050STqmOuJz6e65ft1NcjvwmL49nn6Qn1xAq0lDJdU8MNi8pE6aQIS13iu4prbhA5VbLWRWxSibhAoJEJUYeCJXhGlJVBrcRlreOQ34JRs2zMHSC8wC9iWIXHxDQWqFYEiEKouhZSy7qMA4h6HealrzpuyS9-5tt6yU7vOeo9d3rPowCebPusupobF0o_sp8m96Sd-GjttUb7TW_aNs8skQhLFcORPHZyduHiCHDeXf4BzsOWwBpIHg0kccGVw-beCHK_4Nt8Z54BPNg22542iK0xyw3K2Fpr6CFCEcDtzma28-OKy1Ap7J0MrGkrYMuAD1ua8--uHHjkSE45C-Bpb3i7cf1fb3cvnsY9uMwQv3UB6kcwWv_ZmPuIv9bFBMbZm6_vZxO_uCZwOJVTfC5Y9hcXoiwg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXxJtAASNRcQCLxI7tGKlCSx_ape0WobbqzTiJAxWQXciuqv45fhvjxMmSleitlyiSx5E9mZeTmfkQepmYIgmt4USZgpI4MWAHIY4gucwpTVKR0hoO6HAshifxxzN-toL-tLUwLq2ytYm1oc4nmftG_paqiHEpk5C9n_4iDjXK_V1tITSMh1bIt-oWY76wY99eXsARrtoa7cD73qR0b_d4e0g8ygDJhFAzYpmlUZZIk6RhZjK4l3HBLIQRuShMGlslwEly4DjnRchpAgcmkVs4WcRZYeKQwXNvoDWgZ6BVax92x58-L5JMmmK8UIFZAc1RvmynLt5z0ZUi4DOJO6YwEvVc47KD-MdDLmdvLv3CrT3j3m10y4e0eNDI4B20Ysu7aL2teK7uoaMBrs5dF2I89RBJ2OPYYAiZ8fbR6WiHRAqDX_2eTy7Kd9jg_LI0MBv7_LGfblLb__w-OrkWFj9Aq-WktI8QZilIgKU5HEtVzIGtEJByLouCCyOKLA5Q1PJQZ77LuQPb-KG7_sw13zXwXdd811GAXndzpk2PjyupN92r0R4kFC6V-4xSfTXzqtIDB1xClaSwklc1nTMUsALYd1PvAPtwLbd6lBs9SlDwrD_cCoH2BqbSC3UI0Itu2M10SXOlncyBxvV2A48U8gA9bGSm2x-TTIRSwuykJ00dgWs73h8pz7_V7cejGlSV0QC9aQVvsa7_8-3x1dt4jtaHx4cH-mA03n-CblKIHZvk-A20Ovs9t08h9pulz7yCYfTlunX6L-G1ZcE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NToK9IL4JDDASEw9gLbHjOEaaUFlXrQy6CTG0t-AkzpiAtJBW0_5F_irOidOSSuxtL1EknyP7cl9O7u4H8CLWRewbLajSBaNhrNEOYhxBc5kzFqdRymo4oI_jaP84fH8iTtbgT1sLY9MqW5tYG-p8ktlv5NtMBVxIGft8u3BpEUeD4dvpL2oRpOyf1hZOQzuYhXynbjfmijwOzMU5HueqndEA3_0WY8O9z7v71CEO0CyK1IwabliQxVLHqZ_pDO9lWHCDIUUeFToNjYrQYQrkvhCFL1iMh6coN3jKCLNChz7H516DdWnrRXuw_m5vfPRpmXDSFOb5Ck0MapFyJTx1IZ-NtBRF_0ntkYXToOMmV53FP95yNZNz5Xdu7SWHt-CmC29Jv5HH27Bmyjtwo61-ru7CYZ9UZ7YjMZk6uCTiMG0Ihs9k9_DLaEADRdDHfs8n5-Ubokl-UWqcTVwu2U87qe2Ffg-Or4TF96FXTkrzEAhPURoMy_GIqkKBbMXgVAhZFCLSUZGFHgQtD5PMdTy3wBs_kkWv5prvCfI9qfmeBB68WsyZNv0-LqXesq8mcYCheKnsJ5XqVM-rKulbEBOmJMOVvKzprNHAFeC-m9oH3Idtv9Wh3OxQorJn3eFWCBJnbKpkqRoePF8M25k2ga40kznS2D5v6J184cGDRmYW--OSR76UODvuSNOCwLYg746UZ9_qVuRBDbDKmQevW8Fbruv_fHt0-TaewXXU7eTDaHzwGDYYhpFNnvwm9Ga_5-YJhoGz9KnTLwJfr1ql_wIB6Gn7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+planning+problem+for+COVID-19+lockdown%3A+a+dynamic+programming+approach&rft.jtitle=Economic+theory&rft.au=Calvia%2C+Alessandro&rft.au=Gozzi%2C+Fausto&rft.au=Lippi%2C+Francesco&rft.au=Zanco%2C+Giovanni&rft.date=2024-02-01&rft.pub=Springer&rft.issn=0938-2259&rft.volume=77&rft.issue=1-2&rft.spage=169&rft_id=info:doi/10.1007%2Fs00199-023-01493-1&rft.externalDocID=A783429724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-2259&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-2259&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-2259&client=summon |