Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease

In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including beh...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage clinical Vol. 23; p. 101811
Main Authors Kim, Jun Pyo, Kim, Jeonghun, Park, Yu Hyun, Park, Seong Beom, Lee, Jin San, Yoo, Sole, Kim, Eun-Joo, Kim, Hee Jin, Na, Duk L., Brown, Jesse A., Lockhart, Samuel N., Seo, Sang Won, Seong, Joon-Kyung
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2019
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN2213-1582
2213-1582
DOI10.1016/j.nicl.2019.101811

Cover

Abstract In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method. We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability. The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1–4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA. In the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions. •We developed a machine learning-based automated classifier for differential diagnosis of FTD clinical syndromes and AD.•Our classifier achieved good to excellent accuracy for each classification step.•Discriminative regions are similar to previously known cortical atrophic patterns in each clinical syndrome.
AbstractList In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method. We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability. The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1-4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA. In the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions.
In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method.BACKGROUNDIn a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method.We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability.METHODSWe recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability.The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1-4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA.RESULTSThe classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1-4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA.In the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions.CONCLUSIONSIn the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions.
In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method. We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability. The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1–4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA. In the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions. •We developed a machine learning-based automated classifier for differential diagnosis of FTD clinical syndromes and AD.•Our classifier achieved good to excellent accuracy for each classification step.•Discriminative regions are similar to previously known cortical atrophic patterns in each clinical syndrome.
Background: In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method. Methods: We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability. Results: The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1–4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA. Conclusions: In the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions. Keywords: Frontotemporal dementia, Classification model, Machine learning
• We developed a machine learning-based automated classifier for differential diagnosis of FTD clinical syndromes and AD. • Our classifier achieved good to excellent accuracy for each classification step. • Discriminative regions are similar to previously known cortical atrophic patterns in each clinical syndrome.
AbstractBackgroundIn a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method. MethodsWe recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability. ResultsThe classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1–4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA. ConclusionsIn the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions.
ArticleNumber 101811
Author Seong, Joon-Kyung
Yoo, Sole
Kim, Eun-Joo
Park, Seong Beom
Kim, Hee Jin
Kim, Jeonghun
Lockhart, Samuel N.
Seo, Sang Won
Na, Duk L.
Brown, Jesse A.
Park, Yu Hyun
Kim, Jun Pyo
Lee, Jin San
AuthorAffiliation d Department of Neurology, Kyunghee University Medical Center, Seoul, Republic of Korea
h Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
c School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
f Department of Neurology, Busan National University Hospital, Busan, Republic of Korea
l Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
i Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
a Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
j Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea
k Center for Clinical Epidemiology, Samsung Medical Center, Seoul, Republic of Korea
b Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
e Department of Cognitive Science, Yonsei University
AuthorAffiliation_xml – name: b Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
– name: a Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
– name: d Department of Neurology, Kyunghee University Medical Center, Seoul, Republic of Korea
– name: f Department of Neurology, Busan National University Hospital, Busan, Republic of Korea
– name: c School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
– name: e Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
– name: l Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
– name: k Center for Clinical Epidemiology, Samsung Medical Center, Seoul, Republic of Korea
– name: h Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
– name: i Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
– name: j Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea
– name: g Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
Author_xml – sequence: 1
  givenname: Jun Pyo
  orcidid: 0000-0003-4376-3107
  surname: Kim
  fullname: Kim, Jun Pyo
  organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
– sequence: 2
  givenname: Jeonghun
  surname: Kim
  fullname: Kim, Jeonghun
  organization: Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
– sequence: 3
  givenname: Yu Hyun
  surname: Park
  fullname: Park, Yu Hyun
  organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
– sequence: 4
  givenname: Seong Beom
  surname: Park
  fullname: Park, Seong Beom
  organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
– sequence: 5
  givenname: Jin San
  surname: Lee
  fullname: Lee, Jin San
  organization: Department of Neurology, Kyunghee University Medical Center, Seoul, Republic of Korea
– sequence: 6
  givenname: Sole
  surname: Yoo
  fullname: Yoo, Sole
  organization: Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
– sequence: 7
  givenname: Eun-Joo
  surname: Kim
  fullname: Kim, Eun-Joo
  organization: Department of Neurology, Busan National University Hospital, Busan, Republic of Korea
– sequence: 8
  givenname: Hee Jin
  surname: Kim
  fullname: Kim, Hee Jin
  organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
– sequence: 9
  givenname: Duk L.
  surname: Na
  fullname: Na, Duk L.
  organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
– sequence: 10
  givenname: Jesse A.
  surname: Brown
  fullname: Brown, Jesse A.
  organization: Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
– sequence: 11
  givenname: Samuel N.
  surname: Lockhart
  fullname: Lockhart, Samuel N.
