A simple planning problem for COVID-19 lockdown: a dynamic programming approach

A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Program...

Full description

Saved in:
Bibliographic Details
Published inEconomic theory Vol. 77; no. 1-2; pp. 169 - 196
Main Authors Calvia, Alessandro, Gozzi, Fausto, Lippi, Francesco, Zanco, Giovanni
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2024
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0938-2259
1432-0479
1432-0479
DOI10.1007/s00199-023-01493-1

Cover

Abstract A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton–Jacobi–Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach.
AbstractList A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton–Jacobi–Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach.
A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton-Jacobi-Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach. Keywords Controlled SIRD model * Optimal lockdown policies * Optimal control with state space constraints * Optimality conditions * Viscosity solutions Mathematics Subject Classification 49K15 * 49L20 * 49L25 JEL Classification C61 * E23 * I12 * I15 * I18
A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton-Jacobi-Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach.A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while minimizing the economic costs of preventive measures. Such problems are non-convex and standard results need not to hold. We use a Dynamic Programming approach and prove some continuity properties of the value function of the associated optimization problem. We study the corresponding Hamilton-Jacobi-Bellman equation and show that the value function solves it in the viscosity sense. Finally, we discuss some optimality conditions. Our paper represents a first contribution towards a complete analysis of non-convex dynamic optimization problems, within a Dynamic Programming approach.
Audience Academic
Author Gozzi, Fausto
Zanco, Giovanni
Lippi, Francesco
Calvia, Alessandro
Author_xml – sequence: 1
  givenname: Alessandro
  orcidid: 0000-0003-4448-6877
  surname: Calvia
  fullname: Calvia, Alessandro
  email: acalvia@luiss.it
  organization: Dipartimento di Economia e Finanza, LUISS University
– sequence: 2
  givenname: Fausto
  surname: Gozzi
  fullname: Gozzi, Fausto
  organization: Dipartimento di Economia e Finanza, LUISS University
– sequence: 3
  givenname: Francesco
  surname: Lippi
  fullname: Lippi, Francesco
  organization: Dipartimento di Economia e Finanza, LUISS University, Einaudi Institute for Economics and Finance
– sequence: 4
  givenname: Giovanni
  surname: Zanco
  fullname: Zanco, Giovanni
  organization: Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Università di Siena
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37360773$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URKeFP8ACRWLDgpRrO45jNtVoeFWqNBtgazmOk3FJ7GAnoP57HKalnQpVlvz8zrF8fE_QkfPOIPQSwxkG4O8iABYiB0JzwIWgOX6CVrigJIeCiyO0AkGrnBAmjtFJjFcAwFhZPUPHlNMSOKcrtF1n0Q5jb7KxV85Z12Vj8HVvhqz1Idtsv198yLHIeq9_NP63e5-prLl2arB6AbughmERqTGtlN49R09b1Ufz4mY8Rd8-ffy6-ZJfbj9fbNaXuS5LMeWGGoJ1xVVVg1Y6zXnRUlNQ1pStqgsjSgKYGdUw1gIjFQZeNia9stCtKoCeovO97zjXg2m0cVNQvRyDHVS4ll5ZeXji7E52_pfEgFMKlCSHNzcOwf-cTZzkYKM2fYrB-DlKUlEgBAtgCX39AL3yc3DpfZIITBnnFdA7qlO9kda1Pl2sF1O55hUtiOCkSNTZf6jUGpMyTR_c2rR_IHh7T1DP0ToTUxdtt5tip-YYD_FX94P5l8jtlyeg2gM6-BiDaaW2k5qsX3KyfQpILtUl99UlU3XJv9UlcZKSB9Jb90dFdC-KCXadCXfhPaL6A4TF3pw
CitedBy_id crossref_primary_10_1007_s00199_023_01541_w
crossref_primary_10_1007_s00199_023_01506_z
crossref_primary_10_1007_s00199_023_01531_y
crossref_primary_10_1080_24725579_2024_2428953
crossref_primary_10_1007_s00199_022_01475_9
crossref_primary_10_1007_s40505_024_00286_6
crossref_primary_10_3390_math12070933
crossref_primary_10_1007_s10203_023_00406_0
Cites_doi 10.2139/ssrn.3566865
10.1007/s00199-019-01214-7
10.1007/BF00932465
10.1257/aeri.20200590
10.1007/s00199-005-0025-y
10.1016/j.jet.2021.105293
10.1016/j.matcom.2016.11.010
10.1016/j.jmateco.2020.102453
10.1016/0362-546X(89)90056-4
10.3386/w26981
10.1090/S0273-0979-1992-00266-5
10.1137/0324032
10.1016/j.jmateco.2007.05.002
10.1016/j.jmateco.2021.102490
10.1090/S0002-9947-1983-0690039-8
10.3386/w27483
10.1093/ej/ueac026
10.1093/rfs/hhab076
10.1137/17M1139989
10.1007/978-1-4612-6380-7_1
10.1038/s41467-022-30642-8
10.1007/s00199-022-01475-9
10.1101/2020.10.27.20221085
10.1257/aeri.20200201
10.1093/rfs/hhab040
10.21034/sr.595
10.1016/j.jmateco.2020.102455
10.1111/jpet.12486
10.1007/s00285-021-01628-9
10.1007/b138356
10.1093/ej/uead024
10.1016/j.mbs.2017.07.011
10.1016/j.jmateco.2013.10.004
10.1016/j.jmateco.2020.09.008
10.1007/s00199-022-01468-8
10.1007/978-0-8176-4755-1
10.1016/j.jmateco.2021.102476
10.1007/s00199-023-01485-1
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
COPYRIGHT 2024 Springer
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: COPYRIGHT 2024 Springer
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
N95
3V.
