Lineage- and developmental stage-specific mechanomodulation of induced pluripotent stem cell differentiation

Background To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current...

Full description

Saved in:
Bibliographic Details
Published inStem cell research & therapy Vol. 8; no. 1; pp. 216 - 7
Main Authors Maldonado, Maricela, Luu, Rebeccah J., Ico, Gerardo, Ospina, Alex, Myung, Danielle, Shih, Hung Ping, Nam, Jin
Format Journal Article
LanguageEnglish
Published London BioMed Central 29.09.2017
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1757-6512
1757-6512
DOI10.1186/s13287-017-0667-2

Cover

Abstract Background To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes. Methods Electrospun nanofibrous substrates with different reduced Young’s modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively. Results The results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner. Conclusions Lineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications.
AbstractList Background To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes. Methods Electrospun nanofibrous substrates with different reduced Young's modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively. Results The results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner. Conclusions Lineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications. Keywords: Induced pluripotent stem cells, Mechanobiology, Differentiation, Substrate stiffness
To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes. Electrospun nanofibrous substrates with different reduced Young's modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively. The results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner. Lineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications.
To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes. Electrospun nanofibrous substrates with different reduced Young's modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively. The results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner. Lineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications.
Abstract Background To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes. Methods Electrospun nanofibrous substrates with different reduced Young’s modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively. Results The results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner. Conclusions Lineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications.
Background To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes. Methods Electrospun nanofibrous substrates with different reduced Young’s modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively. Results The results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner. Conclusions Lineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications.
Background To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes. Methods Electrospun nanofibrous substrates with different reduced Young’s modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively. Results The results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner. Conclusions Lineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications.
To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes.BACKGROUNDTo maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target phenotypes is critical. Although the effects of the physical cell niche on stem cell differentiation are well documented, current approaches to direct step-wise differentiation of iPSCs have been typically limited to the optimization of soluble factors. In this regard, we investigated how temporally varied substrate stiffness affects the step-wise differentiation of iPSCs towards various lineages/phenotypes.Electrospun nanofibrous substrates with different reduced Young's modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively.METHODSElectrospun nanofibrous substrates with different reduced Young's modulus were utilized to subject cells to different mechanical environments during the differentiation process towards representative phenotypes from each of three germ layer derivatives including motor neuron, pancreatic endoderm, and chondrocyte. Phenotype-specific markers of each lineage/stage were utilized to determine differentiation efficiency by reverse-transcription polymerase chain reaction (RT-PCR) and immunofluorescence imaging for gene and protein expression analysis, respectively.The results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner.RESULTSThe results presented in this proof-of-concept study are the first to systematically demonstrate the significant role of the temporally varied mechanical microenvironment on the differentiation of stem cells. Our results demonstrate that the process of differentiation from pluripotent cells to functional end-phenotypes is mechanoresponsive in a lineage- and differentiation stage-specific manner.Lineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications.CONCLUSIONSLineage/developmental stage-dependent optimization of electrospun substrate stiffness provides a unique opportunity to enhance differentiation efficiency of iPSCs for their facilitated therapeutic applications.
ArticleNumber 216
Audience Academic
Author Shih, Hung Ping
Ospina, Alex
Ico, Gerardo
Nam, Jin
Maldonado, Maricela
Luu, Rebeccah J.
Myung, Danielle
Author_xml – sequence: 1
  givenname: Maricela
  surname: Maldonado
  fullname: Maldonado, Maricela
  organization: Department of Bioengineering, University of California-Riverside
– sequence: 2
  givenname: Rebeccah J.
  surname: Luu
  fullname: Luu, Rebeccah J.
