A systematic review of the clinical application of data-driven population segmentation analysis

Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare int...

Full description

Saved in:
Bibliographic Details
Published inBMC medical research methodology Vol. 18; no. 1; pp. 121 - 12
Main Authors Yan, Shi, Kwan, Yu Heng, Tan, Chuen Seng, Thumboo, Julian, Low, Lian Leng
Format Journal Article
LanguageEnglish
Published London BioMed Central 03.11.2018
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2288
1471-2288
DOI10.1186/s12874-018-0584-9

Cover

Abstract Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. Methods We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. Results We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies ( n  = 170) utilized secondary data in community settings ( n  = 185). The most common segmentation method was latent class/profile/transition/growth analysis ( n  = 96) followed by K-means cluster analysis ( n  = 60) and hierarchical analysis ( n  = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Conclusions Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research.
AbstractList Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis.BACKGROUNDData-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis.We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers.METHODSWe carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers.We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony.RESULTSWe retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony.Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research.CONCLUSIONSData-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research.
Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. Methods We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. Results We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Conclusions Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research.
Abstract Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. Methods We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. Results We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Conclusions Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research.
Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research.
Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research.
Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. Methods We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. Results We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies ( n  = 170) utilized secondary data in community settings ( n  = 185). The most common segmentation method was latent class/profile/transition/growth analysis ( n  = 96) followed by K-means cluster analysis ( n  = 60) and hierarchical analysis ( n  = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Conclusions Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research.
Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups with similar healthcare characteristics. It is a promising patient-centric analysis that enables effective integrated healthcare interventions specific for each segment. Although widely applied, there is no systematic review on the clinical application of data-driven population segmentation analysis. Methods We carried out a systematic literature search using PubMed, Embase and Web of Science following PRISMA criteria. We included English peer-reviewed articles that applied data-driven population segmentation analysis on empirical health data. We summarized the clinical settings in which segmentation analysis was applied, compared and contrasted strengths, limitations, and practical considerations of different segmentation methods, and assessed the segmentation outcome of all included studies. The studies were assessed by two independent reviewers. Results We retrieved 14,514 articles and included 216 articles. Data-driven population segmentation analysis was widely used in different clinical contexts. 