7WY
7WZ
7XB
87Z
8AO
8BJ
8FK
8FL
8G5
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FQK
FRNLG
F~G
GNUQQ
GUQSH
JBE
K60
K6~
L.-
M0C
M2O
MBDVC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s00199-023-01493-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale Business: Insights
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Pharma Collection
International Bibliography of the Social Sciences (IBSS)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global (OCUL)
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ABI/INFORM Global (Corporate)





MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1432-0479
EndPage 196
ExternalDocumentID PMC10105532
A783429724
37360773
10_1007_s00199_023_01493_1
Genre Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 101054421-DCS
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: Ministero dell’Istruzione, dell’Università e della Ricerca
  grantid: 2017FKHBA8 001
  funderid: http://dx.doi.org/10.13039/501100003407
– fundername: ;
  grantid: 2017FKHBA8 001
– fundername: ;
  grantid: 101054421-DCS
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3R3
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8AO
8FL
8G5
8H~
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHCP
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBHK
ABBXA
ABDZT
ABECU
ABECW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABKVW
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ABYRZ
ABYYQ
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHQT
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACNXV
ACOKC
ACOMO
ACPIV
ACREN
ACUHF
ACVFL
ACXJH
ACYUM
ACZOJ
ADGDI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMHG
ADPTO
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAJD
AHAVH
AHBYD
AHEXP
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APTMU
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
AZRUE
B-.
BA0
BAAKF
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHNFS
BPHCQ
BSONS
C6C
CAG
CBXGM
CCPQU
CHNMF
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBA
EBE
EBLON
EBO
EBR
EBS
EBU
EIOEI
EJD
EMK
EOH
EPL
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GPZZG
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HECYW
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IBB
IEA
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JAB
JBMMH
JBSCW
JBU
JCJTX
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JPPEU
JSODD
JST
JZLTJ
K1G
K60
K6~
KDC
KOV
KOW
LAS
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R-Y
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SA0
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XI7
YLTOR
Z45
Z7X
Z81
Z83
Z88
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZY4
ZYFGU
~8M
~EX
~KM
AAOAC
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ASMEE
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PUEGO
NPM
ACMFV
AEIIB
PMFND
7XB
8BJ
8FK
FQK
JBE
L.-
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c669t-e3e21c87a8b0cac21c74f3e435d6fab4e962015ead55f05281076de1494cfa403
IEDL.DBID BENPR
ISSN 0938-2259
1432-0479
IngestDate Tue Sep 30 17:15:07 EDT 2025
Wed Oct 01 15:04:55 EDT 2025
Fri Jul 25 22:19:14 EDT 2025
Tue Jun 17 21:58:18 EDT 2025
Tue Jun 10 20:59:52 EDT 2025
Fri Jun 27 03:21:29 EDT 2025
Wed Feb 19 02:23:22 EST 2025
Wed Oct 01 04:33:05 EDT 2025
Thu Apr 24 23:08:19 EDT 2025
Fri Feb 21 02:41:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Controlled SIRD model
E23
I12
Optimal lockdown policies
I15
Viscosity solutions
Optimality conditions
I18
49L20
Optimal control with state space constraints
49K15
49L25
C61
Language English
License The Author(s) 2023.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-e3e21c87a8b0cac21c74f3e435d6fab4e962015ead55f05281076de1494cfa403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4448-6877
OpenAccessLink https://doi.org/10.1007/s00199-023-01493-1
PMID 37360773
PQID 2913577803
PQPubID 30972
PageCount 28
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10105532
proquest_miscellaneous_2830221905
proquest_journals_2913577803
gale_infotracmisc_A783429724
gale_infotracacademiconefile_A783429724
gale_businessinsightsgauss_A783429724
pubmed_primary_37360773
crossref_citationtrail_10_1007_s00199_023_01493_1
crossref_primary_10_1007_s00199_023_01493_1
springer_journals_10_1007_s00199_023_01493_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Economic theory
PublicationTitleAbbrev Econ Theory
PublicationTitleAlternate Econ Theory
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References GollierCCost-benefit analysis of age-specific deconfinement strategiesJ. Public Econ. Theory20202261746177110.1111/jpet.12486
CannarsaPSonerHMGeneralized one-sided estimates for solutions of Hamilton–Jacobi equations and applicationsNonlinear Anal. Theory Methods Appl. Int. Multidiscip. J.198913330532310.1016/0362-546X(89)90056-4
CrandallMGLionsP-LViscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1983277114210.1090/S0002-9947-1983-0690039-8
Acemoglu, D., Makhdoumi, A., Malekian, A., Ozdaglar, A.: Testing, voluntary social distancing and the spread of an infection. Technical report, National Bureau of Economic Research (2020)
GoenkaALiuLInfectious diseases, human capital and economic growthEcon. Theory20207014710.1007/s00199-019-01214-7
Atkeson, A.G.: What will be the economic impact of COVID-19 in the US? Rough estimates of disease scenarios. Staff Report 595, Federal Reserve bank of Minneapolis (2020)
GoenkaALiuLNguyenM-HSIR economic epidemiological models with disease induced mortalityJ. Math. Econ.20219310247610.1016/j.jmateco.2021.102476
CalviaAOptimal control of continuous-time Markov chains with noise-free observationSIAM J. Control Optim.20185632000203510.1137/17M1139989
AlvarezFArgenteDLippiFA simple planning problem for COVID-19 lock-down, testing, and tracingAm. Econ. Rev. Insights2021333678210.1257/aeri.20200201
GoenkaALiuLNguyenM-HInfectious diseases and economic growthJ. Math. Econ.201450345310.1016/j.jmateco.2013.10.004
EichenbaumMSRebeloSTrabandtMThe macroeconomics of epidemicsRev. Financ. Stud.202134115149518710.1093/rfs/hhab040
SonerHMOptimal control with state-space constraint. ISIAM J. Control Optim.198624355256110.1137/0324032
FedericoSFerrariGTorrenteM-LOptimal vaccination in a sirs epidemic modelEcon. Theory202210.1007/s00199-022-01475-9
LeitmannGStalfordHA sufficiency theorem for optimal controlJ. Optim. Theory Appl.1971816917410.1007/BF00932465
ZamanGKangYHChoGJungIHOptimal strategy of vaccination & treatment in an SIR epidemic modelMath. Comput. Simul.2017136637710.1016/j.matcom.2016.11.010ISSN 0378-4754
FabbriGGozziFZancoGVerification results for age-structured models of economic-epidemics dynamicsJ. Math. Econ.20219310.1016/j.jmateco.2020.102455
Fabbri, G., Gozzi, F., Swiech, A.: Stochastic optimal control in infinite dimension. In: 82 of Probability Theory and Stochastic Modelling, vol. 82. Springer, Cham (2017). Dynamic programming and HJB equations, with a contribution by Marco Fuhrman and Gianmario Tessitore
FreniGGozziFSalvadoriNExistence of optimal strategies in linear multisector modelsEcon. Theory2006291254810.1007/s00199-005-0025-y
SoraviaPOptimality principles and representation formulas for viscosity solutions of Hamilton–Jacobi equations. I. Equations of unbounded and degenerate control problems without uniquenessAdv. Differ. Equ.199942275296
Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions. In: Stochastic Modelling and Applied Probability, vol. 25, 4th edn. Springer, New York (2006)
CrandallMGIshiiHLionsP-LUser’s guide to viscosity solutions of second order partial differential equationsAm. Math. Soc. Bull. New Ser.199227116710.1090/S0273-0979-1992-00266-5
Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control. In: Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser Boston, Inc., Boston, MA (2004)
FreniGGozziFPignottiCOptimal strategies in linear multisector models: value function and optimality conditionsJ. Math. Econ.2008441558610.1016/j.jmateco.2007.05.002
Alvarez, F.E., Argente, D., Lippi, F.: A simple planning problem for COVID-19 lockdown. Technical report, National Bureau of Economic Research (2020)
GoenkaALiuLNguyenM-HModelling optimal lockdowns with waning immunityEcon. Theory2022265810.1007/s00199-022-01468-8
Ciminelli, G., Garcia-Mandicó, S.: How healthcare congestion increases COVID-19 mortality: evidence from Lombardy, Italy. medRxiv (2020)
FabbriGFedericoSFiaschiDGozziFMobility decisions, economic dynamics and epidemicEcon. Theory202310.1007/s00199-023-01485-1
AspriABerettaEGandolfiAWasmerEMortality containment vs. economics opening: optimal policies in a SEIARD modelJ. Math. Econ.202193102490, 1910.1016/j.jmateco.2021.102490
AshTBentoAMKaffineDRaoABentoAIDisease-economy trade-offs under alternative epidemic control strategiesNat. Commun.2022131331910.1038/s41467-022-30642-8
ElhiaMRachikMBenlahmarEOptimal control of an SIR model with delay in state and control variablesInt. Sch. Res. Not.201340354917
AcemogluDChernozhukovVWerningIWhinstonMDOptimal targeted lockdowns in a multigroup sir modelAm. Econ. Rev. Insights20213448750210.1257/aeri.20200590
PiguillemFShiLOptimal Covid-19 quarantine and testing policiesEcon. J.20221326472534256210.1093/ej/ueac026
Pollinger, S.: Optimal contact tracing and social distancing policies to suppress a new infectious disease. Econ. J. (2023). https://doi.org/10.1093/ej/uead024
SoraviaPOptimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints. Differential and integral equationsInt. J. Theory Appl.1999122275293
BolzoniLBonaciniESoresinaCGroppiMTime-optimal control strategies in SIR epidemic modelsMath. Biosci.2017292869610.1016/j.mbs.2017.07.011
Fleming, W.H., Rishel, R.W.: Deterministic and stochastic optimal control. In: Applications of Mathematics, no. 1. Springer-Verlag, Berlin, New York (1975)
BalderramaRPeressuttiJPinascoJPVazquezFde la VegaCSOptimal control for a SIR epidemic model with limited quarantineNat. Sci. Rep.20221212583:1
Favero, C.: Why is COVID-19 mortality in Lombardy so high? Evidence from the simulation of a SEIHCR model. Covid Economics, Vetted and Real-Time Papers (2020)
Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. In: Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, (1997). With appendices by Maurizio Falcone and Pierpaolo Soravia
KetchesonDIOptimal control of an SIR epidemic through finite-time non-pharmaceutical interventionJ. Math. Biol.2021831710.1007/s00285-021-01628-9
BambiMGozziFInternal habits formation and optimalityJ. Math. Econ.20209116517210.1016/j.jmateco.2020.09.008
FarboodiMJaroschGShimerRInternal and external effects of social distancing in a pandemicJ. Econ. Theory202119610529310.1016/j.jet.2021.105293
JonesCPhilipponTVenkateswaranVOptimal mitigation policies in a pandemic: social distancing and working from homeRev. Financ. Stud.202134115188522310.1093/rfs/hhab076
FedericoSFerrariGTaming the spread of an epidemic by lockdown policiesJ. Math. Econ.20219310245310.1016/j.jmateco.2020.102453
F Piguillem (1493_CR39) 2022; 132
P Cannarsa (1493_CR14) 1989; 13
G Freni (1493_CR29) 2006; 29
1493_CR24
R Balderrama (1493_CR8) 2022; 12
MS Eichenbaum (1493_CR18) 2021; 34
1493_CR28
1493_CR27
A Goenka (1493_CR32) 2014; 50
C Gollier (1493_CR35) 2020; 22
M Bambi (1493_CR9) 2020; 91
A Calvia (1493_CR12) 2018; 56
1493_CR20
A Goenka (1493_CR34) 2022; 26
1493_CR40
C Jones (1493_CR36) 2021; 34
S Federico (1493_CR25) 2021; 93
S Federico (1493_CR26) 2022
A Goenka (1493_CR31) 2020; 70
DI Ketcheson (1493_CR37) 2021; 83
P Soravia (1493_CR43) 1999; 12
F Alvarez (1493_CR3) 2021; 3
L Bolzoni (1493_CR11) 2017; 292
G Leitmann (1493_CR38) 1971; 8
MG Crandall (1493_CR17) 1992; 27
G Fabbri (1493_CR22) 2023
1493_CR13
M Elhia (1493_CR19) 2013; 403549
A Aspri (1493_CR6) 2021; 93
G Fabbri (1493_CR21) 2021; 93
1493_CR10
1493_CR15
P Soravia (1493_CR42) 1999; 4
G Zaman (1493_CR44) 2017; 136
G Freni (1493_CR30) 2008; 44
A Goenka (1493_CR33) 2021; 93
HM Soner (1493_CR41) 1986; 24
M Farboodi (1493_CR23) 2021; 196
MG Crandall (1493_CR16) 1983; 277
D Acemoglu (1493_CR2) 2021; 3
1493_CR7
1493_CR1
T Ash (1493_CR5) 2022; 13
1493_CR4
References_xml – reference: FabbriGGozziFZancoGVerification results for age-structured models of economic-epidemics dynamicsJ. Math. Econ.20219310.1016/j.jmateco.2020.102455
– reference: Atkeson, A.G.: What will be the economic impact of COVID-19 in the US? Rough estimates of disease scenarios. Staff Report 595, Federal Reserve bank of Minneapolis (2020)
– reference: BolzoniLBonaciniESoresinaCGroppiMTime-optimal control strategies in SIR epidemic modelsMath. Biosci.2017292869610.1016/j.mbs.2017.07.011
– reference: Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. In: Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, (1997). With appendices by Maurizio Falcone and Pierpaolo Soravia
– reference: FabbriGFedericoSFiaschiDGozziFMobility decisions, economic dynamics and epidemicEcon. Theory202310.1007/s00199-023-01485-1
– reference: Pollinger, S.: Optimal contact tracing and social distancing policies to suppress a new infectious disease. Econ. J. (2023). https://doi.org/10.1093/ej/uead024
– reference: ZamanGKangYHChoGJungIHOptimal strategy of vaccination & treatment in an SIR epidemic modelMath. Comput. Simul.2017136637710.1016/j.matcom.2016.11.010ISSN 0378-4754
– reference: Fleming, W.H., Rishel, R.W.: Deterministic and stochastic optimal control. In: Applications of Mathematics, no. 1. Springer-Verlag, Berlin, New York (1975)
– reference: FreniGGozziFSalvadoriNExistence of optimal strategies in linear multisector modelsEcon. Theory2006291254810.1007/s00199-005-0025-y
– reference: FarboodiMJaroschGShimerRInternal and external effects of social distancing in a pandemicJ. Econ. Theory202119610529310.1016/j.jet.2021.105293
– reference: AshTBentoAMKaffineDRaoABentoAIDisease-economy trade-offs under alternative epidemic control strategiesNat. Commun.2022131331910.1038/s41467-022-30642-8
