Voxel-Wise Brain Graphs From Diffusion MRI: Intrinsic Eigenspace Dimensionality and Application to Functional MRI
Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-...
        Saved in:
      
    
          | Published in | IEEE open journal of engineering in medicine and biology Vol. 6; pp. 158 - 167 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.01.2025
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2644-1276 2644-1276  | 
| DOI | 10.1109/OJEMB.2023.3267726 | 
Cover
| Abstract | Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level. | 
    
|---|---|
| AbstractList | Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas,with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs’ Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level. Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level. Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level. Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.  | 
    
| Author | Tarun, Anjali Larsson, Martin Abramian, David Ville, Dimitri Van De Behjat, Hamid  | 
    
| AuthorAffiliation | Department of Radiology and Medical Informatics University of Geneva 27212 1205 Geneva Switzerland Department of Biomedical Engineering Linköping University 378988 581 83 Linköping Sweden 6 Neuro-X Institute, EPFL 1202 Geneva Switzerland Neuro-X Institute EPFL 1202 Geneva Switzerland Centre for Mathematical Sciences Lund University 5193 SE-221 00 Lund Sweden Neuro-X Institute École Polytechnique Fédérale de Lausanne (EPFL) 27218 1202 Geneva Switzerland Department of Biomedical Engineering Lund University 5193 SE-221 00 Lund Sweden  | 
    
| AuthorAffiliation_xml | – name: Department of Radiology and Medical Informatics University of Geneva 27212 1205 Geneva Switzerland – name: 6 Neuro-X Institute, EPFL 1202 Geneva Switzerland – name: Department of Biomedical Engineering Lund University 5193 SE-221 00 Lund Sweden – name: Centre for Mathematical Sciences Lund University 5193 SE-221 00 Lund Sweden – name: Neuro-X Institute EPFL 1202 Geneva Switzerland – name: Department of Biomedical Engineering Linköping University 378988 581 83 Linköping Sweden – name: Neuro-X Institute École Polytechnique Fédérale de Lausanne (EPFL) 27218 1202 Geneva Switzerland  | 
    
| Author_xml | – sequence: 1 givenname: Hamid orcidid: 0000-0001-6729-6801 surname: Behjat fullname: Behjat, Hamid email: hamid.behjat@epfl.ch organization: Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland – sequence: 2 givenname: Anjali surname: Tarun fullname: Tarun, Anjali email: anjalibtarun@gmail.com organization: Neuro-X Institute, EPFL, Geneva, Switzerland – sequence: 3 givenname: David surname: Abramian fullname: Abramian, David email: david.abramian@liu.se organization: Department of Biomedical Engineering, Linköping University, Linköping, Sweden – sequence: 4 givenname: Martin orcidid: 0000-0001-6008-7206 surname: Larsson fullname: Larsson, Martin email: martin.larsson@math.lth.se organization: Centre for Mathematical Sciences, Lund University, Lund, Sweden – sequence: 5 givenname: Dimitri Van De orcidid: 0000-0002-2879-3861 surname: Ville fullname: Ville, Dimitri Van De email: dimitri.vandeville@epfl.ch organization: Neuro-X Institute, EPFL, Geneva, Switzerland  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39698118$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196438$$DView record from Swedish Publication Index  | 
    
| BookMark | eNp1U0tv1DAQjlARLaV_ACEUiQuXLfEjdsyl6ptFrSohKEdr4kxar7xxsBNKxYUrf5Nfgne3rdoiTjPyfPPNNw8_z9Y632GWvSTFNiGFenf28fB0b5sWlG0zKqSk4km2QQXnE0KlWLvnr2dbMc6KoqAlIYRWz7J1poSqCKk2sp_n_ge6yVcb8c-v33sBbJfscYD-MibnKPh5Mge2bcdo_SJ2-mn6Pp92Q7BdtCY_tBfYxR4M5gd2ntyEAmeH6xy6Jt_te2cNDOkxH3x-NHZmWALyRPMie9qCi7h1YzezL0eHn_c_TE7Ojqf7uycTI4QcJoZLSQwjpqoNg0K1ilDTEIp1TbEQrakqVKSmRSO5ES2SGkqWIopWhipo2WY2XfE2Hma6D3YO4Vp7sHr54MOFhjBY41AzVgpoANAozqVQirVNxVsGjNZgiEpcbMU1dj1cX4Fzd4Sk0IvNaD_Dea0Xm9E3m0lZsMqKV9iP9QMNvQ8DOB0wIgRzqd2oI-qEuh1c1LxsC6Uqo1lDpeaUKq0k1FoKIiQmuVXLUo3Jf2sc2PPdZZ_OjpoowVmV8DsrfALPsTGYVgruobQHkc5e6gv_PTUpypKk9jaztzcMwX8bMQ56bqNB56BDP0bNCJeEMcUX4t48gs78GNIdLFCME1ZWfCHp9X1Jd1puzzUB6Apggo8xYPvP8Jff4vHwX62SLCLeS0gtKCLZX_pZDmI | 
    
