Geometric De-noising of Protein-Protein Interaction Networks

Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 5; no. 8; p. e1000454
Main Authors Kuchaiev, Oleksii, Rašajski, Marija, Higham, Desmond J., Pržulj, Nataša
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.08.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1000454

Cover

Abstract Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.
AbstractList Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.
Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.
Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the postgenomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise. We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.
  Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise. We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.
Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise. We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising. Proteins are responsible for much of the biological ‘heavy lifting’ that keeps our cells functioning. However, proteins don't usually work alone; instead they typically bind together to form geometrically and chemically complex structures that are tailored for a specific task. Experimental techniques allow us to detect whether two types of proteins are capable of binding together, or ‘interacting’. This creates a network where two proteins are connected if they have been seen to interact, just as we could regard two people as being connected if they are linked on Facebook. Such protein-protein interaction networks have been developed for several organisms, using a range of methods, all of which are subject to experimental errors. These network data reveal a fascinating and intricate pattern of connections. In particular, it is known that proteins can be arranged into a low-dimensional space, such as a three-dimensional cube, so that interacting proteins are close together. Our work shows that this structure can be exploited to assign confidence levels to recorded protein-protein interactions and predict new interactions that were overlooked experimentally. In tests, we predicted 251 new human protein-protein interactions, and through literature curation we independently validated a statistically significant number of them.
Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the postgenomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise. We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: doi:10.1371/journal.pcbi.1000454
Audience Academic
Author Rašajski, Marija
Higham, Desmond J.
Pržulj, Nataša
Kuchaiev, Oleksii
AuthorAffiliation 1 Department of Computer Science, University of California, Irvine, California, United States of America
National Center for Biotechnology Information (NCBI), United States of America
3 Department of Mathematics, University of Strathclyde, Glasgow, United Kingdom
2 Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia
AuthorAffiliation_xml – name: 1 Department of Computer Science, University of California, Irvine, California, United States of America
– name: National Center for Biotechnology Information (NCBI), United States of America
– name: 3 Department of Mathematics, University of Strathclyde, Glasgow, United Kingdom
– name: 2 Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia
Author_xml – sequence: 1
  givenname: Oleksii
  surname: Kuchaiev
  fullname: Kuchaiev, Oleksii
– sequence: 2
  givenname: Marija
  surname: Rašajski
  fullname: Rašajski, Marija
– sequence: 3
  givenname: Desmond J.
  surname: Higham
  fullname: Higham, Desmond J.
– sequence: 4
  givenname: Nataša
  surname: Pržulj
  fullname: Pržulj, Nataša
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19662157$$D View this record in MEDLINE/PubMed
BookMark eNqVkktv1DAUhSNURB_wDxDMColFBjt-JahCqlooI1UF8Vhb144zeMjYg-209N_jdAJ02ADywpb93aNzj-9hsee8M0XxGKM5JgK_WPkhOOjnG63sHCOEKKP3igPMGCkFYfXenfN-cRjjCqF8bPiDYh83nFeYiYPi-Nz4tUnB6tmZKZ230brlzHez98EnY1057bOFSyaATta72aVJ1z58jQ-L-x300Tya9qPi85vXn07flhfvzhenJxel5rxJZUuNprXSHTS0bTSreEcrQoViTU2pUlq0repaWgNUTNSCtbQjiuZnVWOoNTkqnm51N72Pcmo8SkxwRZlosMjEYku0HlZyE-wawo30YOXthQ9LCSFZ3RtZMaIAtwq0qCkHroBhRVBDGlER1YxabKs1uA3cXEPf_xLESI7Z_7Qgx-zllH2uezW5HNTatNq4FKDfMbP74uwXufRXshIYE8SzwLNJIPhvg4lJrm3Upu_BGT9EyQXjlN46nG_BJeSGrOt81tN5tWZtdR6Tzub7kwqJzFM0FjzfKchMMt_TEoYY5eLjh_9gL3fZJ3db_p3TNF8ZeLkFdPAxBtNJbROMQ5Qd2_5vgdI_iv_pH34AnNj5-Q
CitedBy_id crossref_primary_10_1093_bfgp_elaa015
crossref_primary_10_1103_PhysRevE_103_012305
crossref_primary_10_1109_TCBB_2014_2386314
crossref_primary_10_1007_s40484_019_0180_y
crossref_primary_10_1186_1752_0509_9_S1_S7
crossref_primary_10_1093_bioinformatics_bty206
crossref_primary_10_1038_nprot_2016_117
crossref_primary_10_1109_TCBB_2012_164
crossref_primary_10_1038_srep10073
crossref_primary_10_1080_10618600_2012_679240
crossref_primary_10_1109_TCBB_2015_2495170
crossref_primary_10_1088_1674_1056_abb659
crossref_primary_10_2174_1574893618666230315154807
crossref_primary_10_1186_1471_2105_13_S7_S4
crossref_primary_10_1155_2019_8984248
crossref_primary_10_1186_1471_2105_13_S7_S3
crossref_primary_10_1371_journal_pone_0183495
crossref_primary_10_1142_S0219720016500086
crossref_primary_10_1093_bioinformatics_btw655
crossref_primary_10_1093_bioinformatics_btv160
crossref_primary_10_15252_msb_202110396
crossref_primary_10_1002_2211_5463_13732
crossref_primary_10_1016_j_jtbi_2024_111850
crossref_primary_10_1002_bies_201000044
crossref_primary_10_1080_02331888_2025_2481303
crossref_primary_10_1007_s41109_017_0022_7
crossref_primary_10_1038_s41467_017_01825_5
crossref_primary_10_1371_journal_pone_0019349
crossref_primary_10_23919_JSEE_2023_000080
crossref_primary_10_1186_s12859_021_04300_7
crossref_primary_10_3389_fgene_2021_760299
crossref_primary_10_1038_srep08540
crossref_primary_10_1080_17460441_2021_1910673
crossref_primary_10_1186_s12864_015_1944_z
crossref_primary_10_1093_bib_bbab552
crossref_primary_10_1038_srep01613
crossref_primary_10_1002_pro_4479
crossref_primary_10_1016_j_physa_2020_124289
crossref_primary_10_1038_s41598_019_45072_8
crossref_primary_10_1093_bioinformatics_bts351
crossref_primary_10_1186_1471_2105_14_S14_S8
crossref_primary_10_1016_j_bbapap_2010_04_008
crossref_primary_10_1016_j_csbj_2020_05_008
crossref_primary_10_1016_j_jmb_2019_07_014
crossref_primary_10_1186_s12918_017_0404_6
crossref_primary_10_3389_fgene_2019_00535
crossref_primary_10_1186_s13059_023_03062_0
crossref_primary_10_1093_nar_gks492
crossref_primary_10_1126_science_abm4805
crossref_primary_10_1186_1471_2105_15_186
crossref_primary_10_1142_S0219720014500255
crossref_primary_10_1016_j_neucom_2013_04_027
crossref_primary_10_1109_TCBB_2012_20
crossref_primary_10_1016_j_inffus_2023_101909
crossref_primary_10_1016_j_jbi_2021_103801
crossref_primary_10_1093_bioinformatics_btt208
crossref_primary_10_3389_fgene_2019_00381
crossref_primary_10_1186_1477_5956_11_S1_S9
crossref_primary_10_7717_peerj_15313
crossref_primary_10_1186_1471_2105_14_163
crossref_primary_10_1186_s12918_016_0296_x
crossref_primary_10_1093_bioinformatics_btae476
crossref_primary_10_1109_TCBB_2016_2615931
crossref_primary_10_1186_s12920_019_0605_5
crossref_primary_10_1016_j_compbiolchem_2013_03_002
crossref_primary_10_1002_cpps_62
crossref_primary_10_1371_journal_pone_0238915
crossref_primary_10_1007_s41109_016_0013_0
crossref_primary_10_1109_TKDE_2020_2987570
crossref_primary_10_1186_s13637_016_0040_2
crossref_primary_10_1371_journal_pone_0058368
crossref_primary_10_1109_TCBB_2024_3429546
crossref_primary_10_1093_bib_bbx041
crossref_primary_10_1371_journal_pone_0054945
crossref_primary_10_1093_nargab_lqaa051
crossref_primary_10_1038_s42005_023_01143_x
crossref_primary_10_1186_s12859_018_2112_7
crossref_primary_10_1109_TNB_2015_2420754
crossref_primary_10_3389_fphys_2015_00364
crossref_primary_10_1186_1471_2105_12_24
crossref_primary_10_1002_pmic_202200083
crossref_primary_10_3389_fgene_2015_00296
crossref_primary_10_1093_bib_bbw066
crossref_primary_10_1002_prot_25506
crossref_primary_10_35414_akufemubid_1127509
crossref_primary_10_1093_bioinformatics_btaa459
crossref_primary_10_1093_bib_bby117
crossref_primary_10_1038_s41598_020_59344_1
crossref_primary_10_1093_bioinformatics_bts729
crossref_primary_10_1093_nar_gkx1173
crossref_primary_10_1021_ac2024602
crossref_primary_10_1093_bib_bbaa016
crossref_primary_10_1038_s41598_021_87333_5
crossref_primary_10_1021_ac302071k
crossref_primary_10_1038_s41598_018_33576_8
crossref_primary_10_1038_s41598_021_93921_2
crossref_primary_10_1137_140956166
crossref_primary_10_1142_S021972001230002X
crossref_primary_10_1093_bioinformatics_bts688
crossref_primary_10_1186_1471_2105_13_262
crossref_primary_10_1109_TCBB_2014_2359441
crossref_primary_10_1371_journal_pone_0032032
crossref_primary_10_3389_fgene_2018_00484
crossref_primary_10_1098_rspa_2009_0456
crossref_primary_10_1142_S0219720009004461
crossref_primary_10_1038_srep30108
crossref_primary_10_2174_2589977514666220214120403
crossref_primary_10_1155_2022_9248674
crossref_primary_10_1109_TCBB_2015_2407393
crossref_primary_10_1007_s12539_021_00426_7
crossref_primary_10_1109_TCBB_2015_2456876
crossref_primary_10_1080_15427951_2011_604561
crossref_primary_10_1155_2014_240673
crossref_primary_10_1371_journal_pone_0090073
crossref_primary_10_1109_TCBB_2019_2916038
crossref_primary_10_1016_j_compbiomed_2017_07_015
crossref_primary_10_1002_prot_25086
crossref_primary_10_1002_widm_1061
crossref_primary_10_1142_S0219720020400107
Cites_doi 10.1038/nature04532
10.1038/nbt1002-991
10.1093/nar/gkm291
10.1093/acprof:oso/9780198506263.001.0001
10.1038/415180a
10.1126/science.1087361
10.1016/S0168-9525(02)02763-4
10.1093/bioinformatics/btn079
10.1186/gb-2006-7-11-120
10.5486/PMD.1959.6.3-4.12
10.1093/nar/gkj109
10.1016/j.cell.2005.08.029
10.1073/pnas.97.3.1143
10.1126/science.1091403
10.1093/nar/gkm882
10.1016/j.cam.2006.04.026
10.1093/bioinformatics/btl335
10.1038/nature04135
10.1093/bioinformatics/bth436
10.1093/bioinformatics/btg415
10.1093/nar/gkj141
10.1155/ASP/2006/32767
10.1038/nature750
10.1098/rsif.2006.0147
10.1038/415123a
10.1016/j.drudis.2008.05.004
10.1038/35001009
10.1074/mcp.M600381-MCP200
10.1186/1471-2105-7-365
10.1038/nature04670
10.4137/CIN.S680
10.1126/science.286.5439.509
10.1038/nature04209
10.1126/science.1090289
10.1093/bioinformatics/btn597
10.1093/bioinformatics/btl301
ContentType Journal Article
Copyright COPYRIGHT 2009 Public Library of Science
Kuchaiev et al. 2009
2009 Kuchaiev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kuchaiev O, Rasajski M, Higham DJ, Przulj N (2009) Geometric De-noising of Protein-Protein Interaction Networks. PLoS Comput Biol 5(8): e1000454. doi:10.1371/journal.pcbi.1000454
Copyright_xml – notice: COPYRIGHT 2009 Public Library of Science
– notice: Kuchaiev et al. 2009
– notice: 2009 Kuchaiev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kuchaiev O, Rasajski M, Higham DJ, Przulj N (2009) Geometric De-noising of Protein-Protein Interaction Networks. PLoS Comput Biol 5(8): e1000454. doi:10.1371/journal.pcbi.1000454
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pcbi.1000454
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic






MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Geometric De-noising of PPI Networks
EISSN 1553-7358
ExternalDocumentID 1312457917
oai_doaj_org_article_253ba1dbac7846a6ba51b30939723b97
10.1371/journal.pcbi.1000454
PMC2711306
A207644407
19662157
10_1371_journal_pcbi_1000454
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0601353
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
NPM
PV9
RZL
WOQ
7X8
5PM
ACCTH
ADTOC
AFFHD
BBTPI
UNPAY
3V.
AAPBV
ABPTK
M0N
M~E
ID FETCH-LOGICAL-c669t-d4ec48bcfa94d9c526f42347b59844bbc7ddbfd48aa257875d4f3b4b59b81a8c3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:33 EDT 2023
Fri Oct 03 12:51:04 EDT 2025
Wed Oct 29 11:45:56 EDT 2025
Tue Sep 30 16:56:04 EDT 2025
Fri Sep 05 10:32:59 EDT 2025
Mon Oct 20 17:21:30 EDT 2025
Thu Oct 16 15:00:45 EDT 2025
Thu Oct 16 15:07:33 EDT 2025
Mon Jul 21 06:00:06 EDT 2025
Wed Oct 01 05:00:21 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Proteins
Reproducibility of Results
Algorithms
Signal Transduction
Models, Biological
Sensitivity & Specificity
Databases, Protein
Humans
Computational Biology
ROC Curve
Protein Interaction Mapping
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-d4ec48bcfa94d9c526f42347b59844bbc7ddbfd48aa257875d4f3b4b59b81a8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: OK DJH NP. Performed the experiments: OK MR NP. Analyzed the data: OK MR NP. Contributed reagents/materials/analysis tools: OK DJH NP. Wrote the paper: OK DJH NP. Directed the research: NP.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1000454
PMID 19662157
PQID 67564497
PQPubID 23479
ParticipantIDs plos_journals_1312457917
doaj_primary_oai_doaj_org_article_253ba1dbac7846a6ba51b30939723b97
unpaywall_primary_10_1371_journal_pcbi_1000454
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2711306
proquest_miscellaneous_67564497
gale_infotracacademiconefile_A207644407
gale_incontextgauss_ISR_A207644407
gale_incontextgauss_ISN_A207644407
pubmed_primary_19662157
crossref_citationtrail_10_1371_journal_pcbi_1000454
crossref_primary_10_1371_journal_pcbi_1000454
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2009
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References N Pržulj (ref37) 2004; 20
U Stelzl (ref8) 2005; 122
R Jansen (ref44) 2003; 302
T Cox (ref25) 1994
J Wang (ref46) 2008
T Ito (ref3) 2000; 97
P Uetz (ref4) 2000; 403
J Rual (ref9) 2005; 437
S Pitre (ref40) 2006; 7
N Pržulj (ref17) 2007; 20
DS Han (ref39) 2004; 15
P Erdös (ref14) 1956; 6
M Penrose (ref21) 2003
D Higham (ref18) 2008; 24(8)
AC Gavin (ref5) 2006; 440
Y Ho (ref34) 2002; 415
MS Lee (ref42) 2005
A Labarga (ref38) 2007; 35
R Singh (ref45) 2006; 11
AL Barabasi (ref15) 1999; 286
G Mishra (ref33) 2006; 34
S Collins (ref11) 2007; 6:3
D Higham (ref26) 2007; 204
S Suthram (ref2) 2005; 438
N Pržulj (ref19) 2006; 3:10
G Hart (ref29) 2006; 7
J Yu (ref35) 2009; 25
XW Chen (ref43) 2006
N Krogan (ref10) 2006; 440
G Bader (ref23) 2002; 20
AM Edwards (ref12) 2002; 18
O Kuchaiev (ref20) 2009
TGO Consortium (ref32) 2002; 25
M Kanehisa (ref36) 2008; 36
S Li (ref7) 2004; 303
C Bishop (ref28) 2006
F Abraham (ref24) 2006; 3
J Chen (ref47) 2006; 22
T Milenkovic (ref1) 2008; 6
C Stark (ref13) 2006; 34
GH Golub (ref27) 1996
N Pržulj (ref16) 2004; 20
Z Ma (ref41) 2007
L Giot (ref6) 2003; 302
A Kumar (ref30) 2002; 415
R Colak (ref22) 2009
H Chua (ref48) 2008; 13
C von Mering (ref31) 2002; 417
References_xml – volume: 25
  start-page: 25
  year: 2002
  ident: ref32
  article-title: Gene ontology: tool for the unification of biology.
  publication-title: Nature Genet
– volume: 440
  start-page: 631
  year: 2006
  ident: ref5
  article-title: Proteome survey reveals modularity of the yeast cell machinery.
  publication-title: Nature
  doi: 10.1038/nature04532
– volume: 20
  start-page: 991
  year: 2002
  ident: ref23
  article-title: Analyzing yeast protein-protein interaction data obtained from different sources.
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt1002-991
– volume: 35
  start-page: W6
  year: 2007
  ident: ref38
  article-title: Web services at the european bioinformatics institute.
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkm291
– year: 2003
  ident: ref21
  article-title: Random Geometric Graphs.
  doi: 10.1093/acprof:oso/9780198506263.001.0001
– volume: 415
  start-page: 180
  year: 2002
  ident: ref34
  article-title: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry.
  publication-title: Nature
  doi: 10.1038/415180a
– volume: 302
  start-page: 449
  year: 2003
  ident: ref44
  article-title: A bayesian networks approach for predicting protein-protein interactions from genomic data.
  publication-title: Science
  doi: 10.1126/science.1087361
– volume: 18
  year: 2002
  ident: ref12
  article-title: Bridging structural biology and genomics: assessing protein interaction data with known complexes.
  publication-title: Trends in Genetics
  doi: 10.1016/S0168-9525(02)02763-4
– start-page: 151
  year: 2005
  ident: ref42
  article-title: A protein interaction verification system based on a neural network algorithm.
– year: 2006
  ident: ref28
  article-title: Pattern Recognition and Machine Learning.
– volume: 11
  start-page: 403
  year: 2006
  ident: ref45
  article-title: Struct2net: Integrating structure into protein-protein interaction prediction.
  publication-title: Pacific Symposium on Biocomputing
– volume: 24(8)
  start-page: 1093
  year: 2008
  ident: ref18
  article-title: Fitting a geometric graph to a protein-protein interaction network.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn079
– volume: 7
  start-page: 120
  year: 2006
  ident: ref29
  article-title: How complete are current yeast and human proteininteraction networks?
  publication-title: Genome Biology
  doi: 10.1186/gb-2006-7-11-120
– volume: 6
  start-page: 290
  year: 1956
  ident: ref14
  article-title: On random graphs.
  publication-title: Publicationes Mathematicae
  doi: 10.5486/PMD.1959.6.3-4.12
– start-page: 3
  year: 2007
  ident: ref41
  article-title: Predicting protein-protein interactions based on bp neural network.
  publication-title: IEEE International Conference on Bioinformatics and Biomedicine Workshops, 2007 BIBMW 2007
– volume: 34
  start-page: D535
  year: 2006
  ident: ref13
  article-title: Biogrid: A general repository for interaction datasets.
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkj109
– volume: 122
  start-page: 957
  year: 2005
  ident: ref8
  article-title: A human protein-protein interaction network: A resource for annotating the proteome.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.029
– year: 1996
  ident: ref27
  article-title: Matrix Computations
– volume: 97
  start-page: 1143
  year: 2000
  ident: ref3
  article-title: Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.3.1143
– volume: 303
  start-page: 540
  year: 2004
  ident: ref7
  article-title: A map of the interactome network of the metazoan c. elegans.
  publication-title: Science
  doi: 10.1126/science.1091403
– volume: 36
  start-page: D480
  year: 2008
  ident: ref36
  article-title: Kegg for linking genomes to life and the environment.
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkm882
– start-page: 39
  year: 2009
  ident: ref20
  article-title: Learning the structure of protein-protein interaction networks.
  publication-title: Pacific Symposium on Biocomputing
– volume: 204
  start-page: 25
  year: 2007
  ident: ref26
  article-title: Spectral clustering and its use in bioinformatics.
  publication-title: J Computational and Applied Math
  doi: 10.1016/j.cam.2006.04.026
– volume: 22
  start-page: 1998
  year: 2006
  ident: ref47
  article-title: Increasing confidence of protein interactomes using network topological metrics.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl335
– volume: 438
  start-page: 108
  year: 2005
  ident: ref2
  article-title: The plasmodium protein network diverges from those of other eukaryotes.
  publication-title: Nature
  doi: 10.1038/nature04135
– volume: 20
  start-page: 3508
  year: 2004
  ident: ref16
  article-title: Modeling interactome: Scale-free or geometric?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth436
– volume: 20
  start-page: 340
  year: 2004
  ident: ref37
  article-title: Functional topology in a network of protein interactions.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg415
– year: 1994
  ident: ref25
  article-title: Multidimensional Scaling
– start-page: 178
  year: 2009
  ident: ref22
  article-title: Dense graphlet statistics of protein interaction and random networks.
  publication-title: Pacific Symposium on Biocomputing
– volume: 3
  year: 2006
  ident: ref24
  article-title: A geometric preferential attachment model of networks.
  publication-title: Internet Mathematics
– volume: 34
  start-page: D411
  year: 2006
  ident: ref33
  article-title: Human protein reference database - 2006 update.
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkj141
– start-page: 1
  year: 2006
  ident: ref43
  article-title: Domain-based predictive models for protein-protein interaction prediction.
  publication-title: EURASIP Journal on Applied Signal Processing
  doi: 10.1155/ASP/2006/32767
– volume: 417
  start-page: 399
  year: 2002
  ident: ref31
  article-title: Comparative assessment of large-scale data sets of protein-protein interactions.
  publication-title: Nature
  doi: 10.1038/nature750
– volume: 3:10
  start-page: 711
  year: 2006
  ident: ref19
  article-title: Modelling protein-protein interaction networks via a stickiness index.
  publication-title: Journal of the Royal Society Interface
  doi: 10.1098/rsif.2006.0147
– volume: 415
  start-page: 123
  year: 2002
  ident: ref30
  article-title: Proteomics: Protein complexes take the bait.
  publication-title: Nature
  doi: 10.1038/415123a
– start-page: 62
  year: 2008
  ident: ref46
  article-title: An improved method based on maximal clique for predicting interactions in protein interaction networks.
  publication-title: International Conference on BioMedical Engineering and Informatics
– volume: 13
  start-page: 652
  year: 2008
  ident: ref48
  article-title: Increasing the reliability of protein interactomes.
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2008.05.004
– volume: 403
  start-page: 623
  year: 2000
  ident: ref4
  article-title: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae.
  publication-title: Nature
  doi: 10.1038/35001009
– volume: 6:3
  start-page: 439
  year: 2007
  ident: ref11
  article-title: Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae.
  publication-title: Molecular and Cellular Proteomics
  doi: 10.1074/mcp.M600381-MCP200
– volume: 7
  start-page: 365
  year: 2006
  ident: ref40
  article-title: Pipe: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-365
– volume: 440
  start-page: 637
  year: 2006
  ident: ref10
  article-title: Global landscape of protein complexes in the yeast saccharomyces cerevisiae.
  publication-title: Nature
  doi: 10.1038/nature04670
– volume: 6
  start-page: 257
  year: 2008
  ident: ref1
  article-title: Uncovering biological network function via graphlet degree signatures.
  publication-title: Cancer Inform
  doi: 10.4137/CIN.S680
– volume: 286
  start-page: 509
  year: 1999
  ident: ref15
  article-title: Emergence of scaling in random networks.
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 437
  start-page: 1173
  year: 2005
  ident: ref9
  article-title: Towards a proteomescale map of the human protein-protein interaction network.
  publication-title: Nature
  doi: 10.1038/nature04209
– volume: 302
  start-page: 1727
  year: 2003
  ident: ref6
  article-title: A protein interaction map of drosophila melanogaster.
  publication-title: Science
  doi: 10.1126/science.1090289
– volume: 25
  start-page: 105
  year: 2009
  ident: ref35
  article-title: Combining multiple positive training sets to generate confidence scores for protein-protein interactions.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn597
– volume: 20
  start-page: e177
  year: 2007
  ident: ref17
  article-title: Biological network comparison using graphlet degree distribution.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl301
– volume: 15
  year: 2004
  ident: ref39
  article-title: Prespi: design and implementation of proteinprotein interaction prediction service system.
  publication-title: Genome Informatics
SSID ssj0035896
Score 2.3585305
Snippet Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in...
Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the postgenomic era. Due to the recent advances in...
  Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000454
SubjectTerms Algorithms
Computational Biology
Computational Biology - methods
Computational Biology/Systems Biology
Computer Science/Applications
Databases, Protein
Euclidean space
Experiments
Humans
Mathematics/Statistics
Methods
Models, Biological
Molecular Biology/Bioinformatics
Noise
Protein Interaction Mapping - methods
Proteins
Proteins - chemistry
Proteins - metabolism
Reproducibility of Results
ROC Curve
Sensitivity and Specificity
Signal Transduction
Studies
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5yIPoiWn901dZFBJ_S3m6yyQb6UsVaBfugFu4tJNndenBmj-4d0v_emSR3dlGpDz4dXGbh5stkM3Mz8w0hrwpnrWmUoMj9jWlGS5VVhpYKp2szJlzoW_t0Jk7P-cdZNbs26gtrwiI9cATusKyYNUVjjZNwVRphTVVYTN_huCyrQh_5tFabYCq-g1lVh8lcOBSHSsZnqWmOyeIw7dHB0tk51gggB93oUgrc_ds39GS56Ic_uZ-_V1HeWfulufphFotrV9TJfXIv-Zb5cdTpAbnV-h1yO06bvHpIjt63_XccoOXypqW-n-PfBHnf5YGrYe5p-syRQuIyNjzkPpaJD4_I-cm7r29PaRqeQJ0QakUb3jpeW9cZxRvlqlJ04DlxaWFTOLfWyaaxXcNrY8KprRreMcth2daFqR17TCa-9-0uyQVr4RYrp6aTjsupNCUy9kjhunpq2lJlhG3Q0y4xi-OAi4UO6TIJEUYEQCPmOmGeEbp9ahmZNW6Qf4Mbs5VFXuzwBViLTtaib7KWjLzEbdXIfOGxtObCrIdBf_hypo9LUIlzCHD_KvR5JPQ6CXU9KOtMamcAyJBRayS5iza0UWoAFcGpqiQEyhl5sbErDccaczXGt_160BDHwdP4g59EK_uFEQSo4KfBihzZ3wiY8YqffwvE4aUswGURGTnYWuo_Qf_0f0D_jNyNmTgsnnxOJqvLdbsHDt3K7oez-xNXJUeE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVoheeJeGZ4QQnJJuYsdOJC7LoxQkVhWw0nKybCehK5ZkRbJC5cofZyZ2tgSogAOnRPE4iscTe8Yz8w0hDyKjtcozHiD2N7oZdZDpTAVxhtW1KeWmy1t7PeWHM_Zqnsy3iO5zYRwHwUZc1k3nyccbDK9GUKJ9x859BC2yLtQwoiLqu4Uroxfo-EdguYcd7BAej7WYhXSObPME9PUR2Z5NjybvOyDVhAaCsvnpfZK6_Lqz3jrYvzqY_81iPsJP_Z2m-mvA5YV1tVInX9Ry-cNudnCJfOv5YINYPobrVofm608Qkf-XUZfJRacM-xP7litkq6iukvO2PObJNfL4RVF_wopfxn9WBFW9wHMNvy79IwSXWFSBu_rdsabN0PCnNq69uU5mB8_fPT0MXLWHwHCetUHOCsNSbUqVsTwzScxLUPWY0CBFjGltRJ7rMmepUt0yk-SspJpBs04jlRq6S0ZVXRV7xOe0gG03HqtSGCbGQsUIMSS4KdOxKuLMI7SfQ2kcFDpW5FjKzr8nwCSyDJDIJunY5JFg02tloUD-QP8ExWNDi0De3QOYLOnmR8YJ1SrKtTICNEHFtUoijd5prAanM-GR-yhcEqE6KowF-qDWTSNfvp3KSQxDYgws8jOJ3gyIHjmisobBGuXyL4BlKCQDyj2UpX5QDQwRtMBEgGXvkXu9dEtYh9C5pKqiXjcSDE_ojR98w8r6KY_AogbFElrE4C8YMGbYUi2OO6TzWESgY3GPhJv_5a9Yf_NfO9wiO9ZNiJGdt8mo_bwu7oC22eq7brn4Du0oglE
  priority: 102
  providerName: Unpaywall
Title Geometric De-noising of Protein-Protein Interaction Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/19662157
https://www.proquest.com/docview/67564497
https://pubmed.ncbi.nlm.nih.gov/PMC2711306
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000454&type=printable
https://doaj.org/article/253ba1dbac7846a6ba51b30939723b97
http://dx.doi.org/10.1371/journal.pcbi.1000454
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe2TgheEJ9b-CgRQuIpVZM4diKBUAvrBtKqaVCpPFm2k4xKISlNK-h_z53jFCI2wQMviRSfo_p8V9_l7N-PkBe-VkqmCfMQ-xvLjMpLVCK9IEF27TBk2pxbO5uy0xn9MI_me6TlbLUKrK9M7ZBParYqBj--bd-Aw782rA3cbzsNllotsOqPqHL75ADWqgTJHM7orq4QRrFh7EKyHI-HdG4P0133ls5iZTD9d__cvWVR1VeFpX_urry5KZdy-10WxW9L1-QOuW1jTnfUGMldspeV98iNhoVye5-8Osmqr0ispd0088pqgZ8P3Cp3DYbDovTs3UVoiVVzEMItm-3j9QMymxx_envqWVIFTzOWrL2UZprGSucyoWmio4DlEFFRrmCyKFVK8zRVeUpjKY03RynNQ0WhWcW-jHX4kPTKqsyOiMvCDFa3YChzrikfchkgkg9nOo-HMgsSh4St9oS2iONIfFEIU0bjkHk0ChCoc2F17hBv12vZIG78RX6ME7OTRbxs86BaXQrrfiKIQiX9VEnNIeCSTMnIV1gERtI1lXCHPMdpFYiIUeKWm0u5qWvx_uNUjAIYEqWQ-F4rdNERemmF8goGq6U95gAqQ6StjuQR2lA7qBqGCMFWxCGBdsiz1q4EuDvWcGSZVZtaQH4HvfEHHzZW9ktHkLhC_AYtvGN_HcV0W8rFFwMoHnAfQhnmkMHOUv9J9Y_-h-ofk1tNhQ43VT4hvfVqkz2FQG-t-mSfzzlc48lJnxyMxu_GE7iPj6fnF33z8aRvvBuezabno88_AdEOWV4
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVoheeJeGZ4QQnJJuYsdOJC7LoxQkVhWw0nKybCehK5ZkRbJC5cofZyZ2tgSogAOnRPE4iscTe8Yz8w0hDyKjtcozHiD2N7oZdZDpTAVxhtW1KeWmy1t7PeWHM_Zqnsy3iO5zYRwHwUZc1k3nyccbDK9GUKJ9x859BC2yLtQwoiLqu4Uroxfo-EdguYcd7BAej7WYhXSObPME9PUR2Z5NjybvOyDVhAaCsvnpfZK6_Lqz3jrYvzqY_81iPsJP_Z2m-mvA5YV1tVInX9Ry-cNudnCJfOv5YINYPobrVofm608Qkf-XUZfJRacM-xP7litkq6iukvO2PObJNfL4RVF_wopfxn9WBFW9wHMNvy79IwSXWFSBu_rdsabN0PCnNq69uU5mB8_fPT0MXLWHwHCetUHOCsNSbUqVsTwzScxLUPWY0CBFjGltRJ7rMmepUt0yk-SspJpBs04jlRq6S0ZVXRV7xOe0gG03HqtSGCbGQsUIMSS4KdOxKuLMI7SfQ2kcFDpW5FjKzr8nwCSyDJDIJunY5JFg02tloUD-QP8ExWNDi0De3QOYLOnmR8YJ1SrKtTICNEHFtUoijd5prAanM-GR-yhcEqE6KowF-qDWTSNfvp3KSQxDYgws8jOJ3gyIHjmisobBGuXyL4BlKCQDyj2UpX5QDQwRtMBEgGXvkXu9dEtYh9C5pKqiXjcSDE_ojR98w8r6KY_AogbFElrE4C8YMGbYUi2OO6TzWESgY3GPhJv_5a9Yf_NfO9wiO9ZNiJGdt8mo_bwu7oC22eq7brn4Du0oglE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+de-noising+of+protein-protein+interaction+networks&rft.jtitle=PLoS+computational+biology&rft.au=Oleksii+Kuchaiev&rft.au=Marija+Rasajski&rft.au=Desmond+J+Higham&rft.au=Natasa+Przulj&rft.date=2009-08-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=5&rft.issue=8&rft.spage=e1000454&rft_id=info:doi/10.1371%2Fjournal.pcbi.1000454&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_253ba1dbac7846a6ba51b30939723b97
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon