A systematic review of the clinical application of data-driven population segmentation analysis
Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare int...
Saved in:
Published in | BMC medical research methodology Vol. 18; no. 1; pp. 121 - 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
03.11.2018
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2288 1471-2288 |
DOI | 10.1186/s12874-018-0584-9 |
Cover
Abstract | Background
Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis.
Methods
We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers.
Results
We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (
n
= 170) utilized secondary data in community settings (
n
= 185). The most common segmentation method was latent class/profile/transition/growth analysis (
n
= 96) followed by K-means cluster analysis (
n
= 60) and hierarchical analysis (
n
= 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony.
Conclusions
Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research. |
---|---|
AbstractList | Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis.BACKGROUNDData-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis.We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers.METHODSWe carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers.We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony.RESULTSWe retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony.Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research.CONCLUSIONSData-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research. Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. Methods We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. Results We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Conclusions Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research. Abstract Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. Methods We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. Results We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Conclusions Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research. Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research. Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research. Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. Methods We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. Results We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies ( n = 170) utilized secondary data in community settings ( n = 185). The most common segmentation method was latent class/profile/transition/growth analysis ( n = 96) followed by K-means cluster analysis ( n = 60) and hierarchical analysis ( n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Conclusions Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research. Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. Methods We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. Results We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Conclusions Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research. Keywords: Systematic review, Population segmentation, Data analytics, Population health, Public health, Health policy, Health services research |
ArticleNumber | 121 |
Audience | Academic |
Author | Tan, Chuen Seng Kwan, Yu Heng Thumboo, Julian Low, Lian Leng Yan, Shi |