  organization: Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
– sequence: 12
  givenname: Sang Won
  orcidid: 0000-0002-4262-1468
  surname: Seo
  fullname: Seo, Sang Won
  email: sw72.seo@samsung.com
  organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
– sequence: 13
  givenname: Joon-Kyung
  surname: Seong
  fullname: Seong, Joon-Kyung
  email: jkseong@korea.ac.kr
  organization: Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea
BackLink https://cir.nii.ac.jp/crid/1873116917808206720$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/30981204$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFARLaV_gAPKAQkuu9hO4tgckKqKj0pFHICz5djPu14Se7GzRcuv56UppUWiIgfHsufNPL-Zx8VBiAGK4iklS0oof7VZBm_6JSNUTgeC0gfFEWO0WtBGsINb-8PiJOcNwU8Q0nL-qDisiBSUkfqogI_arH2Asgedgg-rstMZbLn2kHTCK6P70vQ6Z-9wP_oYyuhKl2IY4wjDNiYEWBggjF6XOtjytP-5Bj9AepFL6zMg35PiodN9hpPr_3Hx9d3bL2cfFhef3p-fnV4sDOdyXAjbYNcAHZN13QlKhBMNmM7WwoFzQgK3zgFYK7XUnDWcmUZLyaymwpC2Oi7OZ14b9UZtkx902quovbo6iGmldBpxbqCk64BJ1jay6Wqh6w4pnDWEE9HWRDbIVc1cu7DV-x-6728IKVGTB2qjJg_U5IGaPcCqN3PVdtcNYA2OBQd0p5W7N8Gv1SpeKl43oq4mgpfXBCl-30Ee1eCzgb7XAeIuK8aI5KSuGobQZ7e1bkR-u4sAMQNMijkncMr48cpDlPb9_e9gf5X-1-Ofz0XBe5SaVirailIuaSuIYIS3jPyZEWAULjFoyvQIxqR9gz3kTdylgClRVGWmiPo8JXkKMpUVCtPJmtf_JkCr_X1N_gJ15gD7
CitedBy_id crossref_primary_10_3233_JAD_230248
crossref_primary_10_1002_brb3_2881
crossref_primary_10_3389_fnagi_2022_869387
crossref_primary_10_32604_csse_2022_018520
crossref_primary_10_1016_j_jbi_2022_104030
crossref_primary_10_1080_23279095_2023_2236742
crossref_primary_10_1002_gps_5667
crossref_primary_10_1088_1741_2552_ac87d0
crossref_primary_10_3389_fnagi_2021_708932
crossref_primary_10_1016_j_neuroscience_2025_03_036
crossref_primary_10_1162_netn_a_00285
crossref_primary_10_1016_j_trci_2019_10_001
crossref_primary_10_1038_s41598_024_58223_3
crossref_primary_10_1186_s13195_020_00757_5
crossref_primary_10_1038_s41598_023_43706_6
crossref_primary_10_1063_5_0011697
crossref_primary_10_3389_fnhum_2025_1526554
crossref_primary_10_1016_j_bspc_2022_104001
crossref_primary_10_1038_s41591_024_03118_z
crossref_primary_10_1134_S0362119720080137
crossref_primary_10_1007_s00500_022_06762_0
crossref_primary_10_3233_JAD_200955
crossref_primary_10_1515_revneuro_2021_0101
crossref_primary_10_1093_braincomms_fcaa079
crossref_primary_10_1109_ACCESS_2022_3180073
crossref_primary_10_3390_brainsci14080806
crossref_primary_10_3389_fnins_2022_828029
crossref_primary_10_1080_14737175_2022_2048648
crossref_primary_10_1186_s13195_020_00612_7
crossref_primary_10_3389_fnagi_2023_1094233
crossref_primary_10_1002_brb3_2500
crossref_primary_10_3389_fnins_2020_00853
crossref_primary_10_3389_fnsys_2024_1324437
crossref_primary_10_3389_fnagi_2023_1149871
crossref_primary_10_1007_s42835_021_00967_3
crossref_primary_10_1177_19714009251313511
crossref_primary_10_32604_cmc_2024_046869
crossref_primary_10_1002_alz_14377
crossref_primary_10_3389_fnins_2020_626154
crossref_primary_10_3390_cells13231965
crossref_primary_10_1038_s41598_021_86114_4
crossref_primary_10_1093_braincomms_fcaf065
crossref_primary_10_3390_life12070947
crossref_primary_10_1038_s43856_024_00437_7
crossref_primary_10_1016_j_arr_2022_101614
crossref_primary_10_1016_j_neurad_2020_04_004
crossref_primary_10_1111_exsy_13003
crossref_primary_10_1016_j_lana_2022_100387
crossref_primary_10_1002_alz_12645
crossref_primary_10_3389_fnagi_2021_673469
crossref_primary_10_3346_jkms_2020_35_e379
crossref_primary_10_7554_eLife_83970
crossref_primary_10_1002_hbm_26205
crossref_primary_10_1007_s11042_023_17288_4
crossref_primary_10_1109_JTEHM_2022_3186836
crossref_primary_10_1016_j_compmedimag_2020_101713
crossref_primary_10_1093_mnras_stac3770
crossref_primary_10_3389_fnagi_2024_1459652
crossref_primary_10_3389_fnins_2024_1331677
Cites_doi 10.1148/radiol.2015150220
10.1038/s41598-018-22277-x
10.1007/s00330-016-4691-x
10.1016/j.jalz.2011.03.005
10.1016/j.nicl.2017.02.003
10.1148/radiol.15141869
10.1093/brain/awr179
10.1007/s10548-012-0246-x
10.1016/j.neuroimage.2013.10.067
10.1093/brain/awm319
10.1007/s00234-009-0521-z
10.1016/j.nicl.2015.01.011
10.1093/brain/awn239
10.1212/WNL.0b013e3181a55fa2
10.1007/s00259-007-0523-1
10.2174/1745017901309010088
10.1212/WNL.0b013e31821103e6
10.1016/S0140-6736(15)00461-4
10.1016/j.neuroimage.2008.03.050
10.1016/S1474-4422(07)70266-1
10.1109/TMI.2006.882143
10.1136/jnnp.2010.212225
10.1001/archneurol.2007.38
10.1212/01.wnl.0000237038.55627.5b
10.1016/j.neuroimage.2009.05.085
10.1212/WNL.58.2.198
10.3233/JAD-170893
10.3389/fneur.2014.00071
10.1016/S1474-4422(11)70077-1
10.1016/j.neuroimage.2011.09.085
10.1002/hbm.22156
10.1212/WNL.57.2.216
10.1109/34.598228
10.3233/JAD-150334
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Inc.
2019 Published by Elsevier Inc. 2019
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Inc.
– notice: 2019 Published by Elsevier Inc. 2019
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.nicl.2019.101811
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 101811
ExternalDocumentID oai_doaj_org_article_9fbe2927595b48a4ba18fdc060874095
10.1016/j.nicl.2019.101811
PMC6458431
30981204
10_1016_j_nicl_2019_101811
1_s2_0_S2213158219301615
S2213158219301615
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: K01 AG055698
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
AFCTW
RYH
AAYXX
CITATION
AACTN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c669t-8d5221eeb2944b8108f85ecbd48feff89e6dffeedd9a9a62562c5a992da18c073
IEDL.DBID M48
ISSN 2213-1582
IngestDate Fri Oct 03 12:53:32 EDT 2025
Sun Oct 26 03:37:15 EDT 2025
Tue Sep 30 17:20:49 EDT 2025
Fri Sep 05 14:30:16 EDT 2025
Thu Apr 03 07:09:49 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Wed Oct 01 01:54:04 EDT 2025
Thu Jun 26 23:05:20 EDT 2025
Wed Jun 18 06:48:26 EDT 2025
Tue Aug 26 16:33:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Frontotemporal dementia
Classification model
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-8d5221eeb2944b8108f85ecbd48feff89e6dffeedd9a9a62562c5a992da18c073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors contributed equally to this work.
ORCID 0000-0002-4262-1468
0000-0003-4376-3107
0000-0002-0893-5420
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2019.101811
PMID 30981204
PQID 2209604352
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_9fbe2927595b48a4ba18fdc060874095
unpaywall_primary_10_1016_j_nicl_2019_101811
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6458431
proquest_miscellaneous_2209604352
pubmed_primary_30981204
crossref_citationtrail_10_1016_j_nicl_2019_101811
crossref_primary_10_1016_j_nicl_2019_101811
nii_cinii_1873116917808206720
elsevier_clinicalkeyesjournals_1_s2_0_S2213158219301615
elsevier_clinicalkey_doi_10_1016_j_nicl_2019_101811
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
– name: Elsevier
References Haufe, Meinecke, Görgen, Dähne, Haynes, Blankertz, Bießmann (bb0085) 2014; 87
Davatzikos, Resnick, Wu, Parmpi, Clark (bb0050) 2008; 41
Westman, Aguilar, Muehlboeck, Simmons (bb0175) 2013; 26
Wee, Yap, Shen, Initiative (bb0170) 2013; 34
Bang, Spina, Miller (bb0010) 2015; 386
Kloppel, Stonnington, Barnes, Chen, Chu, Good, Mader, Mitchell, Patel, Roberts (bb0100) 2008; 131
Barthel, Gertz, Dresel, Peters, Bartenstein, Buerger, Hiemeyer, Wittemer-Rump, Seibyl, Reininger (bb0015) 2011; 10
Wilson, Ogar, Laluz, Growdon, Jang, Glenn, Miller, Weiner, Gorno-Tempini (bb0180) 2009; 47
Cho, Seong, Jeong, Shin (bb0045) 2012; 59
Qiu, Bitouk, Miller (bb0125) 2006; 25
Davies, Scahill, Graham, Williams, Graham, Hodges (bb0055) 2009; 51
Farrar (bb0065) 2017; 58
Bron, Smits, Papma, Steketee, Meijboom, de Groot, van Swieten, Niessen, Klein (bb0040) 2017; 27
Galton, Patterson, Graham, Lambon-Ralph, Williams, Antoun, Sahakian, Hodges (bb0070) 2001; 57
Brambati, Amici, Racine, Neuhaus, Miller, Ogar, Dronkers, Miller, Rosen, Gorno-Tempini (bb0035) 2015; 8
Gorno-Tempini, Ogar, Brambati, Wang, Jeong, Rankin, Dronkers, Miller (bb0075) 2006; 67
Rosen, Gorno–Tempini, Goldman, Perry, Schuff, Weiner, Feiwell, Kramer, Miller (bb0140) 2002; 58
Hodges, Patterson (bb0090) 2007; 6
Vallet, Lévy (bb0160) 2008
Rascovsky, Hodges, Knopman, Mendez, Kramer, Neuhaus, van Swieten, Seelaar, Dopper, Onyike (bb0135) 2011; 134
Vieira, Caixeta, Machado, Silva, Nardi, Arias-Carrión, Carta (bb0165) 2013; 9
Bouts, Moller, Hafkemeijer, van Swieten, Dopper, van der Flier, Vrenken, Wink, Pijnenburg, Scheltens (bb0030) 2018; 62
San Lee, Kim, Shin, Cho, D-s, Kim, Kim, Kim, Lockhart (bb0145) 2018; 8
Moller, Pijnenburg, van der Flier, Versteeg, Tijms, de Munck, Hafkemeijer, Rombouts, van der Grond, van Swieten (bb0115) 2016; 279
McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux (bb0110) 2011; 7
Agosta, Ferraro, Canu, Copetti, Galantucci, Magnani, Marcone, Valsasina, Sodero, Comi (bb0005) 2015; 276
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0095) 2008; 131
Bisenius, Mueller, Diehl-Schmid, Fassbender, Grimmer, Jessen, Kassubek, Kornhuber, Landwehrmeyer, Ludolph (bb0025) 2017; 14
Engler, Santillo, Wang, Lindau, Savitcheva, Nordberg, Lannfelt, Långström, Kilander (bb0060) 2008; 35
Kloppel, Peter, Ludl, Pilatus, Maier, Mader, Heimbach, Frings, Egger, Dukart (bb0105) 2015; 47
Raamana, Rosen, Miller, Weiner, Wang, Beg (bb0130) 2014; 5
Belhumeur, Hespanha, Kriegman (bb0020) 1997; 19
Seelaar, Rohrer, Pijnenburg, Fox, van Swieten (bb0150) 2011; 82
Seeley, Crawford, Rascovsky, Kramer, Weiner, Miller, Gorno-Tempini (bb0155) 2008; 65
Gorno-Tempini, Hillis, Weintraub, Kertesz, Mendez, Cappa, Ogar, Rohrer, Black, Boeve (bb0080) 2011; 76
Pereira, Williams, Acosta-Cabronero, Pengas, Spillantini, Xuereb, Hodges, Nestor (bb0120) 2009; 72
San Lee (10.1016/j.nicl.2019.101811_bb0145) 2018; 8
Wee (10.1016/j.nicl.2019.101811_bb0170) 2013; 34
Gorno-Tempini (10.1016/j.nicl.2019.101811_bb0075) 2006; 67
Bron (10.1016/j.nicl.2019.101811_bb0040) 2017; 27
Westman (10.1016/j.nicl.2019.101811_bb0175) 2013; 26
Seelaar (10.1016/j.nicl.2019.101811_bb0150) 2011; 82
Seeley (10.1016/j.nicl.2019.101811_bb0155) 2008; 65
Belhumeur (10.1016/j.nicl.2019.101811_bb0020) 1997; 19
Haufe (10.1016/j.nicl.2019.101811_bb0085) 2014; 87
Wilson (10.1016/j.nicl.2019.101811_bb0180) 2009; 47
Barthel (10.1016/j.nicl.2019.101811_bb0015) 2011; 10
McKhann (10.1016/j.nicl.2019.101811_bb0110) 2011; 7
Qiu (10.1016/j.nicl.2019.101811_bb0125) 2006; 25
Vieira (10.1016/j.nicl.2019.101811_bb0165) 2013; 9
Engler (10.1016/j.nicl.2019.101811_bb0060) 2008; 35
Rascovsky (10.1016/j.nicl.2019.101811_bb0135) 2011; 134
Pereira (10.1016/j.nicl.2019.101811_bb0120) 2009; 72
Klöppel (10.1016/j.nicl.2019.101811_bb0095) 2008; 131
Vallet (10.1016/j.nicl.2019.101811_bb0160) 2008
Galton (10.1016/j.nicl.2019.101811_bb0070) 2001; 57
Bouts (10.1016/j.nicl.2019.101811_bb0030) 2018; 62
Davies (10.1016/j.nicl.2019.101811_bb0055) 2009; 51
Cho (10.1016/j.nicl.2019.101811_bb0045) 2012; 59
Kloppel (10.1016/j.nicl.2019.101811_bb0100) 2008; 131
Agosta (10.1016/j.nicl.2019.101811_bb0005) 2015; 276
Moller (10.1016/j.nicl.2019.101811_bb0115) 2016; 279
Kloppel (10.1016/j.nicl.2019.101811_bb0105) 2015; 47
Rosen (10.1016/j.nicl.2019.101811_bb0140) 2002; 58
Brambati (10.1016/j.nicl.2019.101811_bb0035) 2015; 8
Hodges (10.1016/j.nicl.2019.101811_bb0090) 2007; 6
Farrar (10.1016/j.nicl.2019.101811_bb0065) 2017; 58
Gorno-Tempini (10.1016/j.nicl.2019.101811_bb0080) 2011; 76
Raamana (10.1016/j.nicl.2019.101811_bb0130) 2014; 5
Bisenius (10.1016/j.nicl.2019.101811_bb0025) 2017; 14
Davatzikos (10.1016/j.nicl.2019.101811_bb0050) 2008; 41
Bang (10.1016/j.nicl.2019.101811_bb0010) 2015; 386
References_xml – volume: 19
  start-page: 711
  year: 1997
  end-page: 720
  ident: bb0020
  article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 25
  start-page: 1296
  year: 2006
  end-page: 1306
  ident: bb0125
  article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator
  publication-title: IEEE Trans. Med. Imaging
– volume: 8
  start-page: 345
  year: 2015
  end-page: 355
  ident: bb0035
  article-title: Longitudinal gray matter contraction in three variants of primary progressive aphasia: a tenser-based morphometry study
  publication-title: NeuroImage
– volume: 10
  start-page: 424
  year: 2011
  end-page: 435
  ident: bb0015
  article-title: Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study
  publication-title: Lancet Neurol.
– volume: 34
  start-page: 3411
  year: 2013
  end-page: 3425
  ident: bb0170
  article-title: Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns
  publication-title: Hum. Brain Mapp.
– volume: 59
  start-page: 2217
  year: 2012
  end-page: 2230
  ident: bb0045
  article-title: Initiative AsDN: individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
  publication-title: Neuroimage
– volume: 58
  start-page: 198
  year: 2002
  ident: bb0140
  article-title: Patterns of brain atrophy in frontotemporal dementia and semantic dementia
  publication-title: Neurology
– volume: 7
  start-page: 263
  year: 2011
  end-page: 269
  ident: bb0110
  article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
– volume: 8
  start-page: 4161
  year: 2018
  ident: bb0145
  article-title: Na DL: machine learning-based individual assessment of cortical atrophy pattern in Alzheimer's disease Spectrum: development of the classifier and longitudinal evaluation
  publication-title: Sci. Rep.
– volume: 27
  start-page: 3372
  year: 2017
  end-page: 3382
  ident: bb0040
  article-title: Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI
  publication-title: Eur. Radiol.
– volume: 47
  start-page: 1558
  year: 2009
  end-page: 1567
  ident: bb0180
  article-title: Automated MRI-based classification of primary progressive aphasia variants
  publication-title: NeuroImage
– volume: 134
  start-page: 2456
  year: 2011
  end-page: 2477
  ident: bb0135
  article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
  publication-title: Brain
– volume: 82
  start-page: 476
  year: 2011
  ident: bb0150
  article-title: Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 386
  start-page: 1672
  year: 2015
  end-page: 1682
  ident: bb0010
  article-title: Frontotemporal dementia
  publication-title: Lancet
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bb0095
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– volume: 65
  start-page: 249
  year: 2008
  end-page: 255
  ident: bb0155
  article-title: Frontal Paralimbic network atrophy in very mild Behavioral variant Frontotemporal dementia
  publication-title: Arch. Neurol.
– volume: 58
  start-page: 1250
  year: 2017
  ident: bb0065
  article-title: Regional visual read inspection of [18F] flutemetamol brain images from end-of-life and amnestic MCI subjects
  publication-title: J. Nucl. Med.
– volume: 35
  start-page: 100
  year: 2008
  end-page: 106
  ident: bb0060
  article-title: In vivo amyloid imaging with PET in frontotemporal dementia
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 9
  start-page: 88
  year: 2013
  end-page: 95
  ident: bb0165
  article-title: Epidemiology of early-onset dementia: a review of the literature
  publication-title: Clin. Pract. Epidemiol. Ment. Health
– volume: 276
  start-page: 219
  year: 2015
  end-page: 227
  ident: bb0005
  article-title: Differentiation between subtypes of primary progressive aphasia by using cortical thickness and diffusion-tensor MR imaging measures
  publication-title: Radiology
– volume: 57
  start-page: 216
  year: 2001
  end-page: 225
  ident: bb0070
  article-title: Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia
  publication-title: Neurology
– volume: 41
  start-page: 1220
  year: 2008
  end-page: 1227
  ident: bb0050
  article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
  publication-title: NeuroImage
– volume: 6
  start-page: 1004
  year: 2007
  end-page: 1014
  ident: bb0090
  article-title: Semantic dementia: a unique clinicopathological syndrome
  publication-title: Lancet Neurol.
– volume: 14
  start-page: 334
  year: 2017
  end-page: 343
  ident: bb0025
  article-title: Predicting primary progressive aphasias with support vector machine approaches in structural MRI data
  publication-title: NeuroImage Clin.
– volume: 5
  start-page: 71
  year: 2014
  ident: bb0130
  article-title: Three-class differential diagnosis among Alzheimer disease, Frontotemporal dementia, and controls
  publication-title: Front. Neurol.
– volume: 67
  start-page: 1849
  year: 2006
  ident: bb0075
  article-title: Anatomical correlates of early mutism in progressive nonfluent aphasia
  publication-title: Neurology
– volume: 76
  start-page: 1006
  year: 2011
  end-page: 1014
  ident: bb0080
  article-title: Classification of primary progressive aphasia and its variants
  publication-title: Neurology
– volume: 131
  start-page: 2969
  year: 2008
  end-page: 2974
  ident: bb0100
  article-title: Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method
  publication-title: Brain
– volume: 62
  start-page: 1827
  year: 2018
  end-page: 1839
  ident: bb0030
  article-title: single subject classification of Alzheimer's disease and Behavioral variant Frontotemporal dementia using anatomical, diffusion tensor, and resting-state functional magnetic resonance imaging
  publication-title: J. Alzheimers Dis.
– start-page: 251
  year: 2008
  end-page: 260
  ident: bb0160
  article-title: Spectral geometry processing with manifold harmonics
  publication-title: Computer Graphics Forum: 2008: Wiley Online Library
– volume: 72
  start-page: 1653
  year: 2009
  end-page: 1660
  ident: bb0120
  article-title: Atrophy patterns in histologic vs clinical groupings of frontotemporal lobar degeneration
  publication-title: Neurology
– volume: 279
  start-page: 838
  year: 2016
  end-page: 848
  ident: bb0115
  article-title: Alzheimer disease and Behavioral variant Frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis
  publication-title: Radiology
– volume: 47
  start-page: 939
  year: 2015
  end-page: 954
  ident: bb0105
  article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study
  publication-title: J. Alzheimers Dis.
– volume: 51
  start-page: 491
  year: 2009
  end-page: 503
  ident: bb0055
  article-title: Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry
  publication-title: Neuroradiology
– volume: 26
  start-page: 9
  year: 2013
  end-page: 23
  ident: bb0175
  article-title: Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment
  publication-title: Brain Topogr.
– volume: 87
  start-page: 96
  year: 2014
  end-page: 110
  ident: bb0085
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: Neuroimage
– volume: 279
  start-page: 838
  issue: 3
  year: 2016
  ident: 10.1016/j.nicl.2019.101811_bb0115
  article-title: Alzheimer disease and Behavioral variant Frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis
  publication-title: Radiology
  doi: 10.1148/radiol.2015150220
– volume: 8
  start-page: 4161
  issue: 1
  year: 2018
  ident: 10.1016/j.nicl.2019.101811_bb0145
  article-title: Na DL: machine learning-based individual assessment of cortical atrophy pattern in Alzheimer's disease Spectrum: development of the classifier and longitudinal evaluation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22277-x
– volume: 27
  start-page: 3372
  issue: 8
  year: 2017
  ident: 10.1016/j.nicl.2019.101811_bb0040
  article-title: Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-016-4691-x
– volume: 7
  start-page: 263
  issue: 3
  year: 2011
  ident: 10.1016/j.nicl.2019.101811_bb0110
  article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.03.005
– volume: 14
  start-page: 334
  year: 2017
  ident: 10.1016/j.nicl.2019.101811_bb0025
  article-title: Predicting primary progressive aphasias with support vector machine approaches in structural MRI data
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2017.02.003
– volume: 276
  start-page: 219
  issue: 1
  year: 2015
  ident: 10.1016/j.nicl.2019.101811_bb0005
  article-title: Differentiation between subtypes of primary progressive aphasia by using cortical thickness and diffusion-tensor MR imaging measures
  publication-title: Radiology
  doi: 10.1148/radiol.15141869
– volume: 134
  start-page: 2456
  issue: 9
  year: 2011
  ident: 10.1016/j.nicl.2019.101811_bb0135
  article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
  publication-title: Brain
  doi: 10.1093/brain/awr179
– volume: 26
  start-page: 9
  issue: 1
  year: 2013
  ident: 10.1016/j.nicl.2019.101811_bb0175
  article-title: Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-012-0246-x
– volume: 87
  start-page: 96
  year: 2014
  ident: 10.1016/j.nicl.2019.101811_bb0085
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.067
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.nicl.2019.101811_bb0095
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 51
  start-page: 491
  issue: 8
  year: 2009
  ident: 10.1016/j.nicl.2019.101811_bb0055
  article-title: Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry
  publication-title: Neuroradiology
  doi: 10.1007/s00234-009-0521-z
– volume: 8
  start-page: 345
  year: 2015
  ident: 10.1016/j.nicl.2019.101811_bb0035
  article-title: Longitudinal gray matter contraction in three variants of primary progressive aphasia: a tenser-based morphometry study
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2015.01.011
– start-page: 251
  year: 2008
  ident: 10.1016/j.nicl.2019.101811_bb0160
  article-title: Spectral geometry processing with manifold harmonics
– volume: 131
  start-page: 2969
  issue: Pt 11
  year: 2008
  ident: 10.1016/j.nicl.2019.101811_bb0100
  article-title: Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method
  publication-title: Brain
  doi: 10.1093/brain/awn239
– volume: 72
  start-page: 1653
  issue: 19
  year: 2009
  ident: 10.1016/j.nicl.2019.101811_bb0120
  article-title: Atrophy patterns in histologic vs clinical groupings of frontotemporal lobar degeneration
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181a55fa2
– volume: 35
  start-page: 100
  issue: 1
  year: 2008
  ident: 10.1016/j.nicl.2019.101811_bb0060
  article-title: In vivo amyloid imaging with PET in frontotemporal dementia
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-007-0523-1
– volume: 9
  start-page: 88
  year: 2013
  ident: 10.1016/j.nicl.2019.101811_bb0165
  article-title: Epidemiology of early-onset dementia: a review of the literature
  publication-title: Clin. Pract. Epidemiol. Ment. Health
  doi: 10.2174/1745017901309010088
– volume: 76
  start-page: 1006
  issue: 11
  year: 2011
  ident: 10.1016/j.nicl.2019.101811_bb0080
  article-title: Classification of primary progressive aphasia and its variants
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31821103e6
– volume: 386
  start-page: 1672
  issue: 10004
  year: 2015
  ident: 10.1016/j.nicl.2019.101811_bb0010
  article-title: Frontotemporal dementia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)00461-4
– volume: 41
  start-page: 1220
  issue: 4
  year: 2008
  ident: 10.1016/j.nicl.2019.101811_bb0050
  article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.050
– volume: 6
  start-page: 1004
  issue: 11
  year: 2007
  ident: 10.1016/j.nicl.2019.101811_bb0090
  article-title: Semantic dementia: a unique clinicopathological syndrome
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(07)70266-1
– volume: 25
  start-page: 1296
  issue: 10
  year: 2006
  ident: 10.1016/j.nicl.2019.101811_bb0125
  article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882143
– volume: 82
  start-page: 476
  issue: 5
  year: 2011
  ident: 10.1016/j.nicl.2019.101811_bb0150
  article-title: Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2010.212225
– volume: 65
  start-page: 249
  issue: 2
  year: 2008
  ident: 10.1016/j.nicl.2019.101811_bb0155
  article-title: Frontal Paralimbic network atrophy in very mild Behavioral variant Frontotemporal dementia
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2007.38
– volume: 67
  start-page: 1849
  issue: 10
  year: 2006
  ident: 10.1016/j.nicl.2019.101811_bb0075
  article-title: Anatomical correlates of early mutism in progressive nonfluent aphasia
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000237038.55627.5b
– volume: 47
  start-page: 1558
  issue: 4
  year: 2009
  ident: 10.1016/j.nicl.2019.101811_bb0180
  article-title: Automated MRI-based classification of primary progressive aphasia variants
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.05.085
– volume: 58
  start-page: 198
  issue: 2
  year: 2002
  ident: 10.1016/j.nicl.2019.101811_bb0140
  article-title: Patterns of brain atrophy in frontotemporal dementia and semantic dementia
  publication-title: Neurology
  doi: 10.1212/WNL.58.2.198
– volume: 62
  start-page: 1827
  issue: 4
  year: 2018
  ident: 10.1016/j.nicl.2019.101811_bb0030
  article-title: single subject classification of Alzheimer's disease and Behavioral variant Frontotemporal dementia using anatomical, diffusion tensor, and resting-state functional magnetic resonance imaging
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-170893
– volume: 5
  start-page: 71
  year: 2014
  ident: 10.1016/j.nicl.2019.101811_bb0130
  article-title: Three-class differential diagnosis among Alzheimer disease, Frontotemporal dementia, and controls
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2014.00071
– volume: 10
  start-page: 424
  issue: 5
  year: 2011
  ident: 10.1016/j.nicl.2019.101811_bb0015
  article-title: Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(11)70077-1
– volume: 58
  start-page: 1250
  issue: supplement 1
  year: 2017
  ident: 10.1016/j.nicl.2019.101811_bb0065
  article-title: Regional visual read inspection of [18F] flutemetamol brain images from end-of-life and amnestic MCI subjects
  publication-title: J. Nucl. Med.
– volume: 59
  start-page: 2217
  issue: 3
  year: 2012
  ident: 10.1016/j.nicl.2019.101811_bb0045
  article-title: Initiative AsDN: individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.085
– volume: 34
  start-page: 3411
  issue: 12
  year: 2013
  ident: 10.1016/j.nicl.2019.101811_bb0170
  article-title: Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22156
– volume: 57
  start-page: 216
  issue: 2
  year: 2001
  ident: 10.1016/j.nicl.2019.101811_bb0070
  article-title: Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia
  publication-title: Neurology
  doi: 10.1212/WNL.57.2.216
– volume: 19
  start-page: 711
  issue: 7
  year: 1997
  ident: 10.1016/j.nicl.2019.101811_bb0020
  article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
– volume: 47
  start-page: 939
  issue: 4
  year: 2015
  ident: 10.1016/j.nicl.2019.101811_bb0105
  article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-150334
SSID ssj0000800766
ssib023169982
ssib029851858
Score 2.4759803
Snippet In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of...
AbstractBackgroundIn a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the...
• We developed a machine learning-based automated classifier for differential diagnosis of FTD clinical syndromes and AD. • Our classifier achieved good to...
Background: In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
nii
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101811
SubjectTerms Aged
Alzheimer Disease
Alzheimer Disease - classification
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Brain
Brain - diagnostic imaging
Brain - pathology
Classification model
Computer applications to medicine. Medical informatics
Diagnosis, Computer-Assisted
Diagnosis, Computer-Assisted - methods
Female
Frontotemporal Dementia
Frontotemporal Dementia - classification
Frontotemporal Dementia - diagnostic imaging
Frontotemporal Dementia - pathology
Humans
Machine Learning
Male
Middle Aged
Neurology. Diseases of the nervous system
Positron-Emission Tomography
R858-859.7
Radiology
RC346-429
Regular
Regular Article
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgB-CC-CZAkZGQOEAgdhzHPhZEVSEtF6jUm-XENk0VslV3Vwh-PTOOs9qIqnDgsodsvjzzYr_JTN4Q8hJAwW1dNqgZqnLhRJGrlpV50zAIHqzyMmp3Lj7Lo2Px6aQ62Wn1hTVhozzwaLh3OjSea15XumqEsqKxTAXXFrLAZnI6qpcWSu8EU2eJB9UxUck5XJlViqcvZsbiLlSdxbou_TYqVrHZqhTF-2eL0_Wh6y6joH9WUt7cDOf25w_b9zvL1OEdcjvxS3owjusuueaHe-TGImXQ7xO_iNWTnqZ2Ed8ormOOYkvsmFQAn9EWKTXWEEW30WWgIeocJB2rnrr4UrGz1A6OHvS_Tn333V-8WtGU73lAjg8_fv1wlKdWC3krpV7nygEPYx7CbC1Eo1ihgqp82zihgg9BaS9dCLCeOm21hZhJ8rayWnMH7mhhmnhI9obl4B8TWle1D2VbShGEcFVt25KHWjIJXsQsZkbYZGrTJh1ybIfRm6ng7Mygewy6x4zuycjr7THnowrHlXu_Rw9u90QF7bgBcGUSrszfcJWRcvK_mT5ShWkVTtRdeen6sqP8Ks0MK8PMipvCfEFcIiyBQEfWnZF9ABlYBH-ZqkuGMka1KqLAPi8y8mKCn4EZANM6dvDLzcpwjmEo0F6ekUcjHLdDLwsNDK4QcF8zoM5sM_9n6E6jyrjEDHoJI3qzhfQ_2P7J_7D9U3ILTzm-6XpG9tYXG78P3G_dPI-P-W_YJVCA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk4AXvj8CDBkJiQdoFTuOYz8WxDQhdUKCSuPJchJ7C5R0Wloh9tdz57gVgWoaL5Ga2kl8vvh-lzv_jpBXoBTcFlmJnKFqLGqRjlXFsnFZMnAerHIycHfOjuThXHw8zo8jTQ7uhRnE70MeFhLEYgqWngRyKfB09mQOuHtE9uZHn6ZfsXoch6uzXPG4K2Z3x4HlCQT9AwN0vW2aXTDz32zJm-v2zP76aReLP0zRwZ2-plEXGAwxA-X7ZL0qJ9XFX_yOVxvlXXI7IlI67VXoHrnm2vvkxizG3B8QNwv5lo7GAhMnFC1fTbGIdghDwCzTCkE4Zh2FiaZLT31gRojMVwtah8-QjaW2rel0cXHqmh_u_HVHY4ToIZkffPjy_nAcizOMKyn1aqxqQG7MgWOuhSgVS5VXuavKWijvvFfaydp7sMC1ttqClyV5lVuteW2ZqmBheURG7bJ1Twgt8sL5rMqk8ELUeWGrjPtCMskBfeYpSwjbTJypInM5FtBYmE2K2jeD8jMoP9PLLyFvtn3Oet6OS1u_Q33YtkTO7XACJsnEV9hoXzp4oiLXeSmUFSUMxNdVKlMsa6jzhGQbbTKbba2wEMOFmktvXezq5bq4lnSGmY6b1HxGLUclB8gdcHpC9kFlQSJ4ZKrIGBIfFSoNlPw8TcjLjTIbWDMwEGRbt1x3hnN0XAEo84Q87pV7O_Qs1YD5UgHPNVD7gWyG_7TNaeAllxhzz2BEb7cvyBVk__T_mj8jt_BX_xXsORmtztduH3DhqnwRF4Tfem5Zmw
  priority: 102
  providerName: Unpaywall
Title Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158219301615
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158219301615
https://cir.nii.ac.jp/crid/1873116917808206720
https://www.ncbi.nlm.nih.gov/pubmed/30981204
https://www.proquest.com/docview/2209604352
https://pubmed.ncbi.nlm.nih.gov/PMC6458431
https://doi.org/10.1016/j.nicl.2019.101811
https://doaj.org/article/9fbe2927595b48a4ba18fdc060874095
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: IXB
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: AKRWK
  dateStart: 20120101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: M48
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJo29THyTwSojIfEAmeLYcewHhApimpA6IUGl8WQ5sb1lCunoh2D89Zxdp1BRJl76kNqJfXf23fnOv0PoOQhFrktaecxQkTLDslTUhKZVRcB50MLygN05OuUnY_bhrDjbQn25o0jA2UbXzteTGk_box_frt_Agn_9O1fLg8j6NC15FACowBvaAU0lfSmHUTT3L6N1VHIe785s7rqHdmkmQe3F0m29qgqI_msa61bXNJvs0r_TK28vuit9_V237R-66_gO2o9GJx4upeQu2rLdPbQ7imH1-8iOQkqlxbGGxDn2ys1gXyc7RBqAkbj2drZPLAq8xBOHXQA_iOBWLTbhpLHRWHcGD9ufF7b5aqcvZjgGgR6g8fH7z-9O0lh_Ia05l_NUGDDOiAXfWzJWCZIJJwpbV4YJZ50T0nLjHChZI7XU4EjxvC60lLnRRNSwdzxE292ks48RLovSOlpTzhxjpih1TXNXcsJzMDCLjCSI9KRWdQQn9zUyWtVnoV0qzynlOaWWnErQy1WfqyU0x42t33oOrlp6WO3wYDI9V3GVKukqCyMqC1lUTGhWwUScqTOe-cqFskgQ7fmv-pursNfCi5obP11u6mVnvbQroma5ytQnIDcl_uqypMEUT9AhCBlQxP8SUVLisY1KkQXU_TxL0LNe_BRsCz7Wozs7WcxUnnvfFGzhPEGPluK4mnov3zCuNUFdo836P11zEaDHuQ-rU5jRq5VI_wftD_45hCdoz7dbnmk9Rdvz6cIegpU3rwbhdGQQFvAA7YxPPw6__AKhPk0M
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk4AXvj8CDBkJiQdoFTuOYz8WxDQhdUKCSuPJchJ7C5R0Wloh9tdz57gVgWoaL5Ga2kl8vvh-lzv_jpBXoBTcFlmJnKFqLGqRjlXFsnFZMnAerHIycHfOjuThXHw8zo8jTQ7uhRnE70MeFhLEYgqWngRyKfB09mQOuHtE9uZHn6ZfsXoch6uzXPG4K2Z3x4HlCQT9AwN0vW2aXTDz32zJm-v2zP76aReLP0zRwZ2-plEXGAwxA-X7ZL0qJ9XFX_yOVxvlXXI7IlI67VXoHrnm2vvkxizG3B8QNwv5lo7GAhMnFC1fTbGIdghDwCzTCkE4Zh2FiaZLT31gRojMVwtah8-QjaW2rel0cXHqmh_u_HVHY4ToIZkffPjy_nAcizOMKyn1aqxqQG7MgWOuhSgVS5VXuavKWijvvFfaydp7sMC1ttqClyV5lVuteW2ZqmBheURG7bJ1Twgt8sL5rMqk8ELUeWGrjPtCMskBfeYpSwjbTJypInM5FtBYmE2K2jeD8jMoP9PLLyFvtn3Oet6OS1u_Q33YtkTO7XACJsnEV9hoXzp4oiLXeSmUFSUMxNdVKlMsa6jzhGQbbTKbba2wEMOFmktvXezq5bq4lnSGmY6b1HxGLUclB8gdcHpC9kFlQSJ4ZKrIGBIfFSoNlPw8TcjLjTIbWDMwEGRbt1x3hnN0XAEo84Q87pV7O_Qs1YD5UgHPNVD7gWyG_7TNaeAllxhzz2BEb7cvyBVk__T_mj8jt_BX_xXsORmtztduH3DhqnwRF4Tfem5Zmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+hierarchical+classification+of+frontotemporal+dementia+and+Alzheimer%27s+disease&rft.jtitle=NeuroImage+clinical&rft.au=Kim%2C+Jun+Pyo&rft.au=Kim%2C+Jeonghun&rft.au=Park%2C+Yu+Hyun&rft.au=Park%2C+Seong+Beom&rft.date=2019-01-01&rft.eissn=2213-1582&rft.volume=23&rft.spage=101811&rft_id=info:doi/10.1016%2Fj.nicl.2019.101811&rft_id=info%3Apmid%2F30981204&rft.externalDocID=30981204
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158219X00030%2Fcov150h.gif