163 studies examined the general population while 53 focused on specific population with certain diseases or conditions, including psychological, oncological, respiratory, cardiovascular, and gastrointestinal conditions. Variables used for segmentation in the studies are heterogeneous. Most studies (n = 170) utilized secondary data in community settings (n = 185). The most common segmentation method was latent class/profile/transition/growth analysis (n = 96) followed by K-means cluster analysis (n = 60) and hierarchical analysis (n = 50), each having its advantages, disadvantages, and practical considerations. We also identified key criteria to evaluate a segmentation framework: internal validity, external validity, identifiability/interpretability, substantiality, stability, actionability/accessibility, and parsimony. Conclusions Data-driven population segmentation has been widely applied and holds great potential in managing population health. The evaluations of segmentation outcome require the interplay of data analytics and subject matter expertise. The optimal framework for segmentation requires further research. Keywords: Systematic review, Population segmentation, Data analytics, Population health, Public health, Health policy, Health services research
ArticleNumber 121
Audience Academic
Author Tan, Chuen Seng
Kwan, Yu Heng
Thumboo, Julian
Low, Lian Leng
Yan, Shi
Author_xml – sequence: 1
  givenname: Shi
  surname: Yan
  fullname: Yan, Shi
  organization: Duke-NUS Medical School
– sequence: 2
  givenname: Yu Heng
  surname: Kwan
  fullname: Kwan, Yu Heng
  organization: Program in Health Services and Systems Research, Duke-NUS Medical School
– sequence: 3
  givenname: Chuen Seng
  surname: Tan
  fullname: Tan, Chuen Seng
  organization: Saw Swee Hock School of Public Health, National University of Singapore
– sequence: 4
  givenname: Julian
  surname: Thumboo
  fullname: Thumboo, Julian
  organization: Rheumatology and Immunology, Singapore General Hospital
– sequence: 5
  givenname: Lian Leng
  orcidid: 0000-0003-4228-2862
  surname: Low
  fullname: Low, Lian Leng
  email: low.lian.leng@singhealth.com.sg
  organization: Family Medicine and Continuing Care, Singapore General Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30390641$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARfcAHsEGR2LBJ8dvOBqmqeFSqxAbWluNcTz1y4mBnppq_x9O0tFMB8sKPe86xz_U5rY7GOEJVvcXoHGMlPmZMlGQNwqpBXLGmfVGdYCZxQ4hSR0_Wx9VpzmuEsFRUvKqOKaItEgyfVPqizrs8w2Bmb-sEWw-3dXT1fAO1DX701oTaTFMoi9nHcV_rzWyaPvktjPUUp01YKhlWA4zzsjGjCbvs8-vqpTMhw5v7-az6-eXzj8tvzfX3r1eXF9eNFaKdmx5byzkzHZOKd9CaTlBEMLeys73glgFyAlQL0lkKVLLOESspgo6y3klOz6qrRbePZq2n5AeTdjoar-8OYlppk4rFABq3hrSWOot7x1S5CmhLOYbSTOtID0Xr06I1bboBeltMJRMORA8ro7_Rq7jVorxYkP1jPtwLpPhrA3nWg88WQjAjxE3WBFOEOGsVLdD3z6DruEmleXcojgUVSD2iVqYY8KOL5V67F9UXXMhWUMxJQZ3_BVVGD4O3JTrOl_MDwrunRv84fIhHAcgFYFPMOYHT1i8fXJR90BjpfRD1EkRdgqj3QdRtYeJnzAfx_3HIwskFO64gPfbi36TfNcTwJA
CitedBy_id crossref_primary_10_1177_00333549211030507
crossref_primary_10_1371_journal_pone_0302535
crossref_primary_10_2196_46807
crossref_primary_10_1093_bjsw_bcad141
crossref_primary_10_1186_s12889_023_15963_7
crossref_primary_10_2196_20570
crossref_primary_10_1093_imaman_dpaf002
crossref_primary_10_1136_bmjopen_2023_077250
crossref_primary_10_1002_ams2_911
crossref_primary_10_1002_emp2_12660
crossref_primary_10_1016_j_apmr_2022_06_004
crossref_primary_10_1136_bmjopen_2021_050847
crossref_primary_10_1186_s12961_019_0519_x
crossref_primary_10_1186_s13643_019_1105_6
crossref_primary_10_1016_j_socscimed_2023_116246
crossref_primary_10_1183_13993003_00624_2024
crossref_primary_10_1093_jamia_ocae091
crossref_primary_10_1177_14604582241259344
crossref_primary_10_1186_s12913_019_4239_2
crossref_primary_10_1186_s12913_019_4769_7
crossref_primary_10_1109_TOH_2024_3487522
crossref_primary_10_1186_s12913_024_12100_x
crossref_primary_10_1177_26335565241247430
crossref_primary_10_1007_s10433_019_00545_7
crossref_primary_10_1038_s41598_023_36062_y
crossref_primary_10_58496_MJBD_2023_010
crossref_primary_10_1038_s41746_019_0155_4
crossref_primary_10_1016_j_pmedr_2021_101671
crossref_primary_10_1136_bmjopen_2022_062786
crossref_primary_10_1097_MLR_0000000000001898
crossref_primary_10_1136_bmjgh_2023_014717
crossref_primary_10_2196_34405
crossref_primary_10_1080_20479700_2023_2232980
crossref_primary_10_61506_01_00214
crossref_primary_10_1016_j_jrras_2024_101003
crossref_primary_10_1001_jamanetworkopen_2019_10878
crossref_primary_10_1111_jgs_18608
crossref_primary_10_1371_journal_pone_0228103
crossref_primary_10_2196_40560
crossref_primary_10_1016_j_psychres_2024_115816
crossref_primary_10_1186_s12874_021_01209_w
crossref_primary_10_1371_journal_pone_0233491
crossref_primary_10_3389_fpubh_2021_716754
crossref_primary_10_18267_j_aip_220
crossref_primary_10_1093_jamia_ocad111
crossref_primary_10_1111_fare_12592
crossref_primary_10_1186_s12889_024_19065_w
crossref_primary_10_1186_s12913_023_09620_3
crossref_primary_10_3390_nu13061795
crossref_primary_10_3390_s22218393
crossref_primary_10_3389_fendo_2022_841774
crossref_primary_10_35772_ghm_2024_01029
crossref_primary_10_1186_s12889_020_08930_z
crossref_primary_10_3390_ijerph16132375
crossref_primary_10_1093_ije_dyz040
Cites_doi 10.1093/aje/kwq458
10.1093/ajcn/76.1.245
10.1016/j.datak.2007.01.002
10.1007/s11121-011-0255-0
10.1079/PHN200098
10.5334/ijic.67
10.47102/annals-acadmedsg.V46N7p287
10.1186/s12963-016-0115-z
10.1016/S0376-8716(06)80012-8
10.1371/journal.pone.0195243
10.20982/tqmp.11.1.p008
10.1080/10705510701575396
10.1007/s12160-008-9074-3
10.1016/j.lindif.2017.11.001
10.1111/j.1468-0394.2007.00428.x
10.1142/9789812832153_0010
10.1111/j.1468-0009.2007.00483.x
10.1016/j.jad.2014.03.024
10.1079/BJN20051456
10.1016/j.ypmed.2014.03.023
10.1093/jpepsy/jst084
10.1016/j.jpsychires.2016.08.018
10.1093/ije/24.2.313
10.1016/j.ypmed.2003.09.011
10.1097/01.NNR.0000280654.50642.1a
10.1093/eurpub/ckp057
10.1111/j.1753-4887.2004.tb00040.x
10.1007/0-387-25465-X_9
10.5993/AJHB.36.6.4
10.1016/j.amepre.2015.05.024
10.1093/ajcn/80.3.759
10.1111/j.1532-5415.2007.01078.x
10.1016/S0212-6567(14)70061-7
10.1016/j.amepre.2004.12.006
10.1164/rccm.201301-0156OC
10.1080/03610927408827101
10.1016/j.jadohealth.2013.03.007
10.1016/j.ypmed.2014.07.007
10.1093/aje/154.12.1143
10.1145/331499.331504
10.1038/ejcn.2008.40
10.1007/s12603-009-0213-8
10.1016/j.socscimed.2014.05.012
10.1183/09031936.00120810
10.6339/JDS.201104_09(2).0009
10.1007/BF03403944
10.1183/09031936.00174408
10.1007/s11121-009-0140-2
10.1016/j.ahj.2005.05.010
10.1093/geront/gnw037
10.1016/j.ijporl.2011.10.019
10.1007/978-3-642-12541-6_9
10.1016/j.jada.2006.05.012
10.1007/s12160-014-9589-8
10.1136/jech.55.1.29
10.1038/sj.ejcn.1602129
10.1001/jama.2012.154302
10.1001/archpsyc.61.2.192
10.1007/s00520-005-0899-z
10.1080/10705510701575602
10.5993/AJHB.38.4.2
10.1016/j.ypmed.2011.02.020
10.1093/ajcn/77.6.1417
10.1002/9780470977811
10.1001/archgenpsychiatry.2011.1574
10.6339/JDS.2005.03(1).192
10.1017/S0007114508014128
10.3758/BF03196342
10.1016/j.ypmed.2015.09.027
10.1186/1479-5868-10-34
10.7812/TPP/14-005
10.1016/j.aap.2012.10.011
10.11118/actaun201361041215
10.1007/s11136-007-9272-7
10.1377/hlthaff.2015.1311
10.1017/S1368980014000111
10.1136/gut.52.11.1616
10.1186/1471-2458-11-692
10.1093/aje/kwp393
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12874-018-0584-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New) (NC LIVE)
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

MEDLINE



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1471-2288
EndPage 12
ExternalDocumentID oai_doaj_org_article_19a29c3fc1df489abe39351e128cf2de
PMC6215625
A567963152
30390641
10_1186_s12874_018_0584_9
Genre Systematic Review
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c669t-d1cc554ab4785be9ab630215c7bcd65c4e0f6e89e7fc3e374bf2c730eb34df753
IEDL.DBID M48
ISSN 1471-2288
IngestDate Wed Aug 27 01:30:52 EDT 2025
Thu Aug 21 14:05:32 EDT 2025
Fri Sep 05 11:30:15 EDT 2025
Fri Jul 25 06:28:11 EDT 2025
Tue Jun 17 21:06:12 EDT 2025
Tue Jun 10 20:47:38 EDT 2025
Mon Jul 21 05:38:57 EDT 2025
Tue Jul 01 04:30:54 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Sat Sep 06 07:35:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Health policy
Systematic review
Data analytics
Population segmentation
Public health
Population health
Health services research
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-d1cc554ab4785be9ab630215c7bcd65c4e0f6e89e7fc3e374bf2c730eb34df753
Notes ObjectType-Article-1
ObjectType-Evidence Based Healthcare-3
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-4228-2862
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12874-018-0584-9
PMID 30390641
PQID 2135163608
PQPubID 42579
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_19a29c3fc1df489abe39351e128cf2de
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6215625
proquest_miscellaneous_2130054983
proquest_journals_2135163608
gale_infotracmisc_A567963152
gale_infotracacademiconefile_A567963152
pubmed_primary_30390641
crossref_citationtrail_10_1186_s12874_018_0584_9
crossref_primary_10_1186_s12874_018_0584_9
springer_journals_10_1186_s12874_018_0584_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-03
PublicationDateYYYYMMDD 2018-11-03
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-03
  day: 03
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References Trent D. Buskirk (584_CR90) 2018; 11