Author_xml | – sequence: 1 givenname: Shi surname: Yan fullname: Yan, Shi organization: Duke-NUS Medical School – sequence: 2 givenname: Yu Heng surname: Kwan fullname: Kwan, Yu Heng organization: Program in Health Services and Systems Research, Duke-NUS Medical School – sequence: 3 givenname: Chuen Seng surname: Tan fullname: Tan, Chuen Seng organization: Saw Swee Hock School of Public Health, National University of Singapore – sequence: 4 givenname: Julian surname: Thumboo fullname: Thumboo, Julian organization: Rheumatology and Immunology, Singapore General Hospital – sequence: 5 givenname: Lian Leng orcidid: 0000-0003-4228-2862 surname: Low fullname: Low, Lian Leng email: low.lian.leng@singhealth.com.sg organization: Family Medicine and Continuing Care, Singapore General Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30390641$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARfcAHsEGR2LBJ8dvOBqmqeFSqxAbWluNcTz1y4mBnppq_x9O0tFMB8sKPe86xz_U5rY7GOEJVvcXoHGMlPmZMlGQNwqpBXLGmfVGdYCZxQ4hSR0_Wx9VpzmuEsFRUvKqOKaItEgyfVPqizrs8w2Bmb-sEWw-3dXT1fAO1DX701oTaTFMoi9nHcV_rzWyaPvktjPUUp01YKhlWA4zzsjGjCbvs8-vqpTMhw5v7-az6-eXzj8tvzfX3r1eXF9eNFaKdmx5byzkzHZOKd9CaTlBEMLeys73glgFyAlQL0lkKVLLOESspgo6y3klOz6qrRbePZq2n5AeTdjoar-8OYlppk4rFABq3hrSWOot7x1S5CmhLOYbSTOtID0Xr06I1bboBeltMJRMORA8ro7_Rq7jVorxYkP1jPtwLpPhrA3nWg88WQjAjxE3WBFOEOGsVLdD3z6DruEmleXcojgUVSD2iVqYY8KOL5V67F9UXXMhWUMxJQZ3_BVVGD4O3JTrOl_MDwrunRv84fIhHAcgFYFPMOYHT1i8fXJR90BjpfRD1EkRdgqj3QdRtYeJnzAfx_3HIwskFO64gPfbi36TfNcTwJA |
CitedBy_id | crossref_primary_10_1177_00333549211030507 crossref_primary_10_1371_journal_pone_0302535 crossref_primary_10_2196_46807 crossref_primary_10_1093_bjsw_bcad141 crossref_primary_10_1186_s12889_023_15963_7 crossref_primary_10_2196_20570 crossref_primary_10_1093_imaman_dpaf002 crossref_primary_10_1136_bmjopen_2023_077250 crossref_primary_10_1002_ams2_911 crossref_primary_10_1002_emp2_12660 crossref_primary_10_1016_j_apmr_2022_06_004 crossref_primary_10_1136_bmjopen_2021_050847 crossref_primary_10_1186_s12961_019_0519_x crossref_primary_10_1186_s13643_019_1105_6 crossref_primary_10_1016_j_socscimed_2023_116246 crossref_primary_10_1183_13993003_00624_2024 crossref_primary_10_1093_jamia_ocae091 crossref_primary_10_1177_14604582241259344 crossref_primary_10_1186_s12913_019_4239_2 crossref_primary_10_1186_s12913_019_4769_7 crossref_primary_10_1109_TOH_2024_3487522 crossref_primary_10_1186_s12913_024_12100_x crossref_primary_10_1177_26335565241247430 crossref_primary_10_1007_s10433_019_00545_7 crossref_primary_10_1038_s41598_023_36062_y crossref_primary_10_58496_MJBD_2023_010 crossref_primary_10_1038_s41746_019_0155_4 crossref_primary_10_1016_j_pmedr_2021_101671 crossref_primary_10_1136_bmjopen_2022_062786 crossref_primary_10_1097_MLR_0000000000001898 crossref_primary_10_1136_bmjgh_2023_014717 crossref_primary_10_2196_34405 crossref_primary_10_1080_20479700_2023_2232980 crossref_primary_10_61506_01_00214 crossref_primary_10_1016_j_jrras_2024_101003 crossref_primary_10_1001_jamanetworkopen_2019_10878 crossref_primary_10_1111_jgs_18608 crossref_primary_10_1371_journal_pone_0228103 crossref_primary_10_2196_40560 crossref_primary_10_1016_j_psychres_2024_115816 crossref_primary_10_1186_s12874_021_01209_w crossref_primary_10_1371_journal_pone_0233491 crossref_primary_10_3389_fpubh_2021_716754 crossref_primary_10_18267_j_aip_220 crossref_primary_10_1093_jamia_ocad111 crossref_primary_10_1111_fare_12592 crossref_primary_10_1186_s12889_024_19065_w crossref_primary_10_1186_s12913_023_09620_3 crossref_primary_10_3390_nu13061795 crossref_primary_10_3390_s22218393 crossref_primary_10_3389_fendo_2022_841774 crossref_primary_10_35772_ghm_2024_01029 crossref_primary_10_1186_s12889_020_08930_z crossref_primary_10_3390_ijerph16132375 crossref_primary_10_1093_ije_dyz040 |
Cites_doi | 10.1093/aje/kwq458 10.1093/ajcn/76.1.245 10.1016/j.datak.2007.01.002 10.1007/s11121-011-0255-0 10.1079/PHN200098 10.5334/ijic.67 10.47102/annals-acadmedsg.V46N7p287 10.1186/s12963-016-0115-z 10.1016/S0376-8716(06)80012-8 10.1371/journal.pone.0195243 10.20982/tqmp.11.1.p008 10.1080/10705510701575396 10.1007/s12160-008-9074-3 10.1016/j.lindif.2017.11.001 10.1111/j.1468-0394.2007.00428.x 10.1142/9789812832153_0010 10.1111/j.1468-0009.2007.00483.x 10.1016/j.jad.2014.03.024 10.1079/BJN20051456 10.1016/j.ypmed.2014.03.023 10.1093/jpepsy/jst084 10.1016/j.jpsychires.2016.08.018 10.1093/ije/24.2.313 10.1016/j.ypmed.2003.09.011 