– reference: GoenkaALiuLNguyenM-HModelling optimal lockdowns with waning immunityEcon. Theory2022265810.1007/s00199-022-01468-8
– reference: Acemoglu, D., Makhdoumi, A., Malekian, A., Ozdaglar, A.: Testing, voluntary social distancing and the spread of an infection. Technical report, National Bureau of Economic Research (2020)
– reference: AspriABerettaEGandolfiAWasmerEMortality containment vs. economics opening: optimal policies in a SEIARD modelJ. Math. Econ.202193102490, 1910.1016/j.jmateco.2021.102490
– reference: CrandallMGIshiiHLionsP-LUser’s guide to viscosity solutions of second order partial differential equationsAm. Math. Soc. Bull. New Ser.199227116710.1090/S0273-0979-1992-00266-5
– reference: PiguillemFShiLOptimal Covid-19 quarantine and testing policiesEcon. J.20221326472534256210.1093/ej/ueac026
– reference: BalderramaRPeressuttiJPinascoJPVazquezFde la VegaCSOptimal control for a SIR epidemic model with limited quarantineNat. Sci. Rep.20221212583:1
– reference: CannarsaPSonerHMGeneralized one-sided estimates for solutions of Hamilton–Jacobi equations and applicationsNonlinear Anal. Theory Methods Appl. Int. Multidiscip. J.198913330532310.1016/0362-546X(89)90056-4
– reference: ElhiaMRachikMBenlahmarEOptimal control of an SIR model with delay in state and control variablesInt. Sch. Res. Not.201340354917
– reference: FedericoSFerrariGTaming the spread of an epidemic by lockdown policiesJ. Math. Econ.20219310245310.1016/j.jmateco.2020.102453
– reference: Fabbri, G., Gozzi, F., Swiech, A.: Stochastic optimal control in infinite dimension. In: 82 of Probability Theory and Stochastic Modelling, vol. 82. Springer, Cham (2017). Dynamic programming and HJB equations, with a contribution by Marco Fuhrman and Gianmario Tessitore
– reference: Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions. In: Stochastic Modelling and Applied Probability, vol. 25, 4th edn. Springer, New York (2006)
– reference: LeitmannGStalfordHA sufficiency theorem for optimal controlJ. Optim. Theory Appl.1971816917410.1007/BF00932465
– reference: CrandallMGLionsP-LViscosity solutions of Hamilton–Jacobi equationsTrans. Am. Math. Soc.1983277114210.1090/S0002-9947-1983-0690039-8
– reference: SoraviaPOptimality principles and representation formulas for viscosity solutions of Hamilton–Jacobi equations. I. Equations of unbounded and degenerate control problems without uniquenessAdv. Differ. Equ.199942275296
– reference: Favero, C.: Why is COVID-19 mortality in Lombardy so high? Evidence from the simulation of a SEIHCR model. Covid Economics, Vetted and Real-Time Papers (2020)
– reference: CalviaAOptimal control of continuous-time Markov chains with noise-free observationSIAM J. Control Optim.20185632000203510.1137/17M1139989
– reference: SoraviaPOptimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints. Differential and integral equationsInt. J. Theory Appl.1999122275293
– reference: Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control. In: Progress in Nonlinear Differential Equations and their Applications, vol. 58. Birkhäuser Boston, Inc., Boston, MA (2004)
– reference: FreniGGozziFPignottiCOptimal strategies in linear multisector models: value function and optimality conditionsJ. Math. Econ.2008441558610.1016/j.jmateco.2007.05.002
– reference: JonesCPhilipponTVenkateswaranVOptimal mitigation policies in a pandemic: social distancing and working from homeRev. Financ. Stud.202134115188522310.1093/rfs/hhab076
– reference: KetchesonDIOptimal control of an SIR epidemic through finite-time non-pharmaceutical interventionJ. Math. Biol.2021831710.1007/s00285-021-01628-9
– reference: SonerHMOptimal control with state-space constraint. ISIAM J. Control Optim.198624355256110.1137/0324032
– reference: FedericoSFerrariGTorrenteM-LOptimal vaccination in a sirs epidemic modelEcon. Theory202210.1007/s00199-022-01475-9
– reference: GollierCCost-benefit analysis of age-specific deconfinement strategiesJ. Public Econ. Theory20202261746177110.1111/jpet.12486
– reference: AcemogluDChernozhukovVWerningIWhinstonMDOptimal targeted lockdowns in a multigroup sir modelAm. Econ. Rev. Insights20213448750210.1257/aeri.20200590
– reference: GoenkaALiuLNguyenM-HInfectious diseases and economic growthJ. Math. Econ.201450345310.1016/j.jmateco.2013.10.004
– reference: AlvarezFArgenteDLippiFA simple planning problem for COVID-19 lock-down, testing, and tracingAm. Econ. Rev. Insights2021333678210.1257/aeri.20200201
– reference: GoenkaALiuLInfectious diseases, human capital and economic growthEcon. Theory20207014710.1007/s00199-019-01214-7
– reference: Ciminelli, G., Garcia-Mandicó, S.: How healthcare congestion increases COVID-19 mortality: evidence from Lombardy, Italy. medRxiv (2020)
– reference: Alvarez, F.E., Argente, D., Lippi, F.: A simple planning problem for COVID-19 lockdown. Technical report, National Bureau of Economic Research (2020)
– reference: BambiMGozziFInternal habits formation and optimalityJ. Math. Econ.20209116517210.1016/j.jmateco.2020.09.008
– reference: GoenkaALiuLNguyenM-HSIR economic epidemiological models with disease induced mortalityJ. Math. Econ.20219310247610.1016/j.jmateco.2021.102476
– reference: EichenbaumMSRebeloSTrabandtMThe macroeconomics of epidemicsRev. Financ. Stud.202134115149518710.1093/rfs/hhab040
– ident: 1493_CR24
  doi: 10.2139/ssrn.3566865
– volume: 70
  start-page: 1
  year: 2020
  ident: 1493_CR31
  publication-title: Econ. Theory
  doi: 10.1007/s00199-019-01214-7
– volume: 8
  start-page: 169
  year: 1971
  ident: 1493_CR38
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00932465
– volume: 3
  start-page: 487
  issue: 4
  year: 2021
  ident: 1493_CR2
  publication-title: Am. Econ. Rev. Insights
  doi: 10.1257/aeri.20200590
– volume: 29
  start-page: 25
  issue: 1
  year: 2006
  ident: 1493_CR29
  publication-title: Econ. Theory
  doi: 10.1007/s00199-005-0025-y
– volume: 196
  start-page: 105293
  year: 2021
  ident: 1493_CR23
  publication-title: J. Econ. Theory
  doi: 10.1016/j.jet.2021.105293
– volume: 136
  start-page: 63
  year: 2017
  ident: 1493_CR44
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2016.11.010
– volume: 93
  start-page: 102453
  year: 2021
  ident: 1493_CR25
  publication-title: J. Math. Econ.
  doi: 10.1016/j.jmateco.2020.102453
– volume: 13
  start-page: 305
  issue: 3
  year: 1989
  ident: 1493_CR14
  publication-title: Nonlinear Anal. Theory Methods Appl. Int. Multidiscip. J.
  doi: 10.1016/0362-546X(89)90056-4
– ident: 1493_CR4
  doi: 10.3386/w26981
– volume: 27
  start-page: 1
  issue: 1
  year: 1992
  ident: 1493_CR17
  publication-title: Am. Math. Soc. Bull. New Ser.
  doi: 10.1090/S0273-0979-1992-00266-5
– volume: 24
  start-page: 552
  issue: 3
  year: 1986
  ident: 1493_CR41
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0324032
– ident: 1493_CR28
– volume: 44
  start-page: 55
  issue: 1
  year: 2008
  ident: 1493_CR30
  publication-title: J. Math. Econ.
  doi: 10.1016/j.jmateco.2007.05.002
– volume: 12
  start-page: 12583:1
  year: 2022
  ident: 1493_CR8
  publication-title: Nat. Sci. Rep.
– volume: 93
  start-page: 102490, 19
  year: 2021
  ident: 1493_CR6
  publication-title: J. Math. Econ.
  doi: 10.1016/j.jmateco.2021.102490
– volume: 277
  start-page: 1
  issue: 1
  year: 1983
  ident: 1493_CR16
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1983-0690039-8
– ident: 1493_CR1
  doi: 10.3386/w27483
– volume: 132
  start-page: 2534
  issue: 647
  year: 2022
  ident: 1493_CR39
  publication-title: Econ. J.
  doi: 10.1093/ej/ueac026
– volume: 34
  start-page: 5188
  issue: 11
  year: 2021
  ident: 1493_CR36
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhab076
– volume: 12
  start-page: 275
  issue: 2
  year: 1999
  ident: 1493_CR43
  publication-title: Int. J. Theory Appl.
– volume: 56
  start-page: 2000
  issue: 3
  year: 2018
  ident: 1493_CR12
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/17M1139989
– ident: 1493_CR27
  doi: 10.1007/978-1-4612-6380-7_1
– volume: 13
  start-page: 3319
  issue: 1
  year: 2022
  ident: 1493_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30642-8
– year: 2022
  ident: 1493_CR26
  publication-title: Econ. Theory
  doi: 10.1007/s00199-022-01475-9
– ident: 1493_CR15
  doi: 10.1101/2020.10.27.20221085
– volume: 3
  start-page: 367
  issue: 3
  year: 2021
  ident: 1493_CR3
  publication-title: Am. Econ. Rev. Insights
  doi: 10.1257/aeri.20200201
– volume: 34
  start-page: 5149
  issue: 11
  year: 2021
  ident: 1493_CR18
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhab040
– ident: 1493_CR7
  doi: 10.21034/sr.595
– volume: 93
  year: 2021
  ident: 1493_CR21
  publication-title: J. Math. Econ.
  doi: 10.1016/j.jmateco.2020.102455
– volume: 22
  start-page: 1746
  issue: 6
  year: 2020
  ident: 1493_CR35
  publication-title: J. Public Econ. Theory
  doi: 10.1111/jpet.12486
– volume: 83
  start-page: 7
  issue: 1
  year: 2021
  ident: 1493_CR37
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-021-01628-9
– ident: 1493_CR13
  doi: 10.1007/b138356
– ident: 1493_CR20
– ident: 1493_CR40
  doi: 10.1093/ej/uead024
– volume: 292
  start-page: 86
  year: 2017
  ident: 1493_CR11
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2017.07.011
– volume: 403549
  start-page: 1
  year: 2013
  ident: 1493_CR19
  publication-title: Int. Sch. Res. Not.
– volume: 4
  start-page: 275
  issue: 2
  year: 1999
  ident: 1493_CR42
  publication-title: Adv. Differ. Equ.
– volume: 50
  start-page: 34
  year: 2014
  ident: 1493_CR32
  publication-title: J. Math. Econ.
  doi: 10.1016/j.jmateco.2013.10.004
– volume: 91
  start-page: 165
  year: 2020
  ident: 1493_CR9
  publication-title: J. Math. Econ.
  doi: 10.1016/j.jmateco.2020.09.008
– volume: 26
  start-page: 58
  year: 2022
  ident: 1493_CR34
  publication-title: Econ. Theory
  doi: 10.1007/s00199-022-01468-8
– ident: 1493_CR10
  doi: 10.1007/978-0-8176-4755-1
– volume: 93
  start-page: 102476
  year: 2021
  ident: 1493_CR33
  publication-title: J. Math. Econ.
  doi: 10.1016/j.jmateco.2021.102476
– year: 2023
  ident: 1493_CR22
  publication-title: Econ. Theory
  doi: 10.1007/s00199-023-01485-1
SSID ssj0005568
Score 2.4197125
Snippet A large number of recent studies consider a compartmental SIR model to study optimal control policies aimed at containing the diffusion of COVID-19 while...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 169
SubjectTerms COVID-19
Disease transmission
Dynamic programming
Economic theory
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Game Theory
Microeconomics
Optimization
Prevention programs
Public Finance
Research Article
Shelter in place
Social and Behav. Sciences
Value
Viscosity
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDI8mOGwXxNgHZTBlEtMOW6U23-X29AZikxiXMXGL0jYZT0BB63v__-w2LfRpm7RLVSlOlThObDf2z4QcGhdM5p1MCxdYKoyDcxDsiLTWNWOmVCXrygGdfVOnF-LrpbyMMDmYC7N2f49gnznmyTOM-hEFT8HT2ZRw8GL43lzNH8I5-rQ3cNBh5cGmjwkyf_7GRAmtH8WPdNF6nOTaZWmng062yVY0HumsX-3n5IlvdsjTIbe4fUHOZ7RdIN4vvY_FiGisGEPBOKXz8x9fPqd5QUGDXdfgfx9RR-u-Jj2NkVq32GlAGn9JLk6Ov89P01gyIa2UKpap557lldHOlFnlKnjXInAPNlGtgiuFLxRofAniI2XIJDPg_anaA1dEFZzI-Cuy0dw1fpdQXpoMvlaDA1gICWwF009KHYJUToVKJCQfeGiriCeOZS1u7IiE3PHdAt9tx3ebJ-Tj2Oe-R9P4J_V7XBoby3HCo8UfFu1Pt2pbO8MSIazQDEbyoaPDLQkjgHn3mQUwDwS3mlDuTyhhK1XT5kEIbNzKrWVFzqXWwIyEvBubsSeGpzX-bgU0iKIGZ38mE_K6l5lxflxzlWkNvc1EmkYCBPietjSLqw7oO-_Kl3KWkE-D4D2M6-982_s_8jfkGQNLrQ9F3ycby18rfwCW1rJ8222x32GkGus
  priority: 102
  providerName: Springer Nature
Title A simple planning problem for COVID-19 lockdown: a dynamic programming approach
URI https://link.springer.com/article/10.1007/s00199-023-01493-1
https://www.ncbi.nlm.nih.gov/pubmed/37360773
https://www.proquest.com/docview/2913577803
https://www.proquest.com/docview/2830221905
https://pubmed.ncbi.nlm.nih.gov/PMC10105532
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Business Source Ultimate
  customDbUrl:
  eissn: 1432-0479
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0005568
  issn: 0938-2259
  databaseCode: AKVCP
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005568
  issn: 0938-2259
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-0479
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0005568
  issn: 0938-2259
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005568
  issn: 0938-2259
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005568
  issn: 0938-2259
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEB7udh_0Rfxt9VwiKD5osE2apBVE6rrnqbgn4sr5VNI21UPtrnb3_3eSprt2wXsphUwgmU4yX9KZ-QAeJrpOQqMFTXXNaJxo3AcRR9BKVYwlhSyYowP6MJcni_jdmTg7gHmfC2PDKvs90W3U1bK0d-TPWBpxoVQS8per39SyRtm_qz2FhvbUCtULV2LsEMbMsiqPYPxqNv_4aRf00SXH4TEe7QORv0-jccl0Fu2kFH0YtccGTqOBq9rfsP_xWPvRlHu_VJ2nOr4KVzzEJFlnE9fgwDTX4VKfgdzegNOMtOe2KjBZecoi4nllCEJYMj398vY1jVKCfu5Hhaf050STqmOuJz6e65ft1NcjvwmL49nn6Qn1xAq0lDJdU8MNi8pE6aQIS13iu4prbhA5VbLWRWxSibhAoJEJUYeCJXhGlJVBrcRlreOQ34JRs2zMHSC8wC9iWIXHxDQWqFYEiEKouhZSy7qMA4h6HealrzpuyS9-5tt6yU7vOeo9d3rPowCebPusupobF0o_sp8m96Sd-GjttUb7TW_aNs8skQhLFcORPHZyduHiCHDeXf4BzsOWwBpIHg0kccGVw-beCHK_4Nt8Z54BPNg22542iK0xyw3K2Fpr6CFCEcDtzma28-OKy1Ap7J0MrGkrYMuAD1ua8--uHHjkSE45C-Bpb3i7cf1fb3cvnsY9uMwQv3UB6kcwWv_ZmPuIv9bFBMbZm6_vZxO_uCZwOJVTfC5Y9hcXoiwg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXxJtAASNRcQCLxI7tGKlCSx_ape0WobbqzTiJAxWQXciuqv45fhvjxMmSleitlyiSx5E9mZeTmfkQepmYIgmt4USZgpI4MWAHIY4gucwpTVKR0hoO6HAshifxxzN-toL-tLUwLq2ytYm1oc4nmftG_paqiHEpk5C9n_4iDjXK_V1tITSMh1bIt-oWY76wY99eXsARrtoa7cD73qR0b_d4e0g8ygDJhFAzYpmlUZZIk6RhZjK4l3HBLIQRuShMGlslwEly4DjnRchpAgcmkVs4WcRZYeKQwXNvoDWgZ6BVax92x58-L5JMmmK8UIFZAc1RvmynLt5z0ZUi4DOJO6YwEvVc47KD-MdDLmdvLv3CrT3j3m10y4e0eNDI4B20Ysu7aL2teK7uoaMBrs5dF2I89RBJ2OPYYAiZ8fbR6WiHRAqDX_2eTy7Kd9jg_LI0MBv7_LGfblLb__w-OrkWFj9Aq-WktI8QZilIgKU5HEtVzIGtEJByLouCCyOKLA5Q1PJQZ77LuQPb-KG7_sw13zXwXdd811GAXndzpk2PjyupN92r0R4kFC6V-4xSfTXzqtIDB1xClaSwklc1nTMUsALYd1PvAPtwLbd6lBs9SlDwrD_cCoH2BqbSC3UI0Itu2M10SXOlncyBxvV2A48U8gA9bGSm2x-TTIRSwuykJ00dgWs73h8pz7_V7cejGlSV0QC9aQVvsa7_8-3x1dt4jtaHx4cH-mA03n-CblKIHZvk-A20Ovs9t08h9pulz7yCYfTlunX6L-G1ZcE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NToK9IL4JDDASEw9gLbHjOEaaUFlXrQy6CTG0t-AkzpiAtJBW0_5F_irOidOSSuxtL1EknyP7cl9O7u4H8CLWRewbLajSBaNhrNEOYhxBc5kzFqdRymo4oI_jaP84fH8iTtbgT1sLY9MqW5tYG-p8ktlv5NtMBVxIGft8u3BpEUeD4dvpL2oRpOyf1hZOQzuYhXynbjfmijwOzMU5HueqndEA3_0WY8O9z7v71CEO0CyK1IwabliQxVLHqZ_pDO9lWHCDIUUeFToNjYrQYQrkvhCFL1iMh6coN3jKCLNChz7H516DdWnrRXuw_m5vfPRpmXDSFOb5Ck0MapFyJTx1IZ-NtBRF_0ntkYXToOMmV53FP95yNZNz5Xdu7SWHt-CmC29Jv5HH27Bmyjtwo61-ru7CYZ9UZ7YjMZk6uCTiMG0Ihs9k9_DLaEADRdDHfs8n5-Ubokl-UWqcTVwu2U87qe2Ffg-Or4TF96FXTkrzEAhPURoMy_GIqkKBbMXgVAhZFCLSUZGFHgQtD5PMdTy3wBs_kkWv5prvCfI9qfmeBB68WsyZNv0-LqXesq8mcYCheKnsJ5XqVM-rKulbEBOmJMOVvKzprNHAFeC-m9oH3Idtv9Wh3OxQorJn3eFWCBJnbKpkqRoePF8M25k2ga40kznS2D5v6J184cGDRmYW--OSR76UODvuSNOCwLYg746UZ9_qVuRBDbDKmQevW8Fbruv_fHt0-TaewXXU7eTDaHzwGDYYhpFNnvwm9Ga_5-YJhoGz9KnTLwJfr1ql_wIB6Gn7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+planning+problem+for+COVID-19+lockdown%3A+a+dynamic+programming+approach&rft.jtitle=Economic+theory&rft.au=Calvia%2C+Alessandro&rft.au=Gozzi%2C+Fausto&rft.au=Lippi%2C+Francesco&rft.au=Zanco%2C+Giovanni&rft.date=2024-02-01&rft.pub=Springer&rft.issn=0938-2259&rft.volume=77&rft.issue=1-2&rft.spage=169&rft_id=info:doi/10.1007%2Fs00199-023-01493-1&rft.externalDocID=A783429724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-2259&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-2259&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-2259&client=summon