Tunable phenotypic variability through an autoregulatory alternative sigma factor circuit

Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on e...

Full description

Saved in:
Bibliographic Details
Published inMolecular systems biology Vol. 17; no. 7; pp. e9832 - n/a
Main Authors Schwall, Christian P, Loman, Torkel E, Martins, Bruno M C, Cortijo, Sandra, Villava, Casandra, Kusmartsev, Vassili, Livesey, Toby, Saez, Teresa, Locke, James C W
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2021
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text
ISSN1744-4292
1744-4292
DOI10.15252/msb.20209832

Cover

Abstract Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σ V circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single‐cell time‐lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σ V under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma‐anti‐sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment. SYNOPSIS A combination of single‐cell imaging and mathematical modelling reveals a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment and environmental history. The time to activate the alternative sigma factor σ V in Bacillus subtilis is found to be heterogeneous under lysozyme stress. This phenotypic variability can be tuned by stress levels, previous stress applications, and genetic perturbations. Modelling and experiments show that this tunability can be explained by the structure of the sigV operon, which consists of a ‘mixed’ positive and negative feedback loop. Graphical Abstract A combination of single‐cell imaging and mathematical modelling reveals a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment and environmental history.
AbstractList Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σ V circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single‐cell time‐lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σ V under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma‐anti‐sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment. SYNOPSIS A combination of single‐cell imaging and mathematical modelling reveals a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment and environmental history. The time to activate the alternative sigma factor σ V in Bacillus subtilis is found to be heterogeneous under lysozyme stress. This phenotypic variability can be tuned by stress levels, previous stress applications, and genetic perturbations. Modelling and experiments show that this tunability can be explained by the structure of the sigV operon, which consists of a ‘mixed’ positive and negative feedback loop. Graphical Abstract A combination of single‐cell imaging and mathematical modelling reveals a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment and environmental history.
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σ circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σ under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single‐cell time‐lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma‐anti‐sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment. A combination of single‐cell imaging and mathematical modelling reveals a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment and environmental history.
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single‐cell time‐lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma‐anti‐sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment. SYNOPSIS A combination of single‐cell imaging and mathematical modelling reveals a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment and environmental history. The time to activate the alternative sigma factor σV in Bacillus subtilis is found to be heterogeneous under lysozyme stress. This phenotypic variability can be tuned by stress levels, previous stress applications, and genetic perturbations. Modelling and experiments show that this tunability can be explained by the structure of the sigV operon, which consists of a ‘mixed’ positive and negative feedback loop. A combination of single‐cell imaging and mathematical modelling reveals a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment and environmental history.
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.
Abstract Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single‐cell time‐lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma‐anti‐sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.
Author Loman, Torkel E
Schwall, Christian P
Saez, Teresa
Martins, Bruno M C
Villava, Casandra
Kusmartsev, Vassili
Locke, James C W
Livesey, Toby
Cortijo, Sandra
AuthorAffiliation 2 School of Life Sciences University of Warwick Coventry UK
1 Sainsbury Laboratory University of Cambridge Cambridge UK
AuthorAffiliation_xml – name: 2 School of Life Sciences University of Warwick Coventry UK
– name: 1 Sainsbury Laboratory University of Cambridge Cambridge UK
Author_xml – sequence: 1
  givenname: Christian P
  surname: Schwall
  fullname: Schwall, Christian P
  organization: Sainsbury Laboratory, University of Cambridge
– sequence: 2
  givenname: Torkel E
  surname: Loman
  fullname: Loman, Torkel E
  organization: Sainsbury Laboratory, University of Cambridge
– sequence: 3
  givenname: Bruno M C
  surname: Martins
  fullname: Martins, Bruno M C
  organization: Sainsbury Laboratory, University of Cambridge, School of Life Sciences, University of Warwick
– sequence: 4
  givenname: Sandra
  surname: Cortijo
  fullname: Cortijo, Sandra
  organization: Sainsbury Laboratory, University of Cambridge
– sequence: 5
  givenname: Casandra
  surname: Villava
  fullname: Villava, Casandra
  organization: Sainsbury Laboratory, University of Cambridge
– sequence: 6
  givenname: Vassili
  surname: Kusmartsev
  fullname: Kusmartsev, Vassili
  organization: Sainsbury Laboratory, University of Cambridge
– sequence: 7
  givenname: Toby
  surname: Livesey
  fullname: Livesey, Toby
  organization: Sainsbury Laboratory, University of Cambridge
– sequence: 8
  givenname: Teresa
  surname: Saez
  fullname: Saez, Teresa
  organization: Sainsbury Laboratory, University of Cambridge
– sequence: 9
  givenname: James C W
  orcidid: 0000-0003-0670-1943
  surname: Locke
  fullname: Locke, James C W
  email: james.locke@slcu.cam.ac.uk
  organization: Sainsbury Laboratory, University of Cambridge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34286912$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-03379751$$DView record in HAL
BookMark eNqFkkuP0zAUhSM0iHnAki2KxAYWKX7EjrNBGkbAjFTEgmHByrpx3dSVGxfb6Sj_HrfpDJ2Kx8qR73fOvT4359lJ5zqdZS8xmmBGGHm3Cs2EIIJqQcmT7AxXZVmUpCYnB9-n2XkIS4SowII8y05pSQSvMTnLftz2HTRW5-uF7lwc1kblG_AGGmNNHPK48K5vFzl0OfTRed32FtI55GCj9h1Es9F5MO0K8jmoVMmV8ao38Xn2dA426Bf78yL7_unj7dV1Mf36-ebqcloozgUpeFnPcI2oYoAJEzDTQnOqNFWcIFA4FTABJpqq0iWvSUkBz0CICpVa8FLTi-xm9J05WMq1Nyvwg3Rg5O7C-VaCj0ZZLXmtUINEyoHjskSooXVd4aZJc_A5EZC8JqNX361huANrHwwxkru8Zcpb3uedBO9HwbpvVnqmdBc92EdTPK50ZiFbt5GCiEoIlAzejgaLI9n15VRu7xClVV0xvMGJfbNv5t3PXocoVyYobS102vVBEsaoIFiwLfr6CF26Pm3L7igmGEdoS706nP6h__3vkQA6Asq7ELyeS2ViWrnbPsbYv4ZSHKn-FyIf-Ttj9fBvWH759uFAuF9XSJqu1f73K__c6RcuzPpo
CitedBy_id crossref_primary_10_1016_j_mib_2021_11_008
crossref_primary_10_3389_fbioe_2022_968342
crossref_primary_10_1016_j_bbrc_2023_04_039
crossref_primary_10_1016_j_jtbi_2024_111996
crossref_primary_10_1371_journal_pcbi_1011530
crossref_primary_10_1111_mmi_15014
crossref_primary_10_1371_journal_pcbi_1011265
crossref_primary_10_1016_j_cub_2024_10_047
crossref_primary_10_1016_j_celrep_2022_111118
crossref_primary_10_1016_j_celrep_2023_112168
Cites_doi 10.1002/9781119004813.ch30
10.1371/journal.pgen.1007527
10.1063/1.481811
10.1371/journal.pgen.1006287
10.1016/j.cub.2010.04.045
10.1038/nature03524
10.1152/physiol.00028.2010
10.1126/science.1070919
10.1371/journal.pgen.1000488
10.1371/journal.pgen.1004556
10.1128/JB.178.18.5447-5451.1996
10.12688/f1000research.7563.1
10.1038/nature02089
10.3934/dcdsb.2017133
10.1371/journal.pone.0001771
10.1128/jb.177.23.6832-6835.1995
10.1016/j.mib.2015.01.003
10.1073/pnas.1004333107
10.1128/JB.00663-17
10.1038/nmeth.4197
10.1016/j.cub.2014.12.009
10.1126/science.1208144
10.1128/JB.05467-11
10.1371/journal.pgen.1004643
10.1529/biophysj.107.127191
10.1073/pnas.1213060110
10.1371/journal.pgen.1006901
10.1146/annurev.micro.62.081307.163002
10.1038/s41467-019-13127-z
10.1038/nature08150
10.1099/mic.0.063420-0
10.1101/gad.12.15.2318
10.1186/1752-0509-5-18
10.1128/JB.06023-11
10.1073/pnas.43.7.553
10.1016/j.cell.2008.09.050
10.1186/s13059-014-0550-8
10.1371/journal.pone.0031407
10.1038/nprot.2011.432
10.15252/msb.20188470
10.1128/JB.00691-06
10.1073/pnas.44.10.1072
10.1073/pnas.1811309115
10.1371/journal.pcbi.1005267
10.1016/j.mbs.2011.03.004
10.1111/mmi.12521
10.1093/emboj/20.12.3167
10.1038/msb.2013.58
10.1111/j.1365-2958.2004.04342.x
10.1038/nature12804
10.1126/science.1216379
10.1371/journal.pcbi.1003229
10.1093/nar/gky614
10.1111/j.1462-2920.2012.02892.x
10.5334/jors.151
10.1016/j.cels.2018.01.011
10.1016/j.cels.2017.03.001
10.1021/j100540a008
10.1093/nar/gky010
10.1073/pnas.0700463105
10.1074/jbc.M111.241414
10.1038/s41467-018-07702-z
10.1128/JB.00292-13
10.1111/mmi.14348
10.1016/j.mib.2012.01.001
10.1103/PhysRevLett.97.168302
10.1111/brv.12215
ContentType Journal Article
Copyright The Author(s) 2021
2021 The Authors. Published under the terms of the CC BY 4.0 license
2021 The Authors. Published under the terms of the CC BY 4.0 license.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2021
– notice: 2021 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2021 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.15252/msb.20209832
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 7
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Christian P Schwall et al
EISSN 1744-4292
EndPage n/a
ExternalDocumentID oai_doaj_org_article_69c0b08003614400b39971bb6826f28a
10.15252/msb.20209832
PMC8287880
oai_HAL_hal_03379751v1
34286912
10_15252_msb_20209832
MSB20209832
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska‐Curie Actions (MSCA)
  grantid: 721456
  funderid: 10.13039/100010665
– fundername: FP7 Ideas: European Research Council (FP7 Ideas)
  grantid: 338060
  funderid: 10.13039/100011199
– fundername: Gatsby Charitable Foundation
  grantid: GAT3272/GLC
  funderid: 10.13039/501100000324
– fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska‐Curie Actions (MSCA)
  funderid: 721456
– fundername: FP7 Ideas: European Research Council (FP7 Ideas)
  funderid: 338060
– fundername: Gatsby Charitable Foundation
  funderid: GAT3272/GLC
– fundername: ;
  grantid: 338060
– fundername: ;
  grantid: 721456
– fundername: ;
  grantid: GAT3272/GLC
GroupedDBID ---
0R~
123
1OC
24P
29M
2WC
39C
53G
5VS
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAJSJ
AAMMB
ABDBF
ABUWG
ACCMX
ACGFO
ACPRK
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AEUYN
AFKRA
AFRAH
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CAG
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBD
EBS
EMB
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HH5
HK~
HMCUK
HYE
HZ~
IAO
IGS
IHR
INH
ITC
KQ8
LK8
M1P
M2O
M48
M7P
ML0
M~E
NAO
O5R
O5S
O9-
OK1
OVT
P2P
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
RNTTT
RPM
SV3
TR2
TUS
UKHRP
WIN
WOQ
WOW
XSB
~8M
-Q-
3V.
4.4
88A
AAHHS
ACCFJ
ADRAZ
AEEZP
AEQDE
AIWBW
AJBDE
ALIPV
COF
EBLON
EJD
GODZA
H13
M0L
AASML
AAYXX
AJAOE
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c6682-649d1903c5a1258ade8e63ce3c620ac13c512a58b77e469243a1da88704e864e3
IEDL.DBID M48
ISSN 1744-4292
IngestDate Wed Aug 27 01:19:32 EDT 2025
Wed Oct 01 16:40:40 EDT 2025
Tue Sep 30 15:13:01 EDT 2025
Fri Sep 12 12:50:05 EDT 2025
Sat Sep 27 22:16:09 EDT 2025
Wed Aug 13 07:52:16 EDT 2025
Wed Feb 19 02:28:33 EST 2025
Thu Apr 24 23:08:55 EDT 2025
Wed Oct 01 04:48:16 EDT 2025
Wed Jan 22 16:29:46 EST 2025
Wed Aug 20 01:10:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords microbial systems biology
stochastic gene expression
stress priming
single‐cell time‐lapse microscopy
single-cell time-lapse microscopy
Bacillus subtilis
Virology & Host Pathogen Interaction
stress priming Subject Category Microbiology
stress primingphenoty
Language English
License Attribution
2021 The Authors. Published under the terms of the CC BY 4.0 license.
Attribution: http://creativecommons.org/licenses/by
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6682-649d1903c5a1258ade8e63ce3c620ac13c512a58b77e469243a1da88704e864e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ORCID 0000-0003-0670-1943
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/msb.20209832
PMID 34286912
PQID 2555856001
PQPubID 29031
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_69c0b08003614400b39971bb6826f28a
unpaywall_primary_10_15252_msb_20209832
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8287880
hal_primary_oai_HAL_hal_03379751v1
proquest_miscellaneous_2553821851
proquest_journals_2555856001
pubmed_primary_34286912
crossref_citationtrail_10_15252_msb_20209832
crossref_primary_10_15252_msb_20209832
wiley_primary_10_15252_msb_20209832_MSB20209832
springer_journals_10_15252_msb_20209832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Hoboken
PublicationTitle Molecular systems biology
PublicationTitleAbbrev Mol Syst Biol
PublicationTitleAlternate Mol Syst Biol
PublicationYear 2021
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References 2017; 4
2010; 107
2019; 10
2018; 200
2019; 15
1995; 177
2008; 3
2012; 15
2012; 14
2011; 193
2013; 9
2011; 231
2018; 46
1957; 43
2018; 6
2018; 9
2010; 20
2017b; 5
2013; 159
1958; 44
2014; 15
2013; 195
2011; 26
2017a; 22
2013; 110
2012; 336
1996; 178
1998; 12
2019; 112
2011; 286
2014; 10
2011; 334
2006; 97
2014; 91
2015; 4
2000; 113
2002; 297
2005; 435
2013; 503
2016; 91
2008; 95
2011; 5
2011; 7
2001; 20
2016; 12
2008a; 62
1977; 81
2015; 24
2004; 54
2015; 25
2003; 426
2017; 14
2017; 13
2018; 115
2016
2009; 460
2009; 5
2013
2008; 135
2012; 7
2006; 188
2018; 14
2008b; 105
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Gruenberger A (e_1_2_9_17_1) 2013
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 195
  start-page: 3135
  year: 2013
  end-page: 3144
  article-title: The activity of σV, an extracytoplasmic function σ factor of , is controlled by regulated proteolysis of the anti‐σ factor RsiV
  publication-title: J Bacteriol
– volume: 3
  year: 2008
  article-title: Positive feedback and noise activate the stringent response regulator rel in mycobacteria
  publication-title: PLoS One
– volume: 12
  year: 2016
  article-title: Role of autoregulation and relative synthesis of operon partners in alternative sigma factor networks
  publication-title: PLoS Comput Biol
– volume: 14
  year: 2018
  article-title: Bacterial sensing: a putative amphipathic helix in RsiV is the switch for activating σV in response to lysozyme
  publication-title: PLoS Genet
– volume: 54
  start-page: 855
  year: 2004
  end-page: 862
  article-title: Growth versus maintenance: a trade‐off dictated by RNA polymerase availability and sigma factor competition?
  publication-title: Mol Microbiol
– volume: 107
  start-page: 12541
  year: 2010
  end-page: 12546
  article-title: Regulation of phenotypic variability by a threshold‐based mechanism underlies bacterial persistence
  publication-title: Proc Natl Acad Sci USA
– year: 2013
  article-title: Microfluidic picoliter bioreactor for microbial single‐cell analysis: fabrication, system setup, and operation
  publication-title: J Vis Exp
– volume: 22
  start-page: 2731
  year: 2017a
  end-page: 2761
  article-title: Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory
  publication-title: Discrete Continuous Dyn Syst Ser B
– volume: 435
  start-page: 228
  year: 2005
  end-page: 232
  article-title: Enhancement of cellular memory by reducing stochastic transitions
  publication-title: Nature
– volume: 12
  start-page: 2318
  year: 1998
  end-page: 2331
  article-title: Functional analysis of the secretory precursor processing machinery of identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases
  publication-title: Genes Dev
– volume: 10
  year: 2014
  article-title: Memory and fitness optimization of bacteria under fluctuating environments
  publication-title: PLoS Genet
– volume: 15
  start-page: 182
  year: 2012
  end-page: 188
  article-title: Extra cytoplasmic function σ factor activation
  publication-title: Curr Opin Microbiol
– volume: 5
  start-page: 18
  year: 2011
  article-title: Phenotypic heterogeneity in mycobacterial stringent response
  publication-title: BMC Syst Biol
– volume: 4
  start-page: 152
  year: 2015
  article-title: Differential analyses for RNA‐seq: transcript‐level estimates improve gene‐level inferences
  publication-title: F1000Research
– volume: 297
  start-page: 1183
  year: 2002
  end-page: 1186
  article-title: Stochastic gene expression in a single cell
  publication-title: Science
– volume: 159
  start-page: 23
  year: 2013
  end-page: 35
  article-title: Induction of extracytoplasmic function sigma factors in cells with defects in lipoteichoic acid synthesis
  publication-title: Microbiology (Reading, Engl)
– volume: 426
  start-page: 460
  year: 2003
  end-page: 465
  article-title: A positive‐feedback‐based bistable “memory module” that governs a cell fate decision
  publication-title: Nature
– volume: 178
  start-page: 5447
  year: 1996
  end-page: 5451
  article-title: Regulation of RNA polymerase sigma subunit synthesis in intracellular levels of four species of sigma subunit under various growth conditions
  publication-title: J Bacteriol
– volume: 10
  year: 2014
  article-title: Evidence of a bacterial receptor for lysozyme: binding of lysozyme to the anti‐σ factor RsiV controls activation of the ecf σ factor σV
  publication-title: PLoS Genet
– volume: 81
  start-page: 2340
  year: 1977
  end-page: 2361
  article-title: Exact stochastic simulation of coupled chemical reactions
  publication-title: J Phys Chem
– volume: 44
  start-page: 1072
  year: 1958
  end-page: 1078
  article-title: Transformation of biochemically deficient strains of by deoxyribonucleate
  publication-title: Proc Natl Acad Sci USA
– volume: 336
  start-page: 183
  year: 2012
  end-page: 187
  article-title: Using gene expression noise to understand gene regulation
  publication-title: Science
– volume: 25
  start-page: 385
  year: 2015
  end-page: 391
  article-title: Cell‐size control and homeostasis in bacteria
  publication-title: Curr Biol
– volume: 14
  start-page: 3110
  year: 2012
  end-page: 3121
  article-title: Single cell analysis of gene expression patterns during carbon starvation in reveals large phenotypic variation
  publication-title: Environ Microbiol
– volume: 62
  start-page: 193
  year: 2008a
  end-page: 210
  article-title: Bistability, epigenetics, and bet‐hedging in bacteria
  publication-title: Annu Rev Microbiol
– volume: 193
  start-page: 6223
  year: 2011
  end-page: 6232
  article-title: σV confers lysozyme resistance by activation of two cell wall modification pathways, peptidoglycan O‐acetylation and D‐alanylation of teichoic acids
  publication-title: J Bacteriol
– start-page: 344
  year: 2016
  end-page: 351
– volume: 9
  start-page: 702
  year: 2013
  article-title: Design of orthogonal genetic switches based on a crosstalk map of σs, anti‐σs, and promoters
  publication-title: Mol Syst Biol
– volume: 24
  start-page: 104
  year: 2015
  end-page: 112
  article-title: Microbial individuality: how single‐cell heterogeneity enables population level strategies
  publication-title: Curr Opin Microbiol
– volume: 5
  start-page: 15
  year: 2017b
  article-title: DifferentialEquations.jl – a performant and feature‐rich ecosystem for solving differential equations in Julia
  publication-title: J Open Res Softw
– volume: 105
  start-page: 4393
  year: 2008b
  end-page: 4398
  article-title: Bet‐hedging and epigenetic inheritance in bacterial cell development
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 5133
  year: 2019
  article-title: Multisite phosphorylation drives phenotypic variation in (p)ppGpp synthetase‐dependent antibiotic tolerance
  publication-title: Nat Commun
– volume: 43
  start-page: 553
  year: 1957
  end-page: 566
  article-title: Enzyme induction as an all‐or‐none phenomenon
  publication-title: Proc Natl Acad Sci USA
– volume: 110
  start-page: 4140
  year: 2013
  end-page: 4145
  article-title: Rate of environmental change determines stress response specificity
  publication-title: Proc Natl Acad Sci USA
– volume: 460
  start-page: 510
  year: 2009
  end-page: 514
  article-title: Partial penetrance facilitates developmental evolution in bacteria
  publication-title: Nature
– volume: 188
  start-page: 6387
  year: 2006
  end-page: 6395
  article-title: The blue‐light receptor YtvA acts in the environmental stress signaling pathway of
  publication-title: J Bacteriol
– volume: 7
  year: 2012
  article-title: Asymmetric stochastic switching driven by intrinsic molecular noise
  publication-title: PLoS One
– volume: 9
  start-page: 5333
  year: 2018
  article-title: can survive stress by noisy growth modulation
  publication-title: Nat Commun
– volume: 20
  start-page: 1099
  year: 2010
  end-page: 1103
  article-title: Robust growth of
  publication-title: Curr Biol
– volume: 91
  start-page: 1036
  year: 2014
  end-page: 1052
  article-title: The role of thiol oxidative stress response in heat‐induced protein aggregate formation during thermotolerance in
  publication-title: Mol Microbiol
– volume: 4
  start-page: 393
  year: 2017
  end-page: 403
  article-title: Noisy response to antibiotic stress predicts subsequent single‐cell survival in an acidic environment
  publication-title: Cell Syst.
– volume: 12
  year: 2016
  article-title: The Anti‐sigma factor RsiV Is a bacterial receptor for lysozyme: co‐crystal structure determination and demonstration that binding of lysozyme to RsiV is required for σV activation
  publication-title: PLoS Genet
– volume: 193
  start-page: 6215
  year: 2011
  end-page: 6222
  article-title: The extracytoplasmic function σ factor σV is induced by lysozyme and provides resistance to lysozyme
  publication-title: J Bacteriol
– volume: 5
  year: 2009
  article-title: Genome‐wide fitness and expression profiling implicate Mga2 in adaptation to hydrogen peroxide
  publication-title: PLoS Genet
– volume: 9
  year: 2013
  article-title: Tunable stochastic pulsing in the multiple antibiotic resistance network from interlinked positive and negative feedback loops
  publication-title: PLoS Comput Biol
– volume: 15
  year: 2019
  article-title: Temporal order and precision of complex stress responses in individual bacteria
  publication-title: Mol Syst Biol
– volume: 7
  start-page: 80
  year: 2011
  end-page: 88
  article-title: Measuring single‐cell gene expression dynamics in bacteria using fluorescence time‐lapse microscopy
  publication-title: Nat Protoc
– volume: 286
  start-page: 23950
  year: 2011
  end-page: 23958
  article-title: Characterization of O‐acetylation of N‐acetylglucosamine: a novel structural variation of bacterial peptidoglycan
  publication-title: J Biol Chem
– volume: 334
  start-page: 366
  year: 2011
  end-page: 369
  article-title: Stochastic pulse regulation in bacterial stress response
  publication-title: Science
– volume: 115
  start-page: E11415
  year: 2018
  end-page: E11424
  article-title: Cell size control driven by the circadian clock and environment in cyanobacteria
  publication-title: Proc Natl Acad Sci USA
– volume: 46
  start-page: 7450
  year: 2018
  end-page: 7464
  article-title: Engineering orthogonal synthetic timer circuits based on extracytoplasmic function σ factors
  publication-title: Nucleic Acids Res
– volume: 200
  year: 2018
  article-title: Signal peptidase is necessary and sufficient for site 1 cleavage of RsiV in in response to lysozyme
  publication-title: J Bacteriol
– volume: 113
  start-page: 297
  year: 2000
  article-title: The chemical Langevin equation
  publication-title: J Chem Phys
– volume: 135
  start-page: 216
  year: 2008
  end-page: 226
  article-title: Nature, nurture, or chance: stochastic gene expression and its consequences
  publication-title: Cell
– volume: 231
  start-page: 76
  year: 2011
  end-page: 89
  article-title: Bistable responses in bacterial genetic networks: designs and dynamical consequences
  publication-title: Math Biosci
– volume: 95
  start-page: 2103
  year: 2008
  end-page: 2115
  article-title: Timing and dynamics of single cell gene expression in the arabinose utilization system
  publication-title: Biophys J
– volume: 46
  start-page: 2133
  year: 2018
  end-page: 2144
  article-title: A sigma factor toolbox for orthogonal gene expression in
  publication-title: Nucleic Acids Res
– volume: 14
  start-page: 417
  year: 2017
  end-page: 419
  article-title: Salmon provides fast and bias‐aware quantification of transcript expression
  publication-title: Nat Methods
– volume: 6
  start-page: 216
  year: 2018
  end-page: 229
  article-title: Molecular time sharing through dynamic pulsing in single cells
  publication-title: Cell Syst
– volume: 112
  start-page: 410
  year: 2019
  end-page: 419
  article-title: Activation of the extracytoplasmic function σ factor σV by lysozyme
  publication-title: Mol Microbiol
– volume: 97
  year: 2006
  article-title: Linking stochastic dynamics to population distribution: an analytical framework of gene expression
  publication-title: Phys Rev Lett
– volume: 177
  start-page: 6832
  year: 1995
  end-page: 6835
  article-title: Regulation of RNA polymerase sigma subunit synthesis in intracellular levels of sigma 70 and sigma 38
  publication-title: J Bacteriol
– volume: 20
  start-page: 3167
  year: 2001
  end-page: 3176
  article-title: Cell signaling can direct either binary or graded transcriptional responses
  publication-title: EMBO J
– volume: 26
  start-page: 34
  year: 2011
  end-page: 44
  article-title: Regulated intramembrane proteolysis: signaling pathways and biological functions
  publication-title: Physiology (Bethesda)
– volume: 15
  start-page: 550
  year: 2014
  article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2
  publication-title: Genome Biol
– volume: 91
  start-page: 1118
  year: 2016
  end-page: 1133
  article-title: Priming and memory of stress responses in organisms lacking a nervous system
  publication-title: Biol Rev Camb Philos Soc
– volume: 503
  start-page: 481
  year: 2013
  end-page: 486
  article-title: Memory and modularity in cell‐fate decision making
  publication-title: Nature
– volume: 13
  year: 2017
  article-title: Use of a microfluidic platform to uncover basic features of energy and environmental stress responses in individual cells of
  publication-title: PLoS Genet
– ident: e_1_2_9_22_1
  doi: 10.1002/9781119004813.ch30
– ident: e_1_2_9_34_1
  doi: 10.1371/journal.pgen.1007527
– ident: e_1_2_9_16_1
  doi: 10.1063/1.481811
– ident: e_1_2_9_23_1
  doi: 10.1371/journal.pgen.1006287
– ident: e_1_2_9_66_1
  doi: 10.1016/j.cub.2010.04.045
– ident: e_1_2_9_2_1
  doi: 10.1038/nature03524
– ident: e_1_2_9_32_1
  doi: 10.1152/physiol.00028.2010
– ident: e_1_2_9_9_1
  doi: 10.1126/science.1070919
– ident: e_1_2_9_31_1
  doi: 10.1371/journal.pgen.1000488
– ident: e_1_2_9_33_1
  doi: 10.1371/journal.pgen.1004556
– ident: e_1_2_9_29_1
  doi: 10.1128/JB.178.18.5447-5451.1996
– ident: e_1_2_9_58_1
  doi: 10.12688/f1000research.7563.1
– ident: e_1_2_9_67_1
  doi: 10.1038/nature02089
– ident: e_1_2_9_52_1
  doi: 10.3934/dcdsb.2017133
– ident: e_1_2_9_60_1
  doi: 10.1371/journal.pone.0001771
– ident: e_1_2_9_28_1
  doi: 10.1128/jb.177.23.6832-6835.1995
– ident: e_1_2_9_38_1
  doi: 10.1016/j.mib.2015.01.003
– ident: e_1_2_9_56_1
  doi: 10.1073/pnas.1004333107
– ident: e_1_2_9_7_1
  doi: 10.1128/JB.00663-17
– ident: e_1_2_9_50_1
  doi: 10.1038/nmeth.4197
– ident: e_1_2_9_61_1
  doi: 10.1016/j.cub.2014.12.009
– ident: e_1_2_9_36_1
  doi: 10.1126/science.1208144
– ident: e_1_2_9_25_1
  doi: 10.1128/JB.05467-11
– ident: e_1_2_9_21_1
  doi: 10.1371/journal.pgen.1004643
– ident: e_1_2_9_40_1
  doi: 10.1529/biophysj.107.127191
– ident: e_1_2_9_69_1
  doi: 10.1073/pnas.1213060110
– ident: e_1_2_9_6_1
  doi: 10.1371/journal.pgen.1006901
– ident: e_1_2_9_64_1
  doi: 10.1146/annurev.micro.62.081307.163002
– ident: e_1_2_9_35_1
  doi: 10.1038/s41467-019-13127-z
– ident: e_1_2_9_8_1
  doi: 10.1038/nature08150
– ident: e_1_2_9_19_1
  doi: 10.1099/mic.0.063420-0
– ident: e_1_2_9_63_1
  doi: 10.1101/gad.12.15.2318
– ident: e_1_2_9_14_1
  doi: 10.1186/1752-0509-5-18
– ident: e_1_2_9_18_1
  doi: 10.1128/JB.06023-11
– ident: e_1_2_9_46_1
  doi: 10.1073/pnas.43.7.553
– ident: e_1_2_9_54_1
  doi: 10.1016/j.cell.2008.09.050
– ident: e_1_2_9_37_1
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pone.0031407
– ident: e_1_2_9_68_1
  doi: 10.1038/nprot.2011.432
– start-page: 50560
  year: 2013
  ident: e_1_2_9_17_1
  article-title: Microfluidic picoliter bioreactor for microbial single‐cell analysis: fabrication, system setup, and operation
  publication-title: J Vis Exp
– ident: e_1_2_9_42_1
  doi: 10.15252/msb.20188470
– ident: e_1_2_9_12_1
  doi: 10.1128/JB.00691-06
– ident: e_1_2_9_59_1
  doi: 10.1073/pnas.44.10.1072
– ident: e_1_2_9_39_1
  doi: 10.1073/pnas.1811309115
– ident: e_1_2_9_44_1
  doi: 10.1371/journal.pcbi.1005267
– ident: e_1_2_9_62_1
  doi: 10.1016/j.mbs.2011.03.004
– ident: e_1_2_9_57_1
  doi: 10.1111/mmi.12521
– ident: e_1_2_9_5_1
  doi: 10.1093/emboj/20.12.3167
– ident: e_1_2_9_55_1
  doi: 10.1038/msb.2013.58
– ident: e_1_2_9_47_1
  doi: 10.1111/j.1365-2958.2004.04342.x
– ident: e_1_2_9_45_1
  doi: 10.1038/nature12804
– ident: e_1_2_9_43_1
  doi: 10.1126/science.1216379
– ident: e_1_2_9_13_1
  doi: 10.1371/journal.pcbi.1003229
– ident: e_1_2_9_51_1
  doi: 10.1093/nar/gky614
– ident: e_1_2_9_30_1
  doi: 10.1111/j.1462-2920.2012.02892.x
– ident: e_1_2_9_53_1
  doi: 10.5334/jors.151
– ident: e_1_2_9_48_1
  doi: 10.1016/j.cels.2018.01.011
– ident: e_1_2_9_41_1
  doi: 10.1016/j.cels.2017.03.001
– ident: e_1_2_9_15_1
  doi: 10.1021/j100540a008
– ident: e_1_2_9_4_1
  doi: 10.1093/nar/gky010
– ident: e_1_2_9_65_1
  doi: 10.1073/pnas.0700463105
– ident: e_1_2_9_3_1
  doi: 10.1074/jbc.M111.241414
– ident: e_1_2_9_49_1
  doi: 10.1038/s41467-018-07702-z
– ident: e_1_2_9_20_1
  doi: 10.1128/JB.00292-13
– ident: e_1_2_9_27_1
  doi: 10.1111/mmi.14348
– ident: e_1_2_9_26_1
  doi: 10.1016/j.mib.2012.01.001
– ident: e_1_2_9_10_1
  doi: 10.1103/PhysRevLett.97.168302
– ident: e_1_2_9_24_1
  doi: 10.1111/brv.12215
SSID ssj0038182
Score 2.4151816
Snippet Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by...
Abstract Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for...
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e9832
SubjectTerms Bacillus subtilis
Bacillus subtilis - genetics
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Variation, Population
Circuits
EMBO23
Environmental conditions
Environmental history
Gene expression
Gene Expression Regulation, Bacterial
Genetic variability
Heterogeneity
Homeostasis
Humans
Iterative methods
Life Sciences
Lysozyme
microbial systems biology
Microfluidics
Microscopy
Operon - genetics
Perturbation
Populations
Proteins
RNA polymerase
Sigma factor
Sigma Factor - genetics
Sigma Factor - metabolism
Signal transduction
single‐cell time‐lapse microscopy
stochastic gene expression
Stress
stress priming
Transcription
Variability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEG9CCzII0QvROnbiJMcWUa0Q5UIrlZPlOE4baZtd7W6K8u87YyeBqCq9cIviUR4zY8838eQbQj4KY2WVaBMa_P4WV5CzZlwnYS7zPAUAH-fue8fxDzk_jb-dJWd_tfrCmjBPD-wVN5O5YQXCGoGpC2OFwIsUhQRcXPHMQSMIY0My5ddgDEO8Z9RMeMJnl5sCckHO8kzwSQRyRP0QVy6wDPImxrxZKjnulz4iD9pmpbvferGYIlsXmo6ekMc9pqQH_l2eknu2eUbu-y6T3XPy66R1P0hRLOdabrtVbegVpMieobujfaseqhuqkdHAd6dfrjvqttIbRw1ON_X5paa-PQ819dq09fYFOT36evJlHvYdFUIjQWGhjPMSEIAwiQZgk-nSZlaCuYSRnGkTwUAElsqKNLWQN_NY6KjUsA6x2GYytuIl2WmWjX1NaBJVcSoEq2xpY1OZrIxSw4tCM_yPqywD8nnQsjI93Th2vVgoTDvQKAqMogajBOTTKL7yPBu3CR6iyUYhpMd2J8BpVO806i6nCcgHMPjkGvOD7wrPMSHSPE2iqygge4M_qH5ibxRHfjSHEgPyfhyGKYn7LLqxy9bJiAygUwIyr7z7jLcSkO7JPILXSCeONXmW6UhTXzjab2xNAKttQPYHF_zzWLeoan_00LuUOnP--28pdfzzcDh-8z_MsEseciwRctXPe2Rnu27tW8B42-Kdm87XmuBIOg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELWgCAEHxFchUJBBiF6INrETJzmhFlGtEOVCKy0ny3GcNtI2WXY3Rfn3zDhOqqhquUXxaJOdGXve2JM3hHzk2ogyVtrXuP8WlZCzpkzFfiayLAEAH2V2v-P4p5ifRt8X8cJtuG1cWeWwJtqFumg07pHPGBJT2fD8ZfXHx65ReLrqWmjcJfdCgCro1cliTLgwGDHHqxmzmM0uNjlkhCzIUs4mccjS9UN0OcdiyOtI83rB5Hhq-og8aOuV6v6q5XKKb22AOnpCHjtkSQ96V3hK7pj6Gbnf95rsnpPfJ639TIpiUVez7VaVppeQKPc83R11DXuoqqlCXoO-R32z7qg9UK8tQTjdVGcXivZNeqiu1rqtti_I6dG3k69z3_VV8LUQAKhFlBWAA7iOFcCbVBUmNQKMxrVggdIhDIRgrzRPEgPZM4u4CgsFq1EQmVREhu-SnbqpzStC47CMEs6D0hQm0qVOizDRLM9VgF9zFYVHPg9altqRjmPvi6XE5AONIsEocjCKRz6N4quebeMmwUM02SiEJNn2RrM-k27OSZHpIEdEzDHrDYKco__lOehAlCxVHvkABp_8xvzgh8R7AedJlsThZeiRvcEfpJveG3nljB55Pw7DxMTTFlWbprUyPAUAFYPMy959xkdxSPpEFsLfSCaONXmX6UhdnVvyb2xQAGuuR_YHF7x6rRtUtT966P-UOrP-e7uUPP51OFy_vl05b8hDhiVAtrp5j-xs1615Cxhum7-zE_UfUMpBjQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCMEeEN8EBjIIsReqOXbsJI9bxVQhxgubNJ4sx3G2SF1atc2m_PfcOR8QVQPeqviSOr6z73fx-XeEfBTWqUIaO7H4_S0qIGZNuJGTVKVpDAA-Sv33jpPvanYWfT2X510SDZ6F-XP_XnLJD67WGURxnKVgenfJPQlrLmbuTdW0X3DR5_COPnPrlpG78az84EQuMedxG1Bu50UOm6O75EFdLU1zY-bzMYz1fuj4MXnUAUh62Gr8CbnjqqfkfltSsnlGfp7W_jQUxdytxaZZlpZeQzzc0nE3tKvLQ01FDdIXtKXoF6uG-n3zyvOA03V5cWVoW4uH2nJl63LznJwdfzmdziZd-YSJVQpws4rSHNy9sNIAiklM7hKnQDfCKs6MDaEhBLUkWRw7CJJ5JEyYG1h0WOQSFTnxguxUi8q9IlSGRRQLwQqXu8gWNsnD2PIsMwwPbeV5QD73o6xtxy2OJS7mGmMMVIoGpeheKQH5NIgvW1KN2wSPUGWDEHJh-wtgIrqbWlqllmUIfAUGt4xlAs0sy2AMVMETE5APoPDRM2aH3zReY0LEaSzD6zAge7096G4WrzVHMjQPCQPyfmiG-YebKqZyi9rLiARwkgSZl635DH8lILZTaQivEY8Ma9SXcUtVXnqOb6xDAEtrQPZ7E_zdrVuGan-w0H8N6oG3379L6ZMfR_3v1__dizfkIcekH5_PvEd2NqvavQXUtsne-Tn7C4laOOA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgh44PsjMJBBiL0sWxInTvLYTUwVYhMSq7Q9RY7jdBVdUrXNUPnruXM-UKgGSLxVsZsm15_Pv7PPvwN4z5UWeSCVrWj9zc8xZo08GdixiOMQCbwfm_WOk1MxGvufzoPzLThqz8LU-hDdghuNDOOvaYDPs7z2823dHu_gaplijOc5MQLzFmwL2mUawPb49Mvwoj4K6dtUkKlR19z4Tm82MqL9OMdcUkrkJt_cTJvs9k7vwZ2qmMv1dzmb9VmumaaOH0DWvmCdnfJtv1ql--rHb9qP_2mBh3C_obFsWOPuEWzp4jHcrgtbrp_AxVllzmQxyiArV-v5VLFrjMprUfA1a6oDMVkwSSIKekJVxMrFmpnd-8KokbPldHIlWV0RiKnpQlXT1VMYH388OxrZTREHWwmB7F34cYakg6tAIpeKZKYjLRAhXAnPkcrFBhfBEaVhqDFU93wu3Uyi63N8HQlf82cwKMpCvwAWuLkfcu7kOtO-ylWUuaHy0lQ6dHQsyyzYa__MRDUK51RoY5ZQpEPWStBaSWstCz503ee1tMdNHQ8JGV0nUuQ2F8rFJGkGeCJi5aREvzmF2I6TcgJ7mqINRO5F0oJ3iKvePUbDzwldczgP4zBwr10LdlrYJY0vWSYeSbIZYmrB264ZvQBt7chCl5XpwyNkawH2eV6jtPspjhGmiF18jbCH396z9FuK6aVRGqdqCOjgLdhtkf7rsW4w1W43EP5m1AOD7T_3Sk6-HrafX_7zvV_BXY9Sj0xW9Q4MVotKv0buuErfNL7hJyIhaKU
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCNEeEO-mFGQQoheiJrHjJMcWUa0QRUi0UjlZtuO0kbbJanfTKv--M84Doqogbqt4kk08M_Y39vgbQj4wY0URK-MbXH_jBcSsaaRiPxNZlgCA55lb7zj-Lman_OtZfNbXOcWzMB0_xLjghp7hxmt0cKVXQ8UeZA29XGmI76IgA6O8Tx6EOPMjtTP_MQzFOBtF3YlI7mNdpp5kEx-w_-ftk0nJcffDVHOBmZG3Yeft7MlxC3WLPGqqhWqv1Xw-Bbtutjp6Qh73MJMedHbxlNyz1TPysCs82T4nv04ad2aKYoZXvW4XpaFXEDV3pN0t7av3UFVRhSQHXcH6etlSt7teObZwuirPLxXtKvZQUy5NU65fkNOjLyefZ35fZME3QgC6FjzLARQwEyvAOqnKbWoFaJAZEQXKhNAQgvJSnSQWQumIMxXmCoamgNtUcMteko2qruw2oXFY8ISxoLC55aYwaR4mJtJaBXi0K8898mnoZWl6BnIshDGXGImgUiQoRQ5K8cjHUXzRUW_cJXiIKhuFkDHbXaiX57J3QCkyE2iExwxD4CDQDI1Ra-gDUUSp8sh7UPjkGbODbxKvBYwlWRKHV6FHdgd7kL2vr2SElGkOOHrk3dgMXopbL6qydeNkWApoKgaZV535jH_FIAIUWQifkUwMa_Iu05aqvHBM4FitAAZgj-wNJvj7te7oqr3RQv_VqfvOfv8uJY9_Hg6_d_77jtdkM8IUIZf9vEs21svGvgGMt9ZvnR_fAHbwRc8
  priority: 102
  providerName: Wiley-Blackwell
Title Tunable phenotypic variability through an autoregulatory alternative sigma factor circuit
URI https://link.springer.com/article/10.15252/msb.20209832
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fmsb.20209832
https://www.ncbi.nlm.nih.gov/pubmed/34286912
https://www.proquest.com/docview/2555856001
https://www.proquest.com/docview/2553821851
https://hal.inrae.fr/hal-03379751
https://pubmed.ncbi.nlm.nih.gov/PMC8287880
https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/msb.20209832
https://doaj.org/article/69c0b08003614400b39971bb6826f28a
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: HH5
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: ABDBF
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: M~E
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: 7X7
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: BENPR
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: M48
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: AAJSJ
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: AVUZU
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1744-4292
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0038182
  issn: 1744-4292
  databaseCode: 24P
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2EQIeEHcCowoIbS9kS2zHSR4QaqtNFaJVBavUPUWO42yVurTrZZB_zznOBVVlwEvVxkdp4vM5_o59cj5CPjClReZL5Shcf-MZxKwhlb4TiSgKgMDzyKx39AeiN-Jfxv54h9R5ulUHLv8Y2qGe1GgxPf55U3yGAf-pUu-hJ9fLBCI96kYAz8P5jYOaUrj3Wgls7JJ9mKcoYr7Pmz0GnKpo-bokd1C0qarAuXXGjRnLFPaHeegK0ya3Oel2amWzv_qQ3F_nc1n8kNPpJhM2U9nZY_Ko4qB2uwTNE7Kj86fkXqlKWTwjF-dr80KVjelfs1Uxnyj7FkLqsqJ3YVfSPrbMbYkVEEo1-9misM3We25KidvLyeW1tEs5H1tNFmo9WT0no7PT827PqRQYHCUEUG_BoxQYA1O-BCIUylSHWoB7mRLUlcqDBg88GyZBoCHOppxJL5Xw3HK5DgXX7AXZy2e5fkVs38t4wJib6VRzlakw9QJFk0S6-N5XmlrkY93LsarKk6NKxjTGMAWdEoNT4topFjlszOdlXY67DDvossYIy2mbA7PFZVyNzlhEyk2QOzOMj103YYjUJIE-EBkNpUXeg8M3ztFrf43xmMtYEAW-d-tZ5KDGQ1zjOKZYT82wSou8a5phCOO-jMz1bG1sWAhUyweblyV8mr9iEB6KyIPbCDaAtXEtmy355MqUCUcpA3g6W-SohuDvy7qjq44ahP6rU08Mfv9uFfe_d-rvr__j7t-QBxQzhkwy9AHZWy3W-i1QvlXSIruUD-EzGActst85HQy_wa-u6LbMIkrLjGxoGQ2G7YtfuG1WeQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8CBQwCeiHaxE6c5IBQC1RbutsLW2k5Bcdxtittk2UfrfKn-I3MOI8qqlpOva3iUdaZGc_DHn9DyHuutMh8qWyF-29eBjlryKRvRyKKAgjgvcjsdwyPRP_Y-zH2xxvkb3MXBssqG5toDHVaKNwj7zEEpjLu-cv8j41do_B0tWmhUanFoS7PIWVbfj74BvL9wNj-99HXvl13FbCVEBBOCi9KwQty5Utw7qFMdagFTJkrwRypXBhwYbZhEgQackfmcemmEtai4-lQeJrDe2-R2x53PMTqD8ZtgofOj9U4nj7zWe90mUAGypwo5Kzj90x7APBmJ1h8eTmyvVyg2Z7S3iNb63wuy3M5m3XjaeMQ9x-Q-3UkS3cr1XtINnT-iNypeluWj8mv0dpcy6JYRFasyvlU0TNIzCtc8JLWDYKozKlEHAU9wUZixaKk5gA_N4DkdDmdnEpaNQWiarpQ6-nqCTm-EY4_JZt5kevnhPpu5gWcO5lOtacyFaZuoFiSSAdvj6WpRT41XI5VDXKOvTZmMSY7KJQYhBI3QrHIx5Z8XqF7XEW4hyJriRCU2zwoFpO4XuOxiJSTYATOMct2nISjvicJ8EBkLJQWeQcC77yjvzuI8ZnDeRAFvnvmWmS70Ye4NifL-EL5LfK2HQZDgKc7MtfF2tDwEAI2H2ieVerT_hWHJFNELnxG0FGszly6I_n0xICNY0MEsPEW2WlU8GJaV7Bqp9XQ_zG1Z_T3eqp4-HOv-f3ieua8IVv90XAQDw6ODl-SuwzLj0xl9TbZXC3W-hXEj6vktVm0lPy-aSvxD1ajfJc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVrwOiDeBAgYhemG1SZw4iThtgdWytBVSW6k9WY7jtJG2yWo3Kcq_Z-w8ULQqcIviSeJ4xvY39vgbgA9UKpb6Qo6kXn_zUvRZQ1f4o4hFUYAA3ovMesfhEZudevMz_2wLPndnYUy0e7cl2Zxp0CxNeTleJmmXr8cdX61j9O1cO0KDvAU7oR8x9Lx2JpP58bwbiPVc5La0mhsPDaYhw9aPk8uljoXcBJqb8ZL9pul9uFvlS1H_EovFEN6a-Wn6EB60wJJMGkt4BFsqfwy3m1ST9RM4P6nMKSmiY7qKsl5mklyjn9zQdNekzddDRE6EpjVoUtQXq5qY_fTc8IOTdXZxJUiTo4fIbCWrrHwKp9NvJ19mozatwkgyhniaeVGCMIBKXyC6CUWiQsVQZ1Qy1xbSwQIH1RXGQaDQeXY9KpxE4GBkeypknqLPYDsvcvUCiO-kXkCpnapEeTKVYeIE0o1jYevDXEliwaeulblsOcd16osF176HVgpHpfBOKRZ87MWXDdnGTYL7WmW9kObINjeK1QVvuxxnkbRjDYipdnptO6ba_OIY24ClbigseI8KH7xjNjng-p5NaRAFvnPtWLDb2QNve_eau5okzUBFC971xdgv9WaLyFVRGRkaIn7yUeZ5Yz79pyj6fCxy8DeCgWEN6jIsybNLw_2t8xPgkGvBXmeCf6p1Q1Pt9Rb6r0YdG_v9uxQ_PN7vrl_-dy3ewp2fX6f84PvRj1dwz9VxQSbkeRe2y1WlXiOwK-M3bQf-DVb6RYs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTgh44PsjMJBBiL0sWxInTvLYTUwVYhMSq7Q9RY7jdBVdUrXNUPnruXM-UKgGSLxVsZsm15_Pv7PPvwN4z5UWeSCVrWj9zc8xZo08GdixiOMQCbwfm_WOk1MxGvufzoPzLThqz8LU-hDdghuNDOOvaYDPs7z2823dHu_gaplijOc5MQLzFmwL2mUawPb49Mvwoj4K6dtUkKlR19z4Tm82MqL9OMdcUkrkJt_cTJvs9k7vwZ2qmMv1dzmb9VmumaaOH0DWvmCdnfJtv1ql--rHb9qP_2mBh3C_obFsWOPuEWzp4jHcrgtbrp_AxVllzmQxyiArV-v5VLFrjMprUfA1a6oDMVkwSSIKekJVxMrFmpnd-8KokbPldHIlWV0RiKnpQlXT1VMYH388OxrZTREHWwmB7F34cYakg6tAIpeKZKYjLRAhXAnPkcrFBhfBEaVhqDFU93wu3Uyi63N8HQlf82cwKMpCvwAWuLkfcu7kOtO-ylWUuaHy0lQ6dHQsyyzYa__MRDUK51RoY5ZQpEPWStBaSWstCz503ee1tMdNHQ8JGV0nUuQ2F8rFJGkGeCJi5aREvzmF2I6TcgJ7mqINRO5F0oJ3iKvePUbDzwldczgP4zBwr10LdlrYJY0vWSYeSbIZYmrB264ZvQBt7chCl5XpwyNkawH2eV6jtPspjhGmiF18jbCH396z9FuK6aVRGqdqCOjgLdhtkf7rsW4w1W43EP5m1AOD7T_3Sk6-HrafX_7zvV_BXY9Sj0xW9Q4MVotKv0buuErfNL7hJyIhaKU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+phenotypic+variability+through+an+autoregulatory+alternative+sigma+factor+circuit&rft.jtitle=Molecular+systems+biology&rft.au=Schwall%2C+Christian+P&rft.au=Loman%2C+Torkel+E&rft.au=Martins%2C+Bruno+M+C&rft.au=Cortijo%2C+Sandra&rft.date=2021-07-01&rft.issn=1744-4292&rft.eissn=1744-4292&rft.volume=17&rft.issue=7&rft.spage=e9832&rft_id=info:doi/10.15252%2Fmsb.20209832&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-4292&client=summon