10.1097/01.NNR.0000280654.50642.1a 10.1093/eurpub/ckp057 10.1111/j.1753-4887.2004.tb00040.x 10.1007/0-387-25465-X_9 10.5993/AJHB.36.6.4 10.1016/j.amepre.2015.05.024 10.1093/ajcn/80.3.759 10.1111/j.1532-5415.2007.01078.x 10.1016/S0212-6567(14)70061-7 10.1016/j.amepre.2004.12.006 10.1164/rccm.201301-0156OC 10.1080/03610927408827101 10.1016/j.jadohealth.2013.03.007 10.1016/j.ypmed.2014.07.007 10.1093/aje/154.12.1143 10.1145/331499.331504 10.1038/ejcn.2008.40 10.1007/s12603-009-0213-8 10.1016/j.socscimed.2014.05.012 10.1183/09031936.00120810 10.6339/JDS.201104_09(2).0009 10.1007/BF03403944 10.1183/09031936.00174408 10.1007/s11121-009-0140-2 10.1016/j.ahj.2005.05.010 10.1093/geront/gnw037 10.1016/j.ijporl.2011.10.019 10.1007/978-3-642-12541-6_9 10.1016/j.jada.2006.05.012 10.1007/s12160-014-9589-8 10.1136/jech.55.1.29 10.1038/sj.ejcn.1602129 10.1001/jama.2012.154302 10.1001/archpsyc.61.2.192 10.1007/s00520-005-0899-z 10.1080/10705510701575602 10.5993/AJHB.38.4.2 10.1016/j.ypmed.2011.02.020 10.1093/ajcn/77.6.1417 10.1002/9780470977811 10.1001/archgenpsychiatry.2011.1574 10.6339/JDS.2005.03(1).192 10.1017/S0007114508014128 10.3758/BF03196342 10.1016/j.ypmed.2015.09.027 10.1186/1479-5868-10-34 10.7812/TPP/14-005 10.1016/j.aap.2012.10.011 10.11118/actaun201361041215 10.1007/s11136-007-9272-7 10.1377/hlthaff.2015.1311 10.1017/S1368980014000111 10.1136/gut.52.11.1616 10.1186/1471-2458-11-692 10.1093/aje/kwp393 |
ContentType | Journal Article |
Copyright | The Author(s). 2018 COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s). 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12874-018-0584-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) (NC LIVE) ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1471-2288 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_19a29c3fc1df489abe39351e128cf2de PMC6215625 A567963152 30390641 10_1186_s12874_018_0584_9 |
Genre | Systematic Review Journal Article |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c669t-d1cc554ab4785be9ab630215c7bcd65c4e0f6e89e7fc3e374bf2c730eb34df753 |
IEDL.DBID | M48 |
ISSN | 1471-2288 |
IngestDate | Wed Aug 27 01:30:52 EDT 2025 Thu Aug 21 14:05:32 EDT 2025 Fri Sep 05 11:30:15 EDT 2025 Fri Jul 25 06:28:11 EDT 2025 Tue Jun 17 21:06:12 EDT 2025 Tue Jun 10 20:47:38 EDT 2025 Mon Jul 21 05:38:57 EDT 2025 Tue Jul 01 04:30:54 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Sat Sep 06 07:35:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Health policy Systematic review Data analytics Population segmentation Public health Population health Health services research |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c669t-d1cc554ab4785be9ab630215c7bcd65c4e0f6e89e7fc3e374bf2c730eb34df753 |
Notes | ObjectType-Article-1 ObjectType-Evidence Based Healthcare-3 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-4228-2862 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12874-018-0584-9 |
PMID | 30390641 |
PQID | 2135163608 |
PQPubID | 42579 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19a29c3fc1df489abe39351e128cf2de pubmedcentral_primary_oai_pubmedcentral_nih_gov_6215625 proquest_miscellaneous_2130054983 proquest_journals_2135163608 gale_infotracmisc_A567963152 gale_infotracacademiconefile_A567963152 pubmed_primary_30390641 crossref_citationtrail_10_1186_s12874_018_0584_9 crossref_primary_10_1186_s12874_018_0584_9 springer_journals_10_1186_s12874_018_0584_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-03 |
PublicationDateYYYYMMDD | 2018-11-03 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC medical research methodology |
PublicationTitleAbbrev | BMC Med Res Methodol |
PublicationTitleAlternate | BMC Med Res Methodol |
PublicationYear | 2018 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | Trent D. Buskirk (584_CR90) 2018; 11 MA Adams (584_CR27) 2015; 49 A Gjelsvik (584_CR39) 2014; 38 José J. Mira-Solves (584_CR13) 2014; 46 Stephanie T. Lanza (584_CR57) 2007; 14 V. Siroux (584_CR93) 2011; 38 MC Nelson (584_CR51) 2005; 28 PK Keel (584_CR19) 2004; 61 Nicholas W. Stine (584_CR3) 2013; 309 P Verger (584_CR20) 2009; 19 584_CR77 E Guthrie (584_CR71) 2003; 52 Karen L. Nylund (584_CR58) 2007; 14 584_CR78 JOANNE LYNN (584_CR4) 2007; 85 E van der Laan MR (584_CR7) 2014; 113 Z Erlich (584_CR56) 2003; 43 J A Pryer (584_CR33) 2001; 55 584_CR1 584_CR2 P. Terry (584_CR65) 2001; 154 T. Calinski (584_CR86) 1974; 3 Gregory J Norman (584_CR38) 2003; 37 A. K. Jain (584_CR61) 1999; 31 584_CR6 Veronika Jadczaková (584_CR48) 2013; 61 584_CR9 Hedwig Hofstetter (584_CR60) 2014; 67 Patrick Peretti-Watel (584_CR70) 2006; 82 R Gelbard (584_CR80) 2007; 63 584_CR82 584_CR81 H Finch (584_CR84) 2005; 3 584_CR85 A Boudier (584_CR94) 2013; 188 584_CR88 584_CR46 John R. Beard (584_CR5) 2016; 56 B Griffin (584_CR52) 2014; 48 584_CR89 584_CR37 SR Horn (584_CR91) 2016; 83 MN Laska (584_CR21) 2009; 10 Marc A Adams (584_CR24) 2013; 10 E Wirfält (584_CR29) 2009; 63 Lian Leng Low (584_CR66) 2018; 13 Anne M. Fitzpatrick (584_CR68) 2011; 127 K Freeman (584_CR50) 2012; 76 Yoshimi Fukuoka (584_CR35) 2007; 16 Artyom Sedrakyan (584_CR72) 2006; 151 D Engeset (584_CR73) 2005; 59 Janas M Harrington (584_CR31) 2014; 17 SI Vuik (584_CR8) 2016; 35 PK Newby (584_CR63) 2004; 62 RM Bittmann (584_CR79) 2007; 24 584_CR11 JD Penrod (584_CR41) 2007; 55 584_CR55 584_CR10 MA Adams (584_CR25) 2012; 36 M Héroux (584_CR36) 2012; 13 584_CR54 J Reedy (584_CR18) 2010; 171 KL Tucker (584_CR83) 2002; 76 584_CR12 J Boone-Heinonen (584_CR22) 2008; 36 584_CR49 S Croezen (584_CR45) 2009; 13 BG Simons-Morton (584_CR17) 2013; 51 Áine P. Hearty (584_CR43) 2008; 101 PK Newby (584_CR53) 2003; 77 RH Pietrzak (584_CR16) 2014; 162 J Magidson (584_CR76) 2002; 20 BC Love (584_CR42) 2002; 9 Christina Bamia (584_CR34) 2005; 94 584_CR62 D Walsh (584_CR67) 2006; 14 PK Newby (584_CR30) 2004; 80 M Weatherall (584_CR74) 2009; 34 Kristoffer S. Berlin (584_CR75) 2013; 39 PATHRICIA P C W HUIJBREGTS (584_CR47) 1995; 24 JA Pryer (584_CR64) 2001; 4 Teri G. Lindgren (584_CR69) 2008; 57 584_CR15 RL Bailey (584_CR32) 2006; 106 584_CR59 584_CR14 MA Adams (584_CR26) 2011; 52 Kimberly A. Miller (584_CR40) 2015; 81 RJ Iannotti (584_CR23) 2013; 53 J Kang (584_CR92) 2014; 64 G Lo Siou (584_CR28) 2011; 173 BS Ledere (584_CR44) 2009; 100 O Yim (584_CR87) 2015; 11 |
References_xml | – volume: 173 start-page: 956 year: 2011 ident: 584_CR28 publication-title: Am J Epidemiol doi: 10.1093/aje/kwq458 – volume: 76 start-page: 245 year: 2002 ident: 584_CR83 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/76.1.245 – volume: 63 start-page: 155 year: 2007 ident: 584_CR80 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2007.01.002 – volume: 13 start-page: 183 year: 2012 ident: 584_CR36 publication-title: Prev Sci doi: 10.1007/s11121-011-0255-0 – volume: 4 start-page: 787 year: 2001 ident: 584_CR64 publication-title: Public Health Nutr doi: 10.1079/PHN200098 – ident: 584_CR1 doi: 10.5334/ijic.67 – ident: 584_CR11 doi: 10.47102/annals-acadmedsg.V46N7p287 – ident: 584_CR6 doi: 10.1186/s12963-016-0115-z – volume: 11 start-page: 1 issue: 1 year: 2018 ident: 584_CR90 publication-title: Survey Practice – volume: 82 start-page: S71 year: 2006 ident: 584_CR70 publication-title: Drug and Alcohol Dependence doi: 10.1016/S0376-8716(06)80012-8 – volume: 13 start-page: e0195243 issue: 4 year: 2018 ident: 584_CR66 publication-title: PLOS ONE doi: 10.1371/journal.pone.0195243 – volume: 11 start-page: 8 year: 2015 ident: 584_CR87 publication-title: Quant Methods Psychol doi: 10.20982/tqmp.11.1.p008 – volume: 14 start-page: 535 issue: 4 year: 2007 ident: 584_CR58 publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1080/10705510701575396 – volume: 36 start-page: 217 year: 2008 ident: 584_CR22 publication-title: Ann Behav Med doi: 10.1007/s12160-008-9074-3 – ident: 584_CR77 doi: 10.1016/j.lindif.2017.11.001 – volume: 24 start-page: 171 year: 2007 ident: 584_CR79 publication-title: Expert Syst doi: 10.1111/j.1468-0394.2007.00428.x – ident: 584_CR46 doi: 10.1142/9789812832153_0010 – volume: 85 start-page: 185 issue: 2 year: 2007 ident: 584_CR4 publication-title: The Milbank Quarterly doi: 10.1111/j.1468-0009.2007.00483.x – volume: 162 start-page: 102 year: 2014 ident: 584_CR16 publication-title: J Affect Disord doi: 10.1016/j.jad.2014.03.024 – volume: 94 start-page: 100 issue: 01 year: 2005 ident: 584_CR34 publication-title: British Journal of Nutrition doi: 10.1079/BJN20051456 – volume: 64 start-page: 121 year: 2014 ident: 584_CR92 publication-title: Prev Med (Baltim) doi: 10.1016/j.ypmed.2014.03.023 – volume: 39 start-page: 174 issue: 2 year: 2013 ident: 584_CR75 publication-title: Journal of Pediatric Psychology doi: 10.1093/jpepsy/jst084 – volume: 83 start-page: 151 year: 2016 ident: 584_CR91 publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2016.08.018 – volume: 24 start-page: 313 issue: 2 year: 1995 ident: 584_CR47 publication-title: International Journal of Epidemiology doi: 10.1093/ije/24.2.313 – volume: 37 start-page: 635 issue: 6 year: 2003 ident: 584_CR38 publication-title: Preventive Medicine doi: 10.1016/j.ypmed.2003.09.011 – volume: 57 start-page: 14 issue: 1 year: 2008 ident: 584_CR69 publication-title: Nursing Research doi: 10.1097/01.NNR.0000280654.50642.1a – ident: 584_CR9 – volume: 19 start-page: 618 year: 2009 ident: 584_CR20 publication-title: Eur J Pub Health doi: 10.1093/eurpub/ckp057 – volume: 62 start-page: 177 year: 2004 ident: 584_CR63 publication-title: Nutr Rev doi: 10.1111/j.1753-4887.2004.tb00040.x – volume: 127 start-page: 382-389.e13 issue: 2 year: 2011 ident: 584_CR68 publication-title: Journal of Allergy and Clinical Immunology – ident: 584_CR89 doi: 10.1007/0-387-25465-X_9 – volume: 36 start-page: 757 year: 2012 ident: 584_CR25 publication-title: Am J Health Behav doi: 10.5993/AJHB.36.6.4 – volume: 49 start-page: 878 year: 2015 ident: 584_CR27 publication-title: Am J Prev Med doi: 10.1016/j.amepre.2015.05.024 – ident: 584_CR2 – volume: 80 start-page: 759 year: 2004 ident: 584_CR30 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/80.3.759 – volume: 55 start-page: 407 year: 2007 ident: 584_CR41 publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.2007.01078.x – volume: 46 start-page: 16 year: 2014 ident: 584_CR13 publication-title: Atención Primaria doi: 10.1016/S0212-6567(14)70061-7 – volume: 28 start-page: 259 year: 2005 ident: 584_CR51 publication-title: Am J Prev Med doi: 10.1016/j.amepre.2004.12.006 – ident: 584_CR81 – volume: 188 start-page: 550 year: 2013 ident: 584_CR94 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201301-0156OC – ident: 584_CR85 – ident: 584_CR78 – volume: 3 start-page: 1 issue: 1 year: 1974 ident: 584_CR86 publication-title: Communications in Statistics - Theory and Methods doi: 10.1080/03610927408827101 – volume: 53 start-page: 280 year: 2013 ident: 584_CR23 publication-title: J Adolesc Health doi: 10.1016/j.jadohealth.2013.03.007 – volume: 67 start-page: 141 year: 2014 ident: 584_CR60 publication-title: Preventive Medicine doi: 10.1016/j.ypmed.2014.07.007 – volume: 154 start-page: 1143 issue: 12 year: 2001 ident: 584_CR65 publication-title: American Journal of Epidemiology doi: 10.1093/aje/154.12.1143 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 584_CR61 publication-title: ACM Computing Surveys doi: 10.1145/331499.331504 – volume: 63 start-page: 707 year: 2009 ident: 584_CR29 publication-title: Eur J Clin Nutr doi: 10.1038/ejcn.2008.40 – volume: 13 start-page: 776 year: 2009 ident: 584_CR45 publication-title: J Nutr Heal Aging doi: 10.1007/s12603-009-0213-8 – volume: 113 start-page: 68 year: 2014 ident: 584_CR7 publication-title: Soc Sci Med doi: 10.1016/j.socscimed.2014.05.012 – volume: 38 start-page: 310 issue: 2 year: 2011 ident: 584_CR93 publication-title: European Respiratory Journal doi: 10.1183/09031936.00120810 – ident: 584_CR55 doi: 10.6339/JDS.201104_09(2).0009 – volume: 20 start-page: 37 year: 2002 ident: 584_CR76 publication-title: Can J Mark Res – volume: 100 start-page: 263 year: 2009 ident: 584_CR44 publication-title: Can J Public Heal doi: 10.1007/BF03403944 – volume: 34 start-page: 812 year: 2009 ident: 584_CR74 publication-title: Eur Respir J doi: 10.1183/09031936.00174408 – volume: 10 start-page: 376 year: 2009 ident: 584_CR21 publication-title: Prev Sci doi: 10.1007/s11121-009-0140-2 – volume: 151 start-page: 720 issue: 3 year: 2006 ident: 584_CR72 publication-title: American Heart Journal doi: 10.1016/j.ahj.2005.05.010 – volume: 56 start-page: S163 issue: Suppl 2 year: 2016 ident: 584_CR5 publication-title: The Gerontologist doi: 10.1093/geront/gnw037 – volume: 76 start-page: 122 year: 2012 ident: 584_CR50 publication-title: Int J Pediatr Otorhinolaryngol doi: 10.1016/j.ijporl.2011.10.019 – ident: 584_CR54 doi: 10.1007/978-3-642-12541-6_9 – volume: 43 start-page: 100 year: 2003 ident: 584_CR56 publication-title: J Comput Inf Syst – volume: 106 start-page: 1194 year: 2006 ident: 584_CR32 publication-title: J Am Diet Assoc doi: 10.1016/j.jada.2006.05.012 – volume: 48 start-page: 205 year: 2014 ident: 584_CR52 publication-title: Ann Behav Med doi: 10.1007/s12160-014-9589-8 – volume: 55 start-page: 29 issue: 1 year: 2001 ident: 584_CR33 publication-title: Journal of Epidemiology & Community Health doi: 10.1136/jech.55.1.29 – volume: 59 start-page: 675 year: 2005 ident: 584_CR73 publication-title: Eur J Clin Nutr doi: 10.1038/sj.ejcn.1602129 – volume: 309 start-page: 449 issue: 5 year: 2013 ident: 584_CR3 publication-title: JAMA doi: 10.1001/jama.2012.154302 – volume: 61 start-page: 192 year: 2004 ident: 584_CR19 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.61.2.192 – volume: 14 start-page: 831 year: 2006 ident: 584_CR67 publication-title: Support Care Cancer doi: 10.1007/s00520-005-0899-z – ident: 584_CR88 – volume: 14 start-page: 671 issue: 4 year: 2007 ident: 584_CR57 publication-title: Structural Equation Modeling: A Multidisciplinary Journal doi: 10.1080/10705510701575602 – volume: 38 start-page: 492 year: 2014 ident: 584_CR39 publication-title: Am J Health Behav doi: 10.5993/AJHB.38.4.2 – volume: 52 start-page: 326 year: 2011 ident: 584_CR26 publication-title: Prev Med (Baltim) doi: 10.1016/j.ypmed.2011.02.020 – volume: 77 start-page: 1417 year: 2003 ident: 584_CR53 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/77.6.1417 – ident: 584_CR82 doi: 10.1002/9780470977811 – ident: 584_CR37 doi: 10.1001/archgenpsychiatry.2011.1574 – volume: 3 start-page: 85 year: 2005 ident: 584_CR84 publication-title: J Data Sci doi: 10.6339/JDS.2005.03(1).192 – volume: 101 start-page: 590 issue: 04 year: 2008 ident: 584_CR43 publication-title: British Journal of Nutrition doi: 10.1017/S0007114508014128 – volume: 9 start-page: 829 year: 2002 ident: 584_CR42 publication-title: Psychon Bull Rev doi: 10.3758/BF03196342 – volume: 81 start-page: 303 year: 2015 ident: 584_CR40 publication-title: Preventive Medicine doi: 10.1016/j.ypmed.2015.09.027 – ident: 584_CR14 – volume: 10 start-page: 34 issue: 1 year: 2013 ident: 584_CR24 publication-title: International Journal of Behavioral Nutrition and Physical Activity doi: 10.1186/1479-5868-10-34 – ident: 584_CR12 doi: 10.7812/TPP/14-005 – volume: 51 start-page: 27 year: 2013 ident: 584_CR17 publication-title: Accid Anal Prev doi: 10.1016/j.aap.2012.10.011 – ident: 584_CR59 – ident: 584_CR10 – volume: 61 start-page: 1215 issue: 4 year: 2013 ident: 584_CR48 publication-title: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis doi: 10.11118/actaun201361041215 – volume: 16 start-page: 1655 issue: 10 year: 2007 ident: 584_CR35 publication-title: Quality of Life Research doi: 10.1007/s11136-007-9272-7 – volume: 35 start-page: 769 year: 2016 ident: 584_CR8 publication-title: Health Aff doi: 10.1377/hlthaff.2015.1311 – volume: 17 start-page: 2674 issue: 12 year: 2014 ident: 584_CR31 publication-title: Public Health Nutrition doi: 10.1017/S1368980014000111 – volume: 52 start-page: 1616 issue: 11 year: 2003 ident: 584_CR71 publication-title: Gut doi: 10.1136/gut.52.11.1616 – ident: 584_CR15 doi: 10.1186/1471-2458-11-692 – ident: 584_CR49 – volume: 171 start-page: 479 year: 2010 ident: 584_CR18 publication-title: Am J Epidemiol doi: 10.1093/aje/kwp393 – ident: 584_CR62 |
SSID | ssj0017836 |
Score | 2.4696815 |
SecondaryResourceType | review_article |
Snippet | Background
Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively... Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups... Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively... Abstract Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121 |
SubjectTerms | Asthma Chronic illnesses Classification Cluster analysis Clustering Data Analysis Data analytics Data mining Delivery of Health Care - methods Delivery of Health Care - statistics & numerical data Electronic health records Evidence-based medicine Health care policy Health policy Health Sciences Health services Humans Medical Record Linkage - methods Medicine Medicine & Public Health Methods Older people Patient satisfaction Population health Population Health - statistics & numerical data Population Health Management Population segmentation Public health Reproducibility of Results Research Article Statistical Theory and Methods statistics and modelling Statistics for Life Sciences Systematic review Theory of Medicine/Bioethics Variables |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEB6kD0UQsfW2WiWCICihe83l8SiWItQnC30LSTZRQfeUntP_78wmuz1bUV983WQhyUxmvkky3wC8bq0nP614Z0UYS5hx53TJK8S2Tkqr2khHA2efxel5--miu9gp9UVvwhI9cFq440rbWvsm-qqPrdLWBUomrQLaVR_rPpD1RTc2BVP5_oByE_IdZqXE8aYiWncMmxUv0eNyvfBCI1n_7yZ5xyfdfi9569J09EUnD-B-BpFslQZ_AHfCcAj7Z_ma_BDupcM4lnKMHoJZsRvGZpayVdg6MgR_bEqNZDtX2dRGT0d5f0XGkF3OVb7YJnz9mdOVBmYzo8kjOD_5-OXDKc-VFbgXQm95X3mPOMK6VqrOBVxV0ZDz99L5XnS-DWUUQekgo29CI1sXa4-2ACPvto8Y4TyGvWE9hKfAVBQWbaRXkhxdE6zwykkEdogcbNnaAspppY3PtONU_eKHGcMPJUwSjkHhGBKO0QW8nX-5TJwbf-v8nsQ3dyS67PEDKpHJSmT-pUQFvCHhG9rUODhvc24CTpHoscyqo-O2BrFOAUeLnrgZ_bJ5Uh-TjcHG1FQFkXjZVAGv5mb6kx64DWF9PfYh9KxVU8CTpG3zlBBlaESOVQFyoYeLOS9bhu_fRqpwgULFCLeAd5PG3gzrj0v67H8s6XO4W9N-oxP45gj2tlfX4QXit617OW7VX1EhQag priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0BBFE9PyqnhJBEJRwzbZN0idZxeMQzicP9i0kaXIK2q67e_-_M23avZ54r5t0aTpfv5nJzAC8La0nO615ZWXoR5hx5-qcC8S2Timry0ihgbNv8vS8_LqqVingtk3XKked2CvqpvMUIz9e0Cg5am6lP67_cJoaRdnVNELjNtwRCFWIq9VqcrgEVSikTKbQ8ngrqLk7Os-a52h3eT2zRX3L_n8V8xXLdP3W5LXUaW-RTh7CgwQl2XKg_SO4FdpDuHuWkuWHcH8IybGh0ugxmCXb921mQ80K6yJDCMjGAkl2JaFNa3SBlDcbUolsPc36Yttw8TsVLbXMpr4mT-D85Mv3z6c8zVfgXsp6xxvhPaIJ60qlKxdq62RBEMAr5xtZ-TLkUQZdBxV9EQpVurjwqBHQ_y6biH7OUzhouzY8B6ajtKgpvVZk7opgpddOIbxD_GDz0maQj1_a-NR8nGZg_DK9E6KlGYhjkDiGiGPqDN5Pj6yHzhs3bf5E5Js2UtPs_oduc2GSDBpR20Xti-hFE0uNxw1UlywC_pmPiyZk8I6Ib0i08eW8TRUKeERqkmWWFQXdCkQ8GRzNdqJI-vnyyD4mqYSt2TNwBm-mZXqSrrm1obvs9xCGrnWRwbOB26YjIdaoET-KDNSMD2dnnq-0P3_0DcMlEhX93Aw-jBy7f63_ftIXNx_iJdxbkCRRhL04goPd5jK8Qny2c697IfwLK3w4Ow priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB60gvhS6n21SgRBUIJ7yebyeHqwFKE-WehbSLKJCrqn9Jz-_87s5mzP1gv4upksm51M5ptM5gvAW-EC-WnNWyfjcIUZ996UvEJs65VyWiTaGjj9Ik_OxOfz9jyTRVMtzG7-vtLy47oiQnYMeDUv0Vdycxfutbju0um9pVxOCQMqRshJyz92m7mdgZ3_9zV4xwndPiB5K0s6OJ_jA9jPqJEtRjU_hDuxfwT3T3Ne_DHYBbuhZGZjOQpbJYbojm1rH9lOrpra6Gwo7y5ptWMX0zVebB2__cr1SD1zmbLkCZwdf_q6POH56gQepDQb3lUhIFBwXijd-miclw1596B86GQbRCyTjNpElUITGyV8qgMaO4bWoksYwjyFvX7Vx-fAdJIOF8GgFXmyJjoZtFeI3BAauFK4Asrtn7Uh84rT9RY_7RBfaGlHZVhUhiVlWFPA-6nLxUiq8S_hI1LXJEh82MMDnCY2m5etjKtNaFKouiQ0DjdSyXEV8WUh1V0s4B0p25LV4scFl4sPcIjEf2UXLe2nNQhmCjicSaK1hXnzdrrYbO1rW9M1h0S8pgt4MzVTTzrB1sfV1SBD8NjopoBn4-yahoQwwiA0rApQs3k3G_O8pf_xfeACl6hUDGEL-LCdoTef9ddf-uK_pF_Cg5oMifbSm0PY21xexVeIxDb-9WCD17xEK94 priority: 102 providerName: Springer Nature |