  organization: Department of Bioengineering, University of California-Riverside
– sequence: 3
  givenname: Gerardo
  surname: Ico
  fullname: Ico, Gerardo
  organization: Department of Bioengineering, University of California-Riverside
– sequence: 4
  givenname: Alex
  surname: Ospina
  fullname: Ospina, Alex
  organization: Department of Bioengineering, University of California-Riverside
– sequence: 5
  givenname: Danielle
  surname: Myung
  fullname: Myung, Danielle
  organization: Department of Bioengineering, University of California-Riverside
– sequence: 6
  givenname: Hung Ping
  surname: Shih
  fullname: Shih, Hung Ping
  organization: Department of Translational Research and Cellular Therapeutics, City of Hope
– sequence: 7
  givenname: Jin
  orcidid: 0000-0001-5117-8958
  surname: Nam
  fullname: Nam, Jin
  email: jnam@engr.ucr.edu
  organization: Department of Bioengineering, University of California-Riverside
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28962663$$D View this record in MEDLINE/PubMed
BookMark eNqNUl2L1DAULbLiruv-AF-kIIg-dM3HNG1ehGXxY2BA8OM5pMntTIY0qUm7uv_edGZcp4uKLaHl5pyT3HPu4-zEeQdZ9hSjS4xr9jpiSuqqQDgtxqqCPMjOcFVWBSsxOTn6P80uYtyi9FCKEFs8yk5JzRlhjJ5ldmUcyDUUuXQ613AD1vcduEHaPA7TRuxBmdaovAO1kc53Xo9WDsa73Le5cXpUoPPejsH0fkjMxIMuV2Btrk3bQkg1syM8yR620ka4OHzPs6_v3n65_lCsPr5fXl-tCsVYPRQt12rRcMbrpmGAKKJt2WhKGq5BVqXGiKpGYwk1YogTJRXlki1o3QBJfbX0PFvudbWXW9EH08lwK7w0YlfwYS1kGIyyIGjNFWCoMdJ8kY7kiAJp6pKVlCNeqqRF9lqj6-Xtd2ntnSBGYkpC7JMQKQkxJSFIIr3Zk_qx6UCr5ECQdnaT-Y4zG7H2N6JkhKSVBF4eBIL_NkIcRGfiZKl04McoMF-UhGBaT9Dn96BbPwaX_J1QFadlyavfqLVMXRvX-nSumkTFVYmq1DauJq3LP6DSq6EzKs1fa1J9Rng1IyTMAD-GtRxjFMvPn-bYF0fYDUg7bKK34zQZcQ58duzenW2_pjYBqj1ABR9jgFYoM-wmLF3X2H8Gg-8x_yfMwwTEhHVrCEcG_5X0E3YwHtc
CitedBy_id crossref_primary_10_1002_advs_202000735
crossref_primary_10_3389_fviro_2022_869657
crossref_primary_10_1016_j_scr_2021_102534
crossref_primary_10_1021_acsbiomaterials_2c01003
crossref_primary_10_1088_1748_605X_ab261c
crossref_primary_10_3390_polym13223880
crossref_primary_10_1039_C8BM01034J
crossref_primary_10_3389_fbioe_2020_583970
crossref_primary_10_1242_jcs_260094
crossref_primary_10_1002_adfm_202211288
crossref_primary_10_1002_cbin_12151
crossref_primary_10_1242_dev_201621
crossref_primary_10_1016_j_biomaterials_2020_119766
crossref_primary_10_1007_s13770_020_00301_4
crossref_primary_10_1021_acsbiomaterials_2c01054
crossref_primary_10_1016_j_mtbio_2024_101109
crossref_primary_10_1016_j_polymer_2024_127549
crossref_primary_10_1186_s40824_023_00371_0
crossref_primary_10_3389_fbioe_2019_00357
crossref_primary_10_1021_acsnano_3c00009
crossref_primary_10_1038_s41536_023_00334_y
crossref_primary_10_1038_s41598_020_72158_5
crossref_primary_10_59717_j_xinn_med_2023_100037
crossref_primary_10_2139_ssrn_3906447
crossref_primary_10_1007_s10439_019_02337_7
Cites_doi 10.1016/j.stem.2010.12.008
10.1016/j.actbio.2010.11.022
10.1038/nbt.1683
10.1016/j.cell.2008.02.008
10.1038/nmeth.3586
10.1002/adhm.201600141
10.1038/nbt.1529
10.1093/jb/mvw044
10.4252/wjsc.v6.i1.11
10.1016/j.cell.2016.05.082
10.1016/j.semcdb.2014.05.017
10.1016/j.biomaterials.2015.01.037
10.1016/j.ceb.2014.06.013
10.1038/nbt.2135
10.1016/j.biomaterials.2009.05.050
10.1242/dev.01451
10.1038/nbt1393
10.1002/stem.2527
10.1016/j.addr.2014.02.006
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s13287-017-0667-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE



Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Selected full-text)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1757-6512
EndPage 7
ExternalDocumentID oai_doaj_org_article_389ce1e810d94969903e2b856539095c
10.1186/s13287-017-0667-2
PMC5622562
A507903172
28962663
10_1186_s13287_017_0667_2
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Directorate for Engineering
  grantid: DGE-1326120
  funderid: http://dx.doi.org/10.13039/100000084
– fundername: ;
  grantid: DGE-1326120
GroupedDBID ---
0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFS
ACIHN
ACJQM
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
ROL
RPM
RSV
SBL
SOJ
SV3
TUS
UKHRP
AAYXX
CITATION
-56
-5G
-BR
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AHSBF
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
4.4
ADTOC
UNPAY
ID FETCH-LOGICAL-c668t-f9dc4b9698bb6e0303f5bd32b9dea75d103cbd1ae806092cac39a6438be2962f3
IEDL.DBID DOA
ISSN 1757-6512
IngestDate Fri Oct 03 12:52:04 EDT 2025
Sun Oct 26 04:15:05 EDT 2025
Tue Sep 30 16:56:40 EDT 2025
Thu Oct 02 08:45:40 EDT 2025
Tue Oct 21 12:47:40 EDT 2025
Mon Oct 20 22:23:53 EDT 2025
Mon Oct 20 16:24:05 EDT 2025
Thu Oct 16 15:03:30 EDT 2025
Thu May 22 21:14:34 EDT 2025
Wed Feb 19 02:41:23 EST 2025
Wed Oct 01 01:11:55 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Sat Sep 06 07:28:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Substrate stiffness
Differentiation
Induced pluripotent stem cells
Mechanobiology
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c668t-f9dc4b9698bb6e0303f5bd32b9dea75d103cbd1ae806092cac39a6438be2962f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5117-8958
OpenAccessLink https://doaj.org/article/389ce1e810d94969903e2b856539095c
PMID 28962663
PQID 1947935597
PQPubID 2040189
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_389ce1e810d94969903e2b856539095c
unpaywall_primary_10_1186_s13287_017_0667_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5622562
proquest_miscellaneous_1945221382
proquest_journals_1947935597
gale_infotracmisc_A507903172
gale_infotracacademiconefile_A507903172
gale_incontextgauss_ISR_A507903172
gale_healthsolutions_A507903172
pubmed_primary_28962663
crossref_citationtrail_10_1186_s13287_017_0667_2
crossref_primary_10_1186_s13287_017_0667_2
springer_journals_10_1186_s13287_017_0667_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-29
PublicationDateYYYYMMDD 2017-09-29
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Stem cell research & therapy
PublicationTitleAbbrev Stem Cell Res Ther
PublicationTitleAlternate Stem Cell Res Ther
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References RA Oldershaw (667_CR16) 2010; 28
H Clevers (667_CR4) 2016; 165
M Maldonado (667_CR11) 2015; 50
M Ader (667_CR2) 2014; 31
A Banerjee (667_CR19) 2009; 30
SM Chambers (667_CR14) 2009; 27
E Kroon (667_CR15) 2008; 26
CE Murry (667_CR7) 2008; 132
SJ Kattman (667_CR9) 2011; 8
T O'Leary (667_CR6) 2012; 30
667_CR10
667_CR1
F Itoh (667_CR17) 2014; 32
MF Pera (667_CR5) 2015; 12
A Ranga (667_CR3) 2014; 69–70
MF Pera (667_CR8) 2004; 131
667_CR12
J Nam (667_CR13) 2011; 7
Y Li (667_CR18) 2014; 6
26418764 - Nat Methods. 2015 Oct;12(10):917-9
27758015 - Stem Cells. 2017 Feb;35(2):277-283
24582599 - Adv Drug Deliv Rev. 2014 Apr;69-70:19-28
24567784 - World J Stem Cells. 2014 Jan 26;6(1):11-23
19539367 - Biomaterials. 2009 Sep;30(27):4695-9
20967028 - Nat Biotechnol. 2010 Nov;28(11):1187-94
22371082 - Nat Biotechnol. 2012 Feb 26;30(3):278-82
27187808 - Adv Healthc Mater. 2016 Jun;5(12):1408-12
18288110 - Nat Biotechnol. 2008 Apr;26(4):443-52
18295582 - Cell. 2008 Feb 22;132(4):661-80
24910449 - Semin Cell Dev Biol. 2014 Aug;32:98-106
27387749 - J Biochem. 2016 Sep;160(3):121-9
27315476 - Cell. 2016 Jun 16;165(7):1586-1597
19252484 - Nat Biotechnol. 2009 Mar;27(3):275-80
21295278 - Cell Stem Cell. 2011 Feb 4;8(2):228-40
21109030 - Acta Biomater. 2011 Apr;7(4):1516-24
15509763 - Development. 2004 Nov;131(22):5515-25
25736491 - Biomaterials. 2015 May;50:10-9
25033469 - Curr Opin Cell Biol. 2014 Dec;31:23-8
References_xml – volume: 8
  start-page: 228
  issue: 2
  year: 2011
  ident: 667_CR9
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.12.008
– volume: 7
  start-page: 1516
  issue: 4
  year: 2011
  ident: 667_CR13
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2010.11.022
– volume: 28
  start-page: 1187
  issue: 11
  year: 2010
  ident: 667_CR16
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1683
– volume: 132
  start-page: 661
  issue: 4
  year: 2008
  ident: 667_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2008.02.008
– volume: 12
  start-page: 917
  issue: 10
  year: 2015
  ident: 667_CR5
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3586
– ident: 667_CR12
  doi: 10.1002/adhm.201600141
– volume: 27
  start-page: 275
  issue: 3
  year: 2009
  ident: 667_CR14
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1529
– ident: 667_CR1
  doi: 10.1093/jb/mvw044
– volume: 6
  start-page: 11
  issue: 1
  year: 2014
  ident: 667_CR18
  publication-title: World J Stem Cells
  doi: 10.4252/wjsc.v6.i1.11
– volume: 165
  start-page: 1586
  issue: 7
  year: 2016
  ident: 667_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.082
– volume: 32
  start-page: 98
  year: 2014
  ident: 667_CR17
  publication-title: Semin Cell Dev Biol.
  doi: 10.1016/j.semcdb.2014.05.017
– volume: 50
  start-page: 10
  year: 2015
  ident: 667_CR11
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2015.01.037
– volume: 31
  start-page: 23
  year: 2014
  ident: 667_CR2
  publication-title: Curr Opin Cell Biol.
  doi: 10.1016/j.ceb.2014.06.013
– volume: 30
  start-page: 278
  issue: 3
  year: 2012
  ident: 667_CR6
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2135
– volume: 30
  start-page: 4695
  issue: 27
  year: 2009
  ident: 667_CR19
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.05.050
– volume: 131
  start-page: 5515
  issue: 22
  year: 2004
  ident: 667_CR8
  publication-title: Development
  doi: 10.1242/dev.01451
– volume: 26
  start-page: 443
  issue: 4
  year: 2008
  ident: 667_CR15
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1393
– ident: 667_CR10
  doi: 10.1002/stem.2527
– volume: 69–70
  start-page: 19
  year: 2014
  ident: 667_CR3
  publication-title: Adv Drug Deliv Rev.
  doi: 10.1016/j.addr.2014.02.006
– reference: 18288110 - Nat Biotechnol. 2008 Apr;26(4):443-52
– reference: 26418764 - Nat Methods. 2015 Oct;12(10):917-9
– reference: 22371082 - Nat Biotechnol. 2012 Feb 26;30(3):278-82
– reference: 24910449 - Semin Cell Dev Biol. 2014 Aug;32:98-106
– reference: 20967028 - Nat Biotechnol. 2010 Nov;28(11):1187-94
– reference: 25033469 - Curr Opin Cell Biol. 2014 Dec;31:23-8
– reference: 27758015 - Stem Cells. 2017 Feb;35(2):277-283
– reference: 18295582 - Cell. 2008 Feb 22;132(4):661-80
– reference: 21109030 - Acta Biomater. 2011 Apr;7(4):1516-24
– reference: 27315476 - Cell. 2016 Jun 16;165(7):1586-1597
– reference: 24567784 - World J Stem Cells. 2014 Jan 26;6(1):11-23
– reference: 21295278 - Cell Stem Cell. 2011 Feb 4;8(2):228-40
– reference: 27387749 - J Biochem. 2016 Sep;160(3):121-9
– reference: 25736491 - Biomaterials. 2015 May;50:10-9
– reference: 19252484 - Nat Biotechnol. 2009 Mar;27(3):275-80
– reference: 24582599 - Adv Drug Deliv Rev. 2014 Apr;69-70:19-28
– reference: 15509763 - Development. 2004 Nov;131(22):5515-25
– reference: 27187808 - Adv Healthc Mater. 2016 Jun;5(12):1408-12
– reference: 19539367 - Biomaterials. 2009 Sep;30(27):4695-9
SSID ssj0000330064
Score 2.2672646
Snippet Background To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of...
To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of iPSCs to target...
Background To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the differentiation of...
Abstract Background To maximize the translational utility of human induced pluripotent stem cells (iPSCs), the ability to precisely modulate the...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 216
SubjectTerms Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedical materials
Cell Biology
Cell Differentiation
Cell Line
Cell Lineage
Chondrocytes
Chondrogenesis
Collagen
Differentiation
Efficiency
Elastic Modulus
Embryos
Endoderm
Humans
Immunofluorescence
Induced pluripotent stem cells
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Inhibitory postsynaptic potentials
Life Sciences
Mechanical properties
Mechanobiology
Microscopy
Morphology
Nanofibers - chemistry
Pancreas
Pluripotency
Polymerase chain reaction
Primary Cell Culture - methods
Properties
Protein expression
Regenerative Medicine/Tissue Engineering
Short Report
Stem cell research
Stem Cells
Substrate stiffness
Surface chemistry
Therapeutic applications
Tissue Scaffolds - chemistry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEB_qFVE_iG-jVVcRBEtokr3s7X4QaaWlCh5SLfTbsq9U4ZqcvTuk_70zefWiWL_ezobLzmN_k539DcBrzDl8EaSJC5UX8dgVgTggVay4N4m0eW4dJYqfp-LwePzpJD_ZgGl3F4bKKruYWAdqXzn6Rr6DyfaEuMDV5P38Z0xdo-h0tWuhYdrWCv5dTTF2DTYzYsYawebe_vTLUf_VJcH0HTfh9ngzlWJngemYpOpLqgLDoJENNqiax__vaL22Xf1ZStmfp96CG6tybi5-mdlsbcs6uAO3W6zJdhvjuAsbobwH15vukxf3YYZ5aMBwEjNTeuYvq4dwDmJGHKBrmFRKxM4CXRCuzirfdvtiVcEwm0e78Gw-W2HkqRB8LxnRQjM6DGBd55Vlo_sHcHyw_-3DYdw2X4idEHKJuvNubJVQ0loRMBTwIreeZ1b5YCa5TxPurE9NkIlIVOaM48ogvJE2ZEpkBX8Io7Iqw2NgJk8Nl8QsiOiNB2mpFjSkeSEcLxAwRJB0K65dy0xODTJmus5QpNCNkjQqSZOSdBbB237KvKHluEp4j9TYCxKjdv1DdX6qWwfVCNxcSINME6_G-Noq4SGzMifqXoShLoIXZAS6uZ7axwW9i4AaZREHRvCqliBWjZLKdk7NarHQH78eDYTetEJFhe-Iy9bcgsCVIiKugeTWQBLd3g2HO2vUbdhZ6EsnieBlP0wzqZSuDNWqlkHMTdSTETxqjLdfGcy-McEVPILJwKwHSzccKX98r0nJEUcjesZnbncOsPa3_q2Z7d5H_q_HJ1e_8lO4mdVurOJMbcFoeb4KzxAxLu3zNgz8BmVLZzI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEQIOiDeBAgYhIVFFJPHGtY-loipIcAAq9Wb5lYK0TVbdrKr-e75JsmHDU1zjcZTMeMbf2OPPjL1AzhGqqGxa6bJKZ76KxAGpUy2CzZQrS-cpUfzwUR4ezd4fl8cDWTSdhdncv8-VfL1EtqSoOJKKtODTiLaXMUfJbl9W7o_LKRnycsyuw77lb3tOZp6OoP_XMLwxD_1cIzlulF5nV1f1wl6c2_l8Yy46uMluDCCS7_VWv8Uuxfo2u9JfK3lxh82RYEbEiZTbOvDwoywIfQAG0UDnK6lGiJ9GOvnbnDZhuMaLNxVHmg6DB76YrxBSGqDqlhPfM6dVfr6-UqXtjXqXHR28_bJ_mA63KqReStXCKMHPnJZaOScjfFxUpQuicDpEu1uGPBPehdxGlclMF956oS1wi3Kx0LKoxD22VTd1fMC4LXMrFFEGApaJqBwVeca8rKQXFZBAwrK1xo0fKMfp5ou56VIPJU1vJAMjGTKSKRL2auyy6Pk2_ib8hsw4ChJVdvcAI8gMnmeAyHzMo8qzoGf4bZ2JWDhVEicv8KVP2FMaBKY_dzo6vNkDUoYsAF7CnncSRJdRUz3OiV0tl-bd508ToZeDUNXgH6G2_ngDNEUMWxPJ7Ykk_NlPm9ej0QzxZGlyTSuglP0l7NnYTD2pRq6OzaqTAZgmTsmE3e8H76gZpNXIXKVI2O5kWE9UN22pv33t2MYBkAGL8c6dtQNsfNafLbMz-si_7fjwv979iF0rOq_WaaG32VZ7toqPgQxb96SLCd8BVvVZCA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kiqgPflejVaMIgiXXJHvZ2308xVIFi6gH9WnZz1qbJkcvQepf70ySi5f6heDbkZ09ktmZ2d8kM78l5CnkHNY7riIvMh9NjHfIASkiQa2Kuc4ybTBRfLvP9uaTNwfZQUcphL0wyF6Mr6wh1xyvN6DnTdSGH-Z4Z2F96-yc7Swhm-JYPIlFXODzEI03WAawfEQ25vvvZp-ahshsGjHY2bqvmr-cN9iXGvr-n4P02i51voKy_4x6hVyqi4U6-6ryfG2n2r1GvqyesS1QOR7XlR6bb-foH_-LEq6Tqx2eDWetAd4gF1xxk1xsT7g8u0VyyHUdhKwoVIUN7Y8KJZgDuBQGsNUTy5XCE4dNyOVJabsTxcLSh0eFBduz4SKvIbqVAPCrEO87xBsPV6e7VK193Sbz3VcfX-5F3QEPkWGMV2Af1ky0YIJrzRyEG-ozbWmqhXVqmtkkpkbbRDkes1ikRhkqFEAorl0qWOrpJhkVZeHuklBliaIc2QsBIVLHNdabuiTzzFAPoCQg8Wp5penYz_EQjlw2WRBnslWiBCVKVKJMA_K8n7JoqT_-JPwCbaYXRNbu5kJ5eii7ICABHBqXOJ7EVkzgsUVMXap5hvTAAHVNQB6hxcm2BbaPPXIGoB1kAWsG5EkjgcwdBZYGHap6uZSvP7wfCD3rhHyJxqK6TgvQFJJ9DSS3BpIQWsxweGX6sgttS5kIfBmLiWhAHvfDOBPL9QpX1o0M4HqktwzIndZTes1Ahg9JNKMBmQ58aKC64Uhx9LkhPgesDggd_nN75W1rt_X7ldnuHfLv63jvn6Tvk8tp43UiSsUWGVWntXsAILXSD7vw8x3La4oh
  priority: 102
  providerName: Unpaywall
Title Lineage- and developmental stage-specific mechanomodulation of induced pluripotent stem cell differentiation
URI https://link.springer.com/article/10.1186/s13287-017-0667-2
https://www.ncbi.nlm.nih.gov/pubmed/28962663
https://www.proquest.com/docview/1947935597
https://www.proquest.com/docview/1945221382
https://pubmed.ncbi.nlm.nih.gov/PMC5622562
https://stemcellres.biomedcentral.com/track/pdf/10.1186/s13287-017-0667-2
https://doaj.org/article/389ce1e810d94969903e2b856539095c
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: RBZ
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: ABDBF
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Selected Fulltext)
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: AAJSJ
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (Selected full-text)
  customDbUrl:
  eissn: 1757-6512
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330064
  issn: 1757-6512
  databaseCode: C6C
  dateStart: 20100103
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEAIeEF-DwBgGISExRUvixrUfu2rTQKKaBpXKk-WvAFKXVLQV2n_PXZKGBgR74bHxOWruzuffJeffAbzGnMMXQZq4UHkRD1wRiANSxYp7k0ib59ZRovhhIk6ng_ezfLbV6otqwhp64EZxh7ihupAGmSZeDZTA4MlDZmVOlKoIDxxF30SqrWSqjsGYpuNm237GTKU4XGLaJanKkqq9MDhkvY2o5uv_MypvbUu_l0x2303vwK11uTCXP8x8vrU1ndyDuy2mZKPmWe7DtVA-gJtNl8nLhzDHfDNg2IiZKT3zv6qEcA5iQxyg45ZUMsQuAh0Eri4q33b1YlXBMGtH-3u2mK8xwlQIsleM6J8ZvfRnmw4rq8bGj2B6cvxpfBq3TRZiJ4RcoY28G1hUrLRWBFzyvMit55lVPphh7tOEO-tTE2QiEpU547gyCGOkDZkSWcF3YaesyvAEmMlTwyUxCCJK40FaqvkMaV4IxwsEBhEkG41r1zKQUyOMua4zESl0YySNRtJkJJ1F8LabsmjoN_4lfERm7ASJObu-gP6kW3_SV_lTBC_ICXRzDLVb_3qEwBllEe9F8KqWIPaMkspzvpj1cqnffTzvCb1phYoKnxHV1px2QE0R4VZPcq8nicvb9Yc33qjb8LLUqaIXopQMRvCyG6aZVDJXhmpdyyC2JorJCB43zttpBrNsTGQFj2DYc-ue6voj5bevNfk44mVEyXjPg80C2Ppbf7fMQbdGrrbj0_9hx2dwO6sXu4oztQc7q-_r8Bzx48ruw_XhbLgPN46OJ2fn-Gssxvt1-MBr08nZ6PNPCW9sjQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1Q4IN4ECjUIhEQVNYmTrH2oUAutdulDqLRSb8avlErbZOnuqto_x29jJq9uQJRTr_E4ij3j8Tfx-BtC3kLMYTPHlZ-JJPNjkznkgBS-YFYFXCeJNhgo7h-k_eP4y0lyskB-NXdhMK2y8Ymlo7aFwX_k6xBs95ALXPQ-jn76WDUKT1ebEhqqLq1gN0qKsfpix66bXUIIN94YfAZ9v4uine2jT32_rjLgmzTlE_hIa2ItUsG1Th3YPMsSbVmkhXWql9gwYEbbUDkepIGIjDJMKNjHuXaRSKOMwXtvkaWYxQKCv6Wt7YOvh-1fnoAx3PTr49SQp-tjCP84Znti1hk4qaizIZZ1A_7eHea2xz9TN9vz27tkeZqP1OxSDYdzW-TOfXKvxrZ0szLGB2TB5Q_J7ara5ewRGULc68B9-VTlltqrbCXoAxgVGvDaJ6Yu0XOHF5KL88LW1cVokdGz3IIdWjoaTsHTFQD2JxRpqCkePtCm0suksrXH5PhG1PCELOZF7p4RqpJQMY5MhoAWmeMac09dmGSpYRkAFI8EzYxLUzOhY0GOoSwjIp7KSkkSlCRRSTLyyIe2y6iiAblOeAvV2Aoig3f5oLg4lbVDkAAUjQsdDwMrYhi2CJiLNE-QKhhgr_HIKhqBrK7Dtn5IbgKAB1nAnR55U0ogi0eOaUKnajoey8G3w47Q-1ooK2CMMG3VrQuYKST-6kiudCTBzZhuc2ONsnZzY3m1KD3yum3Gnpi6l7tiWsoAxkeqS488rYy3nRmI9iGgTplHeh2z7kxdtyU_-1GSoANuB7QO71xrFsDcZ_1bM2vtGvm_Hp9fP-RVstw_2t-Te4OD3RfkTlQuaeFHYoUsTi6m7iWg1Yl-VbsESr7ftBf6DYNtpRo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZQEdcD4iZQqEFISFRRk3jj2o9lYdVyVAio1DfLZ0FKk1WTFeq_ZyYXG07xuh5HmxnP-Btn_A0hzyDncMELHQeZh3hmg0cOSBlL5nQiTJ4bi4ni-0O-fzR7c5wf931O66Haffgk2d1pQJamstlZutC5uOA7NeRQAksmsXQLPB1i8MUZbG7YwmDO5-MhSwLZOuy5_dfM386c7Ectbf-vwXltd_q5cnL8fHqNXFmVS33-TRfF2g61uEGu99CS7nVr4Sa54Mtb5FLXbPL8Nikg7fQQPWKqS0fdj2IhmAMQEQbw1iVWDtFTj_eBq9PK9c29aBUoJO-wDBxdFisINBVqiyILNMWzfzo0Wmk6U98hR4vXn-f7cd9rIbaciwZM5ezMSC6FMdyD57OQG8cyI53Xu7lLE2aNS7UXCU9kZrVlUgOaEcZnkmeB3SUbZVX6-4TqPNVMIJEggDXmhcHST5_mgVsWAB9EJBk0rmxPRI79MArVJiSCq85ICoyk0Egqi8iLccqyY-H4m_BLNOMoiATa7Q_V2Ynq_VEBTrM-9SJNnJzBa8uE-cyIHJl6AXXaiGzhIlDdbdQxDKg9wM8gC7AvIk9bCSTRKLFK50Sv6lodfPo4EXreC4UK3hHU1l16AE0h79ZEcnMiCV5up8PDalR9lKlVKvFcFHPCiDwZh3EmVs6Vvlq1MgCxkWkyIve6xTtqBpJtyGc5i8juZFlPVDcdKb9-aTnIATYDWIZnbg8OsPa3_myZ7dFH_m3HB__17C1y-cOrhXp3cPj2IbmatQ4u40xuko3mbOUfAXRszOM2PHwHTTBkPg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kiqgPflejVaMIgiXXJHvZ2308xVIFi6gH9WnZz1qbJkcvQepf70ySi5f6heDbkZ09ktmZ2d8kM78l5CnkHNY7riIvMh9NjHfIASkiQa2Kuc4ybTBRfLvP9uaTNwfZQUcphL0wyF6Mr6wh1xyvN6DnTdSGH-Z4Z2F96-yc7Swhm-JYPIlFXODzEI03WAawfEQ25vvvZp-ahshsGjHY2bqvmr-cN9iXGvr-n4P02i51voKy_4x6hVyqi4U6-6ryfG2n2r1GvqyesS1QOR7XlR6bb-foH_-LEq6Tqx2eDWetAd4gF1xxk1xsT7g8u0VyyHUdhKwoVIUN7Y8KJZgDuBQGsNUTy5XCE4dNyOVJabsTxcLSh0eFBduz4SKvIbqVAPCrEO87xBsPV6e7VK193Sbz3VcfX-5F3QEPkWGMV2Af1ky0YIJrzRyEG-ozbWmqhXVqmtkkpkbbRDkes1ikRhkqFEAorl0qWOrpJhkVZeHuklBliaIc2QsBIVLHNdabuiTzzFAPoCQg8Wp5penYz_EQjlw2WRBnslWiBCVKVKJMA_K8n7JoqT_-JPwCbaYXRNbu5kJ5eii7ICABHBqXOJ7EVkzgsUVMXap5hvTAAHVNQB6hxcm2BbaPPXIGoB1kAWsG5EkjgcwdBZYGHap6uZSvP7wfCD3rhHyJxqK6TgvQFJJ9DSS3BpIQWsxweGX6sgttS5kIfBmLiWhAHvfDOBPL9QpX1o0M4HqktwzIndZTes1Ahg9JNKMBmQ58aKC64Uhx9LkhPgesDggd_nN75W1rt_X7ldnuHfLv63jvn6Tvk8tp43UiSsUWGVWntXsAILXSD7vw8x3La4oh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lineage-+and+developmental+stage-specific+mechanomodulation+of+induced+pluripotent+stem+cell+differentiation&rft.jtitle=Stem+cell+research+%26+therapy&rft.au=Maldonado%2C+Maricela&rft.au=Luu%2C+Rebeccah+J&rft.au=Ico%2C+Gerardo&rft.au=Ospina%2C+Alex&rft.date=2017-09-29&rft.eissn=1757-6512&rft.volume=8&rft.issue=1&rft.spage=216&rft_id=info:doi/10.1186%2Fs13287-017-0667-2&rft_id=info%3Apmid%2F28962663&rft.externalDocID=28962663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-6512&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-6512&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-6512&client=summon