| CODEN | IOJEA7 | 
    
| Cites_doi | 10.1016/j.neuroimage.2013.04.127 10.1109/JPROC.2018.2798928 10.1038/s42003-023-04474-1 10.1016/j.neuroimage.2020.117695 10.1109/tsp.2024.3349788 10.1016/j.acha.2021.10.004 10.1109/LSP.2021.3074090 10.1109/ISBI45749.2020.9098667 10.1038/s41467-017-01285-x 10.1109/LSP.2017.2704359 10.1109/TSIPN.2021.3100302 10.1016/j.neuroimage.2020.117137 10.1038/s41598-017-17546-0 10.1007/978-3-030-03574-7_4 10.1109/TBME.2019.2904473 10.1109/EMBC46164.2021.9629662 10.1109/TNSRE.2018.2860629 10.1109/ISBI48211.2021.9433958 10.1109/TIP.2022.3171414 10.1109/MSP.2012.2235192 10.1016/j.media.2021.101986 10.1093/cercor/bhr388 10.1016/j.neuroimage.2013.05.041 10.1109/ISBI.2019.8759496 10.3389/fphys.2012.00186 10.1109/TSP.2014.2321121 10.1002/hbm.24580 10.1016/j.neuroimage.2021.118095 10.1109/JPROC.2018.2820126 10.1016/j.neuroimage.2007.07.007 10.1162/netn_a_00084 10.1162/netn_a_00153 10.1109/TSP.2016.2591513 10.1002/mrm.20279 10.23919/EUSIPCO55093.2022.9909570 10.1111/j.2517-6161.1991.tb01825.x 10.1093/brain/aww243 10.1109/TSIPN.2022.3183498 10.1007/s00041-021-09826-1 10.1109/tmi.2010.2045126 10.1038/s41467-019-12765-7 10.1109/MSP.2020.3015024 10.1109/TSIPN.2020.2964230 10.1073/pnas.1007841107 10.1103/PhysRevE.106.014401 10.1016/j.neuroimage.2015.06.010 10.1016/j.tics.2020.01.008 10.1016/j.neuroimage.2022.118970 10.1038/nn.4502 10.1109/EMBC46164.2021.9630788 10.1016/j.neuroimage.2012.06.081 10.1016/j.neuroimage.2020.116718 10.1109/TSP.2022.3182470 10.1016/j.neuroimage.2013.03.053 10.1038/nrn2575 10.1016/j.neuroimage.2007.02.012 10.1109/TNSRE.2021.3049998 10.1016/j.neuroimage.2022.119399 10.1006/jmrb.1994.1037 10.1016/j.neuroimage.2021.118611 10.1016/j.nurt.2007.05.011 10.1016/j.neuron.2015.05.035  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Authors. Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 2023 The Authors 2023 Authors  | 
    
| Copyright_xml | – notice: 2023 The Authors. – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 – notice: 2023 The Authors 2023 Authors  | 
    
| CorporateAuthor | Matematik LTH Lunds universitet Naturvetenskapliga fakulteten Profile areas and other strong research environments Faculty of Science Lund University ELLIIT: the Linköping-Lund initiative on IT and mobile communication Strategiska forskningsområden (SFO) Centre for Mathematical Sciences Strategic research areas (SRA) Mathematics (Faculty of Engineering) Matematikcentrum Profilområden och andra starka forskningsmiljöer  | 
    
| CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: ELLIIT: the Linköping-Lund initiative on IT and mobile communication – name: Strategiska forskningsområden (SFO) – name: Mathematics (Faculty of Engineering) – name: Strategic research areas (SRA) – name: Faculty of Science – name: Lunds universitet – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Matematik LTH – name: Centre for Mathematical Sciences – name: Profile areas and other strong research environments – name: Matematikcentrum  | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QO 8FD FR3 K9. P64 7X8 5PM ABXSW ADTPV AOWAS D8T DG8 ZZAVC AGCHP D95 ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/OJEMB.2023.3267726 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text SWEPUB Lunds universitet full text SWEPUB Lunds universitet Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni)  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) (F) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2644-1276 | 
    
| EndPage | 167 | 
    
| ExternalDocumentID | oai_doaj_org_article_3356adaaec94476993fd84f3a32bac19 10.1109/ojemb.2023.3267726 oai_portal_research_lu_se_publications_45f0998c_3d27_4229_97ab_76167edaa8f3 oai_DiVA_org_liu_196438 PMC11655102 39698118 10_1109_OJEMB_2023_3267726 10102917  | 
    
| Genre | orig-research Journal Article  | 
    
| GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; Swiss National Science Foundation grantid: 205321-163376 funderid: 10.13039/501100001711 – fundername: Vetenskapsrådet; Swedish Research Council grantid: 2018-06689 funderid: 10.13039/501100004359 – fundername: ; grantid: 205321-163376 – fundername: ; grantid: 2018-06689  | 
    
| GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 PGMZT RIA RIE RPM AAYXX CITATION NPM 7QO 8FD FR3 K9. P64 7X8 5PM ABXSW ADTPV AOWAS D8T DG8 ZZAVC AGCHP D95 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c667t-c4771c31c8bc3a09f912cd12ebb2e06fc88e91b20d74c6fe1ba532e0928c29af3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2644-1276 | 
    
| IngestDate | Fri Oct 03 12:40:40 EDT 2025 Sun Oct 26 02:58:58 EDT 2025 Wed Oct 15 12:37:38 EDT 2025 Thu Aug 21 07:01:41 EDT 2025 Tue Sep 30 17:05:50 EDT 2025 Thu Oct 02 04:11:57 EDT 2025 Tue Oct 07 07:06:33 EDT 2025 Sun Mar 30 02:12:52 EDT 2025 Tue Jul 01 01:18:16 EDT 2025 Wed Aug 27 03:00:16 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | diffusion MRI functional MRI Brain graph graph signal processing spectral graph theory  | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c667t-c4771c31c8bc3a09f912cd12ebb2e06fc88e91b20d74c6fe1ba532e0928c29af3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-6729-6801 0000-0001-6008-7206 0000-0002-2879-3861  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10102917 | 
    
| PMID | 39698118 | 
    
| PQID | 3134135848 | 
    
| PQPubID | 5075789 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11655102 pubmed_primary_39698118 ieee_primary_10102917 swepub_primary_oai_DiVA_org_liu_196438 doaj_primary_oai_doaj_org_article_3356adaaec94476993fd84f3a32bac19 unpaywall_primary_10_1109_ojemb_2023_3267726 proquest_miscellaneous_3147133943 proquest_journals_3134135848 swepub_primary_oai_portal_research_lu_se_publications_45f0998c_3d27_4229_97ab_76167edaa8f3 crossref_primary_10_1109_OJEMB_2023_3267726  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-01-01 | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE open journal of engineering in medicine and biology | 
    
| PublicationTitleAbbrev | OJEMB | 
    
| PublicationTitleAlternate | IEEE Open J Eng Med Biol | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref57 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 C (ref44) 1991; 53 ref1 Chung (ref35) 1997 ref39 ref38 Petrantonakis (ref12) 2018; 26 ref24 ref23 ref26 ref25 ref20 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61  | 
    