MA Adams (584_CR27) 2015; 49
A Gjelsvik (584_CR39) 2014; 38
José J. Mira-Solves (584_CR13) 2014; 46
Stephanie T. Lanza (584_CR57) 2007; 14
V. Siroux (584_CR93) 2011; 38
MC Nelson (584_CR51) 2005; 28
PK Keel (584_CR19) 2004; 61
Nicholas W. Stine (584_CR3) 2013; 309
P Verger (584_CR20) 2009; 19
584_CR77
E Guthrie (584_CR71) 2003; 52
Karen L. Nylund (584_CR58) 2007; 14
584_CR78
JOANNE LYNN (584_CR4) 2007; 85
E van der Laan MR (584_CR7) 2014; 113
Z Erlich (584_CR56) 2003; 43
J A Pryer (584_CR33) 2001; 55
584_CR1
584_CR2
P. Terry (584_CR65) 2001; 154
T. Calinski (584_CR86) 1974; 3
Gregory J Norman (584_CR38) 2003; 37
A. K. Jain (584_CR61) 1999; 31
584_CR6
Veronika Jadczaková (584_CR48) 2013; 61
584_CR9
Hedwig Hofstetter (584_CR60) 2014; 67
Patrick Peretti-Watel (584_CR70) 2006; 82
R Gelbard (584_CR80) 2007; 63
584_CR82
584_CR81
H Finch (584_CR84) 2005; 3
584_CR85
A Boudier (584_CR94) 2013; 188
584_CR88
584_CR46
John R. Beard (584_CR5) 2016; 56
B Griffin (584_CR52) 2014; 48
584_CR89
584_CR37
SR Horn (584_CR91) 2016; 83
MN Laska (584_CR21) 2009; 10
Marc A Adams (584_CR24) 2013; 10
E Wirfält (584_CR29) 2009; 63
Lian Leng Low (584_CR66) 2018; 13
Anne M. Fitzpatrick (584_CR68) 2011; 127
K Freeman (584_CR50) 2012; 76
Yoshimi Fukuoka (584_CR35) 2007; 16
Artyom Sedrakyan (584_CR72) 2006; 151
D Engeset (584_CR73) 2005; 59
Janas M Harrington (584_CR31) 2014; 17
SI Vuik (584_CR8) 2016; 35
PK Newby (584_CR63) 2004; 62
RM Bittmann (584_CR79) 2007; 24
584_CR11
JD Penrod (584_CR41) 2007; 55
584_CR55
584_CR10
MA Adams (584_CR25) 2012; 36
M Héroux (584_CR36) 2012; 13
584_CR54
J Reedy (584_CR18) 2010; 171
KL Tucker (584_CR83) 2002; 76
584_CR12
J Boone-Heinonen (584_CR22) 2008; 36
584_CR49
S Croezen (584_CR45) 2009; 13
BG Simons-Morton (584_CR17) 2013; 51
Áine P. Hearty (584_CR43) 2008; 101
PK Newby (584_CR53) 2003; 77
RH Pietrzak (584_CR16) 2014; 162
J Magidson (584_CR76) 2002; 20
BC Love (584_CR42) 2002; 9
Christina Bamia (584_CR34) 2005; 94
584_CR62
D Walsh (584_CR67) 2006; 14
PK Newby (584_CR30) 2004; 80
M Weatherall (584_CR74) 2009; 34
Kristoffer S. Berlin (584_CR75) 2013; 39
PATHRICIA P C W HUIJBREGTS (584_CR47) 1995; 24
JA Pryer (584_CR64) 2001; 4
Teri G. Lindgren (584_CR69) 2008; 57
584_CR15
RL Bailey (584_CR32) 2006; 106
584_CR59
584_CR14
MA Adams (584_CR26) 2011; 52
Kimberly A. Miller (584_CR40) 2015; 81
RJ Iannotti (584_CR23) 2013; 53
J Kang (584_CR92) 2014; 64
G Lo Siou (584_CR28) 2011; 173
BS Ledere (584_CR44) 2009; 100
O Yim (584_CR87) 2015; 11
References_xml – volume: 173
  start-page: 956
  year: 2011
  ident: 584_CR28
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwq458
– volume: 76
  start-page: 245
  year: 2002
  ident: 584_CR83
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/76.1.245
– volume: 63
  start-page: 155
  year: 2007
  ident: 584_CR80
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2007.01.002
– volume: 13
  start-page: 183
  year: 2012
  ident: 584_CR36
  publication-title: Prev Sci
  doi: 10.1007/s11121-011-0255-0
– volume: 4
  start-page: 787
  year: 2001
  ident: 584_CR64
  publication-title: Public Health Nutr
  doi: 10.1079/PHN200098
– ident: 584_CR1
  doi: 10.5334/ijic.67
– ident: 584_CR11
  doi: 10.47102/annals-acadmedsg.V46N7p287
– ident: 584_CR6
  doi: 10.1186/s12963-016-0115-z
– volume: 11
  start-page: 1
  issue: 1
  year: 2018
  ident: 584_CR90
  publication-title: Survey Practice
– volume: 82
  start-page: S71
  year: 2006
  ident: 584_CR70
  publication-title: Drug and Alcohol Dependence
  doi: 10.1016/S0376-8716(06)80012-8
– volume: 13
  start-page: e0195243
  issue: 4
  year: 2018
  ident: 584_CR66
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0195243
– volume: 11
  start-page: 8
  year: 2015
  ident: 584_CR87
  publication-title: Quant Methods Psychol
  doi: 10.20982/tqmp.11.1.p008
– volume: 14
  start-page: 535
  issue: 4
  year: 2007
  ident: 584_CR58
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1080/10705510701575396
– volume: 36
  start-page: 217
  year: 2008
  ident: 584_CR22
  publication-title: Ann Behav Med
  doi: 10.1007/s12160-008-9074-3
– ident: 584_CR77
  doi: 10.1016/j.lindif.2017.11.001
– volume: 24
  start-page: 171
  year: 2007
  ident: 584_CR79
  publication-title: Expert Syst
  doi: 10.1111/j.1468-0394.2007.00428.x
– ident: 584_CR46
  doi: 10.1142/9789812832153_0010
– volume: 85
  start-page: 185
  issue: 2
  year: 2007
  ident: 584_CR4
  publication-title: The Milbank Quarterly
  doi: 10.1111/j.1468-0009.2007.00483.x
– volume: 162
  start-page: 102
  year: 2014
  ident: 584_CR16
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2014.03.024
– volume: 94
  start-page: 100
  issue: 01
  year: 2005
  ident: 584_CR34
  publication-title: British Journal of Nutrition
  doi: 10.1079/BJN20051456
– volume: 64
  start-page: 121
  year: 2014
  ident: 584_CR92
  publication-title: Prev Med (Baltim)
  doi: 10.1016/j.ypmed.2014.03.023
– volume: 39
  start-page: 174
  issue: 2
  year: 2013
  ident: 584_CR75
  publication-title: Journal of Pediatric Psychology
  doi: 10.1093/jpepsy/jst084
– volume: 83
  start-page: 151
  year: 2016
  ident: 584_CR91
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2016.08.018
– volume: 24
  start-page: 313
  issue: 2
  year: 1995
  ident: 584_CR47
  publication-title: International Journal of Epidemiology
  doi: 10.1093/ije/24.2.313
– volume: 37
  start-page: 635
  issue: 6
  year: 2003
  ident: 584_CR38
  publication-title: Preventive Medicine
  doi: 10.1016/j.ypmed.2003.09.011
– volume: 57
  start-page: 14
  issue: 1
  year: 2008
  ident: 584_CR69
  publication-title: Nursing Research
  doi: 10.1097/01.NNR.0000280654.50642.1a
– ident: 584_CR9
– volume: 19
  start-page: 618
  year: 2009
  ident: 584_CR20
  publication-title: Eur J Pub Health
  doi: 10.1093/eurpub/ckp057
– volume: 62
  start-page: 177
  year: 2004
  ident: 584_CR63
  publication-title: Nutr Rev
  doi: 10.1111/j.1753-4887.2004.tb00040.x
– volume: 127
  start-page: 382-389.e13
  issue: 2
  year: 2011
  ident: 584_CR68
  publication-title: Journal of Allergy and Clinical Immunology
– ident: 584_CR89
  doi: 10.1007/0-387-25465-X_9
– volume: 36
  start-page: 757
  year: 2012
  ident: 584_CR25
  publication-title: Am J Health Behav
  doi: 10.5993/AJHB.36.6.4
– volume: 49
  start-page: 878
  year: 2015
  ident: 584_CR27
  publication-title: Am J Prev Med
  doi: 10.1016/j.amepre.2015.05.024
– ident: 584_CR2
– volume: 80
  start-page: 759
  year: 2004
  ident: 584_CR30
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/80.3.759
– volume: 55
  start-page: 407
  year: 2007
  ident: 584_CR41
  publication-title: J Am Geriatr Soc
  doi: 10.1111/j.1532-5415.2007.01078.x
– volume: 46
  start-page: 16
  year: 2014
  ident: 584_CR13
  publication-title: Atención Primaria
  doi: 10.1016/S0212-6567(14)70061-7
– volume: 28
  start-page: 259
  year: 2005
  ident: 584_CR51
  publication-title: Am J Prev Med
  doi: 10.1016/j.amepre.2004.12.006
– ident: 584_CR81
– volume: 188
  start-page: 550
  year: 2013
  ident: 584_CR94
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201301-0156OC
– ident: 584_CR85
– ident: 584_CR78
– volume: 3
  start-page: 1
  issue: 1
  year: 1974
  ident: 584_CR86
  publication-title: Communications in Statistics - Theory and Methods
  doi: 10.1080/03610927408827101
– volume: 53
  start-page: 280
  year: 2013
  ident: 584_CR23
  publication-title: J Adolesc Health
  doi: 10.1016/j.jadohealth.2013.03.007
– volume: 67
  start-page: 141
  year: 2014
  ident: 584_CR60
  publication-title: Preventive Medicine
  doi: 10.1016/j.ypmed.2014.07.007
– volume: 154
  start-page: 1143
  issue: 12
  year: 2001
  ident: 584_CR65
  publication-title: American Journal of Epidemiology
  doi: 10.1093/aje/154.12.1143
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 584_CR61
  publication-title: ACM Computing Surveys
  doi: 10.1145/331499.331504
– volume: 63
  start-page: 707
  year: 2009
  ident: 584_CR29
  publication-title: Eur J Clin Nutr
  doi: 10.1038/ejcn.2008.40
– volume: 13
  start-page: 776
  year: 2009
  ident: 584_CR45
  publication-title: J Nutr Heal Aging
  doi: 10.1007/s12603-009-0213-8
– volume: 113
  start-page: 68
  year: 2014
  ident: 584_CR7
  publication-title: Soc Sci Med
  doi: 10.1016/j.socscimed.2014.05.012
– volume: 38
  start-page: 310
  issue: 2
  year: 2011
  ident: 584_CR93
  publication-title: European Respiratory Journal
  doi: 10.1183/09031936.00120810
– ident: 584_CR55
  doi: 10.6339/JDS.201104_09(2).0009
– volume: 20
  start-page: 37
  year: 2002
  ident: 584_CR76
  publication-title: Can J Mark Res
– volume: 100
  start-page: 263
  year: 2009
  ident: 584_CR44
  publication-title: Can J Public Heal
  doi: 10.1007/BF03403944
– volume: 34
  start-page: 812
  year: 2009
  ident: 584_CR74
  publication-title: Eur Respir J
  doi: 10.1183/09031936.00174408
– volume: 10
  start-page: 376
  year: 2009
  ident: 584_CR21
  publication-title: Prev Sci
  doi: 10.1007/s11121-009-0140-2
– volume: 151
  start-page: 720
  issue: 3
  year: 2006
  ident: 584_CR72
  publication-title: American Heart Journal
  doi: 10.1016/j.ahj.2005.05.010
– volume: 56
  start-page: S163
  issue: Suppl 2
  year: 2016
  ident: 584_CR5
  publication-title: The Gerontologist
  doi: 10.1093/geront/gnw037
– volume: 76
  start-page: 122
  year: 2012
  ident: 584_CR50
  publication-title: Int J Pediatr Otorhinolaryngol
  doi: 10.1016/j.ijporl.2011.10.019
– ident: 584_CR54
  doi: 10.1007/978-3-642-12541-6_9
– volume: 43
  start-page: 100
  year: 2003
  ident: 584_CR56
  publication-title: J Comput Inf Syst
– volume: 106
  start-page: 1194
  year: 2006
  ident: 584_CR32
  publication-title: J Am Diet Assoc
  doi: 10.1016/j.jada.2006.05.012
– volume: 48
  start-page: 205
  year: 2014
  ident: 584_CR52
  publication-title: Ann Behav Med
  doi: 10.1007/s12160-014-9589-8
– volume: 55
  start-page: 29
  issue: 1
  year: 2001
  ident: 584_CR33
  publication-title: Journal of Epidemiology & Community Health
  doi: 10.1136/jech.55.1.29
– volume: 59
  start-page: 675
  year: 2005
  ident: 584_CR73
  publication-title: Eur J Clin Nutr
  doi: 10.1038/sj.ejcn.1602129
– volume: 309
  start-page: 449
  issue: 5
  year: 2013
  ident: 584_CR3
  publication-title: JAMA
  doi: 10.1001/jama.2012.154302
– volume: 61
  start-page: 192
  year: 2004
  ident: 584_CR19
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.61.2.192
– volume: 14
  start-page: 831
  year: 2006
  ident: 584_CR67
  publication-title: Support Care Cancer
  doi: 10.1007/s00520-005-0899-z
– ident: 584_CR88
– volume: 14
  start-page: 671
  issue: 4
  year: 2007
  ident: 584_CR57
  publication-title: Structural Equation Modeling: A Multidisciplinary Journal
  doi: 10.1080/10705510701575602
– volume: 38
  start-page: 492
  year: 2014
  ident: 584_CR39
  publication-title: Am J Health Behav
  doi: 10.5993/AJHB.38.4.2
– volume: 52
  start-page: 326
  year: 2011
  ident: 584_CR26
  publication-title: Prev Med (Baltim)
  doi: 10.1016/j.ypmed.2011.02.020
– volume: 77
  start-page: 1417
  year: 2003
  ident: 584_CR53
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/77.6.1417
– ident: 584_CR82
  doi: 10.1002/9780470977811
– ident: 584_CR37
  doi: 10.1001/archgenpsychiatry.2011.1574
– volume: 3
  start-page: 85
  year: 2005
  ident: 584_CR84
  publication-title: J Data Sci
  doi: 10.6339/JDS.2005.03(1).192
– volume: 101
  start-page: 590
  issue: 04
  year: 2008
  ident: 584_CR43
  publication-title: British Journal of Nutrition
  doi: 10.1017/S0007114508014128
– volume: 9
  start-page: 829
  year: 2002
  ident: 584_CR42
  publication-title: Psychon Bull Rev
  doi: 10.3758/BF03196342
– volume: 81
  start-page: 303
  year: 2015
  ident: 584_CR40
  publication-title: Preventive Medicine
  doi: 10.1016/j.ypmed.2015.09.027
– ident: 584_CR14
– volume: 10
  start-page: 34
  issue: 1
  year: 2013
  ident: 584_CR24
  publication-title: International Journal of Behavioral Nutrition and Physical Activity
  doi: 10.1186/1479-5868-10-34
– ident: 584_CR12
  doi: 10.7812/TPP/14-005
– volume: 51
  start-page: 27
  year: 2013
  ident: 584_CR17
  publication-title: Accid Anal Prev
  doi: 10.1016/j.aap.2012.10.011
– ident: 584_CR59
– ident: 584_CR10
– volume: 61
  start-page: 1215
  issue: 4
  year: 2013
  ident: 584_CR48
  publication-title: Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
  doi: 10.11118/actaun201361041215
– volume: 16
  start-page: 1655
  issue: 10
  year: 2007
  ident: 584_CR35
  publication-title: Quality of Life Research
  doi: 10.1007/s11136-007-9272-7
– volume: 35
  start-page: 769
  year: 2016
  ident: 584_CR8
  publication-title: Health Aff
  doi: 10.1377/hlthaff.2015.1311
– volume: 17
  start-page: 2674
  issue: 12
  year: 2014
  ident: 584_CR31
  publication-title: Public Health Nutrition
  doi: 10.1017/S1368980014000111
– volume: 52
  start-page: 1616
  issue: 11
  year: 2003
  ident: 584_CR71
  publication-title: Gut
  doi: 10.1136/gut.52.11.1616
– ident: 584_CR15
  doi: 10.1186/1471-2458-11-692
– ident: 584_CR49
– volume: 171
  start-page: 479
  year: 2010
  ident: 584_CR18
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp393
– ident: 584_CR62
SSID ssj0017836
Score 2.4696815
SecondaryResourceType review_article
Snippet Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively...
Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively homogenous groups...
Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively...
Abstract Background Data-driven population segmentation analysis utilizes data analytics to divide a heterogeneous population into parsimonious and relatively...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121
SubjectTerms Asthma
Chronic illnesses
Classification
Cluster analysis
Clustering
Data Analysis
Data analytics
Data mining
Delivery of Health Care - methods
Delivery of Health Care - statistics & numerical data
Electronic health records
Evidence-based medicine
Health care policy
Health policy
Health Sciences
Health services
Humans
Medical Record Linkage - methods
Medicine
Medicine & Public Health
Methods
Older people
Patient satisfaction
Population health
Population Health - statistics & numerical data
Population Health Management
Population segmentation
Public health
Reproducibility of Results
Research Article
Statistical Theory and Methods
statistics and modelling
Statistics for Life Sciences
Systematic review
Theory of Medicine/Bioethics
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEB6kD0UQsfW2WiWCICihe83l8SiWItQnC30LSTZRQfeUntP_78wmuz1bUV983WQhyUxmvkky3wC8bq0nP614Z0UYS5hx53TJK8S2Tkqr2khHA2efxel5--miu9gp9UVvwhI9cFq440rbWvsm-qqPrdLWBUomrQLaVR_rPpD1RTc2BVP5_oByE_IdZqXE8aYiWncMmxUv0eNyvfBCI1n_7yZ5xyfdfi9569J09EUnD-B-BpFslQZ_AHfCcAj7Z_ma_BDupcM4lnKMHoJZsRvGZpayVdg6MgR_bEqNZDtX2dRGT0d5f0XGkF3OVb7YJnz9mdOVBmYzo8kjOD_5-OXDKc-VFbgXQm95X3mPOMK6VqrOBVxV0ZDz99L5XnS-DWUUQekgo29CI1sXa4-2ACPvto8Y4TyGvWE9hKfAVBQWbaRXkhxdE6zwykkEdogcbNnaAspppY3PtONU_eKHGcMPJUwSjkHhGBKO0QW8nX-5TJwbf-v8nsQ3dyS67PEDKpHJSmT-pUQFvCHhG9rUODhvc24CTpHoscyqo-O2BrFOAUeLnrgZ_bJ5Uh-TjcHG1FQFkXjZVAGv5mb6kx64DWF9PfYh9KxVU8CTpG3zlBBlaESOVQFyoYeLOS9bhu_fRqpwgULFCLeAd5PG3gzrj0v67H8s6XO4W9N-oxP45gj2tlfX4QXit617OW7VX1EhQag
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0BBFE9PyqnhJBEJRwzbZN0idZxeMQzicP9i0kaXIK2q67e_-_M23avZ54r5t0aTpfv5nJzAC8La0nO615ZWXoR5hx5-qcC8S2Timry0ihgbNv8vS8_LqqVingtk3XKked2CvqpvMUIz9e0Cg5am6lP67_cJoaRdnVNELjNtwRCFWIq9VqcrgEVSikTKbQ8ngrqLk7Os-a52h3eT2zRX3L_n8V8xXLdP3W5LXUaW-RTh7CgwQl2XKg_SO4FdpDuHuWkuWHcH8IybGh0ugxmCXb921mQ80K6yJDCMjGAkl2JaFNa3SBlDcbUolsPc36Yttw8TsVLbXMpr4mT-D85Mv3z6c8zVfgXsp6xxvhPaIJ60qlKxdq62RBEMAr5xtZ-TLkUQZdBxV9EQpVurjwqBHQ_y6biH7OUzhouzY8B6ajtKgpvVZk7opgpddOIbxD_GDz0maQj1_a-NR8nGZg_DK9E6KlGYhjkDiGiGPqDN5Pj6yHzhs3bf5E5Js2UtPs_oduc2GSDBpR20Xti-hFE0uNxw1UlywC_pmPiyZk8I6Ib0i08eW8TRUKeERqkmWWFQXdCkQ8GRzNdqJI-vnyyD4mqYSt2TNwBm-mZXqSrrm1obvs9xCGrnWRwbOB26YjIdaoET-KDNSMD2dnnq-0P3_0DcMlEhX93Aw-jBy7f63_ftIXNx_iJdxbkCRRhL04goPd5jK8Qny2c697IfwLK3w4Ow
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB60gvhS6n21SgRBUIJ7yebyeHqwFKE-WehbSLKJCrqn9Jz-_87s5mzP1gv4upksm51M5ptM5gvAW-EC-WnNWyfjcIUZ996UvEJs65VyWiTaGjj9Ik_OxOfz9jyTRVMtzG7-vtLy47oiQnYMeDUv0Vdycxfutbju0um9pVxOCQMqRshJyz92m7mdgZ3_9zV4xwndPiB5K0s6OJ_jA9jPqJEtRjU_hDuxfwT3T3Ne_DHYBbuhZGZjOQpbJYbojm1rH9lOrpra6Gwo7y5ptWMX0zVebB2__cr1SD1zmbLkCZwdf_q6POH56gQepDQb3lUhIFBwXijd-miclw1596B86GQbRCyTjNpElUITGyV8qgMaO4bWoksYwjyFvX7Vx-fAdJIOF8GgFXmyJjoZtFeI3BAauFK4Asrtn7Uh84rT9RY_7RBfaGlHZVhUhiVlWFPA-6nLxUiq8S_hI1LXJEh82MMDnCY2m5etjKtNaFKouiQ0DjdSyXEV8WUh1V0s4B0p25LV4scFl4sPcIjEf2UXLe2nNQhmCjicSaK1hXnzdrrYbO1rW9M1h0S8pgt4MzVTTzrB1sfV1SBD8NjopoBn4-yahoQwwiA0rApQs3k3G_O8pf_xfeACl6hUDGEL-LCdoTef9ddf-uK_pF_Cg5oMifbSm0PY21xexVeIxDb-9WCD17xEK94
  priority: 102
  providerName: Springer Nature
Title A systematic review of the clinical application of data-driven population segmentation analysis
URI https://link.springer.com/article/10.1186/s12874-018-0584-9
https://www.ncbi.nlm.nih.gov/pubmed/30390641
https://www.proquest.com/docview/2135163608
https://www.proquest.com/docview/2130054983
https://pubmed.ncbi.nlm.nih.gov/PMC6215625
https://doaj.org/article/19a29c3fc1df489abe39351e128cf2de
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M48
  dateStart: 20011101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: C6C
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEB_6APGL-DZajxUEQYnmuY8PIndHSxGuSPHg8Muy2WyqUHP17gr63zuzeVxTa78Ekt2EzM7Mzm92d2YAXmfGkp2WYW648yXMwqJQURgjti2EMDKraGlgdsKP59nnRb7Yga68VTuA6xtdO6onNV-dv__9688nVPiPXuEl_7COKWk7OsUyjNCehmoX9tEwJSTks2y7qUABCz7YSMRhkkjZbnLe-ImBmfLZ_P-ds68YresHKq_tqnpjdXQf7rUok40bsXgAO65-CHdm7T76I9Bjtk3hzJrwFbasGKJB1sVKsit729RGZ0nDckWzI7voy36xtTv72cYv1cy0KU4ew_zo8Ov0OGxLLYSWc7UJy9haBBamyITMC6dMwVNCA1YUtuS5zVxUcSeVE5VNXSqyokosTg7oimdlhS7PE9irl7V7BkxW3OCkaaUgy5c6w60sBCI9hBImykwAUTey2rZ5yKkcxrn2_ojkumGGRmZoYoZWAbztX7loknDc1nlC7Oo7Uv5s_2C5OtOtOupYmUTZtLJxWWUSyXUUohw7_JitktIF8IaYrUnu8OesaYMVkETKl6XHOa2_pQh-AjgY9ETttMPmTlx0J9w6obKIlKhNBvCqb6Y36cRb7ZaXvg_BaSXTAJ420tWThLBDIZSMAxADuRvQPGypf3z3ucM5MhVd3gDedRK6_a3_Dunz22l8AXcT0hxabE8PYG-zunQvEaptihHsioUYwf7k8OTLKd5N-XTklz1GXjXxejr59hcBhj1X
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1da9RAcCgVVBDRqjVadQVFUJbmY2938yByfpSr7fWphXtbN5tNFTQ5766If8rf6Ey-rqnYt75mNyGz8z2zMwPwQlhHelrzkZW-HmHGsywNeYS2baaU1aKg0MD0SE5OxOfZaLYBf7paGLpW2cnEWlDnlaMY-W5Mo-SouZV-N__JaWoUZVe7ERoNWRz437_QZVu-3f-I-H0Zx3ufjj9MeDtVgDsp0xXPI-dQh9pMKD3KfGozmZDicypzuRw54cNCep16VbjEJ0pkReyQD9DrFHmhaEoEivxrIgkF9epXs97Bi6gios2cRlruLiNqJo_OuuYh6nmeDnRfPSLgX0VwThNevKV5IVVba8C9O3C7NV3ZuKG1u7Dhyy24Pm2T81twqwkBsqay6R6YMVv3iWZNjQyrCoYmJ-sKMtm5BDqt0YVVni9IBLN5P1uMLf3pj7ZIqmS27aNyH06u5OQfwGZZlf4hMF1Ii5LZaUXqNfFWOp0pNCfRXrGhsAGE3Ukb1zY7p5kb303t9GhpGuQYRI4h5Jg0gNf9K_Om08dlm98T-vqN1KS7flAtTk3L8yZKbZy6pHBRXgiN4Hqqg448fswVce4DeEXINyRK8OecbSsiEERqymXGIwryJWhhBbAz2IkiwA2XO_IxrQhamjXDBPC8X6Y36Vpd6auzeg_Z7KlOAthuqK0HCW2bFO3VKAA1oMMBzMOV8tvXukG5RKSiXx3Am45i17_13yN9dDkQz-DG5Hh6aA73jw4ew82YuIqi-8kObK4WZ_4J2oar7GnNkAy-XLUE-AvKW3Z5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BK1VcEG8CpRgJCQkUNU_HPgbKqiy0QoJKvVm2Y5dKJbva3f5_ZhInbcpD4hrbUZzxeL7xeL4BeF1oS3ZaxKXmrithFhsjkzhFbGuqSovC09HA0TE_PCnmp-VpqHO6Hm67DyHJPqeBWJrazf6y8b2KC76_TommHd1gESdoQWN5G7ZFKTl6X9t1Pf82HwMJlKQQgpl_HDgxRx1r_-978zXjdPPi5I3oaWeUZvfgbkCTrO7Ffx9uufYB7ByFePlDUDW7ompmfZoKW3iGqI8NOZHsWgyb2ujOaNysaBdky7G8F1u7s58hT6llOlCZPIKT2cfvHw7jUFIhtpzLTdyk1iKA0KaoRGmc1IbnZPVtZWzDS1u4xHMnpKu8zV1eFcZnFjcBdLmLxqNr8xi22kXrngITnmvcHK2oyMLlTnMrTIWIDiGDTgodQTL8WWUD3ziVvbhQnd8huOqFoVAYioShZARvxyHLnmzjX53fk7jGjsST3T1YrM5UUDuVSp1Jm3ubNr4QOF1Hqcipw5dZnzUugjckbEXajB9ndUhKwCkSL5aqSzpnyxHkRLA76YlaaKfNw3JRYRdYq4zKHxIhm4jg1dhMI-lmW-sWl10fgs1S5BE86VfXOCWEFxIhYxpBNVl3kzlPW9rzHx1HOEehomsbwbthhV591l9_6bP_6v0Sdr4ezNSXT8efn8OdjHSKjtvzXdjarC7dCwRrG7MXFPIXRKc4iQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+of+the+clinical+application+of+data-driven+population+segmentation+analysis&rft.jtitle=BMC+medical+research+methodology&rft.au=Yan%2C+Shi&rft.au=Kwan%2C+Yu+Heng&rft.au=Tan%2C+Chuen+Seng&rft.au=Thumboo%2C+Julian&rft.date=2018-11-03&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-018-0584-9&rft.externalDocID=A567963152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon