H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction
Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipita...
Saved in:
Published in | Clinical epigenetics Vol. 10; no. 1; pp. 85 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
26.06.2018
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1868-7075 1868-7083 1868-7083 1868-7075 |
DOI | 10.1186/s13148-018-0508-x |
Cover
Abstract | Background
Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes.
Results
Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1.
Conclusion
We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease. |
---|---|
AbstractList | BackgroundPosttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes.ResultsAnalysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1.ConclusionWe demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease. Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Results Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. Conclusion We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease. Abstract Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Results Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. Conclusion We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease. Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes.BackgroundPosttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes.Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1.ResultsAnalysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1.We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease.ConclusionWe demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease. Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease. Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease. Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene expression. To explore whether this is involved in placenta pathology, we probed genome-wide H3K27ac occupancy by chromatin immunoprecipitation sequencing (ChIP-seq) in healthy placentas and placentas from pathological pregnancies with fetal growth restriction (FGR). Furthermore, we related specific acetylation profiles of FGR placentas to gene expression changes. Results Analysis of H3K27ac occupancy in FGR compared to healthy placentas showed 970 differentially acetylated regions distributed throughout the genome. Principal component analysis and hierarchical clustering revealed complete segregation of the FGR and control group. Next, we identified 569 upregulated genes and 521 downregulated genes in FGR placentas by RNA sequencing. Differential gene transcription largely corresponded to expected direction based on H3K27ac status. Pathway analysis on upregulated transcripts originating from hyperacetylated sites revealed genes related to the HIF-1-alpha transcription factor network and several other genes with known involvement in placental pathology (LEP, FLT1, HK2, ENG, FOS). Downregulated transcripts in the vicinity of hypoacetylated sites were related to the immune system and growth hormone receptor signaling. Additionally, we found enrichment of 141 transcription factor binding motifs within differentially acetylated regions. Of the corresponding transcription factors, four were upregulated, SP1, ARNT2, HEY2, and VDR, and two downregulated, FOSL and NR4A1. Conclusion We demonstrate a key role for genome-wide alterations in H3K27ac in FGR placentas corresponding with changes in transcription profiles of regions relevant to placental function. Future studies on the role of H3K27ac in FGR and placental-fetal development may help to identify novel targets for therapy of this currently incurable disease. Keywords: ChIP-seq, Growth restriction, H3K27ac, Epigenetics, Histone acetylation, Placenta, Placental pathology, RNA-seq |
ArticleNumber | 85 |
Audience | Academic |
Author | Lely, A. T. Nikkels, P. G. Paauw, N. D. Joles, J. A. Franx, A. Mokry, M. van Rijn, B. B. |
Author_xml | – sequence: 1 givenname: N. D. surname: Paauw fullname: Paauw, N. D. email: n.d.paauw-2@umcutrecht.nl organization: Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht, Division Woman and Baby, University Medical Center Utrecht – sequence: 2 givenname: A. T. surname: Lely fullname: Lely, A. T. organization: Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht – sequence: 3 givenname: J. A. surname: Joles fullname: Joles, J. A. organization: Department of Nephrology and Hypertension, University Medical Center Utrecht – sequence: 4 givenname: A. surname: Franx fullname: Franx, A. organization: Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht – sequence: 5 givenname: P. G. surname: Nikkels fullname: Nikkels, P. G. organization: Department of Pathology, University Medical Center Utrecht – sequence: 6 givenname: M. surname: Mokry fullname: Mokry, M. organization: Division of Pediatrics, University Medical Center Utrecht – sequence: 7 givenname: B. B. surname: van Rijn fullname: van Rijn, B. B. email: b.b.vanrijn@umcutrecht.nl organization: Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht, Academic Unit of Human Development and Health, University of Southampton, Division Woman and Baby, University Medical Center Utrecht |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29983832$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxSNUREvpB-CCInHhkuI_SWxfkKoKaEUlLnC2HHuS9SobL3Z2u3vhszNpSstWQKIo0cx7P2fs9zI7GsIAWfaaknNKZf0-UU5LWRCKT0VksXuWnWBdFoJIfvTwLarj7CylJcGLK6UoeZEdM6Ukl5ydZD-v-BcmcmNh3Pdm9GHIzeDyDgbIYbeOkNJcM_0--ZRH2ILpU-5820KEwULK_ZCveyQMo-lzu4hhhSD02NFv_bif-i1MvS6G23GBjDRGb6fFXmXPW8TB2f37NPv-6eO3y6vi5uvn68uLm8LWtRqLBkgjFGMgS8dwYkZ5aVztnCyJa6goW0rqVhAHlSxFI2yFfcms4UJIDoSfZtcz1wWz1OvoVybudTBe3xVC7LSJo7c9aCskNKxpG9m0ZdPUytVclaXjxJYclEPWh5m13jQrcNPc0fQH0MPO4Be6C1tdE0YYrxDw7h4Qw48NboZe-WSh780AYZM0I7WgTBI2Sd8-kS7DJuJhTCpBlUKNeFR1BgfwQxtwXTtB9UVV1qTiVUVRdf4XFd4OVt5iuFqP9QPDmz8HfZjwd3pQQGeBjSGlCO2DhBI9hVTPIdV4ZHoKqd6hRzzxWD_eBQ__xvf_dbLZmXCVoYP4uBf_Nv0CrnL7_A |
CitedBy_id | crossref_primary_10_3390_cells11192958 crossref_primary_10_1126_sciadv_adp5227 crossref_primary_10_2139_ssrn_4102874 crossref_primary_10_1242_dev_204290 crossref_primary_10_1016_j_rbmo_2022_09_018 crossref_primary_10_1177_11769343221112780 crossref_primary_10_1007_s00404_022_06805_9 crossref_primary_10_2147_IJGM_S475310 crossref_primary_10_1007_s40572_022_00354_8 crossref_primary_10_1016_j_devcel_2024_03_025 crossref_primary_10_1038_s41419_020_02808_z crossref_primary_10_1007_s00439_019_02058_w crossref_primary_10_3390_cells9061435 crossref_primary_10_1016_j_devcel_2021_04_001 crossref_primary_10_1016_j_ygeno_2022_110433 crossref_primary_10_3390_ijms241511899 crossref_primary_10_1016_j_bcp_2025_116761 crossref_primary_10_2174_1573399818666220422085016 crossref_primary_10_1002_advs_202308884 crossref_primary_10_1016_j_placenta_2022_03_122 crossref_primary_10_1186_s13071_022_05504_3 crossref_primary_10_1016_j_placenta_2022_05_016 crossref_primary_10_1021_acschembio_2c00510 crossref_primary_10_1007_s40291_022_00611_4 crossref_primary_10_1038_s42003_022_03530_6 crossref_primary_10_1186_s13148_020_00980_9 crossref_primary_10_1038_s41401_025_01497_8 crossref_primary_10_3389_fendo_2023_1229862 crossref_primary_10_1016_j_pbb_2019_06_003 crossref_primary_10_1038_s41576_019_0169_4 crossref_primary_10_1038_s41598_020_65415_0 crossref_primary_10_1038_s41390_019_0447_z crossref_primary_10_1186_s13148_021_01173_8 crossref_primary_10_1111_all_15606 crossref_primary_10_1371_journal_pgen_1008236 crossref_primary_10_1038_s41598_021_82206_3 crossref_primary_10_1073_pnas_2213622120 crossref_primary_10_1007_s00018_024_05208_0 crossref_primary_10_1016_j_mce_2023_112031 |
Cites_doi | 10.1016/j.placenta.2005.07.004 10.3389/fgene.2016.00062 10.1016/j.siny.2004.03.006 10.1093/humupd/dmq052 10.1016/j.yexcr.2006.09.009 10.1097/HJH.0000000000000964 10.1017/S2040174415001324 10.4161/epi.9019 10.1016/j.gde.2015.08.009 10.1080/10641955.2016.1273363 10.1016/j.ajog.2006.08.027 10.1111/j.1365-2265.2009.03659.x 10.1152/ajpendo.00279.2012 10.1097/01.pgp.0000139647.40620.c8 10.2119/molmed.2014.00032 10.1128/MCB.05780-11 10.1038/ncb0107-2 10.1210/jc.2007-1042 10.1186/s13148-016-0238-x 10.1177/1933719111404611 10.1530/REP-16-0014 10.1093/molehr/gat048 10.1073/pnas.0909344107 10.3109/14767058.2012.733766 10.1262/jrd.2011-039 10.1038/nature09906 10.1161/HYPERTENSIONAHA.111.182170 10.1095/biolreprod.113.108456 10.1007/s00412-015-0530-0 10.1242/dev.01923 10.1093/bioinformatics/btp324 10.1136/bmj.298.6673.564 10.3892/br.2017.930 10.1016/j.cell.2013.09.053 10.1016/0026-0495(92)90051-B 10.1016/j.mce.2012.02.009 10.1093/hmg/ddu347 10.1038/nbt.1630 10.1016/j.placenta.2012.02.010 10.1038/pr.2015.40 10.1038/nbt.1505 10.1371/journal.pone.0068991 10.1016/S0002-9378(00)70513-8 10.1016/j.placenta.2014.06.375 10.4161/15592294.2014.989741 10.1161/CIRCULATIONAHA.110.956839 10.1186/1471-2164-14-475 10.1371/journal.pone.0049248 10.1038/srep14107 10.1016/j.placenta.2010.05.006 10.1016/j.placenta.2015.11.001 10.1073/pnas.1215145110 10.1016/j.placenta.2011.12.003 10.1186/1471-2105-11-165 10.1073/pnas.1016071107 10.1016/j.ajog.2017.03.017 10.1186/s13059-014-0550-8 |
ContentType | Journal Article |
Copyright | The Author(s). 2018 COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s). 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13148-018-0508-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Biological Science ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1868-7083 1868-7075 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_c78eb2bfb8bf4bb69d63944d30c43e9d PMC6020235 A546053551 29983832 10_1186_s13148_018_0508_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fonds Gezond Geboren – fundername: Nierstichting (NL) grantid: 15O141 – fundername: ; – fundername: ; grantid: 15O141 |
GroupedDBID | --- 0R~ 2JY 4.4 53G 5C9 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD EN4 F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HF~ HMCUK HYE HZ~ IAO IHR INH INR ITC KOV KQ8 LK8 M1P M48 M7P O9I OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO QOS R9I RBZ RNS ROL RPM RSV S27 SBL SOJ T13 U2A UKHRP WK8 AAYXX ALIPV CITATION 2VQ AAYZH AGJBK AHSBF CGR CUY CVF ECM EIF IPNFZ NPM O9- RIG S1Z PMFND 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c669t-be0b7922e84d20182134ad6dd840db174f106f70de5847b7c534a82ca37783e03 |
IEDL.DBID | M48 |
ISSN | 1868-7075 1868-7083 |
IngestDate | Wed Aug 27 01:10:02 EDT 2025 Thu Aug 21 18:20:24 EDT 2025 Thu Sep 04 21:11:51 EDT 2025 Fri Jul 25 11:57:14 EDT 2025 Tue Jun 17 21:35:32 EDT 2025 Tue Jun 10 20:13:53 EDT 2025 Thu Apr 03 06:57:24 EDT 2025 Tue Jul 01 04:01:52 EDT 2025 Thu Apr 24 23:07:19 EDT 2025 Sat Sep 06 07:30:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Placenta RNA-seq Placental pathology H3K27ac ChIP-seq Epigenetics Growth restriction Histone acetylation |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c669t-be0b7922e84d20182134ad6dd840db174f106f70de5847b7c534a82ca37783e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13148-018-0508-x |
PMID | 29983832 |
PQID | 2071992537 |
PQPubID | 2040146 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c78eb2bfb8bf4bb69d63944d30c43e9d pubmedcentral_primary_oai_pubmedcentral_nih_gov_6020235 proquest_miscellaneous_2067128025 proquest_journals_2071992537 gale_infotracmisc_A546053551 gale_infotracacademiconefile_A546053551 pubmed_primary_29983832 crossref_primary_10_1186_s13148_018_0508_x crossref_citationtrail_10_1186_s13148_018_0508_x springer_journals_10_1186_s13148_018_0508_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-26 |
PublicationDateYYYYMMDD | 2018-06-26 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Germany |
PublicationTitle | Clinical epigenetics |
PublicationTitleAbbrev | Clin Epigenet |
PublicationTitleAlternate | Clin Epigenetics |
PublicationYear | 2018 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | R Ma (508_CR33) 2012; 303 H Diez (508_CR32) 2007; 313 A Rajakumar (508_CR38) 2012; 59 H Li (508_CR56) 2009; 25 SL Hillman (508_CR21) 2015; 10 E Struwe (508_CR14) 2010; 72 LN Kent (508_CR34) 2011; 31 AI Diplas (508_CR43) 2009; 4 O Nevo (508_CR36) 2008; 93 RC McLeay (508_CR30) 2010; 11 R Karlic (508_CR53) 2010; 107 I Miguel-Escalada (508_CR48) 2015; 33 V Gourvas (508_CR27) 2012; 6 T Kaartokallio (508_CR25) 2015; 5 T Bianco-Miotto (508_CR17) 2016; 152 DJ Barker (508_CR7) 1989; 298 JR Prins (508_CR29) 2012; 33 I Iglesias-Platas (508_CR44) 2014; 23 DI Schroeder (508_CR19) 2013; 110 A Romo (508_CR5) 2009; 6 M Roifman (508_CR20) 2016; 8 J Ernst (508_CR1) 2011; 473 C McCarthy (508_CR13) 2007; 196 KJ Lee (508_CR50) 2010; 31 JHW Veerbeek (508_CR10) 2016; 34 M Lopez-Abad (508_CR24) 2016; 7 B Bonet (508_CR54) 1992; 41 H Ji (508_CR57) 2008; 26 JHW Veerbeek (508_CR11) 2014; 35 RHW Li (508_CR40) 2004; 23 J McMinn (508_CR12) 2006; 27 BM Turner (508_CR49) 2007; 9 L Uusküla (508_CR52) 2012; 7 L Lambertini (508_CR22) 2011; 18 D Hnisz (508_CR4) 2013; 155 IM Bernstein (508_CR6) 2000; 182 M Gormley (508_CR55) 2017; 217 AC Mirabella (508_CR3) 2016; 125 CE Kleinrouweler (508_CR26) 2013; 8 A Hoeller (508_CR37) 2017; 36 E Maltepe (508_CR46) 2005; 132 DE Handy (508_CR47) 2011; 123 C Camprubi (508_CR45) 2013; 89 MJ Soares (508_CR35) 2012; 58 AJ Kermack (508_CR8) 2015; 6 MI Love (508_CR58) 2014; 15 A Velegrakis (508_CR41) 2017; 7 ECM Nelissen (508_CR16) 2011; 17 C Kimura (508_CR28) 2013; 26 MP Creyghton (508_CR2) 2010; 107 V Chaddha (508_CR9) 2004; 9 JE Joo (508_CR23) 2013; 14 D Madeleneau (508_CR15) 2015; 77 M Mandl (508_CR31) 2014; 20 G Tuteja (508_CR51) 2016; 37 CY McLean (508_CR59) 2010; 28 RM Lewis (508_CR18) 2012; 33 J Mannik (508_CR42) 2012; 355 S Schrey (508_CR39) 2013; 19 |
References_xml | – volume: 27 start-page: 540 year: 2006 ident: 508_CR12 publication-title: Placenta doi: 10.1016/j.placenta.2005.07.004 – volume: 7 start-page: 62 year: 2016 ident: 508_CR24 publication-title: Front Genet doi: 10.3389/fgene.2016.00062 – volume: 9 start-page: 357 year: 2004 ident: 508_CR9 publication-title: Semin Fetal Neonatal Med doi: 10.1016/j.siny.2004.03.006 – volume: 17 start-page: 397 year: 2011 ident: 508_CR16 publication-title: Hum Reprod Update doi: 10.1093/humupd/dmq052 – volume: 313 start-page: 1 year: 2007 ident: 508_CR32 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2006.09.009 – volume: 34 start-page: 1570 year: 2016 ident: 508_CR10 publication-title: J Hypertens doi: 10.1097/HJH.0000000000000964 – volume: 6 start-page: 415 year: 2015 ident: 508_CR8 publication-title: J Dev Orig Health Dis doi: 10.1017/S2040174415001324 – volume: 4 start-page: 235 year: 2009 ident: 508_CR43 publication-title: Epigenetics doi: 10.4161/epi.9019 – volume: 33 start-page: 71 year: 2015 ident: 508_CR48 publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2015.08.009 – volume: 36 start-page: 151 year: 2017 ident: 508_CR37 publication-title: Hypertens pregnancy doi: 10.1080/10641955.2016.1273363 – volume: 196 start-page: 70.e1 year: 2007 ident: 508_CR13 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2006.08.027 – volume: 72 start-page: 241 year: 2010 ident: 508_CR14 publication-title: Clin Endocrinol doi: 10.1111/j.1365-2265.2009.03659.x – volume: 303 start-page: E928 year: 2012 ident: 508_CR33 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00279.2012 – volume: 23 start-page: 378 year: 2004 ident: 508_CR40 publication-title: Int J Gynecol Pathol doi: 10.1097/01.pgp.0000139647.40620.c8 – volume: 20 start-page: 215 year: 2014 ident: 508_CR31 publication-title: Mol Med doi: 10.2119/molmed.2014.00032 – volume: 31 start-page: 4801 year: 2011 ident: 508_CR34 publication-title: Mol Cell Biol doi: 10.1128/MCB.05780-11 – volume: 9 start-page: 2 year: 2007 ident: 508_CR49 publication-title: Nat Cell Biol doi: 10.1038/ncb0107-2 – volume: 6 start-page: 332 issue: 3 year: 2009 ident: 508_CR5 publication-title: Pediatr Endocrinol Rev – volume: 93 start-page: 285 year: 2008 ident: 508_CR36 publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2007-1042 – volume: 8 year: 2016 ident: 508_CR20 publication-title: Clin Epigenetics doi: 10.1186/s13148-016-0238-x – volume: 18 start-page: 1111 year: 2011 ident: 508_CR22 publication-title: Reprod Sci doi: 10.1177/1933719111404611 – volume: 152 start-page: R23 year: 2016 ident: 508_CR17 publication-title: Reproduction doi: 10.1530/REP-16-0014 – volume: 19 start-page: 764 year: 2013 ident: 508_CR39 publication-title: Mol Hum Reprod doi: 10.1093/molehr/gat048 – volume: 107 start-page: 2926 year: 2010 ident: 508_CR53 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0909344107 – volume: 26 start-page: 491 year: 2013 ident: 508_CR28 publication-title: J Matern Fetal Neonatal Med doi: 10.3109/14767058.2012.733766 – volume: 58 start-page: 283 year: 2012 ident: 508_CR35 publication-title: J Reprod Dev doi: 10.1262/jrd.2011-039 – volume: 473 start-page: 43 year: 2011 ident: 508_CR1 publication-title: Nature doi: 10.1038/nature09906 – volume: 59 start-page: 256 year: 2012 ident: 508_CR38 publication-title: Hypertens (Dallas, Tex 1979) doi: 10.1161/HYPERTENSIONAHA.111.182170 – volume: 89 start-page: 50 year: 2013 ident: 508_CR45 publication-title: Biol Reprod doi: 10.1095/biolreprod.113.108456 – volume: 125 start-page: 75 year: 2016 ident: 508_CR3 publication-title: Chromosoma doi: 10.1007/s00412-015-0530-0 – volume: 132 start-page: 3393 year: 2005 ident: 508_CR46 publication-title: Development doi: 10.1242/dev.01923 – volume: 25 start-page: 1754 year: 2009 ident: 508_CR56 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 298 start-page: 564 year: 1989 ident: 508_CR7 publication-title: BMJ doi: 10.1136/bmj.298.6673.564 – volume: 7 start-page: 115 year: 2017 ident: 508_CR41 publication-title: Biomed reports doi: 10.3892/br.2017.930 – volume: 155 start-page: 934 year: 2013 ident: 508_CR4 publication-title: Cell doi: 10.1016/j.cell.2013.09.053 – volume: 41 start-page: 596 year: 1992 ident: 508_CR54 publication-title: Metabolism doi: 10.1016/0026-0495(92)90051-B – volume: 355 start-page: 180 year: 2012 ident: 508_CR42 publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2012.02.009 – volume: 23 start-page: 6275 year: 2014 ident: 508_CR44 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddu347 – volume: 28 start-page: 495 year: 2010 ident: 508_CR59 publication-title: Nat Biotechnol doi: 10.1038/nbt.1630 – volume: 33 start-page: 453 year: 2012 ident: 508_CR29 publication-title: Placenta doi: 10.1016/j.placenta.2012.02.010 – volume: 77 start-page: 799 year: 2015 ident: 508_CR15 publication-title: Pediatr Res doi: 10.1038/pr.2015.40 – volume: 26 start-page: 1293 year: 2008 ident: 508_CR57 publication-title: Nat Biotechnol doi: 10.1038/nbt.1505 – volume: 8 start-page: e68991 year: 2013 ident: 508_CR26 publication-title: PLoS One doi: 10.1371/journal.pone.0068991 – volume: 182 start-page: 198 issue: 1 1 year: 2000 ident: 508_CR6 publication-title: Am J Obstet Gynecol doi: 10.1016/S0002-9378(00)70513-8 – volume: 35 start-page: 696 year: 2014 ident: 508_CR11 publication-title: Placenta doi: 10.1016/j.placenta.2014.06.375 – volume: 10 start-page: 50 year: 2015 ident: 508_CR21 publication-title: Epigenetics doi: 10.4161/15592294.2014.989741 – volume: 6 start-page: 23 year: 2012 ident: 508_CR27 publication-title: Mol Med Rep – volume: 123 start-page: 2145 year: 2011 ident: 508_CR47 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.956839 – volume: 14 start-page: 475 year: 2013 ident: 508_CR23 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-475 – volume: 7 start-page: e49248 year: 2012 ident: 508_CR52 publication-title: PLoS One doi: 10.1371/journal.pone.0049248 – volume: 5 start-page: 14107 year: 2015 ident: 508_CR25 publication-title: Sci Rep doi: 10.1038/srep14107 – volume: 31 start-page: 698 year: 2010 ident: 508_CR50 publication-title: Placenta doi: 10.1016/j.placenta.2010.05.006 – volume: 37 start-page: 45 year: 2016 ident: 508_CR51 publication-title: Placenta doi: 10.1016/j.placenta.2015.11.001 – volume: 110 start-page: 6037 year: 2013 ident: 508_CR19 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1215145110 – volume: 33 start-page: S28 year: 2012 ident: 508_CR18 publication-title: Placenta doi: 10.1016/j.placenta.2011.12.003 – volume: 11 start-page: 165 year: 2010 ident: 508_CR30 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-165 – volume: 107 start-page: 21931 year: 2010 ident: 508_CR2 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1016071107 – volume: 217 start-page: 200.e1 issue: 2 year: 2017 ident: 508_CR55 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2017.03.017 – volume: 15 start-page: 550 year: 2014 ident: 508_CR58 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 |
SSID | ssj0000399910 |
Score | 2.3236182 |
Snippet | Background
Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of... Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene... Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of... BackgroundPosttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic regulation of gene... Abstract Background Posttranslational modification of histone tails such as histone 3 lysine 27 acetylation (H3K27ac) is tightly coupled to epigenetic... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 85 |
SubjectTerms | Acetylation All other subjects Angiogenesis Annotations Biomedical and Life Sciences Biomedicine ChIP-seq Chromatin Chromatin Immunoprecipitation - methods Deoxyribonucleic acid Diabetes DNA DNA methylation Epigenesis, Genetic Epigenetics Female Fetal Development Fetal growth retardation Fetal Growth Retardation - genetics Fetuses Gene expression Gene Function Genetic aspects Genomes Growth hormones Growth restriction H3K27ac Health aspects Histone acetylation Histones - metabolism Human Genetics Humans Hypoxia Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Immune system Immunoprecipitation Integrated software Lysine Metabolism Pathology Placenta Placenta - metabolism Pregnancy Protein Processing, Post-Translational Receptors, Somatotropin - metabolism Ribonucleic acid RNA Sequence Analysis, RNA Sp1 protein Transcription Factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEkEQlLCZpDuP4youg6InFxYvofNoZ0B6ZLYXZi_7261KesbpFfXiYQ7dlQx5VKq-6tSDkJegE0XsGs0iV5bVoFRYK5Jivk6A-GsRZjnK9dNnNT-tP5w1Z3ulvtAnrKQHLgt3FLQB48933viu9l7ZqDCWM0oeaplsROnLLd8zprIMlgh8cjSkUYZpUIzjlSY8H53PJH5H4zP4AUBhm4lSyrn7f5fQeyrquvvktTvUrJpO7pDbI6akx2Uud8mN1N8jN7-u8hfz--RqLj8KTduQhsvi-UbbPlLgnETTZnSExXclPQnFpE7AlHRbOwUkCV32NHtvYewkDYv1CoEu9Aml-ATSu4S0b2DWDwuKFT_Wyxwz8YCcnrz_8m7OxrILLChlB-YT99oKkUwdAR4YzPnWRhUj2ILRgwXTgRnZaR4TXrF6HRqgGxFaqbWRicuH5KBf9ekxoaZuLUqR2GLeMAsbKRX3jem4DalpdEX4dt1dGHOSY2mM7y7bJka5slUOhuFwq9ymIq93XX6UhBx_a_wWN3PXEHNp5xfAYW7kMPcvDqvIK2QFhyceBhfaMXABpoi5s9xxg3fLgNtmFTmctISTGqbkLTO5UVKcOwEYz1rRSFiMFzsy9kTvtz6tLrCN0oAjAJ5W5FHhvd2UAE4YCWK5InrClZM5Tyn9cpHziCswFYSE_3yz5d9fw_rjkj75H0v6lNwS-fQpJtQhORjWF-kZgLvBP8_n-CcQ4EnG priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYIgKMFu0ibpk5zisSj65MHiS2g-ersg7bnbg_XFv92ZNO3ZE-9hH9pJlqSZTH4zmQ9CXsKZyH1TKuZzWbECDhVW8yCZLQIg_oK7RYxy_fJVLk-KT6tylQxuu-RWOcrEKKh959BGjpYQ9JQshXp39pNh1Si8XU0lNK6TGwtAIli6Qa3UZGPJBcKfGBOppWYK4Ea62ITnt7uFQGtavoAfwBS2nx1NMYP_v3L6r4PqshPlpZvUeEAd3yG3E7KkRwMr3CXXQnuP3PzeRbv5ffJ7KT5zRWsX-l-D_xutW0-BfwIN--QOi--GJCUUUzsBa9KxggrIE7ppafThwghK6tbbDuEu9HFDCQqkNwFpp6Dc92uKdT-2mxg58YCcHH_89mHJUvEF5qSsemZDblXFedCFB5CgMfNb7aX3oBF6C3pMA8pko3If8KLVKlcCXXNXC6W0CLl4SA7arg2PCdVFXaEs8TVmD6tAlxcyt6Vu8sqFslQZycfvblzKTI4FMn6YqKFoaYalMjAMg0tl9hl5PXU5G9JyXNX4PS7m1BAzascX3fbUpA1qnNIwMNtYbZvCWll5iTHDXuSuEKHyGXmFrGBw38PgXJ3CF2CKmEHLHJV4wwzobZGRw1lL2K9uTh6ZySR5sTMX3J2RFxMZe6IPXBu6c2wjFaAJAKkZeTTw3jQlABVagHDOiJpx5WzOc0q7Wcds4hIUBi7gP9-M_HsxrP9-0idXT-IpucXjvpKMy0Ny0G_PwzMAb719HnfoH1axP_c priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEA6yIvgi3q2uEkEQlGCatLk8rgeXg6JPLiy-hOZSz4GlR852YX3Z374zaU_drhfwoS-dtOQymfkmyXwh5BX4RBHbWrPIlWUVOBXWiKSYrxIg_kqEMme5fv6ilkfVx-P6eCSLxlyYq_v3pVHvTkuJS168hAewBAO4eLMGu4vKvFCLaTmFS0Q6Of3RKMM0eMJxD_OPf5l5oUzW_7tJvuKTrp-XvLZpmn3R4V1yZwSR9GAY9XvkRuruk1vfNnmJ_AG5WMpPQtMmpP7ncNSNNl2koCqJpvPx5Cu-G_hIKLI4gRbS3WUpYDrouqP5uBYmS9Kw2m4Q2cI3YbhtAuVtQtl3iOP7FcUrPrbrnCTxkBwdfvi6WLLxngUWlLI984l7bYVIpoqABwySvDVRxQjBX_QQsrQQN7aax4R7ql6HGuRGhEZqbWTi8hHZ6zZdekKoqRqLZiM2SBRmIWyXivvatNyGVNe6IHzX7y6MJOR4F8aJy8GIUW4YKgfVcDhU7rwgb6ZPfgwMHP8q_B4HcyqI5Nn5BeiUG-eiC9pAxXzrjW8r75WNCtODo-ShksnGgrxGVXA4xaFyoRkzFaCJSJblDmrcTAagVhZkf1YSpmaYi3fK5EbTcOoEgDprRS2hM15OYvwSj7t1aXOGZZQG4AB4tCCPB92bmgT4wUiwwwXRM62ctXku6darTByuIDYQEv75dqe_v6r11y59-l-ln5HbIk8zxYTaJ3v99iw9B9jW-xd5wl4CeQw48Q priority: 102 providerName: Springer Nature |
Title | H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction |
URI | https://link.springer.com/article/10.1186/s13148-018-0508-x https://www.ncbi.nlm.nih.gov/pubmed/29983832 https://www.proquest.com/docview/2071992537 https://www.proquest.com/docview/2067128025 https://pubmed.ncbi.nlm.nih.gov/PMC6020235 https://doaj.org/article/c78eb2bfb8bf4bb69d63944d30c43e9d |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_nHYIv4rfVc4kgCEq1m7RJ-iCyt9y5KB4iLiy-hOajtwtHV3s92Hvxb3cmbVd7nj74sIXtpG0-ZjK_STIzhDwDnchcmcnYJSKPU1AqccG8iE3qAfGnzI6Dl-vHYzGbp-8X2WKH9Omtug48u9K0w3xS8_r01eb7xVsQ-DdB4JV4fTbmuCyWjOEHeCMGSLkXtovwJF-H9sPEzBENBRdJJVQsQVt2-5xXvgXjBIMxAiYcGyitENv_zxn8NxV2-XjlpT3WoLqObpGbHeakk5ZJbpMdX90h17-uw4r6XfJjxj8wSQvrm4v2ZBwtKkeBszz1m-6gLN5rw5dQDPoEnUf73Cow09BVRcPpLvStpHZZrxEIwzO2TU6B9NIj7QTM_mZJMSNIvQo-FffI_Ojwy3QWd2kZYitE3sTGJ0bmjHmVOoAPCmPCFU44B7aiM2DhlGBmljJxHrdgjbQZ0BWzBZdScZ_w-2S3Wlf-IaEqLXKcZVyBccVysPK5SEymyiS3PstkRJK-37XtYpZj6oxTHWwXJXQ7ahqqoXHU9CYiL7aPfGsDdvyr8AEO5rYgxtoON9b1ie5EV1upoGKmNMqUqTEidwK9iR1PbMp97iLyHFlBI49C5WzROTZAEzG2lp5kuPcMuG4ckf1BSZBkOyT3zKR7QdAMMGCes4xDZzzdkvFJPB1X-fU5lhEScAbA14g8aHlv26SehSMiB1w5aPOQUq2WIc64AFOCcXjny55_f1Xrr1366L-_85jcYEH6RMzEPtlt6nP_BBBfY0bkmlzIEdk7ODz-9Bn-TcV0FFZP4PpuMR4FOYfrnE1-AivgVqw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8CA4wEQgJFpHZiJw8T2mBTR7cKoU2a9mLij6yVUDLaTute-NP427hzko4Msbc9Nmendny--_l8H4S8Bp3IbJHI0EYiC2NQKmHOnAh17ADxx8z0fZTr3kgMDuIvh8nhCvndxsKgW2UrE72gtpVBGzlaQtBTMuHy48nPEKtG4e1qW0Ijb0or2HWfYqwJ7Bi68zM4ws3Wdz7Der9hbHtr_9MgbKoMhEaIbB5qF2mZMebS2II2TDHFWW6FtXD0sRoAewGnpkJG1uGNopYmAXrKTM6lTLmLOLz3BlmN0YDSI6ubW6Ov35ZWnogjAPNRmalIQwmAp7lahd8fZn2O9jz40zACoBQuOsrR1xD4V1P8pSovu3Feusv1KnL7LrnTYFu6UTPjPbLiyvvk5lHlLfcPyK8BHzJJc-Pm57UHHs1LS4GDHXWLxiEXn9VpUigml4LNQdsaLiDR6KSk3osMYzipGU8rBNzQx9RFMJBeOKQdT6uz-Zhi5ZHpxMduPCQH17Iwj0ivrEr3hNA0zjOUZjbH_GWZ04yLSCdpEWXGJYkMSNR-d2Wa3OhYouOH8mekVKh6qRQMQ-FSqUVA3i27nNSJQa5qvImLuWyIOb39g2p6rBoRoYxMYWC60KkuYq1FZgVGLVsemZi7zAbkLbKCQskDgzN5E0ABU8QcXmojwTtuwI_9gKx1WoLEMF1yy0yqkVgzdbG_AvJqScae6IVXuuoU2wgJeAZgckAe17y3nBLAmpSDegiI7HBlZ85dSjkZ-3zmAo4sjMM737f8ezGs_37Sp1dP4iW5Ndjf21W7O6PhM3Kb-T0mQibWSG8-PXXPAUrO9Ytmv1Ly_bpFxB-Ul4IX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA6yovgi3q2uGkEQlLKZpE3Sx_EyjK4uPjiw-BKaS3cGpF1murC--Ns9J71o1wv40JeetORyTs53knMh5BnoRO6rXKWeySLNQKmkJQ8ytVkAxJ9xN4tRrh-P5HKVvT_Oj_s6p7vB2324kuxiGjBLU90enPqqE3EtD3YzgQdhbAYPIIwUQOTlDFQ1-nSt-Hw8ZGEC8U8MitRSpwr0Y3-z-ce_THRTTOH_-0b9i6a66EV54So1aqjFDXK9h5Z03vHCTXIp1LfIlS9NPDi_Tb4vxSFXtHSh_dY5wNGy9hQYKNBw3vvD4rsuSwnF3E7Am3QooQIbCt3UNDpxYQgldettg3gXvnFdDQqkVwFpJ2Ddt2uKhT-2mxg6cYesFm8_v16mffWF1ElZtKkNzKqC86AzDyhBY-q30kvvwST0FgyZCqzJSjEf8KbVKpcDXXNXCqW0CEzcJXt1U4f7hOqsLHAz8SWmDyvAmBeS2VxXrHAhz1VC2DDvxvWpybFCxlcTTRQtTbdUBrphcKnMeUJejJ-cdnk5_tX4FS7m2BBTascXzfbE9BJqnNLQMVtZbavMWll4iUHDXjCXiVD4hDxHVjAo-NA5V_bxCzBETKFl5jleMQN8myVkf9ISBNZNyQMzmX7D2BkOUK8oeC5gMp6OZPwSneDq0JxhG6kATgBKTci9jvfGIQGq0AJ254SoCVdOxjyl1Jt1TCcuwWLgAv75cuDfn93665Q--K_WT8jVT28W5sO7o8OH5BqPEidTLvfJXrs9C48A17X2cZTdH-D4REY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H3K27+acetylation+and+gene+expression+analysis+reveals+differences+in+placental+chromatin+activity+in+fetal+growth+restriction&rft.jtitle=Clinical+epigenetics&rft.au=Paauw%2C+N.+D.&rft.au=Lely%2C+A.+T.&rft.au=Joles%2C+J.+A.&rft.au=Franx%2C+A.&rft.date=2018-06-26&rft.pub=BioMed+Central&rft.issn=1868-7075&rft.eissn=1868-7083&rft.volume=10&rft_id=info:doi/10.1186%2Fs13148-018-0508-x&rft_id=info%3Apmid%2F29983832&rft.externalDocID=PMC6020235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-7075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-7075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-7075&client=summon |