| References_xml | – ident: ref34 doi: 10.1016/j.neuroimage.2013.04.127 – ident: ref26 doi: 10.1109/JPROC.2018.2798928 – ident: ref29 doi: 10.1038/s42003-023-04474-1 – ident: ref30 doi: 10.1016/j.neuroimage.2020.117695 – ident: ref60 doi: 10.1109/tsp.2024.3349788 – ident: ref62 doi: 10.1016/j.acha.2021.10.004 – ident: ref37 doi: 10.1109/LSP.2021.3074090 – ident: ref50 doi: 10.1109/ISBI45749.2020.9098667 – ident: ref46 doi: 10.1038/s41467-017-01285-x – ident: ref56 doi: 10.1109/LSP.2017.2704359 – ident: ref14 doi: 10.1109/TSIPN.2021.3100302 – ident: ref21 doi: 10.1016/j.neuroimage.2020.117137 – ident: ref28 doi: 10.1038/s41598-017-17546-0 – ident: ref52 doi: 10.1007/978-3-030-03574-7_4 – ident: ref19 doi: 10.1109/TBME.2019.2904473 – ident: ref18 doi: 10.1109/EMBC46164.2021.9629662 – volume: 26 start-page: 1700 issue: 9 year: 2018 ident: ref12 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2860629 – ident: ref47 doi: 10.1109/ISBI48211.2021.9433958 – ident: ref25 doi: 10.1109/TIP.2022.3171414 – ident: ref10 doi: 10.1109/MSP.2012.2235192 – ident: ref20 doi: 10.1016/j.media.2021.101986 – ident: ref55 doi: 10.1093/cercor/bhr388 – ident: ref2 doi: 10.1016/j.neuroimage.2013.05.041 – ident: ref1 doi: 10.1109/ISBI.2019.8759496 – ident: ref49 doi: 10.3389/fphys.2012.00186 – ident: ref36 doi: 10.1109/TSP.2014.2321121 – ident: ref6 doi: 10.1002/hbm.24580 – ident: ref17 doi: 10.1016/j.neuroimage.2021.118095 – ident: ref11 doi: 10.1109/JPROC.2018.2820126 – ident: ref43 doi: 10.1016/j.neuroimage.2007.07.007 – ident: ref57 doi: 10.1162/netn_a_00084 – ident: ref8 doi: 10.1162/netn_a_00153 – ident: ref51 doi: 10.1109/TSP.2016.2591513 – ident: ref33 doi: 10.1002/mrm.20279 – ident: ref38 doi: 10.23919/EUSIPCO55093.2022.9909570 – volume: 53 start-page: 285 issue: 2 year: 1991 ident: ref44 article-title: Procrustes methods in the statistical analysis of shape publication-title: J. Roy. Stat. Soc.. Ser. B. (Methodological) doi: 10.1111/j.2517-6161.1991.tb01825.x – ident: ref54 doi: 10.1093/brain/aww243 – ident: ref15 doi: 10.1109/TSIPN.2022.3183498 – ident: ref61 doi: 10.1007/s00041-021-09826-1 – ident: ref42 doi: 10.1109/tmi.2010.2045126 – ident: ref24 doi: 10.1038/s41467-019-12765-7 – ident: ref59 doi: 10.1109/MSP.2020.3015024 – ident: ref13 doi: 10.1109/TSIPN.2020.2964230 – ident: ref48 doi: 10.1073/pnas.1007841107 – volume-title: Spectral Graph Theory year: 1997 ident: ref35 – ident: ref9 doi: 10.1103/PhysRevE.106.014401 – ident: ref16 doi: 10.1016/j.neuroimage.2015.06.010 – ident: ref7 doi: 10.1016/j.tics.2020.01.008 – ident: ref23 doi: 10.1016/j.neuroimage.2022.118970 – ident: ref3 doi: 10.1038/nn.4502 – ident: ref53 doi: 10.1109/EMBC46164.2021.9630788 – ident: ref40 doi: 10.1016/j.neuroimage.2012.06.081 – ident: ref27 doi: 10.1016/j.neuroimage.2020.116718 – ident: ref63 doi: 10.1109/TSP.2022.3182470 – ident: ref45 doi: 10.1016/j.neuroimage.2013.03.053 – ident: ref4 doi: 10.1038/nrn2575 – ident: ref39 doi: 10.1016/j.neuroimage.2007.02.012 – ident: ref58 doi: 10.1109/TNSRE.2021.3049998 – ident: ref31 doi: 10.1016/j.neuroimage.2022.119399 – ident: ref32 doi: 10.1006/jmrb.1994.1037 – ident: ref22 doi: 10.1016/j.neuroimage.2021.118611 – ident: ref41 doi: 10.1016/j.nurt.2007.05.011 – ident: ref5 doi: 10.1016/j.neuron.2015.05.035  | 
    
| SSID | ssj0002511128 | 
    
| Score | 2.3142855 | 
    
| Snippet | Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal... Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal... Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas,with edges reflecting the density of axonal...  | 
    
| SourceID | doaj unpaywall swepub pubmedcentral proquest pubmed crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 158 | 
    
| SubjectTerms | Annan medicinteknik Brain Brain graph diffusion MRI Diffusion tensor imaging Distribution functions Eigenvalues and eigenfunctions Engineering and Technology Functional magnetic resonance imaging functional MRI Functionals graph signal processing Graph theory Graphs High resolution Information processing Laplace equations Medical Engineering Medicinteknik Nodes Other Medical Engineering Signal processing Spatial data spectral graph theory Structure-function relationships Substantia alba Substantia grisea Task analysis Teknik Tensors  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL9AD4qNAoKAgIS6QNrEdx-a2y-7SVlqQEC0VF8txbDVVmqy6GwHiwpW_yS9hnGSXRK3EhVOi2Plw3tjzxonfIPTCAodVJFIBF5wGVGUpdKmYBuBMiGZaZIq5Bc7z9-zgmB6dxqe9VF_un7BWHrh9cfuExExlShktKE0YuFObcWqJIjhVuhH8xCEXvWDKjcGOOMPIu14lE4r9D0fT-XjPJQvfA8YCnJINPFEj2N9lWLmObF79Z7JTFt1GN-tyob5_VUXR80yzO-h2Ryn9UduUu-iGKe-h7Z7Q4H3046T6Zorgc740v3_-Gru0ELB958Sql7Azu6wuYDPJra3d7Bnszz8evvEP4SHyEnD0p060EwYfbfyJywfQankAg_dVmfmjv1_B_VXlz8BXtlOMPlxmBx3Ppp_eHgRd2oVAM5asAk2TJNIk0jzVRIXCigjrLMImTbEJmdWcGxGlOMwSqpk1UapiAiUCc42FsuQB2iqr0jxCPpC7GChewiwFzOAkt-iA0Izo2EmlxR56tYZALlp1DdlEJaGQDWDSASY7wDw0dihtajpl7OYA2Ivs7EX-y148tOMw7t0OKBbErB7aXYMuu268lMTJ3RHgaNxDzzfF0AHdVxVVmqp2dagL9AUlHnrY2sjm4kQwwSGE8xAfWM-gCcOSMj9rRL6dLBKMl9hDL1tDG5wzyU9GTbOLvJaNphrc48s1FdsgTnbKUWeyqOXSyEVvSljS2EKYwLUkGU4kxVhIkahUJixiiYFXyS007fXGyq8gVZ2bi3SA1OP_gdQTdAu7ZMvNfNcu2lpd1uYpMMBV-qzp7H8AcXhd8g priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegO8AOfA4IDBQkxAXSJrbjD24tbdkmbSBEx-BiOY6jBbq0Whsx4MKVf5O_hOckLS3bBU6xajfWy3vP78P27yH0JAMfVpNIB0IKGlCdJqBSMQ3AmBDDjEw1cxec9w_YzojuHcVHTcKtugtjra0On9m2a1Z7-bkdn_GOAFvGw7jjDGyMQ1B3sI0QbLSnaXYZbbAYfPEW2hgdvOl-cBXlwNAHEeZscVMmlJ3JJ3uStF3B8DZ4LeBXsjVrVIH2N1VWLnI4z5-bbNBFN9GVspjqr1_0eLxinYbXkVrQVR9K-dwu50nbfPsL8vH_Cb-BrjWOq9-tJe0mumSLW2hzBc7wNvp-ODmz4-B9PrO_fvzsueIT8HzlILFn0BieTk7g0c-zrHQ5Omjvv9194e8CmXkB0uIPHDQoLHHG-n1XdaBGDIE4wddF6nf_7LX784k_BItcJzJ9eM0WGg0H717uBE1xh8AwxueBoZxHhkRGJIboUGYywiaNsE0SbEOWGSGsjBIcppwaltko0TGBHomFwVJn5A5qFZPC3kM-uJAxOJKcZVRQeE_irjYQmhITO0C22EPPFkxW0xrDQ1WxTyjV673Bfk85kVCNSHio5-RgOdLhb1c_AEdUo86KkJjpVGtrJKWcgZOXpTA30QQn2kTSQ1uOiyvT1Tzz0PZCrFSzWMwUcaB6BDxB4aHHy25Qc7d3ows7Kd0Y6tIJkhIP3a2lcPlyIpkUECh6SKzJ5xoJ6z1FflxBiTvwJViVsYee1qK89p9-ftityB7npaqQ22COjxcMrENF1eBTHatxqWZWTVcSz4rGGQQjwiiSYq4oxlJJrhPFWcS4hU8pMiDt-VKPznGqUt41Tt3_t-EP0FXsijdX-bNt1JqflvYheJTz5FGzbPwGo4N2hQ priority: 102 providerName: Unpaywall  | 
    
| Title | Voxel-Wise Brain Graphs From Diffusion MRI: Intrinsic Eigenspace Dimensionality and Application to Functional MRI | 
    
| URI | https://ieeexplore.ieee.org/document/10102917 https://www.ncbi.nlm.nih.gov/pubmed/39698118 https://www.proquest.com/docview/3134135848 https://www.proquest.com/docview/3147133943 https://pubmed.ncbi.nlm.nih.gov/PMC11655102 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196438 https://ieeexplore.ieee.org/ielx7/8782705/8937520/10102917.pdf https://doaj.org/article/3356adaaec94476993fd84f3a32bac19  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2644-1276 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511128 issn: 2644-1276 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2644-1276 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511128 issn: 2644-1276 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2644-1276 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511128 issn: 2644-1276 databaseCode: RPM dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYeIA98DkgMKogIV4gpYkdx-atpS3bpBWE6Nh4sWzH0QJdUq2N-HrhlX-Tv4Szk5aWDYmnWLFj63Jn--7s-x1CjzPQYSUOZcA4IwGRqYIpFZMANhOsqeappDbA-WBEd8dk_yg-aoLVXSyMMcZdPjNtW3Rn-WmpK-sqgxkO2yHYFxtoI2G0DtZaOlSsrgyL7SIwpsOfv94fHPTaNj94G5QUUCPp2ubjMPqbpCoX6Zfnr0k2YKJb6EpVTOXXz3IyWdmMhtfRaEFGfQflU7uaq7b-9hfC43_TeQNda9RSv1vL0U10yRS30NYKWOFt9P2w_GImwft8Zn79-NmzqSXg-coCXs-gMDwrT-HRz7Ossh44KB-83Xvh7wFVeQGy4A8s8CcsYNr4fZtToMYDASvAl0Xqd_-cpPvz0h_Cflu7KX3oZhuNh4N3L3eDJnVDoClN5oEmSRJqHGqmNJYdnvEw0mkYGaUi06GZZszwUEWdNCGaZiZUMsZQwyOmIy4zfAdtFmVh7iEfFMQY1MSEZoQR6EfZwAVMUqxjC7cWe-jpgqdiWiN0CGfZdLhwEiCsBIhGAjzUs2xftrTo2u4FMEA0k1VgHFOZSmk0JyShoMJlKYyNJY6U1CH30LZl2spwNb88tLOQItEsBTOBLWQeBj2PeejRshomsT2ZkYUpK9uGWGcBJ9hDd2uhW3aOOeUMzEAPsTVxXCNhvabITxxQuIVWgjU38tCTWnLXvunnh11H9iSvhMNlgzE-XNCwNgRFgz51IiaVmBkxXXErCxJnYGowLXAaJYJEERc8kUokNKSJgV_JMiDt2XLanONU-dGcqjVO3f_HT36ArkY2B7Nzg-2gzflZZR6CYjhXLedQablloeX8di10eTx60z3-Ddcvaws | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOSx74LlAYIEgIS6Q0tiOE3NraUu7bIuE9iUuluM42kA3qbaNeF248jf5JYydtDTsInGKFTu2JjO2Z8aebxB6moIOK4kvvYhH1KMyiWFKBdSDzYQopngimQlwHk_Y8IDuHgfHdbC6jYXRWtvLZ7plivYsPylUaVxlMMNhOwT74jK6ElBKgypca-VSMdoyLLfL0Jg2f_lutz_utkyG8BaoKaBIssb2Y1H667QqF2mY5y9K1nCiW2izzGfy62c5na5tR4PraLIkpLqF8qlVLuKW-vYXxuN_U3oDXasVU7dTSdJNdEnnt9DWGlzhbfT9sPiip95RNte_fvzsmuQS8HxjIK_nUBicFafw6GVpWhofHJTH70ev3BFQleUgDW7fQH_CEqa02zNZBSpEELADXJknbufPWbq7KNwB7LiVo9KFbrbRwaC__3ro1ckbPMVYuPAUDUNfEV9FsSKyzVPuY5X4WMcx1m2WqijS3I9xOwmpYqn2YxkQqOE4UpjLlNxBG3mR63vIBRUxAEUxZCmNKPQTm9AFQhOiAgO4Fjjo-ZKnYlZhdAhr27S5sBIgjASIWgIc1DVsX7U0-Nr2BTBA1NNVEBIwmUipFac0ZKDEpQmMTSTBsVQ-d9C2YdracBW_HLSzlCJRLwZzQQxoHgFNL3LQk1U1TGNzNiNzXZSmDTXuAk6Jg-5WQrfqnHDGIzAEHRQ1xLFBQrMmz04sVLgBV4JVFzvoWSW5jW962WHHkj3NSmGR2WCMDxc0rExBUeNPnYhpKeZazNYcy4IGKRgbkRIkwaGgGHPBQxmLkPks1PAroxRIe7GaNuc4VXzUp3GDU_f_8ZMfo83h_nhP7I0mbx-gq9hkZLZOsR20sTgr9UNQExfxI7s4_AZwZmqj | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegO8AOfA4IDBQkxAXSJrbjD24tbdkmbSBEx-BiOY6jBbq0Whsx4MKVf5O_hOckLS3bBU6xajfWy3vP78P27yH0JAMfVpNIB0IKGlCdJqBSMQ3AmBDDjEw1cxec9w_YzojuHcVHTcKtugtjra0On9m2a1Z7-bkdn_GOAFvGw7jjDGyMQ1B3sI0QbLSnaXYZbbAYfPEW2hgdvOl-cBXlwNAHEeZscVMmlJ3JJ3uStF3B8DZ4LeBXsjVrVIH2N1VWLnI4z5-bbNBFN9GVspjqr1_0eLxinYbXkVrQVR9K-dwu50nbfPsL8vH_Cb-BrjWOq9-tJe0mumSLW2hzBc7wNvp-ODmz4-B9PrO_fvzsueIT8HzlILFn0BieTk7g0c-zrHQ5Omjvv9194e8CmXkB0uIPHDQoLHHG-n1XdaBGDIE4wddF6nf_7LX784k_BItcJzJ9eM0WGg0H717uBE1xh8AwxueBoZxHhkRGJIboUGYywiaNsE0SbEOWGSGsjBIcppwaltko0TGBHomFwVJn5A5qFZPC3kM-uJAxOJKcZVRQeE_irjYQmhITO0C22EPPFkxW0xrDQ1WxTyjV673Bfk85kVCNSHio5-RgOdLhb1c_AEdUo86KkJjpVGtrJKWcgZOXpTA30QQn2kTSQ1uOiyvT1Tzz0PZCrFSzWMwUcaB6BDxB4aHHy25Qc7d3ows7Kd0Y6tIJkhIP3a2lcPlyIpkUECh6SKzJ5xoJ6z1FflxBiTvwJViVsYee1qK89p9-ftityB7npaqQ22COjxcMrENF1eBTHatxqWZWTVcSz4rGGQQjwiiSYq4oxlJJrhPFWcS4hU8pMiDt-VKPznGqUt41Tt3_t-EP0FXsijdX-bNt1JqflvYheJTz5FGzbPwGo4N2hQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voxel-Wise%E2%80%89Brain%E2%80%89Graphs%E2%80%89From%E2%80%89Diffusion%E2%80%89MRI%3A+Intrinsic+Eigenspace+Dimensionality+and+Application+to+Functional+MRI&rft.jtitle=IEEE+open+journal+of+engineering+in+medicine+and+biology&rft.au=Behjat%2C+Hamid&rft.au=Tarun%2C+Anjali&rft.au=Abramian%2C+David&rft.au=Larsson%2C+Martin&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2644-1276&rft.volume=6&rft.spage=158&rft.epage=167&rft_id=info:doi/10.1109%2FOJEMB.2023.3267726&rft.externalDocID=10102917 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1276&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1276&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1276&client=summon |