H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction

Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipita...

Full description

Saved in:
Bibliographic Details
Published inClinical epigenetics Vol. 10; no. 1; pp. 85 - 11
Main Authors Paauw, N. D., Lely, A. T., Joles, J. A., Franx, A., Nikkels, P. G., Mokry, M., van Rijn, B. B.
Format Journal Article
LanguageEnglish
Published London BioMed Central 26.06.2018
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1868-7075
1868-7083
1868-7083
1868-7075
DOI10.1186/s13148-018-0508-x

Cover

Abstract Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Results Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. Conclusion We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease.
AbstractList BackgroundPosttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes.ResultsAnalysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1.ConclusionWe demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease.
Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Results Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. Conclusion We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease.
Abstract Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Results Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. Conclusion We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease.
Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes.BackgroundPosttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes.Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1.ResultsAnalysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1.We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease.ConclusionWe demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease.
Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease.
Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease.
Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Results Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. Conclusion We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease. Keywords: ChIP-seq, Growth restriction, H3K27ac, Epigenetics, Histone acetylation, Placenta, Placental pathology, RNA-seq
ArticleNumber 85
Audience Academic
Author Lely, A. T.
Nikkels, P. G.
Paauw, N. D.
Joles, J. A.
Franx, A.
Mokry, M.
van Rijn, B. B.
Author_xml – sequence: 1
  givenname: N. D.
  surname: Paauw
  fullname: Paauw, N. D.
  email: n.d.paauw-2@umcutrecht.nl
  organization: Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht, Division Woman and Baby, University Medical Center Utrecht
– sequence: 2
  givenname: A. T.
  surname: Lely
  fullname: Lely, A. T.
  organization: Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht
– sequence: 3
  givenname: J. A.
  surname: Joles
  fullname: Joles, J. A.
  organization: Department of Nephrology and Hypertension, University Medical Center Utrecht
– sequence: 4
  givenname: A.
  surname: Franx
  fullname: Franx, A.
  organization: Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht
– sequence: 5
  givenname: P. G.
  surname: Nikkels
  fullname: Nikkels, P. G.
  organization: Department of Pathology, University Medical Center Utrecht
– sequence: 6
  givenname: M.
  surname: Mokry
  fullname: Mokry, M.
  organization: Division of Pediatrics, University Medical Center Utrecht
– sequence: 7
  givenname: B. B.
  surname: van Rijn
  fullname: van Rijn, B. B.
  email: b.b.vanrijn@umcutrecht.nl
  organization: Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht, Academic Unit of Human Development and Health, University of Southampton, Division Woman and Baby, University Medical Center Utrecht
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29983832$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNUREvpB-CCInHhkuI_SWxfkKoKaEUlLnC2HHuS9SobL3Z2u3vhszNpSstWQKIo0cx7P2fs9zI7GsIAWfaaknNKZf0-UU5LWRCKT0VksXuWnWBdFoJIfvTwLarj7CylJcGLK6UoeZEdM6Ukl5ydZD-v-BcmcmNh3Pdm9GHIzeDyDgbIYbeOkNJcM_0--ZRH2ILpU-5820KEwULK_ZCveyQMo-lzu4hhhSD02NFv_bif-i1MvS6G23GBjDRGb6fFXmXPW8TB2f37NPv-6eO3y6vi5uvn68uLm8LWtRqLBkgjFGMgS8dwYkZ5aVztnCyJa6goW0rqVhAHlSxFI2yFfcms4UJIDoSfZtcz1wWz1OvoVybudTBe3xVC7LSJo7c9aCskNKxpG9m0ZdPUytVclaXjxJYclEPWh5m13jQrcNPc0fQH0MPO4Be6C1tdE0YYrxDw7h4Qw48NboZe-WSh780AYZM0I7WgTBI2Sd8-kS7DJuJhTCpBlUKNeFR1BgfwQxtwXTtB9UVV1qTiVUVRdf4XFd4OVt5iuFqP9QPDmz8HfZjwd3pQQGeBjSGlCO2DhBI9hVTPIdV4ZHoKqd6hRzzxWD_eBQ__xvf_dbLZmXCVoYP4uBf_Nv0CrnL7_A
CitedBy_id crossref_primary_10_3390_cells11192958
crossref_primary_10_1126_sciadv_adp5227
crossref_primary_10_2139_ssrn_4102874
crossref_primary_10_1242_dev_204290
crossref_primary_10_1016_j_rbmo_2022_09_018
crossref_primary_10_1177_11769343221112780
crossref_primary_10_1007_s00404_022_06805_9
crossref_primary_10_2147_IJGM_S475310
crossref_primary_10_1007_s40572_022_00354_8
crossref_primary_10_1016_j_devcel_2024_03_025
crossref_primary_10_1038_s41419_020_02808_z
crossref_primary_10_1007_s00439_019_02058_w
crossref_primary_10_3390_cells9061435
crossref_primary_10_1016_j_devcel_2021_04_001
crossref_primary_10_1016_j_ygeno_2022_110433
crossref_primary_10_3390_ijms241511899
crossref_primary_10_1016_j_bcp_2025_116761
crossref_primary_10_2174_1573399818666220422085016
crossref_primary_10_1002_advs_202308884
crossref_primary_10_1016_j_placenta_2022_03_122
crossref_primary_10_1186_s13071_022_05504_3
crossref_primary_10_1016_j_placenta_2022_05_016
crossref_primary_10_1021_acschembio_2c00510
crossref_primary_10_1007_s40291_022_00611_4
crossref_primary_10_1038_s42003_022_03530_6
crossref_primary_10_1186_s13148_020_00980_9
crossref_primary_10_1038_s41401_025_01497_8
crossref_primary_10_3389_fendo_2023_1229862
crossref_primary_10_1016_j_pbb_2019_06_003
crossref_primary_10_1038_s41576_019_0169_4
crossref_primary_10_1038_s41598_020_65415_0
crossref_primary_10_1038_s41390_019_0447_z
crossref_primary_10_1186_s13148_021_01173_8
crossref_primary_10_1111_all_15606
crossref_primary_10_1371_journal_pgen_1008236
crossref_primary_10_1038_s41598_021_82206_3
crossref_primary_10_1073_pnas_2213622120
crossref_primary_10_1007_s00018_024_05208_0
crossref_primary_10_1016_j_mce_2023_112031
Cites_doi 10.1016/j.placenta.2005.07.004
10.3389/fgene.2016.00062
10.1016/j.siny.2004.03.006
10.1093/humupd/dmq052
10.1016/j.yexcr.2006.09.009
10.1097/HJH.0000000000000964
10.1017/S2040174415001324
10.4161/epi.9019
10.1016/j.gde.2015.08.009
10.1080/10641955.2016.1273363
10.1016/j.ajog.2006.08.027
10.1111/j.1365-2265.2009.03659.x
10.1152/ajpendo.00279.2012
10.1097/01.pgp.0000139647.40620.c8
10.2119/molmed.2014.00032
10.1128/MCB.05780-11
10.1038/ncb0107-2
10.1210/jc.2007-1042
10.1186/s13148-016-0238-x
10.1177/1933719111404611
10.1530/REP-16-0014
10.1093/molehr/gat048
10.1073/pnas.0909344107
10.3109/14767058.2012.733766
10.1262/jrd.2011-039
10.1038/nature09906
10.1161/HYPERTENSIONAHA.111.182170
10.1095/biolreprod.113.108456
10.1007/s00412-015-0530-0
10.1242/dev.01923
10.1093/bioinformatics/btp324
10.1136/bmj.298.6673.564
10.3892/br.2017.930
10.1016/j.cell.2013.09.053
10.1016/0026-0495(92)90051-B
10.1016/j.mce.2012.02.009
10.1093/hmg/ddu347
10.1038/nbt.1630
10.1016/j.placenta.2012.02.010
10.1038/pr.2015.40
10.1038/nbt.1505
10.1371/journal.pone.0068991
10.1016/S0002-9378(00)70513-8
10.1016/j.placenta.2014.06.375
10.4161/15592294.2014.989741
10.1161/CIRCULATIONAHA.110.956839
10.1186/1471-2164-14-475
10.1371/journal.pone.0049248
10.1038/srep14107
10.1016/j.placenta.2010.05.006
10.1016/j.placenta.2015.11.001
10.1073/pnas.1215145110
10.1016/j.placenta.2011.12.003
10.1186/1471-2105-11-165
10.1073/pnas.1016071107
10.1016/j.ajog.2017.03.017
10.1186/s13059-014-0550-8
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13148-018-0508-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1868-7083
1868-7075
EndPage 11
ExternalDocumentID oai_doaj_org_article_c78eb2bfb8bf4bb69d63944d30c43e9d
PMC6020235
A546053551
29983832
10_1186_s13148_018_0508_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fonds Gezond Geboren
– fundername: Nierstichting (NL)
  grantid: 15O141
– fundername: ;
– fundername: ;
  grantid: 15O141
GroupedDBID ---
0R~
2JY
4.4
53G
5C9
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
EN4
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HF~
HMCUK
HYE
HZ~
IAO
IHR
INH
INR
ITC
KOV
KQ8
LK8
M1P
M48
M7P
O9I
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
QOS
R9I
RBZ
RNS
ROL
RPM
RSV
S27
SBL
SOJ
T13
U2A
UKHRP
WK8
AAYXX
ALIPV
CITATION
2VQ
AAYZH
AGJBK
AHSBF
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
O9-
RIG
S1Z
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c669t-be0b7922e84d20182134ad6dd840db174f106f70de5847b7c534a82ca37783e03
IEDL.DBID M48
ISSN 1868-7075
1868-7083
IngestDate Wed Aug 27 01:10:02 EDT 2025
Thu Aug 21 18:20:24 EDT 2025
Thu Sep 04 21:11:51 EDT 2025
Fri Jul 25 11:57:14 EDT 2025
Tue Jun 17 21:35:32 EDT 2025
Tue Jun 10 20:13:53 EDT 2025
Thu Apr 03 06:57:24 EDT 2025
Tue Jul 01 04:01:52 EDT 2025
Thu Apr 24 23:07:19 EDT 2025
Sat Sep 06 07:30:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Placenta
RNA-seq
Placental pathology
H3K27ac
ChIP-seq
Epigenetics
Growth restriction
Histone acetylation
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-be0b7922e84d20182134ad6dd840db174f106f70de5847b7c534a82ca37783e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13148-018-0508-x
PMID 29983832
PQID 2071992537
PQPubID 2040146
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c78eb2bfb8bf4bb69d63944d30c43e9d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6020235
proquest_miscellaneous_2067128025
proquest_journals_2071992537
gale_infotracmisc_A546053551
gale_infotracacademiconefile_A546053551
pubmed_primary_29983832
crossref_primary_10_1186_s13148_018_0508_x
crossref_citationtrail_10_1186_s13148_018_0508_x
springer_journals_10_1186_s13148_018_0508_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-26
PublicationDateYYYYMMDD 2018-06-26
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-26
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
PublicationTitle Clinical epigenetics
PublicationTitleAbbrev Clin Epigenet
PublicationTitleAlternate Clin Epigenetics
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References R Ma (508_CR33) 2012; 303
H Diez (508_CR32) 2007; 313
A Rajakumar (508_CR38) 2012; 59
H Li (508_CR56) 2009; 25
SL Hillman (508_CR21) 2015; 10
E Struwe (508_CR14) 2010; 72
LN Kent (508_CR34) 2011; 31
AI Diplas (508_CR43) 2009; 4
O Nevo (508_CR36) 2008; 93
RC McLeay (508_CR30) 2010; 11
R Karlic (508_CR53) 2010; 107
I Miguel-Escalada (508_CR48) 2015; 33
V Gourvas (508_CR27) 2012; 6
T Kaartokallio (508_CR25) 2015; 5
T Bianco-Miotto (508_CR17) 2016; 152
DJ Barker (508_CR7) 1989; 298
JR Prins (508_CR29) 2012; 33
I Iglesias-Platas (508_CR44) 2014; 23
DI Schroeder (508_CR19) 2013; 110
A Romo (508_CR5) 2009; 6
M Roifman (508_CR20) 2016; 8
J Ernst (508_CR1) 2011; 473
C McCarthy (508_CR13) 2007; 196
KJ Lee (508_CR50) 2010; 31
JHW Veerbeek (508_CR10) 2016; 34
M Lopez-Abad (508_CR24) 2016; 7
B Bonet (508_CR54) 1992; 41
H Ji (508_CR57) 2008; 26
JHW Veerbeek (508_CR11) 2014; 35
RHW Li (508_CR40) 2004; 23
J McMinn (508_CR12) 2006; 27
BM Turner (508_CR49) 2007; 9
L Uusküla (508_CR52) 2012; 7
L Lambertini (508_CR22) 2011; 18
D Hnisz (508_CR4) 2013; 155
IM Bernstein (508_CR6) 2000; 182
M Gormley (508_CR55) 2017; 217
AC Mirabella (508_CR3) 2016; 125
CE Kleinrouweler (508_CR26) 2013; 8
A Hoeller (508_CR37) 2017; 36
E Maltepe (508_CR46) 2005; 132
DE Handy (508_CR47) 2011; 123
C Camprubi (508_CR45) 2013; 89
MJ Soares (508_CR35) 2012; 58
AJ Kermack (508_CR8) 2015; 6
MI Love (508_CR58) 2014; 15
A Velegrakis (508_CR41) 2017; 7
ECM Nelissen (508_CR16) 2011; 17
C Kimura (508_CR28) 2013; 26
MP Creyghton (508_CR2) 2010; 107
V Chaddha (508_CR9) 2004; 9
JE Joo (508_CR23) 2013; 14
D Madeleneau (508_CR15) 2015; 77
M Mandl (508_CR31) 2014; 20
G Tuteja (508_CR51) 2016; 37
CY McLean (508_CR59) 2010; 28
RM Lewis (508_CR18) 2012; 33
J Mannik (508_CR42) 2012; 355
S Schrey (508_CR39) 2013; 19
References_xml – volume: 27
  start-page: 540
  year: 2006
  ident: 508_CR12
  publication-title: Placenta
  doi: 10.1016/j.placenta.2005.07.004
– volume: 7
  start-page: 62
  year: 2016
  ident: 508_CR24
  publication-title: Front Genet
  doi: 10.3389/fgene.2016.00062
– volume: 9
  start-page: 357
  year: 2004
  ident: 508_CR9
  publication-title: Semin Fetal Neonatal Med
  doi: 10.1016/j.siny.2004.03.006
– volume: 17
  start-page: 397
  year: 2011
  ident: 508_CR16
  publication-title: Hum Reprod Update
  doi: 10.1093/humupd/dmq052
– volume: 313
  start-page: 1
  year: 2007
  ident: 508_CR32
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2006.09.009
– volume: 34
  start-page: 1570
  year: 2016
  ident: 508_CR10
  publication-title: J Hypertens
  doi: 10.1097/HJH.0000000000000964
– volume: 6
  start-page: 415
  year: 2015
  ident: 508_CR8
  publication-title: J Dev Orig Health Dis
  doi: 10.1017/S2040174415001324
– volume: 4
  start-page: 235
  year: 2009
  ident: 508_CR43
  publication-title: Epigenetics
  doi: 10.4161/epi.9019
– volume: 33
  start-page: 71
  year: 2015
  ident: 508_CR48
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2015.08.009
– volume: 36
  start-page: 151
  year: 2017
  ident: 508_CR37
  publication-title: Hypertens pregnancy
  doi: 10.1080/10641955.2016.1273363
– volume: 196
  start-page: 70.e1
  year: 2007
  ident: 508_CR13
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2006.08.027
– volume: 72
  start-page: 241
  year: 2010
  ident: 508_CR14
  publication-title: Clin Endocrinol
  doi: 10.1111/j.1365-2265.2009.03659.x
– volume: 303
  start-page: E928
  year: 2012
  ident: 508_CR33
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00279.2012
– volume: 23
  start-page: 378
  year: 2004
  ident: 508_CR40
  publication-title: Int J Gynecol Pathol
  doi: 10.1097/01.pgp.0000139647.40620.c8
– volume: 20
  start-page: 215
  year: 2014
  ident: 508_CR31
  publication-title: Mol Med
  doi: 10.2119/molmed.2014.00032
– volume: 31
  start-page: 4801
  year: 2011
  ident: 508_CR34
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.05780-11
– volume: 9
  start-page: 2
  year: 2007
  ident: 508_CR49
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb0107-2
– volume: 6
  start-page: 332
  issue: 3
  year: 2009
  ident: 508_CR5
  publication-title: Pediatr Endocrinol Rev
– volume: 93
  start-page: 285
  year: 2008
  ident: 508_CR36
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2007-1042
– volume: 8
  year: 2016
  ident: 508_CR20
  publication-title: Clin Epigenetics
  doi: 10.1186/s13148-016-0238-x
– volume: 18
  start-page: 1111
  year: 2011
  ident: 508_CR22
  publication-title: Reprod Sci
  doi: 10.1177/1933719111404611
– volume: 152
  start-page: R23
  year: 2016
  ident: 508_CR17
  publication-title: Reproduction
  doi: 10.1530/REP-16-0014
– volume: 19
  start-page: 764
  year: 2013
  ident: 508_CR39
  publication-title: Mol Hum Reprod
  doi: 10.1093/molehr/gat048
– volume: 107
  start-page: 2926
  year: 2010
  ident: 508_CR53
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0909344107
– volume: 26
  start-page: 491
  year: 2013
  ident: 508_CR28
  publication-title: J Matern Fetal Neonatal Med
  doi: 10.3109/14767058.2012.733766
– volume: 58
  start-page: 283
  year: 2012
  ident: 508_CR35
  publication-title: J Reprod Dev
  doi: 10.1262/jrd.2011-039
– volume: 473
  start-page: 43
  year: 2011
  ident: 508_CR1
  publication-title: Nature
  doi: 10.1038/nature09906
– volume: 59
  start-page: 256
  year: 2012
  ident: 508_CR38
  publication-title: Hypertens (Dallas, Tex 1979)
  doi: 10.1161/HYPERTENSIONAHA.111.182170
– volume: 89
  start-page: 50
  year: 2013
  ident: 508_CR45
  publication-title: Biol Reprod
  doi: 10.1095/biolreprod.113.108456
– volume: 125
  start-page: 75
  year: 2016
  ident: 508_CR3
  publication-title: Chromosoma
  doi: 10.1007/s00412-015-0530-0
– volume: 132
  start-page: 3393
  year: 2005
  ident: 508_CR46
  publication-title: Development
  doi: 10.1242/dev.01923
– volume: 25
  start-page: 1754
  year: 2009
  ident: 508_CR56
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 298
  start-page: 564
  year: 1989
  ident: 508_CR7
  publication-title: BMJ
  doi: 10.1136/bmj.298.6673.564
– volume: 7
  start-page: 115
  year: 2017
  ident: 508_CR41
  publication-title: Biomed reports
  doi: 10.3892/br.2017.930
– volume: 155
  start-page: 934
  year: 2013
  ident: 508_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.053
– volume: 41
  start-page: 596
  year: 1992
  ident: 508_CR54
  publication-title: Metabolism
  doi: 10.1016/0026-0495(92)90051-B
– volume: 355
  start-page: 180
  year: 2012
  ident: 508_CR42
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2012.02.009
– volume: 23
  start-page: 6275
  year: 2014
  ident: 508_CR44
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddu347
– volume: 28
  start-page: 495
  year: 2010
  ident: 508_CR59
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1630
– volume: 33
  start-page: 453
  year: 2012
  ident: 508_CR29
  publication-title: Placenta
  doi: 10.1016/j.placenta.2012.02.010
– volume: 77
  start-page: 799
  year: 2015
  ident: 508_CR15
  publication-title: Pediatr Res
  doi: 10.1038/pr.2015.40
– volume: 26
  start-page: 1293
  year: 2008
  ident: 508_CR57
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1505
– volume: 8
  start-page: e68991
  year: 2013
  ident: 508_CR26
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068991
– volume: 182
  start-page: 198
  issue: 1 1
  year: 2000
  ident: 508_CR6
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/S0002-9378(00)70513-8
– volume: 35
  start-page: 696
  year: 2014
  ident: 508_CR11
  publication-title: Placenta
  doi: 10.1016/j.placenta.2014.06.375
– volume: 10
  start-page: 50
  year: 2015
  ident: 508_CR21
  publication-title: Epigenetics
  doi: 10.4161/15592294.2014.989741
– volume: 6
  start-page: 23
  year: 2012
  ident: 508_CR27
  publication-title: Mol Med Rep
– volume: 123
  start-page: 2145
  year: 2011
  ident: 508_CR47
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.956839
– volume: 14
  start-page: 475
  year: 2013
  ident: 508_CR23
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-475
– volume: 7
  start-page: e49248
  year: 2012
  ident: 508_CR52
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049248
– volume: 5
  start-page: 14107
  year: 2015
  ident: 508_CR25
  publication-title: Sci Rep
  doi: 10.1038/srep14107
– volume: 31
  start-page: 698
  year: 2010
  ident: 508_CR50
  publication-title: Placenta
  doi: 10.1016/j.placenta.2010.05.006
– volume: 37
  start-page: 45
  year: 2016
  ident: 508_CR51
  publication-title: Placenta
  doi: 10.1016/j.placenta.2015.11.001
– volume: 110
  start-page: 6037
  year: 2013
  ident: 508_CR19
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1215145110
– volume: 33
  start-page: S28
  year: 2012
  ident: 508_CR18
  publication-title: Placenta
  doi: 10.1016/j.placenta.2011.12.003
– volume: 11
  start-page: 165
  year: 2010
  ident: 508_CR30
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-165
– volume: 107
  start-page: 21931
  year: 2010
  ident: 508_CR2
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1016071107
– volume: 217
  start-page: 200.e1
  issue: 2
  year: 2017
  ident: 508_CR55
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2017.03.017
– volume: 15
  start-page: 550
  year: 2014
  ident: 508_CR58
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
SSID ssj0000399910
Score 2.3236182
Snippet Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of...
Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene...
Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of...
BackgroundPosttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene...
Abstract Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms Acetylation
All other subjects
Angiogenesis
Annotations
Biomedical and Life Sciences
Biomedicine
ChIP-seq
Chromatin
Chromatin Immunoprecipitation - methods
Deoxyribonucleic acid
Diabetes
DNA
DNA methylation
Epigenesis, Genetic
Epigenetics
Female
Fetal Development
Fetal growth retardation
Fetal Growth Retardation - genetics
Fetuses
Gene expression
Gene Function
Genetic aspects
Genomes
Growth hormones
Growth restriction
H3K27ac
Health aspects
Histone acetylation
Histones - metabolism
Human Genetics
Humans
Hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Immune system
Immunoprecipitation
Integrated software
Lysine
Metabolism
Pathology
Placenta
Placenta - metabolism
Pregnancy
Protein Processing, Post-Translational
Receptors, Somatotropin - metabolism
Ribonucleic acid
RNA
Sequence Analysis, RNA
Sp1 protein
Transcription Factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEkEQlLCZpDuP4youg6InFxYvofNoZ0B6ZLYXZi_7261KesbpFfXiYQ7dlQx5VKq-6tSDkJegE0XsGs0iV5bVoFRYK5Jivk6A-GsRZjnK9dNnNT-tP5w1Z3ulvtAnrKQHLgt3FLQB48933viu9l7ZqDCWM0oeaplsROnLLd8zprIMlgh8cjSkUYZpUIzjlSY8H53PJH5H4zP4AUBhm4lSyrn7f5fQeyrquvvktTvUrJpO7pDbI6akx2Uud8mN1N8jN7-u8hfz--RqLj8KTduQhsvi-UbbPlLgnETTZnSExXclPQnFpE7AlHRbOwUkCV32NHtvYewkDYv1CoEu9Aml-ATSu4S0b2DWDwuKFT_Wyxwz8YCcnrz_8m7OxrILLChlB-YT99oKkUwdAR4YzPnWRhUj2ILRgwXTgRnZaR4TXrF6HRqgGxFaqbWRicuH5KBf9ekxoaZuLUqR2GLeMAsbKRX3jem4DalpdEX4dt1dGHOSY2mM7y7bJka5slUOhuFwq9ymIq93XX6UhBx_a_wWN3PXEHNp5xfAYW7kMPcvDqvIK2QFhyceBhfaMXABpoi5s9xxg3fLgNtmFTmctISTGqbkLTO5UVKcOwEYz1rRSFiMFzsy9kTvtz6tLrCN0oAjAJ5W5FHhvd2UAE4YCWK5InrClZM5Tyn9cpHziCswFYSE_3yz5d9fw_rjkj75H0v6lNwS-fQpJtQhORjWF-kZgLvBP8_n-CcQ4EnG
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYIgKMFu0ibpk5zisSj65MHiS2g-ersg7bnbg_XFv92ZNO3ZE-9hH9pJlqSZTH4zmQ9CXsKZyH1TKuZzWbECDhVW8yCZLQIg_oK7RYxy_fJVLk-KT6tylQxuu-RWOcrEKKh959BGjpYQ9JQshXp39pNh1Si8XU0lNK6TGwtAIli6Qa3UZGPJBcKfGBOppWYK4Ea62ITnt7uFQGtavoAfwBS2nx1NMYP_v3L6r4PqshPlpZvUeEAd3yG3E7KkRwMr3CXXQnuP3PzeRbv5ffJ7KT5zRWsX-l-D_xutW0-BfwIN--QOi--GJCUUUzsBa9KxggrIE7ppafThwghK6tbbDuEu9HFDCQqkNwFpp6Dc92uKdT-2mxg58YCcHH_89mHJUvEF5qSsemZDblXFedCFB5CgMfNb7aX3oBF6C3pMA8pko3If8KLVKlcCXXNXC6W0CLl4SA7arg2PCdVFXaEs8TVmD6tAlxcyt6Vu8sqFslQZycfvblzKTI4FMn6YqKFoaYalMjAMg0tl9hl5PXU5G9JyXNX4PS7m1BAzascX3fbUpA1qnNIwMNtYbZvCWll5iTHDXuSuEKHyGXmFrGBw38PgXJ3CF2CKmEHLHJV4wwzobZGRw1lL2K9uTh6ZySR5sTMX3J2RFxMZe6IPXBu6c2wjFaAJAKkZeTTw3jQlABVagHDOiJpx5WzOc0q7Wcds4hIUBi7gP9-M_HsxrP9-0idXT-IpucXjvpKMy0Ny0G_PwzMAb719HnfoH1axP_c
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEA6yIvgi3q2uEkEQlGCatLk8rgeXg6JPLiy-hOZSz4GlR852YX3Z374zaU_drhfwoS-dtOQymfkmyXwh5BX4RBHbWrPIlWUVOBXWiKSYrxIg_kqEMme5fv6ilkfVx-P6eCSLxlyYq_v3pVHvTkuJS168hAewBAO4eLMGu4vKvFCLaTmFS0Q6Of3RKMM0eMJxD_OPf5l5oUzW_7tJvuKTrp-XvLZpmn3R4V1yZwSR9GAY9XvkRuruk1vfNnmJ_AG5WMpPQtMmpP7ncNSNNl2koCqJpvPx5Cu-G_hIKLI4gRbS3WUpYDrouqP5uBYmS9Kw2m4Q2cI3YbhtAuVtQtl3iOP7FcUrPrbrnCTxkBwdfvi6WLLxngUWlLI984l7bYVIpoqABwySvDVRxQjBX_QQsrQQN7aax4R7ql6HGuRGhEZqbWTi8hHZ6zZdekKoqRqLZiM2SBRmIWyXivvatNyGVNe6IHzX7y6MJOR4F8aJy8GIUW4YKgfVcDhU7rwgb6ZPfgwMHP8q_B4HcyqI5Nn5BeiUG-eiC9pAxXzrjW8r75WNCtODo-ShksnGgrxGVXA4xaFyoRkzFaCJSJblDmrcTAagVhZkf1YSpmaYi3fK5EbTcOoEgDprRS2hM15OYvwSj7t1aXOGZZQG4AB4tCCPB92bmgT4wUiwwwXRM62ctXku6darTByuIDYQEv75dqe_v6r11y59-l-ln5HbIk8zxYTaJ3v99iw9B9jW-xd5wl4CeQw48Q
  priority: 102
  providerName: Springer Nature
Title H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction
URI https://link.springer.com/article/10.1186/s13148-018-0508-x
https://www.ncbi.nlm.nih.gov/pubmed/29983832
https://www.proquest.com/docview/2071992537
https://www.proquest.com/docview/2067128025
https://pubmed.ncbi.nlm.nih.gov/PMC6020235
https://doaj.org/article/c78eb2bfb8bf4bb69d63944d30c43e9d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_nHYIv4rfVc4kgCEq1m7RJ-iCyt9y5KB4iLiy-hOajtwtHV3s92Hvxb3cmbVd7nj74sIXtpG0-ZjK_STIzhDwDnchcmcnYJSKPU1AqccG8iE3qAfGnzI6Dl-vHYzGbp-8X2WKH9Omtug48u9K0w3xS8_r01eb7xVsQ-DdB4JV4fTbmuCyWjOEHeCMGSLkXtovwJF-H9sPEzBENBRdJJVQsQVt2-5xXvgXjBIMxAiYcGyitENv_zxn8NxV2-XjlpT3WoLqObpGbHeakk5ZJbpMdX90h17-uw4r6XfJjxj8wSQvrm4v2ZBwtKkeBszz1m-6gLN5rw5dQDPoEnUf73Cow09BVRcPpLvStpHZZrxEIwzO2TU6B9NIj7QTM_mZJMSNIvQo-FffI_Ojwy3QWd2kZYitE3sTGJ0bmjHmVOoAPCmPCFU44B7aiM2DhlGBmljJxHrdgjbQZ0BWzBZdScZ_w-2S3Wlf-IaEqLXKcZVyBccVysPK5SEymyiS3PstkRJK-37XtYpZj6oxTHWwXJXQ7ahqqoXHU9CYiL7aPfGsDdvyr8AEO5rYgxtoON9b1ie5EV1upoGKmNMqUqTEidwK9iR1PbMp97iLyHFlBI49C5WzROTZAEzG2lp5kuPcMuG4ckf1BSZBkOyT3zKR7QdAMMGCes4xDZzzdkvFJPB1X-fU5lhEScAbA14g8aHlv26SehSMiB1w5aPOQUq2WIc64AFOCcXjny55_f1Xrr1366L-_85jcYEH6RMzEPtlt6nP_BBBfY0bkmlzIEdk7ODz-9Bn-TcV0FFZP4PpuMR4FOYfrnE1-AivgVqw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8CA4wEQgJFpHZiJw8T2mBTR7cKoU2a9mLij6yVUDLaTute-NP427hzko4Msbc9Nmendny--_l8H4S8Bp3IbJHI0EYiC2NQKmHOnAh17ADxx8z0fZTr3kgMDuIvh8nhCvndxsKgW2UrE72gtpVBGzlaQtBTMuHy48nPEKtG4e1qW0Ijb0or2HWfYqwJ7Bi68zM4ws3Wdz7Der9hbHtr_9MgbKoMhEaIbB5qF2mZMebS2II2TDHFWW6FtXD0sRoAewGnpkJG1uGNopYmAXrKTM6lTLmLOLz3BlmN0YDSI6ubW6Ov35ZWnogjAPNRmalIQwmAp7lahd8fZn2O9jz40zACoBQuOsrR1xD4V1P8pSovu3Feusv1KnL7LrnTYFu6UTPjPbLiyvvk5lHlLfcPyK8BHzJJc-Pm57UHHs1LS4GDHXWLxiEXn9VpUigml4LNQdsaLiDR6KSk3osMYzipGU8rBNzQx9RFMJBeOKQdT6uz-Zhi5ZHpxMduPCQH17Iwj0ivrEr3hNA0zjOUZjbH_GWZ04yLSCdpEWXGJYkMSNR-d2Wa3OhYouOH8mekVKh6qRQMQ-FSqUVA3i27nNSJQa5qvImLuWyIOb39g2p6rBoRoYxMYWC60KkuYq1FZgVGLVsemZi7zAbkLbKCQskDgzN5E0ABU8QcXmojwTtuwI_9gKx1WoLEMF1yy0yqkVgzdbG_AvJqScae6IVXuuoU2wgJeAZgckAe17y3nBLAmpSDegiI7HBlZ85dSjkZ-3zmAo4sjMM737f8ezGs_37Sp1dP4iW5Ndjf21W7O6PhM3Kb-T0mQibWSG8-PXXPAUrO9Ytmv1Ly_bpFxB-Ul4IX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA6yovgi3q2uGkEQlLKZpE3Sx_EyjK4uPjiw-BKaS3cGpF1murC--Ns9J71o1wv40JeetORyTs53knMh5BnoRO6rXKWeySLNQKmkJQ8ytVkAxJ9xN4tRrh-P5HKVvT_Oj_s6p7vB2324kuxiGjBLU90enPqqE3EtD3YzgQdhbAYPIIwUQOTlDFQ1-nSt-Hw8ZGEC8U8MitRSpwr0Y3-z-ce_THRTTOH_-0b9i6a66EV54So1aqjFDXK9h5Z03vHCTXIp1LfIlS9NPDi_Tb4vxSFXtHSh_dY5wNGy9hQYKNBw3vvD4rsuSwnF3E7Am3QooQIbCt3UNDpxYQgldettg3gXvnFdDQqkVwFpJ2Ddt2uKhT-2mxg6cYesFm8_v16mffWF1ElZtKkNzKqC86AzDyhBY-q30kvvwST0FgyZCqzJSjEf8KbVKpcDXXNXCqW0CEzcJXt1U4f7hOqsLHAz8SWmDyvAmBeS2VxXrHAhz1VC2DDvxvWpybFCxlcTTRQtTbdUBrphcKnMeUJejJ-cdnk5_tX4FS7m2BBTascXzfbE9BJqnNLQMVtZbavMWll4iUHDXjCXiVD4hDxHVjAo-NA5V_bxCzBETKFl5jleMQN8myVkf9ISBNZNyQMzmX7D2BkOUK8oeC5gMp6OZPwSneDq0JxhG6kATgBKTci9jvfGIQGq0AJ254SoCVdOxjyl1Jt1TCcuwWLgAv75cuDfn93665Q--K_WT8jVT28W5sO7o8OH5BqPEidTLvfJXrs9C48A17X2cZTdH-D4REY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H3K27+acetylation+and+gene+expression+analysis+reveals+differences+in+placental+chromatin+activity+in+fetal+growth+restriction&rft.jtitle=Clinical+epigenetics&rft.au=Paauw%2C+N.+D.&rft.au=Lely%2C+A.+T.&rft.au=Joles%2C+J.+A.&rft.au=Franx%2C+A.&rft.date=2018-06-26&rft.pub=BioMed+Central&rft.issn=1868-7075&rft.eissn=1868-7083&rft.volume=10&rft_id=info:doi/10.1186%2Fs13148-018-0508-x&rft_id=info%3Apmid%2F29983832&rft.externalDocID=PMC6020235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-7075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-7075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-7075&client=summon