Title | A systematic review of the clinical application of data-driven population segmentation analysis |
URI | https://link.springer.com/article/10.1186/s12874-018-0584-9 https://www.ncbi.nlm.nih.gov/pubmed/30390641 https://www.proquest.com/docview/2135163608 https://www.proquest.com/docview/2130054983 https://pubmed.ncbi.nlm.nih.gov/PMC6215625 https://doaj.org/article/19a29c3fc1df489abe39351e128cf2de |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2288 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: M48 dateStart: 20011101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: C6C dateStart: 20011201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEB_6APGL-DZajxUEQYnmuY8PIndHSxGuSPHg8Muy2WyqUHP17gr63zuzeVxTa78Ekt2EzM7Mzm92d2YAXmfGkp2WYW648yXMwqJQURgjti2EMDKraGlgdsKP59nnRb7Yga68VTuA6xtdO6onNV-dv__9688nVPiPXuEl_7COKWk7OsUyjNCehmoX9tEwJSTks2y7qUABCz7YSMRhkkjZbnLe-ImBmfLZ_P-ds68YresHKq_tqnpjdXQf7rUok40bsXgAO65-CHdm7T76I9Bjtk3hzJrwFbasGKJB1sVKsit729RGZ0nDckWzI7voy36xtTv72cYv1cy0KU4ew_zo8Ov0OGxLLYSWc7UJy9haBBamyITMC6dMwVNCA1YUtuS5zVxUcSeVE5VNXSqyokosTg7oimdlhS7PE9irl7V7BkxW3OCkaaUgy5c6w60sBCI9hBImykwAUTey2rZ5yKkcxrn2_ojkumGGRmZoYoZWAbztX7loknDc1nlC7Oo7Uv5s_2C5OtOtOupYmUTZtLJxWWUSyXUUohw7_JitktIF8IaYrUnu8OesaYMVkETKl6XHOa2_pQh-AjgY9ETttMPmTlx0J9w6obKIlKhNBvCqb6Y36cRb7ZaXvg_BaSXTAJ420tWThLBDIZSMAxADuRvQPGypf3z3ucM5MhVd3gDedRK6_a3_Dunz22l8AXcT0hxabE8PYG-zunQvEaptihHsioUYwf7k8OTLKd5N-XTklz1GXjXxejr59hcBhj1X |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcCgVVBDRqjVadQVFUJbmY2938yByfpSr7fWphXtbN5tNFTQ5766If8rf6Ey-rqnYt75mNyGz8z2zMwPwQlhHelrzkZW-HmHGsywNeYS2baaU1aKg0MD0SE5OxOfZaLYBf7paGLpW2cnEWlDnlaMY-W5Mo-SouZV-N__JaWoUZVe7ERoNWRz437_QZVu-3f-I-H0Zx3ufjj9MeDtVgDsp0xXPI-dQh9pMKD3KfGozmZDicypzuRw54cNCep16VbjEJ0pkReyQD9DrFHmhaEoEivxrIgkF9epXs97Bi6gios2cRlruLiNqJo_OuuYh6nmeDnRfPSLgX0VwThNevKV5IVVba8C9O3C7NV3ZuKG1u7Dhyy24Pm2T81twqwkBsqay6R6YMVv3iWZNjQyrCoYmJ-sKMtm5BDqt0YVVni9IBLN5P1uMLf3pj7ZIqmS27aNyH06u5OQfwGZZlf4hMF1Ii5LZaUXqNfFWOp0pNCfRXrGhsAGE3Ukb1zY7p5kb303t9GhpGuQYRI4h5Jg0gNf9K_Om08dlm98T-vqN1KS7flAtTk3L8yZKbZy6pHBRXgiN4Hqqg448fswVce4DeEXINyRK8OecbSsiEERqymXGIwryJWhhBbAz2IkiwA2XO_IxrQhamjXDBPC8X6Y36Vpd6auzeg_Z7KlOAthuqK0HCW2bFO3VKAA1oMMBzMOV8tvXukG5RKSiXx3Am45i17_13yN9dDkQz-DG5Hh6aA73jw4ew82YuIqi-8kObK4WZ_4J2oar7GnNkAy-XLUE-AvKW3Z5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BK1VcEG8CpRgJCQkUNU_HPgbKqiy0QoJKvVm2Y5dKJbva3f5_ZhInbcpD4hrbUZzxeL7xeL4BeF1oS3ZaxKXmrithFhsjkzhFbGuqSovC09HA0TE_PCnmp-VpqHO6Hm67DyHJPqeBWJrazf6y8b2KC76_TommHd1gESdoQWN5G7ZFKTl6X9t1Pf82HwMJlKQQgpl_HDgxRx1r_-978zXjdPPi5I3oaWeUZvfgbkCTrO7Ffx9uufYB7ByFePlDUDW7ompmfZoKW3iGqI8NOZHsWgyb2ujOaNysaBdky7G8F1u7s58hT6llOlCZPIKT2cfvHw7jUFIhtpzLTdyk1iKA0KaoRGmc1IbnZPVtZWzDS1u4xHMnpKu8zV1eFcZnFjcBdLmLxqNr8xi22kXrngITnmvcHK2oyMLlTnMrTIWIDiGDTgodQTL8WWUD3ziVvbhQnd8huOqFoVAYioShZARvxyHLnmzjX53fk7jGjsST3T1YrM5UUDuVSp1Jm3ubNr4QOF1Hqcipw5dZnzUugjckbEXajB9ndUhKwCkSL5aqSzpnyxHkRLA76YlaaKfNw3JRYRdYq4zKHxIhm4jg1dhMI-lmW-sWl10fgs1S5BE86VfXOCWEFxIhYxpBNVl3kzlPW9rzHx1HOEehomsbwbthhV591l9_6bP_6v0Sdr4ezNSXT8efn8OdjHSKjtvzXdjarC7dCwRrG7MXFPIXRKc4iQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+of+the+clinical+application+of+data-driven+population+segmentation+analysis&rft.jtitle=BMC+medical+research+methodology&rft.au=Yan%2C+Shi&rft.au=Kwan%2C+Yu+Heng&rft.au=Tan%2C+Chuen+Seng&rft.au=Thumboo%2C+Julian&rft.date=2018-11-03&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-018-0584-9&rft.externalDocID=A567963152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon |