Geometric De-noising of Protein-Protein Interaction Networks
Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein...
Saved in:
| Published in | PLoS computational biology Vol. 5; no. 8; p. e1000454 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.08.2009
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1553-7358 1553-734X 1553-7358 |
| DOI | 10.1371/journal.pcbi.1000454 |
Cover
| Abstract | Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising. |
|---|---|
| AbstractList | Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising. Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising. Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the postgenomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise. We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising. Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise. We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising. Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise. We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising. Proteins are responsible for much of the biological ‘heavy lifting’ that keeps our cells functioning. However, proteins don't usually work alone; instead they typically bind together to form geometrically and chemically complex structures that are tailored for a specific task. Experimental techniques allow us to detect whether two types of proteins are capable of binding together, or ‘interacting’. This creates a network where two proteins are connected if they have been seen to interact, just as we could regard two people as being connected if they are linked on Facebook. Such protein-protein interaction networks have been developed for several organisms, using a range of methods, all of which are subject to experimental errors. These network data reveal a fascinating and intricate pattern of connections. In particular, it is known that proteins can be arranged into a low-dimensional space, such as a three-dimensional cube, so that interacting proteins are close together. Our work shows that this structure can be exploited to assign confidence levels to recorded protein-protein interactions and predict new interactions that were overlooked experimentally. In tests, we predicted 251 new human protein-protein interactions, and through literature curation we independently validated a statistically significant number of them. Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the postgenomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise. We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: doi:10.1371/journal.pcbi.1000454 |
| Audience | Academic |
| Author | Rašajski, Marija Higham, Desmond J. Pržulj, Nataša Kuchaiev, Oleksii |
| AuthorAffiliation | 1 Department of Computer Science, University of California, Irvine, California, United States of America National Center for Biotechnology Information (NCBI), United States of America 3 Department of Mathematics, University of Strathclyde, Glasgow, United Kingdom 2 Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science, University of California, Irvine, California, United States of America – name: National Center for Biotechnology Information (NCBI), United States of America – name: 3 Department of Mathematics, University of Strathclyde, Glasgow, United Kingdom – name: 2 Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia |
| Author_xml | – sequence: 1 givenname: Oleksii surname: Kuchaiev fullname: Kuchaiev, Oleksii – sequence: 2 givenname: Marija surname: Rašajski fullname: Rašajski, Marija – sequence: 3 givenname: Desmond J. surname: Higham fullname: Higham, Desmond J. – sequence: 4 givenname: Nataša surname: Pržulj fullname: Pržulj, Nataša |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19662157$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkktv1DAUhSNURB_wDxDMColFBjt-JahCqlooI1UF8Vhb144zeMjYg-209N_jdAJ02ADywpb93aNzj-9hsee8M0XxGKM5JgK_WPkhOOjnG63sHCOEKKP3igPMGCkFYfXenfN-cRjjCqF8bPiDYh83nFeYiYPi-Nz4tUnB6tmZKZ230brlzHez98EnY1057bOFSyaATta72aVJ1z58jQ-L-x300Tya9qPi85vXn07flhfvzhenJxel5rxJZUuNprXSHTS0bTSreEcrQoViTU2pUlq0repaWgNUTNSCtbQjiuZnVWOoNTkqnm51N72Pcmo8SkxwRZlosMjEYku0HlZyE-wawo30YOXthQ9LCSFZ3RtZMaIAtwq0qCkHroBhRVBDGlER1YxabKs1uA3cXEPf_xLESI7Z_7Qgx-zllH2uezW5HNTatNq4FKDfMbP74uwXufRXshIYE8SzwLNJIPhvg4lJrm3Upu_BGT9EyQXjlN46nG_BJeSGrOt81tN5tWZtdR6Tzub7kwqJzFM0FjzfKchMMt_TEoYY5eLjh_9gL3fZJ3db_p3TNF8ZeLkFdPAxBtNJbROMQ5Qd2_5vgdI_iv_pH34AnNj5-Q |
| CitedBy_id | crossref_primary_10_1093_bfgp_elaa015 crossref_primary_10_1103_PhysRevE_103_012305 crossref_primary_10_1109_TCBB_2014_2386314 crossref_primary_10_1007_s40484_019_0180_y crossref_primary_10_1186_1752_0509_9_S1_S7 crossref_primary_10_1093_bioinformatics_bty206 crossref_primary_10_1038_nprot_2016_117 crossref_primary_10_1109_TCBB_2012_164 crossref_primary_10_1038_srep10073 crossref_primary_10_1080_10618600_2012_679240 crossref_primary_10_1109_TCBB_2015_2495170 crossref_primary_10_1088_1674_1056_abb659 crossref_primary_10_2174_1574893618666230315154807 crossref_primary_10_1186_1471_2105_13_S7_S4 crossref_primary_10_1155_2019_8984248 crossref_primary_10_1186_1471_2105_13_S7_S3 crossref_primary_10_1371_journal_pone_0183495 crossref_primary_10_1142_S0219720016500086 crossref_primary_10_1093_bioinformatics_btw655 crossref_primary_10_1093_bioinformatics_btv160 crossref_primary_10_15252_msb_202110396 crossref_primary_10_1002_2211_5463_13732 crossref_primary_10_1016_j_jtbi_2024_111850 crossref_primary_10_1002_bies_201000044 crossref_primary_10_1080_02331888_2025_2481303 crossref_primary_10_1007_s41109_017_0022_7 crossref_primary_10_1038_s41467_017_01825_5 crossref_primary_10_1371_journal_pone_0019349 crossref_primary_10_23919_JSEE_2023_000080 crossref_primary_10_1186_s12859_021_04300_7 crossref_primary_10_3389_fgene_2021_760299 crossref_primary_10_1038_srep08540 crossref_primary_10_1080_17460441_2021_1910673 crossref_primary_10_1186_s12864_015_1944_z crossref_primary_10_1093_bib_bbab552 crossref_primary_10_1038_srep01613 crossref_primary_10_1002_pro_4479 crossref_primary_10_1016_j_physa_2020_124289 crossref_primary_10_1038_s41598_019_45072_8 crossref_primary_10_1093_bioinformatics_bts351 crossref_primary_10_1186_1471_2105_14_S14_S8 crossref_primary_10_1016_j_bbapap_2010_04_008 crossref_primary_10_1016_j_csbj_2020_05_008 crossref_primary_10_1016_j_jmb_2019_07_014 crossref_primary_10_1186_s12918_017_0404_6 crossref_primary_10_3389_fgene_2019_00535 crossref_primary_10_1186_s13059_023_03062_0 crossref_primary_10_1093_nar_gks492 crossref_primary_10_1126_science_abm4805 crossref_primary_10_1186_1471_2105_15_186 crossref_primary_10_1142_S0219720014500255 crossref_primary_10_1016_j_neucom_2013_04_027 crossref_primary_10_1109_TCBB_2012_20 crossref_primary_10_1016_j_inffus_2023_101909 crossref_primary_10_1016_j_jbi_2021_103801 crossref_primary_10_1093_bioinformatics_btt208 crossref_primary_10_3389_fgene_2019_00381 crossref_primary_10_1186_1477_5956_11_S1_S9 crossref_primary_10_7717_peerj_15313 crossref_primary_10_1186_1471_2105_14_163 crossref_primary_10_1186_s12918_016_0296_x crossref_primary_10_1093_bioinformatics_btae476 crossref_primary_10_1109_TCBB_2016_2615931 crossref_primary_10_1186_s12920_019_0605_5 crossref_primary_10_1016_j_compbiolchem_2013_03_002 crossref_primary_10_1002_cpps_62 crossref_primary_10_1371_journal_pone_0238915 crossref_primary_10_1007_s41109_016_0013_0 crossref_primary_10_1109_TKDE_2020_2987570 crossref_primary_10_1186_s13637_016_0040_2 crossref_primary_10_1371_journal_pone_0058368 crossref_primary_10_1109_TCBB_2024_3429546 crossref_primary_10_1093_bib_bbx041 crossref_primary_10_1371_journal_pone_0054945 crossref_primary_10_1093_nargab_lqaa051 crossref_primary_10_1038_s42005_023_01143_x crossref_primary_10_1186_s12859_018_2112_7 crossref_primary_10_1109_TNB_2015_2420754 crossref_primary_10_3389_fphys_2015_00364 crossref_primary_10_1186_1471_2105_12_24 crossref_primary_10_1002_pmic_202200083 crossref_primary_10_3389_fgene_2015_00296 crossref_primary_10_1093_bib_bbw066 crossref_primary_10_1002_prot_25506 crossref_primary_10_35414_akufemubid_1127509 crossref_primary_10_1093_bioinformatics_btaa459 crossref_primary_10_1093_bib_bby117 crossref_primary_10_1038_s41598_020_59344_1 crossref_primary_10_1093_bioinformatics_bts729 crossref_primary_10_1093_nar_gkx1173 crossref_primary_10_1021_ac2024602 crossref_primary_10_1093_bib_bbaa016 crossref_primary_10_1038_s41598_021_87333_5 crossref_primary_10_1021_ac302071k crossref_primary_10_1038_s41598_018_33576_8 crossref_primary_10_1038_s41598_021_93921_2 crossref_primary_10_1137_140956166 crossref_primary_10_1142_S021972001230002X crossref_primary_10_1093_bioinformatics_bts688 crossref_primary_10_1186_1471_2105_13_262 crossref_primary_10_1109_TCBB_2014_2359441 crossref_primary_10_1371_journal_pone_0032032 crossref_primary_10_3389_fgene_2018_00484 crossref_primary_10_1098_rspa_2009_0456 crossref_primary_10_1142_S0219720009004461 crossref_primary_10_1038_srep30108 crossref_primary_10_2174_2589977514666220214120403 crossref_primary_10_1155_2022_9248674 crossref_primary_10_1109_TCBB_2015_2407393 crossref_primary_10_1007_s12539_021_00426_7 crossref_primary_10_1109_TCBB_2015_2456876 crossref_primary_10_1080_15427951_2011_604561 crossref_primary_10_1155_2014_240673 crossref_primary_10_1371_journal_pone_0090073 crossref_primary_10_1109_TCBB_2019_2916038 crossref_primary_10_1016_j_compbiomed_2017_07_015 crossref_primary_10_1002_prot_25086 crossref_primary_10_1002_widm_1061 crossref_primary_10_1142_S0219720020400107 |
| Cites_doi | 10.1038/nature04532 10.1038/nbt1002-991 10.1093/nar/gkm291 10.1093/acprof:oso/9780198506263.001.0001 10.1038/415180a 10.1126/science.1087361 10.1016/S0168-9525(02)02763-4 10.1093/bioinformatics/btn079 10.1186/gb-2006-7-11-120 10.5486/PMD.1959.6.3-4.12 10.1093/nar/gkj109 10.1016/j.cell.2005.08.029 10.1073/pnas.97.3.1143 10.1126/science.1091403 10.1093/nar/gkm882 10.1016/j.cam.2006.04.026 10.1093/bioinformatics/btl335 10.1038/nature04135 10.1093/bioinformatics/bth436 10.1093/bioinformatics/btg415 10.1093/nar/gkj141 10.1155/ASP/2006/32767 10.1038/nature750 10.1098/rsif.2006.0147 10.1038/415123a 10.1016/j.drudis.2008.05.004 10.1038/35001009 10.1074/mcp.M600381-MCP200 10.1186/1471-2105-7-365 10.1038/nature04670 10.4137/CIN.S680 10.1126/science.286.5439.509 10.1038/nature04209 10.1126/science.1090289 10.1093/bioinformatics/btn597 10.1093/bioinformatics/btl301 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2009 Public Library of Science Kuchaiev et al. 2009 2009 Kuchaiev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kuchaiev O, Rasajski M, Higham DJ, Przulj N (2009) Geometric De-noising of Protein-Protein Interaction Networks. PLoS Comput Biol 5(8): e1000454. doi:10.1371/journal.pcbi.1000454 |
| Copyright_xml | – notice: COPYRIGHT 2009 Public Library of Science – notice: Kuchaiev et al. 2009 – notice: 2009 Kuchaiev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kuchaiev O, Rasajski M, Higham DJ, Przulj N (2009) Geometric De-noising of Protein-Protein Interaction Networks. PLoS Comput Biol 5(8): e1000454. doi:10.1371/journal.pcbi.1000454 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pcbi.1000454 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Geometric De-noising of PPI Networks |
| EISSN | 1553-7358 |
| ExternalDocumentID | 1312457917 oai_doaj_org_article_253ba1dbac7846a6ba51b30939723b97 10.1371/journal.pcbi.1000454 PMC2711306 A207644407 19662157 10_1371_journal_pcbi_1000454 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: G0601353 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR IPNFZ ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RIG RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M ALIPV CGR CUY CVF ECM EIF H13 NPM PV9 RZL WOQ 7X8 5PM ACCTH ADTOC AFFHD BBTPI UNPAY 3V. AAPBV ABPTK M0N M~E |
| ID | FETCH-LOGICAL-c669t-d4ec48bcfa94d9c526f42347b59844bbc7ddbfd48aa257875d4f3b4b59b81a8c3 |
| IEDL.DBID | M48 |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Sun Oct 01 00:20:33 EDT 2023 Fri Oct 03 12:51:04 EDT 2025 Wed Oct 29 11:45:56 EDT 2025 Tue Sep 30 16:56:04 EDT 2025 Fri Sep 05 10:32:59 EDT 2025 Mon Oct 20 17:21:30 EDT 2025 Thu Oct 16 15:00:45 EDT 2025 Thu Oct 16 15:07:33 EDT 2025 Mon Jul 21 06:00:06 EDT 2025 Wed Oct 01 05:00:21 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Proteins Reproducibility of Results Algorithms Signal Transduction Models, Biological Sensitivity & Specificity Databases, Protein Humans Computational Biology ROC Curve Protein Interaction Mapping |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c669t-d4ec48bcfa94d9c526f42347b59844bbc7ddbfd48aa257875d4f3b4b59b81a8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: OK DJH NP. Performed the experiments: OK MR NP. Analyzed the data: OK MR NP. Contributed reagents/materials/analysis tools: OK DJH NP. Wrote the paper: OK DJH NP. Directed the research: NP. |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1000454 |
| PMID | 19662157 |
| PQID | 67564497 |
| PQPubID | 23479 |
| ParticipantIDs | plos_journals_1312457917 doaj_primary_oai_doaj_org_article_253ba1dbac7846a6ba51b30939723b97 unpaywall_primary_10_1371_journal_pcbi_1000454 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2711306 proquest_miscellaneous_67564497 gale_infotracacademiconefile_A207644407 gale_incontextgauss_ISR_A207644407 gale_incontextgauss_ISN_A207644407 pubmed_primary_19662157 crossref_citationtrail_10_1371_journal_pcbi_1000454 crossref_primary_10_1371_journal_pcbi_1000454 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-08-01 |
| PublicationDateYYYYMMDD | 2009-08-01 |
| PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2009 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | N Pržulj (ref37) 2004; 20 U Stelzl (ref8) 2005; 122 R Jansen (ref44) 2003; 302 T Cox (ref25) 1994 J Wang (ref46) 2008 T Ito (ref3) 2000; 97 P Uetz (ref4) 2000; 403 J Rual (ref9) 2005; 437 S Pitre (ref40) 2006; 7 N Pržulj (ref17) 2007; 20 DS Han (ref39) 2004; 15 P Erdös (ref14) 1956; 6 M Penrose (ref21) 2003 D Higham (ref18) 2008; 24(8) AC Gavin (ref5) 2006; 440 Y Ho (ref34) 2002; 415 MS Lee (ref42) 2005 A Labarga (ref38) 2007; 35 R Singh (ref45) 2006; 11 AL Barabasi (ref15) 1999; 286 G Mishra (ref33) 2006; 34 S Collins (ref11) 2007; 6:3 D Higham (ref26) 2007; 204 S Suthram (ref2) 2005; 438 N Pržulj (ref19) 2006; 3:10 G Hart (ref29) 2006; 7 J Yu (ref35) 2009; 25 XW Chen (ref43) 2006 N Krogan (ref10) 2006; 440 G Bader (ref23) 2002; 20 AM Edwards (ref12) 2002; 18 O Kuchaiev (ref20) 2009 TGO Consortium (ref32) 2002; 25 M Kanehisa (ref36) 2008; 36 S Li (ref7) 2004; 303 C Bishop (ref28) 2006 F Abraham (ref24) 2006; 3 J Chen (ref47) 2006; 22 T Milenkovic (ref1) 2008; 6 C Stark (ref13) 2006; 34 GH Golub (ref27) 1996 N Pržulj (ref16) 2004; 20 Z Ma (ref41) 2007 L Giot (ref6) 2003; 302 A Kumar (ref30) 2002; 415 R Colak (ref22) 2009 H Chua (ref48) 2008; 13 C von Mering (ref31) 2002; 417 |
| References_xml | – volume: 25 start-page: 25 year: 2002 ident: ref32 article-title: Gene ontology: tool for the unification of biology. publication-title: Nature Genet – volume: 440 start-page: 631 year: 2006 ident: ref5 article-title: Proteome survey reveals modularity of the yeast cell machinery. publication-title: Nature doi: 10.1038/nature04532 – volume: 20 start-page: 991 year: 2002 ident: ref23 article-title: Analyzing yeast protein-protein interaction data obtained from different sources. publication-title: Nature Biotechnology doi: 10.1038/nbt1002-991 – volume: 35 start-page: W6 year: 2007 ident: ref38 article-title: Web services at the european bioinformatics institute. publication-title: Nucleic Acids Research doi: 10.1093/nar/gkm291 – year: 2003 ident: ref21 article-title: Random Geometric Graphs. doi: 10.1093/acprof:oso/9780198506263.001.0001 – volume: 415 start-page: 180 year: 2002 ident: ref34 article-title: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. publication-title: Nature doi: 10.1038/415180a – volume: 302 start-page: 449 year: 2003 ident: ref44 article-title: A bayesian networks approach for predicting protein-protein interactions from genomic data. publication-title: Science doi: 10.1126/science.1087361 – volume: 18 year: 2002 ident: ref12 article-title: Bridging structural biology and genomics: assessing protein interaction data with known complexes. publication-title: Trends in Genetics doi: 10.1016/S0168-9525(02)02763-4 – start-page: 151 year: 2005 ident: ref42 article-title: A protein interaction verification system based on a neural network algorithm. – year: 2006 ident: ref28 article-title: Pattern Recognition and Machine Learning. – volume: 11 start-page: 403 year: 2006 ident: ref45 article-title: Struct2net: Integrating structure into protein-protein interaction prediction. publication-title: Pacific Symposium on Biocomputing – volume: 24(8) start-page: 1093 year: 2008 ident: ref18 article-title: Fitting a geometric graph to a protein-protein interaction network. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn079 – volume: 7 start-page: 120 year: 2006 ident: ref29 article-title: How complete are current yeast and human proteininteraction networks? publication-title: Genome Biology doi: 10.1186/gb-2006-7-11-120 – volume: 6 start-page: 290 year: 1956 ident: ref14 article-title: On random graphs. publication-title: Publicationes Mathematicae doi: 10.5486/PMD.1959.6.3-4.12 – start-page: 3 year: 2007 ident: ref41 article-title: Predicting protein-protein interactions based on bp neural network. publication-title: IEEE International Conference on Bioinformatics and Biomedicine Workshops, 2007 BIBMW 2007 – volume: 34 start-page: D535 year: 2006 ident: ref13 article-title: Biogrid: A general repository for interaction datasets. publication-title: Nucleic Acids Research doi: 10.1093/nar/gkj109 – volume: 122 start-page: 957 year: 2005 ident: ref8 article-title: A human protein-protein interaction network: A resource for annotating the proteome. publication-title: Cell doi: 10.1016/j.cell.2005.08.029 – year: 1996 ident: ref27 article-title: Matrix Computations – volume: 97 start-page: 1143 year: 2000 ident: ref3 article-title: Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.3.1143 – volume: 303 start-page: 540 year: 2004 ident: ref7 article-title: A map of the interactome network of the metazoan c. elegans. publication-title: Science doi: 10.1126/science.1091403 – volume: 36 start-page: D480 year: 2008 ident: ref36 article-title: Kegg for linking genomes to life and the environment. publication-title: Nucl Acids Res doi: 10.1093/nar/gkm882 – start-page: 39 year: 2009 ident: ref20 article-title: Learning the structure of protein-protein interaction networks. publication-title: Pacific Symposium on Biocomputing – volume: 204 start-page: 25 year: 2007 ident: ref26 article-title: Spectral clustering and its use in bioinformatics. publication-title: J Computational and Applied Math doi: 10.1016/j.cam.2006.04.026 – volume: 22 start-page: 1998 year: 2006 ident: ref47 article-title: Increasing confidence of protein interactomes using network topological metrics. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl335 – volume: 438 start-page: 108 year: 2005 ident: ref2 article-title: The plasmodium protein network diverges from those of other eukaryotes. publication-title: Nature doi: 10.1038/nature04135 – volume: 20 start-page: 3508 year: 2004 ident: ref16 article-title: Modeling interactome: Scale-free or geometric? publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth436 – volume: 20 start-page: 340 year: 2004 ident: ref37 article-title: Functional topology in a network of protein interactions. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg415 – year: 1994 ident: ref25 article-title: Multidimensional Scaling – start-page: 178 year: 2009 ident: ref22 article-title: Dense graphlet statistics of protein interaction and random networks. publication-title: Pacific Symposium on Biocomputing – volume: 3 year: 2006 ident: ref24 article-title: A geometric preferential attachment model of networks. publication-title: Internet Mathematics – volume: 34 start-page: D411 year: 2006 ident: ref33 article-title: Human protein reference database - 2006 update. publication-title: Nucleic Acids Research doi: 10.1093/nar/gkj141 – start-page: 1 year: 2006 ident: ref43 article-title: Domain-based predictive models for protein-protein interaction prediction. publication-title: EURASIP Journal on Applied Signal Processing doi: 10.1155/ASP/2006/32767 – volume: 417 start-page: 399 year: 2002 ident: ref31 article-title: Comparative assessment of large-scale data sets of protein-protein interactions. publication-title: Nature doi: 10.1038/nature750 – volume: 3:10 start-page: 711 year: 2006 ident: ref19 article-title: Modelling protein-protein interaction networks via a stickiness index. publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2006.0147 – volume: 415 start-page: 123 year: 2002 ident: ref30 article-title: Proteomics: Protein complexes take the bait. publication-title: Nature doi: 10.1038/415123a – start-page: 62 year: 2008 ident: ref46 article-title: An improved method based on maximal clique for predicting interactions in protein interaction networks. publication-title: International Conference on BioMedical Engineering and Informatics – volume: 13 start-page: 652 year: 2008 ident: ref48 article-title: Increasing the reliability of protein interactomes. publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2008.05.004 – volume: 403 start-page: 623 year: 2000 ident: ref4 article-title: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. publication-title: Nature doi: 10.1038/35001009 – volume: 6:3 start-page: 439 year: 2007 ident: ref11 article-title: Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. publication-title: Molecular and Cellular Proteomics doi: 10.1074/mcp.M600381-MCP200 – volume: 7 start-page: 365 year: 2006 ident: ref40 article-title: Pipe: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-365 – volume: 440 start-page: 637 year: 2006 ident: ref10 article-title: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. publication-title: Nature doi: 10.1038/nature04670 – volume: 6 start-page: 257 year: 2008 ident: ref1 article-title: Uncovering biological network function via graphlet degree signatures. publication-title: Cancer Inform doi: 10.4137/CIN.S680 – volume: 286 start-page: 509 year: 1999 ident: ref15 article-title: Emergence of scaling in random networks. publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 437 start-page: 1173 year: 2005 ident: ref9 article-title: Towards a proteomescale map of the human protein-protein interaction network. publication-title: Nature doi: 10.1038/nature04209 – volume: 302 start-page: 1727 year: 2003 ident: ref6 article-title: A protein interaction map of drosophila melanogaster. publication-title: Science doi: 10.1126/science.1090289 – volume: 25 start-page: 105 year: 2009 ident: ref35 article-title: Combining multiple positive training sets to generate confidence scores for protein-protein interactions. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn597 – volume: 20 start-page: e177 year: 2007 ident: ref17 article-title: Biological network comparison using graphlet degree distribution. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl301 – volume: 15 year: 2004 ident: ref39 article-title: Prespi: design and implementation of proteinprotein interaction prediction service system. publication-title: Genome Informatics |
| SSID | ssj0035896 |
| Score | 2.3585305 |
| Snippet | Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in... Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the postgenomic era. Due to the recent advances in... Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1000454 |
| SubjectTerms | Algorithms Computational Biology Computational Biology - methods Computational Biology/Systems Biology Computer Science/Applications Databases, Protein Euclidean space Experiments Humans Mathematics/Statistics Methods Models, Biological Molecular Biology/Bioinformatics Noise Protein Interaction Mapping - methods Proteins Proteins - chemistry Proteins - metabolism Reproducibility of Results ROC Curve Sensitivity and Specificity Signal Transduction Studies Yeast |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5yIPoiWn901dZFBJ_S3m6yyQb6UsVaBfugFu4tJNndenBmj-4d0v_emSR3dlGpDz4dXGbh5stkM3Mz8w0hrwpnrWmUoMj9jWlGS5VVhpYKp2szJlzoW_t0Jk7P-cdZNbs26gtrwiI9cATusKyYNUVjjZNwVRphTVVYTN_huCyrQh_5tFabYCq-g1lVh8lcOBSHSsZnqWmOyeIw7dHB0tk51gggB93oUgrc_ds39GS56Ic_uZ-_V1HeWfulufphFotrV9TJfXIv-Zb5cdTpAbnV-h1yO06bvHpIjt63_XccoOXypqW-n-PfBHnf5YGrYe5p-syRQuIyNjzkPpaJD4_I-cm7r29PaRqeQJ0QakUb3jpeW9cZxRvlqlJ04DlxaWFTOLfWyaaxXcNrY8KprRreMcth2daFqR17TCa-9-0uyQVr4RYrp6aTjsupNCUy9kjhunpq2lJlhG3Q0y4xi-OAi4UO6TIJEUYEQCPmOmGeEbp9ahmZNW6Qf4Mbs5VFXuzwBViLTtaib7KWjLzEbdXIfOGxtObCrIdBf_hypo9LUIlzCHD_KvR5JPQ6CXU9KOtMamcAyJBRayS5iza0UWoAFcGpqiQEyhl5sbErDccaczXGt_160BDHwdP4g59EK_uFEQSo4KfBihzZ3wiY8YqffwvE4aUswGURGTnYWuo_Qf_0f0D_jNyNmTgsnnxOJqvLdbsHDt3K7oez-xNXJUeE priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVoheeJeGZ4QQnJJuYsdOJC7LoxQkVhWw0nKybCehK5ZkRbJC5cofZyZ2tgSogAOnRPE4iscTe8Yz8w0hDyKjtcozHiD2N7oZdZDpTAVxhtW1KeWmy1t7PeWHM_Zqnsy3iO5zYRwHwUZc1k3nyccbDK9GUKJ9x859BC2yLtQwoiLqu4Uroxfo-EdguYcd7BAej7WYhXSObPME9PUR2Z5NjybvOyDVhAaCsvnpfZK6_Lqz3jrYvzqY_81iPsJP_Z2m-mvA5YV1tVInX9Ry-cNudnCJfOv5YINYPobrVofm608Qkf-XUZfJRacM-xP7litkq6iukvO2PObJNfL4RVF_wopfxn9WBFW9wHMNvy79IwSXWFSBu_rdsabN0PCnNq69uU5mB8_fPT0MXLWHwHCetUHOCsNSbUqVsTwzScxLUPWY0CBFjGltRJ7rMmepUt0yk-SspJpBs04jlRq6S0ZVXRV7xOe0gG03HqtSGCbGQsUIMSS4KdOxKuLMI7SfQ2kcFDpW5FjKzr8nwCSyDJDIJunY5JFg02tloUD-QP8ExWNDi0De3QOYLOnmR8YJ1SrKtTICNEHFtUoijd5prAanM-GR-yhcEqE6KowF-qDWTSNfvp3KSQxDYgws8jOJ3gyIHjmisobBGuXyL4BlKCQDyj2UpX5QDQwRtMBEgGXvkXu9dEtYh9C5pKqiXjcSDE_ojR98w8r6KY_AogbFElrE4C8YMGbYUi2OO6TzWESgY3GPhJv_5a9Yf_NfO9wiO9ZNiJGdt8mo_bwu7oC22eq7brn4Du0oglE priority: 102 providerName: Unpaywall |
| Title | Geometric De-noising of Protein-Protein Interaction Networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19662157 https://www.proquest.com/docview/67564497 https://pubmed.ncbi.nlm.nih.gov/PMC2711306 https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000454&type=printable https://doaj.org/article/253ba1dbac7846a6ba51b30939723b97 http://dx.doi.org/10.1371/journal.pcbi.1000454 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: GX1 dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 8FG dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M48 dateStart: 20050601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe2TgheEJ9b-CgRQuIpVZM4diKBUAvrBtKqaVCpPFm2k4xKISlNK-h_z53jFCI2wQMviRSfo_p8V9_l7N-PkBe-VkqmCfMQ-xvLjMpLVCK9IEF27TBk2pxbO5uy0xn9MI_me6TlbLUKrK9M7ZBParYqBj--bd-Aw782rA3cbzsNllotsOqPqHL75ADWqgTJHM7orq4QRrFh7EKyHI-HdG4P0133ls5iZTD9d__cvWVR1VeFpX_urry5KZdy-10WxW9L1-QOuW1jTnfUGMldspeV98iNhoVye5-8Osmqr0ispd0088pqgZ8P3Cp3DYbDovTs3UVoiVVzEMItm-3j9QMymxx_envqWVIFTzOWrL2UZprGSucyoWmio4DlEFFRrmCyKFVK8zRVeUpjKY03RynNQ0WhWcW-jHX4kPTKqsyOiMvCDFa3YChzrikfchkgkg9nOo-HMgsSh4St9oS2iONIfFEIU0bjkHk0ChCoc2F17hBv12vZIG78RX6ME7OTRbxs86BaXQrrfiKIQiX9VEnNIeCSTMnIV1gERtI1lXCHPMdpFYiIUeKWm0u5qWvx_uNUjAIYEqWQ-F4rdNERemmF8goGq6U95gAqQ6StjuQR2lA7qBqGCMFWxCGBdsiz1q4EuDvWcGSZVZtaQH4HvfEHHzZW9ktHkLhC_AYtvGN_HcV0W8rFFwMoHnAfQhnmkMHOUv9J9Y_-h-ofk1tNhQ43VT4hvfVqkz2FQG-t-mSfzzlc48lJnxyMxu_GE7iPj6fnF33z8aRvvBuezabno88_AdEOWV4 |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVoheeJeGZ4QQnJJuYsdOJC7LoxQkVhWw0nKybCehK5ZkRbJC5cofZyZ2tgSogAOnRPE4iscTe8Yz8w0hDyKjtcozHiD2N7oZdZDpTAVxhtW1KeWmy1t7PeWHM_Zqnsy3iO5zYRwHwUZc1k3nyccbDK9GUKJ9x859BC2yLtQwoiLqu4Uroxfo-EdguYcd7BAej7WYhXSObPME9PUR2Z5NjybvOyDVhAaCsvnpfZK6_Lqz3jrYvzqY_81iPsJP_Z2m-mvA5YV1tVInX9Ry-cNudnCJfOv5YINYPobrVofm608Qkf-XUZfJRacM-xP7litkq6iukvO2PObJNfL4RVF_wopfxn9WBFW9wHMNvy79IwSXWFSBu_rdsabN0PCnNq69uU5mB8_fPT0MXLWHwHCetUHOCsNSbUqVsTwzScxLUPWY0CBFjGltRJ7rMmepUt0yk-SspJpBs04jlRq6S0ZVXRV7xOe0gG03HqtSGCbGQsUIMSS4KdOxKuLMI7SfQ2kcFDpW5FjKzr8nwCSyDJDIJunY5JFg02tloUD-QP8ExWNDi0De3QOYLOnmR8YJ1SrKtTICNEHFtUoijd5prAanM-GR-yhcEqE6KowF-qDWTSNfvp3KSQxDYgws8jOJ3gyIHjmisobBGuXyL4BlKCQDyj2UpX5QDQwRtMBEgGXvkXu9dEtYh9C5pKqiXjcSDE_ojR98w8r6KY_AogbFElrE4C8YMGbYUi2OO6TzWESgY3GPhJv_5a9Yf_NfO9wiO9ZNiJGdt8mo_bwu7oC22eq7brn4Du0oglE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+de-noising+of+protein-protein+interaction+networks&rft.jtitle=PLoS+computational+biology&rft.au=Oleksii+Kuchaiev&rft.au=Marija+Rasajski&rft.au=Desmond+J+Higham&rft.au=Natasa+Przulj&rft.date=2009-08-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=5&rft.issue=8&rft.spage=e1000454&rft_id=info:doi/10.1371%2Fjournal.pcbi.1000454&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_253ba1dbac7846a6ba51b30939723b97 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |