Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease
In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including beh...
Saved in:
| Published in | NeuroImage clinical Vol. 23; p. 101811 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier Inc
01.01.2019
Elsevier BV Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2213-1582 2213-1582 |
| DOI | 10.1016/j.nicl.2019.101811 |
Cover
| Abstract | In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method.
We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability.
The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1–4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA.
In the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions.
•We developed a machine learning-based automated classifier for differential diagnosis of FTD clinical syndromes and AD.•Our classifier achieved good to excellent accuracy for each classification step.•Discriminative regions are similar to previously known cortical atrophic patterns in each clinical syndrome. |
|---|---|
| AbstractList | In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method.
We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability.
The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1-4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA.
In the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions. In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method.BACKGROUNDIn a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method.We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability.METHODSWe recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability.The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1-4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA.RESULTSThe classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1-4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA.In the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions.CONCLUSIONSIn the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions. In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method. We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability. The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1–4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA. In the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions. •We developed a machine learning-based automated classifier for differential diagnosis of FTD clinical syndromes and AD.•Our classifier achieved good to excellent accuracy for each classification step.•Discriminative regions are similar to previously known cortical atrophic patterns in each clinical syndrome. Background: In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method. Methods: We recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability. Results: The classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1–4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA. Conclusions: In the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions. Keywords: Frontotemporal dementia, Classification model, Machine learning • We developed a machine learning-based automated classifier for differential diagnosis of FTD clinical syndromes and AD. • Our classifier achieved good to excellent accuracy for each classification step. • Discriminative regions are similar to previously known cortical atrophic patterns in each clinical syndrome. AbstractBackgroundIn a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of cortical atrophy in some frontotemporal dementia (FTD) patients and overlapping patterns of atrophy among three FTD clinical syndromes including behavioral variant FTD (bvFTD), non-fluent/agrammatic variant primary progressive aphasia (nfvPPA), and semantic variant PPA (svPPA) give rise to the need for classification models at the individual level. In this study, we aimed to classify each individual subject into one of the diagnostic categories in a hierarchical manner by employing a machine learning-based classification method. MethodsWe recruited 143 patients with FTD, 50 patients with Alzheimer's disease (AD) dementia, and 146 cognitively normal subjects. All subjects underwent a three-dimensional volumetric brain magnetic resonance imaging (MRI) scan, and cortical thickness was measured using FreeSurfer. We applied the Laplace Beltrami operator to reduce noise in the cortical thickness data and to reduce the dimension of the feature vector. Classifiers were constructed by applying both principal component analysis and linear discriminant analysis to the cortical thickness data. For the hierarchical classification, we trained four classifiers using different pairs of groups: Step 1 - CN vs. FTD + AD, Step 2 - FTD vs. AD, Step 3 - bvFTD vs. PPA, Step 4 - svPPA vs. nfvPPA. To evaluate the classification performance for each step, we used a10-fold cross-validation approach, performed 1000 times for reliability. ResultsThe classification accuracy of the entire hierarchical classification tree was 75.8%, which was higher than that of the non-hierarchical classifier (73.0%). The classification accuracies of steps 1–4 were 86.1%, 90.8%, 86.9%, and 92.1%, respectively. Changes in the right frontotemporal area were critical for discriminating behavioral variant FTD from PPA. The left frontal lobe discriminated nfvPPA from svPPA, while the bilateral anterior temporal regions were critical for identifying svPPA. ConclusionsIn the present study, our automated classifier successfully classified FTD clinical subtypes with good to excellent accuracy. Our classifier may help clinicians diagnose FTD subtypes with subtle cortical atrophy and facilitate appropriate specific interventions. |
| ArticleNumber | 101811 |
| Author | Seong, Joon-Kyung Yoo, Sole Kim, Eun-Joo Park, Seong Beom Kim, Hee Jin Kim, Jeonghun Lockhart, Samuel N. Seo, Sang Won Na, Duk L. Brown, Jesse A. Park, Yu Hyun Kim, Jun Pyo Lee, Jin San |
| AuthorAffiliation | d Department of Neurology, Kyunghee University Medical Center, Seoul, Republic of Korea h Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA c School of Biomedical Engineering, Korea University, Seoul, Republic of Korea f Department of Neurology, Busan National University Hospital, Busan, Republic of Korea l Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea i Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea a Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea j Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea k Center for Clinical Epidemiology, Samsung Medical Center, Seoul, Republic of Korea b Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea e Department of Cognitive Science, Yonsei University |
| AuthorAffiliation_xml | – name: b Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea – name: a Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea – name: d Department of Neurology, Kyunghee University Medical Center, Seoul, Republic of Korea – name: f Department of Neurology, Busan National University Hospital, Busan, Republic of Korea – name: c School of Biomedical Engineering, Korea University, Seoul, Republic of Korea – name: e Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea – name: l Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea – name: k Center for Clinical Epidemiology, Samsung Medical Center, Seoul, Republic of Korea – name: h Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA – name: i Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea – name: j Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Republic of Korea – name: g Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA |
| Author_xml | – sequence: 1 givenname: Jun Pyo orcidid: 0000-0003-4376-3107 surname: Kim fullname: Kim, Jun Pyo organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea – sequence: 2 givenname: Jeonghun surname: Kim fullname: Kim, Jeonghun organization: Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea – sequence: 3 givenname: Yu Hyun surname: Park fullname: Park, Yu Hyun organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea – sequence: 4 givenname: Seong Beom surname: Park fullname: Park, Seong Beom organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea – sequence: 5 givenname: Jin San surname: Lee fullname: Lee, Jin San organization: Department of Neurology, Kyunghee University Medical Center, Seoul, Republic of Korea – sequence: 6 givenname: Sole surname: Yoo fullname: Yoo, Sole organization: Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea – sequence: 7 givenname: Eun-Joo surname: Kim fullname: Kim, Eun-Joo organization: Department of Neurology, Busan National University Hospital, Busan, Republic of Korea – sequence: 8 givenname: Hee Jin surname: Kim fullname: Kim, Hee Jin organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea – sequence: 9 givenname: Duk L. surname: Na fullname: Na, Duk L. organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea – sequence: 10 givenname: Jesse A. surname: Brown fullname: Brown, Jesse A. organization: Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA – sequence: 11 givenname: Samuel N. surname: Lockhart fullname: Lockhart, Samuel N. organization: Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA – sequence: 12 givenname: Sang Won orcidid: 0000-0002-4262-1468 surname: Seo fullname: Seo, Sang Won email: sw72.seo@samsung.com organization: Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea – sequence: 13 givenname: Joon-Kyung surname: Seong fullname: Seong, Joon-Kyung email: jkseong@korea.ac.kr organization: Department of Bio-convergence Engineering, Korea University, Seoul, Republic of Korea |
| BackLink | https://cir.nii.ac.jp/crid/1873116917808206720$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/30981204$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAUjFARLaV_gAPKAQkuu9hO4tgckKqKj0pFHICz5djPu14Se7GzRcuv56UppUWiIgfHsufNPL-Zx8VBiAGK4iklS0oof7VZBm_6JSNUTgeC0gfFEWO0WtBGsINb-8PiJOcNwU8Q0nL-qDisiBSUkfqogI_arH2Asgedgg-rstMZbLn2kHTCK6P70vQ6Z-9wP_oYyuhKl2IY4wjDNiYEWBggjF6XOtjytP-5Bj9AepFL6zMg35PiodN9hpPr_3Hx9d3bL2cfFhef3p-fnV4sDOdyXAjbYNcAHZN13QlKhBMNmM7WwoFzQgK3zgFYK7XUnDWcmUZLyaymwpC2Oi7OZ14b9UZtkx902quovbo6iGmldBpxbqCk64BJ1jay6Wqh6w4pnDWEE9HWRDbIVc1cu7DV-x-6728IKVGTB2qjJg_U5IGaPcCqN3PVdtcNYA2OBQd0p5W7N8Gv1SpeKl43oq4mgpfXBCl-30Ee1eCzgb7XAeIuK8aI5KSuGobQZ7e1bkR-u4sAMQNMijkncMr48cpDlPb9_e9gf5X-1-Ofz0XBe5SaVirailIuaSuIYIS3jPyZEWAULjFoyvQIxqR9gz3kTdylgClRVGWmiPo8JXkKMpUVCtPJmtf_JkCr_X1N_gJ15gD7 |
| CitedBy_id | crossref_primary_10_3233_JAD_230248 crossref_primary_10_1002_brb3_2881 crossref_primary_10_3389_fnagi_2022_869387 crossref_primary_10_32604_csse_2022_018520 crossref_primary_10_1016_j_jbi_2022_104030 crossref_primary_10_1080_23279095_2023_2236742 crossref_primary_10_1002_gps_5667 crossref_primary_10_1088_1741_2552_ac87d0 crossref_primary_10_3389_fnagi_2021_708932 crossref_primary_10_1016_j_neuroscience_2025_03_036 crossref_primary_10_1162_netn_a_00285 crossref_primary_10_1016_j_trci_2019_10_001 crossref_primary_10_1038_s41598_024_58223_3 crossref_primary_10_1186_s13195_020_00757_5 crossref_primary_10_1038_s41598_023_43706_6 crossref_primary_10_1063_5_0011697 crossref_primary_10_3389_fnhum_2025_1526554 crossref_primary_10_1016_j_bspc_2022_104001 crossref_primary_10_1038_s41591_024_03118_z crossref_primary_10_1134_S0362119720080137 crossref_primary_10_1007_s00500_022_06762_0 crossref_primary_10_3233_JAD_200955 crossref_primary_10_1515_revneuro_2021_0101 crossref_primary_10_1093_braincomms_fcaa079 crossref_primary_10_1109_ACCESS_2022_3180073 crossref_primary_10_3390_brainsci14080806 crossref_primary_10_3389_fnins_2022_828029 crossref_primary_10_1080_14737175_2022_2048648 crossref_primary_10_1186_s13195_020_00612_7 crossref_primary_10_3389_fnagi_2023_1094233 crossref_primary_10_1002_brb3_2500 crossref_primary_10_3389_fnins_2020_00853 crossref_primary_10_3389_fnsys_2024_1324437 crossref_primary_10_3389_fnagi_2023_1149871 crossref_primary_10_1007_s42835_021_00967_3 crossref_primary_10_1177_19714009251313511 crossref_primary_10_32604_cmc_2024_046869 crossref_primary_10_1002_alz_14377 crossref_primary_10_3389_fnins_2020_626154 crossref_primary_10_3390_cells13231965 crossref_primary_10_1038_s41598_021_86114_4 crossref_primary_10_1093_braincomms_fcaf065 crossref_primary_10_3390_life12070947 crossref_primary_10_1038_s43856_024_00437_7 crossref_primary_10_1016_j_arr_2022_101614 crossref_primary_10_1016_j_neurad_2020_04_004 crossref_primary_10_1111_exsy_13003 crossref_primary_10_1016_j_lana_2022_100387 crossref_primary_10_1002_alz_12645 crossref_primary_10_3389_fnagi_2021_673469 crossref_primary_10_3346_jkms_2020_35_e379 crossref_primary_10_7554_eLife_83970 crossref_primary_10_1002_hbm_26205 crossref_primary_10_1007_s11042_023_17288_4 crossref_primary_10_1109_JTEHM_2022_3186836 crossref_primary_10_1016_j_compmedimag_2020_101713 crossref_primary_10_1093_mnras_stac3770 crossref_primary_10_3389_fnagi_2024_1459652 crossref_primary_10_3389_fnins_2024_1331677 |
| Cites_doi | 10.1148/radiol.2015150220 10.1038/s41598-018-22277-x 10.1007/s00330-016-4691-x 10.1016/j.jalz.2011.03.005 10.1016/j.nicl.2017.02.003 10.1148/radiol.15141869 10.1093/brain/awr179 10.1007/s10548-012-0246-x 10.1016/j.neuroimage.2013.10.067 10.1093/brain/awm319 10.1007/s00234-009-0521-z 10.1016/j.nicl.2015.01.011 10.1093/brain/awn239 10.1212/WNL.0b013e3181a55fa2 10.1007/s00259-007-0523-1 10.2174/1745017901309010088 10.1212/WNL.0b013e31821103e6 10.1016/S0140-6736(15)00461-4 10.1016/j.neuroimage.2008.03.050 10.1016/S1474-4422(07)70266-1 10.1109/TMI.2006.882143 10.1136/jnnp.2010.212225 10.1001/archneurol.2007.38 10.1212/01.wnl.0000237038.55627.5b 10.1016/j.neuroimage.2009.05.085 10.1212/WNL.58.2.198 10.3233/JAD-170893 10.3389/fneur.2014.00071 10.1016/S1474-4422(11)70077-1 10.1016/j.neuroimage.2011.09.085 10.1002/hbm.22156 10.1212/WNL.57.2.216 10.1109/34.598228 10.3233/JAD-150334 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright © 2019. Published by Elsevier Inc. 2019 Published by Elsevier Inc. 2019 |
| Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Inc. – notice: 2019 Published by Elsevier Inc. 2019 |
| DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1016/j.nicl.2019.101811 |
| DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2213-1582 |
| EndPage | 101811 |
| ExternalDocumentID | oai_doaj_org_article_9fbe2927595b48a4ba18fdc060874095 10.1016/j.nicl.2019.101811 PMC6458431 30981204 10_1016_j_nicl_2019_101811 1_s2_0_S2213158219301615 S2213158219301615 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: K01 AG055698 |
| GroupedDBID | .1- .FO 0R~ 1P~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OK1 RIG ROL RPM SSZ Z5R AFCTW RYH AAYXX CITATION AACTN CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c669t-8d5221eeb2944b8108f85ecbd48feff89e6dffeedd9a9a62562c5a992da18c073 |
| IEDL.DBID | M48 |
| ISSN | 2213-1582 |
| IngestDate | Fri Oct 03 12:53:32 EDT 2025 Sun Oct 26 03:37:15 EDT 2025 Tue Sep 30 17:20:49 EDT 2025 Fri Sep 05 14:30:16 EDT 2025 Thu Apr 03 07:09:49 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Wed Oct 01 01:54:04 EDT 2025 Thu Jun 26 23:05:20 EDT 2025 Wed Jun 18 06:48:26 EDT 2025 Tue Aug 26 16:33:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Frontotemporal dementia Classification model Machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c669t-8d5221eeb2944b8108f85ecbd48feff89e6dffeedd9a9a62562c5a992da18c073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors contributed equally to this work. |
| ORCID | 0000-0002-4262-1468 0000-0003-4376-3107 0000-0002-0893-5420 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.nicl.2019.101811 |
| PMID | 30981204 |
| PQID | 2209604352 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9fbe2927595b48a4ba18fdc060874095 unpaywall_primary_10_1016_j_nicl_2019_101811 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6458431 proquest_miscellaneous_2209604352 pubmed_primary_30981204 crossref_citationtrail_10_1016_j_nicl_2019_101811 crossref_primary_10_1016_j_nicl_2019_101811 nii_cinii_1873116917808206720 elsevier_clinicalkeyesjournals_1_s2_0_S2213158219301615 elsevier_clinicalkey_doi_10_1016_j_nicl_2019_101811 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | NeuroImage clinical |
| PublicationTitleAlternate | Neuroimage Clin |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV – name: Elsevier |
| References | Haufe, Meinecke, Görgen, Dähne, Haynes, Blankertz, Bießmann (bb0085) 2014; 87 Davatzikos, Resnick, Wu, Parmpi, Clark (bb0050) 2008; 41 Westman, Aguilar, Muehlboeck, Simmons (bb0175) 2013; 26 Wee, Yap, Shen, Initiative (bb0170) 2013; 34 Bang, Spina, Miller (bb0010) 2015; 386 Kloppel, Stonnington, Barnes, Chen, Chu, Good, Mader, Mitchell, Patel, Roberts (bb0100) 2008; 131 Barthel, Gertz, Dresel, Peters, Bartenstein, Buerger, Hiemeyer, Wittemer-Rump, Seibyl, Reininger (bb0015) 2011; 10 Wilson, Ogar, Laluz, Growdon, Jang, Glenn, Miller, Weiner, Gorno-Tempini (bb0180) 2009; 47 Cho, Seong, Jeong, Shin (bb0045) 2012; 59 Qiu, Bitouk, Miller (bb0125) 2006; 25 Davies, Scahill, Graham, Williams, Graham, Hodges (bb0055) 2009; 51 Farrar (bb0065) 2017; 58 Bron, Smits, Papma, Steketee, Meijboom, de Groot, van Swieten, Niessen, Klein (bb0040) 2017; 27 Galton, Patterson, Graham, Lambon-Ralph, Williams, Antoun, Sahakian, Hodges (bb0070) 2001; 57 Brambati, Amici, Racine, Neuhaus, Miller, Ogar, Dronkers, Miller, Rosen, Gorno-Tempini (bb0035) 2015; 8 Gorno-Tempini, Ogar, Brambati, Wang, Jeong, Rankin, Dronkers, Miller (bb0075) 2006; 67 Rosen, Gorno–Tempini, Goldman, Perry, Schuff, Weiner, Feiwell, Kramer, Miller (bb0140) 2002; 58 Hodges, Patterson (bb0090) 2007; 6 Vallet, Lévy (bb0160) 2008 Rascovsky, Hodges, Knopman, Mendez, Kramer, Neuhaus, van Swieten, Seelaar, Dopper, Onyike (bb0135) 2011; 134 Vieira, Caixeta, Machado, Silva, Nardi, Arias-Carrión, Carta (bb0165) 2013; 9 Bouts, Moller, Hafkemeijer, van Swieten, Dopper, van der Flier, Vrenken, Wink, Pijnenburg, Scheltens (bb0030) 2018; 62 San Lee, Kim, Shin, Cho, D-s, Kim, Kim, Kim, Lockhart (bb0145) 2018; 8 Moller, Pijnenburg, van der Flier, Versteeg, Tijms, de Munck, Hafkemeijer, Rombouts, van der Grond, van Swieten (bb0115) 2016; 279 McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux (bb0110) 2011; 7 Agosta, Ferraro, Canu, Copetti, Galantucci, Magnani, Marcone, Valsasina, Sodero, Comi (bb0005) 2015; 276 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0095) 2008; 131 Bisenius, Mueller, Diehl-Schmid, Fassbender, Grimmer, Jessen, Kassubek, Kornhuber, Landwehrmeyer, Ludolph (bb0025) 2017; 14 Engler, Santillo, Wang, Lindau, Savitcheva, Nordberg, Lannfelt, Långström, Kilander (bb0060) 2008; 35 Kloppel, Peter, Ludl, Pilatus, Maier, Mader, Heimbach, Frings, Egger, Dukart (bb0105) 2015; 47 Raamana, Rosen, Miller, Weiner, Wang, Beg (bb0130) 2014; 5 Belhumeur, Hespanha, Kriegman (bb0020) 1997; 19 Seelaar, Rohrer, Pijnenburg, Fox, van Swieten (bb0150) 2011; 82 Seeley, Crawford, Rascovsky, Kramer, Weiner, Miller, Gorno-Tempini (bb0155) 2008; 65 Gorno-Tempini, Hillis, Weintraub, Kertesz, Mendez, Cappa, Ogar, Rohrer, Black, Boeve (bb0080) 2011; 76 Pereira, Williams, Acosta-Cabronero, Pengas, Spillantini, Xuereb, Hodges, Nestor (bb0120) 2009; 72 San Lee (10.1016/j.nicl.2019.101811_bb0145) 2018; 8 Wee (10.1016/j.nicl.2019.101811_bb0170) 2013; 34 Gorno-Tempini (10.1016/j.nicl.2019.101811_bb0075) 2006; 67 Bron (10.1016/j.nicl.2019.101811_bb0040) 2017; 27 Westman (10.1016/j.nicl.2019.101811_bb0175) 2013; 26 Seelaar (10.1016/j.nicl.2019.101811_bb0150) 2011; 82 Seeley (10.1016/j.nicl.2019.101811_bb0155) 2008; 65 Belhumeur (10.1016/j.nicl.2019.101811_bb0020) 1997; 19 Haufe (10.1016/j.nicl.2019.101811_bb0085) 2014; 87 Wilson (10.1016/j.nicl.2019.101811_bb0180) 2009; 47 Barthel (10.1016/j.nicl.2019.101811_bb0015) 2011; 10 McKhann (10.1016/j.nicl.2019.101811_bb0110) 2011; 7 Qiu (10.1016/j.nicl.2019.101811_bb0125) 2006; 25 Vieira (10.1016/j.nicl.2019.101811_bb0165) 2013; 9 Engler (10.1016/j.nicl.2019.101811_bb0060) 2008; 35 Rascovsky (10.1016/j.nicl.2019.101811_bb0135) 2011; 134 Pereira (10.1016/j.nicl.2019.101811_bb0120) 2009; 72 Klöppel (10.1016/j.nicl.2019.101811_bb0095) 2008; 131 Vallet (10.1016/j.nicl.2019.101811_bb0160) 2008 Galton (10.1016/j.nicl.2019.101811_bb0070) 2001; 57 Bouts (10.1016/j.nicl.2019.101811_bb0030) 2018; 62 Davies (10.1016/j.nicl.2019.101811_bb0055) 2009; 51 Cho (10.1016/j.nicl.2019.101811_bb0045) 2012; 59 Kloppel (10.1016/j.nicl.2019.101811_bb0100) 2008; 131 Agosta (10.1016/j.nicl.2019.101811_bb0005) 2015; 276 Moller (10.1016/j.nicl.2019.101811_bb0115) 2016; 279 Kloppel (10.1016/j.nicl.2019.101811_bb0105) 2015; 47 Rosen (10.1016/j.nicl.2019.101811_bb0140) 2002; 58 Brambati (10.1016/j.nicl.2019.101811_bb0035) 2015; 8 Hodges (10.1016/j.nicl.2019.101811_bb0090) 2007; 6 Farrar (10.1016/j.nicl.2019.101811_bb0065) 2017; 58 Gorno-Tempini (10.1016/j.nicl.2019.101811_bb0080) 2011; 76 Raamana (10.1016/j.nicl.2019.101811_bb0130) 2014; 5 Bisenius (10.1016/j.nicl.2019.101811_bb0025) 2017; 14 Davatzikos (10.1016/j.nicl.2019.101811_bb0050) 2008; 41 Bang (10.1016/j.nicl.2019.101811_bb0010) 2015; 386 |
| References_xml | – volume: 19 start-page: 711 year: 1997 end-page: 720 ident: bb0020 article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 25 start-page: 1296 year: 2006 end-page: 1306 ident: bb0125 article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator publication-title: IEEE Trans. Med. Imaging – volume: 8 start-page: 345 year: 2015 end-page: 355 ident: bb0035 article-title: Longitudinal gray matter contraction in three variants of primary progressive aphasia: a tenser-based morphometry study publication-title: NeuroImage – volume: 10 start-page: 424 year: 2011 end-page: 435 ident: bb0015 article-title: Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study publication-title: Lancet Neurol. – volume: 34 start-page: 3411 year: 2013 end-page: 3425 ident: bb0170 article-title: Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns publication-title: Hum. Brain Mapp. – volume: 59 start-page: 2217 year: 2012 end-page: 2230 ident: bb0045 article-title: Initiative AsDN: individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data publication-title: Neuroimage – volume: 58 start-page: 198 year: 2002 ident: bb0140 article-title: Patterns of brain atrophy in frontotemporal dementia and semantic dementia publication-title: Neurology – volume: 7 start-page: 263 year: 2011 end-page: 269 ident: bb0110 article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement. – volume: 8 start-page: 4161 year: 2018 ident: bb0145 article-title: Na DL: machine learning-based individual assessment of cortical atrophy pattern in Alzheimer's disease Spectrum: development of the classifier and longitudinal evaluation publication-title: Sci. Rep. – volume: 27 start-page: 3372 year: 2017 end-page: 3382 ident: bb0040 article-title: Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI publication-title: Eur. Radiol. – volume: 47 start-page: 1558 year: 2009 end-page: 1567 ident: bb0180 article-title: Automated MRI-based classification of primary progressive aphasia variants publication-title: NeuroImage – volume: 134 start-page: 2456 year: 2011 end-page: 2477 ident: bb0135 article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia publication-title: Brain – volume: 82 start-page: 476 year: 2011 ident: bb0150 article-title: Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 386 start-page: 1672 year: 2015 end-page: 1682 ident: bb0010 article-title: Frontotemporal dementia publication-title: Lancet – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bb0095 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – volume: 65 start-page: 249 year: 2008 end-page: 255 ident: bb0155 article-title: Frontal Paralimbic network atrophy in very mild Behavioral variant Frontotemporal dementia publication-title: Arch. Neurol. – volume: 58 start-page: 1250 year: 2017 ident: bb0065 article-title: Regional visual read inspection of [18F] flutemetamol brain images from end-of-life and amnestic MCI subjects publication-title: J. Nucl. Med. – volume: 35 start-page: 100 year: 2008 end-page: 106 ident: bb0060 article-title: In vivo amyloid imaging with PET in frontotemporal dementia publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 9 start-page: 88 year: 2013 end-page: 95 ident: bb0165 article-title: Epidemiology of early-onset dementia: a review of the literature publication-title: Clin. Pract. Epidemiol. Ment. Health – volume: 276 start-page: 219 year: 2015 end-page: 227 ident: bb0005 article-title: Differentiation between subtypes of primary progressive aphasia by using cortical thickness and diffusion-tensor MR imaging measures publication-title: Radiology – volume: 57 start-page: 216 year: 2001 end-page: 225 ident: bb0070 article-title: Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia publication-title: Neurology – volume: 41 start-page: 1220 year: 2008 end-page: 1227 ident: bb0050 article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI publication-title: NeuroImage – volume: 6 start-page: 1004 year: 2007 end-page: 1014 ident: bb0090 article-title: Semantic dementia: a unique clinicopathological syndrome publication-title: Lancet Neurol. – volume: 14 start-page: 334 year: 2017 end-page: 343 ident: bb0025 article-title: Predicting primary progressive aphasias with support vector machine approaches in structural MRI data publication-title: NeuroImage Clin. – volume: 5 start-page: 71 year: 2014 ident: bb0130 article-title: Three-class differential diagnosis among Alzheimer disease, Frontotemporal dementia, and controls publication-title: Front. Neurol. – volume: 67 start-page: 1849 year: 2006 ident: bb0075 article-title: Anatomical correlates of early mutism in progressive nonfluent aphasia publication-title: Neurology – volume: 76 start-page: 1006 year: 2011 end-page: 1014 ident: bb0080 article-title: Classification of primary progressive aphasia and its variants publication-title: Neurology – volume: 131 start-page: 2969 year: 2008 end-page: 2974 ident: bb0100 article-title: Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method publication-title: Brain – volume: 62 start-page: 1827 year: 2018 end-page: 1839 ident: bb0030 article-title: single subject classification of Alzheimer's disease and Behavioral variant Frontotemporal dementia using anatomical, diffusion tensor, and resting-state functional magnetic resonance imaging publication-title: J. Alzheimers Dis. – start-page: 251 year: 2008 end-page: 260 ident: bb0160 article-title: Spectral geometry processing with manifold harmonics publication-title: Computer Graphics Forum: 2008: Wiley Online Library – volume: 72 start-page: 1653 year: 2009 end-page: 1660 ident: bb0120 article-title: Atrophy patterns in histologic vs clinical groupings of frontotemporal lobar degeneration publication-title: Neurology – volume: 279 start-page: 838 year: 2016 end-page: 848 ident: bb0115 article-title: Alzheimer disease and Behavioral variant Frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis publication-title: Radiology – volume: 47 start-page: 939 year: 2015 end-page: 954 ident: bb0105 article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study publication-title: J. Alzheimers Dis. – volume: 51 start-page: 491 year: 2009 end-page: 503 ident: bb0055 article-title: Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry publication-title: Neuroradiology – volume: 26 start-page: 9 year: 2013 end-page: 23 ident: bb0175 article-title: Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment publication-title: Brain Topogr. – volume: 87 start-page: 96 year: 2014 end-page: 110 ident: bb0085 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: Neuroimage – volume: 279 start-page: 838 issue: 3 year: 2016 ident: 10.1016/j.nicl.2019.101811_bb0115 article-title: Alzheimer disease and Behavioral variant Frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis publication-title: Radiology doi: 10.1148/radiol.2015150220 – volume: 8 start-page: 4161 issue: 1 year: 2018 ident: 10.1016/j.nicl.2019.101811_bb0145 article-title: Na DL: machine learning-based individual assessment of cortical atrophy pattern in Alzheimer's disease Spectrum: development of the classifier and longitudinal evaluation publication-title: Sci. Rep. doi: 10.1038/s41598-018-22277-x – volume: 27 start-page: 3372 issue: 8 year: 2017 ident: 10.1016/j.nicl.2019.101811_bb0040 article-title: Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI publication-title: Eur. Radiol. doi: 10.1007/s00330-016-4691-x – volume: 7 start-page: 263 issue: 3 year: 2011 ident: 10.1016/j.nicl.2019.101811_bb0110 article-title: The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2011.03.005 – volume: 14 start-page: 334 year: 2017 ident: 10.1016/j.nicl.2019.101811_bb0025 article-title: Predicting primary progressive aphasias with support vector machine approaches in structural MRI data publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2017.02.003 – volume: 276 start-page: 219 issue: 1 year: 2015 ident: 10.1016/j.nicl.2019.101811_bb0005 article-title: Differentiation between subtypes of primary progressive aphasia by using cortical thickness and diffusion-tensor MR imaging measures publication-title: Radiology doi: 10.1148/radiol.15141869 – volume: 134 start-page: 2456 issue: 9 year: 2011 ident: 10.1016/j.nicl.2019.101811_bb0135 article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia publication-title: Brain doi: 10.1093/brain/awr179 – volume: 26 start-page: 9 issue: 1 year: 2013 ident: 10.1016/j.nicl.2019.101811_bb0175 article-title: Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment publication-title: Brain Topogr. doi: 10.1007/s10548-012-0246-x – volume: 87 start-page: 96 year: 2014 ident: 10.1016/j.nicl.2019.101811_bb0085 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.067 – volume: 131 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.nicl.2019.101811_bb0095 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 51 start-page: 491 issue: 8 year: 2009 ident: 10.1016/j.nicl.2019.101811_bb0055 article-title: Development of an MRI rating scale for multiple brain regions: comparison with volumetrics and with voxel-based morphometry publication-title: Neuroradiology doi: 10.1007/s00234-009-0521-z – volume: 8 start-page: 345 year: 2015 ident: 10.1016/j.nicl.2019.101811_bb0035 article-title: Longitudinal gray matter contraction in three variants of primary progressive aphasia: a tenser-based morphometry study publication-title: NeuroImage doi: 10.1016/j.nicl.2015.01.011 – start-page: 251 year: 2008 ident: 10.1016/j.nicl.2019.101811_bb0160 article-title: Spectral geometry processing with manifold harmonics – volume: 131 start-page: 2969 issue: Pt 11 year: 2008 ident: 10.1016/j.nicl.2019.101811_bb0100 article-title: Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method publication-title: Brain doi: 10.1093/brain/awn239 – volume: 72 start-page: 1653 issue: 19 year: 2009 ident: 10.1016/j.nicl.2019.101811_bb0120 article-title: Atrophy patterns in histologic vs clinical groupings of frontotemporal lobar degeneration publication-title: Neurology doi: 10.1212/WNL.0b013e3181a55fa2 – volume: 35 start-page: 100 issue: 1 year: 2008 ident: 10.1016/j.nicl.2019.101811_bb0060 article-title: In vivo amyloid imaging with PET in frontotemporal dementia publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-007-0523-1 – volume: 9 start-page: 88 year: 2013 ident: 10.1016/j.nicl.2019.101811_bb0165 article-title: Epidemiology of early-onset dementia: a review of the literature publication-title: Clin. Pract. Epidemiol. Ment. Health doi: 10.2174/1745017901309010088 – volume: 76 start-page: 1006 issue: 11 year: 2011 ident: 10.1016/j.nicl.2019.101811_bb0080 article-title: Classification of primary progressive aphasia and its variants publication-title: Neurology doi: 10.1212/WNL.0b013e31821103e6 – volume: 386 start-page: 1672 issue: 10004 year: 2015 ident: 10.1016/j.nicl.2019.101811_bb0010 article-title: Frontotemporal dementia publication-title: Lancet doi: 10.1016/S0140-6736(15)00461-4 – volume: 41 start-page: 1220 issue: 4 year: 2008 ident: 10.1016/j.nicl.2019.101811_bb0050 article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.03.050 – volume: 6 start-page: 1004 issue: 11 year: 2007 ident: 10.1016/j.nicl.2019.101811_bb0090 article-title: Semantic dementia: a unique clinicopathological syndrome publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(07)70266-1 – volume: 25 start-page: 1296 issue: 10 year: 2006 ident: 10.1016/j.nicl.2019.101811_bb0125 article-title: Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.882143 – volume: 82 start-page: 476 issue: 5 year: 2011 ident: 10.1016/j.nicl.2019.101811_bb0150 article-title: Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2010.212225 – volume: 65 start-page: 249 issue: 2 year: 2008 ident: 10.1016/j.nicl.2019.101811_bb0155 article-title: Frontal Paralimbic network atrophy in very mild Behavioral variant Frontotemporal dementia publication-title: Arch. Neurol. doi: 10.1001/archneurol.2007.38 – volume: 67 start-page: 1849 issue: 10 year: 2006 ident: 10.1016/j.nicl.2019.101811_bb0075 article-title: Anatomical correlates of early mutism in progressive nonfluent aphasia publication-title: Neurology doi: 10.1212/01.wnl.0000237038.55627.5b – volume: 47 start-page: 1558 issue: 4 year: 2009 ident: 10.1016/j.nicl.2019.101811_bb0180 article-title: Automated MRI-based classification of primary progressive aphasia variants publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.085 – volume: 58 start-page: 198 issue: 2 year: 2002 ident: 10.1016/j.nicl.2019.101811_bb0140 article-title: Patterns of brain atrophy in frontotemporal dementia and semantic dementia publication-title: Neurology doi: 10.1212/WNL.58.2.198 – volume: 62 start-page: 1827 issue: 4 year: 2018 ident: 10.1016/j.nicl.2019.101811_bb0030 article-title: single subject classification of Alzheimer's disease and Behavioral variant Frontotemporal dementia using anatomical, diffusion tensor, and resting-state functional magnetic resonance imaging publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-170893 – volume: 5 start-page: 71 year: 2014 ident: 10.1016/j.nicl.2019.101811_bb0130 article-title: Three-class differential diagnosis among Alzheimer disease, Frontotemporal dementia, and controls publication-title: Front. Neurol. doi: 10.3389/fneur.2014.00071 – volume: 10 start-page: 424 issue: 5 year: 2011 ident: 10.1016/j.nicl.2019.101811_bb0015 article-title: Cerebral amyloid-beta PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(11)70077-1 – volume: 58 start-page: 1250 issue: supplement 1 year: 2017 ident: 10.1016/j.nicl.2019.101811_bb0065 article-title: Regional visual read inspection of [18F] flutemetamol brain images from end-of-life and amnestic MCI subjects publication-title: J. Nucl. Med. – volume: 59 start-page: 2217 issue: 3 year: 2012 ident: 10.1016/j.nicl.2019.101811_bb0045 article-title: Initiative AsDN: individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.085 – volume: 34 start-page: 3411 issue: 12 year: 2013 ident: 10.1016/j.nicl.2019.101811_bb0170 article-title: Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22156 – volume: 57 start-page: 216 issue: 2 year: 2001 ident: 10.1016/j.nicl.2019.101811_bb0070 article-title: Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia publication-title: Neurology doi: 10.1212/WNL.57.2.216 – volume: 19 start-page: 711 issue: 7 year: 1997 ident: 10.1016/j.nicl.2019.101811_bb0020 article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598228 – volume: 47 start-page: 939 issue: 4 year: 2015 ident: 10.1016/j.nicl.2019.101811_bb0105 article-title: Applying automated MR-based diagnostic methods to the memory clinic: a prospective study publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150334 |
| SSID | ssj0000800766 ssib023169982 ssib029851858 |
| Score | 2.4759803 |
| Snippet | In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the subtlety of... AbstractBackgroundIn a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the... • We developed a machine learning-based automated classifier for differential diagnosis of FTD clinical syndromes and AD. • Our classifier achieved good to... Background: In a clinical setting, an individual subject classification model rather than a group analysis would be more informative. Specifically, the... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref nii elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 101811 |
| SubjectTerms | Aged Alzheimer Disease Alzheimer Disease - classification Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Brain Brain - diagnostic imaging Brain - pathology Classification model Computer applications to medicine. Medical informatics Diagnosis, Computer-Assisted Diagnosis, Computer-Assisted - methods Female Frontotemporal Dementia Frontotemporal Dementia - classification Frontotemporal Dementia - diagnostic imaging Frontotemporal Dementia - pathology Humans Machine Learning Male Middle Aged Neurology. Diseases of the nervous system Positron-Emission Tomography R858-859.7 Radiology RC346-429 Regular Regular Article |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgB-CC-CZAkZGQOEAgdhzHPhZEVSEtF6jUm-XENk0VslV3Vwh-PTOOs9qIqnDgsodsvjzzYr_JTN4Q8hJAwW1dNqgZqnLhRJGrlpV50zAIHqzyMmp3Lj7Lo2Px6aQ62Wn1hTVhozzwaLh3OjSea15XumqEsqKxTAXXFrLAZnI6qpcWSu8EU2eJB9UxUck5XJlViqcvZsbiLlSdxbou_TYqVrHZqhTF-2eL0_Wh6y6joH9WUt7cDOf25w_b9zvL1OEdcjvxS3owjusuueaHe-TGImXQ7xO_iNWTnqZ2Ed8ormOOYkvsmFQAn9EWKTXWEEW30WWgIeocJB2rnrr4UrGz1A6OHvS_Tn333V-8WtGU73lAjg8_fv1wlKdWC3krpV7nygEPYx7CbC1Eo1ihgqp82zihgg9BaS9dCLCeOm21hZhJ8rayWnMH7mhhmnhI9obl4B8TWle1D2VbShGEcFVt25KHWjIJXsQsZkbYZGrTJh1ybIfRm6ng7Mygewy6x4zuycjr7THnowrHlXu_Rw9u90QF7bgBcGUSrszfcJWRcvK_mT5ShWkVTtRdeen6sqP8Ks0MK8PMipvCfEFcIiyBQEfWnZF9ABlYBH-ZqkuGMka1KqLAPi8y8mKCn4EZANM6dvDLzcpwjmEo0F6ekUcjHLdDLwsNDK4QcF8zoM5sM_9n6E6jyrjEDHoJI3qzhfQ_2P7J_7D9U3ILTzm-6XpG9tYXG78P3G_dPI-P-W_YJVCA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk4AXvj8CDBkJiQdoFTuOYz8WxDQhdUKCSuPJchJ7C5R0Wloh9tdz57gVgWoaL5Ga2kl8vvh-lzv_jpBXoBTcFlmJnKFqLGqRjlXFsnFZMnAerHIycHfOjuThXHw8zo8jTQ7uhRnE70MeFhLEYgqWngRyKfB09mQOuHtE9uZHn6ZfsXoch6uzXPG4K2Z3x4HlCQT9AwN0vW2aXTDz32zJm-v2zP76aReLP0zRwZ2-plEXGAwxA-X7ZL0qJ9XFX_yOVxvlXXI7IlI67VXoHrnm2vvkxizG3B8QNwv5lo7GAhMnFC1fTbGIdghDwCzTCkE4Zh2FiaZLT31gRojMVwtah8-QjaW2rel0cXHqmh_u_HVHY4ToIZkffPjy_nAcizOMKyn1aqxqQG7MgWOuhSgVS5VXuavKWijvvFfaydp7sMC1ttqClyV5lVuteW2ZqmBheURG7bJ1Twgt8sL5rMqk8ELUeWGrjPtCMskBfeYpSwjbTJypInM5FtBYmE2K2jeD8jMoP9PLLyFvtn3Oet6OS1u_Q33YtkTO7XACJsnEV9hoXzp4oiLXeSmUFSUMxNdVKlMsa6jzhGQbbTKbba2wEMOFmktvXezq5bq4lnSGmY6b1HxGLUclB8gdcHpC9kFlQSJ4ZKrIGBIfFSoNlPw8TcjLjTIbWDMwEGRbt1x3hnN0XAEo84Q87pV7O_Qs1YD5UgHPNVD7gWyG_7TNaeAllxhzz2BEb7cvyBVk__T_mj8jt_BX_xXsORmtztduH3DhqnwRF4Tfem5Zmw priority: 102 providerName: Unpaywall |
| Title | Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer's disease |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213158219301615 https://www.clinicalkey.es/playcontent/1-s2.0-S2213158219301615 https://cir.nii.ac.jp/crid/1873116917808206720 https://www.ncbi.nlm.nih.gov/pubmed/30981204 https://www.proquest.com/docview/2209604352 https://pubmed.ncbi.nlm.nih.gov/PMC6458431 https://doi.org/10.1016/j.nicl.2019.101811 https://doaj.org/article/9fbe2927595b48a4ba18fdc060874095 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: IXB dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: AKRWK dateStart: 20120101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2213-1582 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2213-1582 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000800766 issn: 2213-1582 databaseCode: M48 dateStart: 20120101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJo29THyTwSojIfEAmeLYcewHhApimpA6IUGl8WQ5sb1lCunoh2D89Zxdp1BRJl76kNqJfXf23fnOv0PoOQhFrktaecxQkTLDslTUhKZVRcB50MLygN05OuUnY_bhrDjbQn25o0jA2UbXzteTGk_box_frt_Agn_9O1fLg8j6NC15FACowBvaAU0lfSmHUTT3L6N1VHIe785s7rqHdmkmQe3F0m29qgqI_msa61bXNJvs0r_TK28vuit9_V237R-66_gO2o9GJx4upeQu2rLdPbQ7imH1-8iOQkqlxbGGxDn2ys1gXyc7RBqAkbj2drZPLAq8xBOHXQA_iOBWLTbhpLHRWHcGD9ufF7b5aqcvZjgGgR6g8fH7z-9O0lh_Ia05l_NUGDDOiAXfWzJWCZIJJwpbV4YJZ50T0nLjHChZI7XU4EjxvC60lLnRRNSwdzxE292ks48RLovSOlpTzhxjpih1TXNXcsJzMDCLjCSI9KRWdQQn9zUyWtVnoV0qzynlOaWWnErQy1WfqyU0x42t33oOrlp6WO3wYDI9V3GVKukqCyMqC1lUTGhWwUScqTOe-cqFskgQ7fmv-pursNfCi5obP11u6mVnvbQroma5ytQnIDcl_uqypMEUT9AhCBlQxP8SUVLisY1KkQXU_TxL0LNe_BRsCz7Wozs7WcxUnnvfFGzhPEGPluK4mnov3zCuNUFdo836P11zEaDHuQ-rU5jRq5VI_wftD_45hCdoz7dbnmk9Rdvz6cIegpU3rwbhdGQQFvAA7YxPPw6__AKhPk0M |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk4AXvj8CDBkJiQdoFTuOYz8WxDQhdUKCSuPJchJ7C5R0Wloh9tdz57gVgWoaL5Ga2kl8vvh-lzv_jpBXoBTcFlmJnKFqLGqRjlXFsnFZMnAerHIycHfOjuThXHw8zo8jTQ7uhRnE70MeFhLEYgqWngRyKfB09mQOuHtE9uZHn6ZfsXoch6uzXPG4K2Z3x4HlCQT9AwN0vW2aXTDz32zJm-v2zP76aReLP0zRwZ2-plEXGAwxA-X7ZL0qJ9XFX_yOVxvlXXI7IlI67VXoHrnm2vvkxizG3B8QNwv5lo7GAhMnFC1fTbGIdghDwCzTCkE4Zh2FiaZLT31gRojMVwtah8-QjaW2rel0cXHqmh_u_HVHY4ToIZkffPjy_nAcizOMKyn1aqxqQG7MgWOuhSgVS5VXuavKWijvvFfaydp7sMC1ttqClyV5lVuteW2ZqmBheURG7bJ1Twgt8sL5rMqk8ELUeWGrjPtCMskBfeYpSwjbTJypInM5FtBYmE2K2jeD8jMoP9PLLyFvtn3Oet6OS1u_Q33YtkTO7XACJsnEV9hoXzp4oiLXeSmUFSUMxNdVKlMsa6jzhGQbbTKbba2wEMOFmktvXezq5bq4lnSGmY6b1HxGLUclB8gdcHpC9kFlQSJ4ZKrIGBIfFSoNlPw8TcjLjTIbWDMwEGRbt1x3hnN0XAEo84Q87pV7O_Qs1YD5UgHPNVD7gWyG_7TNaeAllxhzz2BEb7cvyBVk__T_mj8jt_BX_xXsORmtztduH3DhqnwRF4Tfem5Zmw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+hierarchical+classification+of+frontotemporal+dementia+and+Alzheimer%27s+disease&rft.jtitle=NeuroImage+clinical&rft.au=Kim%2C+Jun+Pyo&rft.au=Kim%2C+Jeonghun&rft.au=Park%2C+Yu+Hyun&rft.au=Park%2C+Seong+Beom&rft.date=2019-01-01&rft.eissn=2213-1582&rft.volume=23&rft.spage=101811&rft_id=info:doi/10.1016%2Fj.nicl.2019.101811&rft_id=info%3Apmid%2F30981204&rft.externalDocID=30981204 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158219X00030%2Fcov150h.gif |