Voxel-Wise Brain Graphs From Diffusion MRI: Intrinsic Eigenspace Dimensionality and Application to Functional MRI

Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of engineering in medicine and biology Vol. 6; pp. 158 - 167
Main Authors Behjat, Hamid, Tarun, Anjali, Abramian, David, Larsson, Martin, Ville, Dimitri Van De
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2644-1276
2644-1276
DOI10.1109/OJEMB.2023.3267726

Cover

Abstract Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.
AbstractList Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas,with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs’ Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.
Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.
Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.
Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.
Author Tarun, Anjali
Larsson, Martin
Abramian, David
Ville, Dimitri Van De
Behjat, Hamid
AuthorAffiliation Department of Radiology and Medical Informatics University of Geneva 27212 1205 Geneva Switzerland
Department of Biomedical Engineering Linköping University 378988 581 83 Linköping Sweden
6 Neuro-X Institute, EPFL 1202 Geneva Switzerland
Neuro-X Institute EPFL 1202 Geneva Switzerland
Centre for Mathematical Sciences Lund University 5193 SE-221 00 Lund Sweden
Neuro-X Institute École Polytechnique Fédérale de Lausanne (EPFL) 27218 1202 Geneva Switzerland
Department of Biomedical Engineering Lund University 5193 SE-221 00 Lund Sweden
AuthorAffiliation_xml – name: Department of Radiology and Medical Informatics University of Geneva 27212 1205 Geneva Switzerland
– name: 6 Neuro-X Institute, EPFL 1202 Geneva Switzerland
– name: Department of Biomedical Engineering Lund University 5193 SE-221 00 Lund Sweden
– name: Centre for Mathematical Sciences Lund University 5193 SE-221 00 Lund Sweden
– name: Neuro-X Institute EPFL 1202 Geneva Switzerland
– name: Department of Biomedical Engineering Linköping University 378988 581 83 Linköping Sweden
– name: Neuro-X Institute École Polytechnique Fédérale de Lausanne (EPFL) 27218 1202 Geneva Switzerland
Author_xml – sequence: 1
  givenname: Hamid
  orcidid: 0000-0001-6729-6801
  surname: Behjat
  fullname: Behjat, Hamid
  email: hamid.behjat@epfl.ch
  organization: Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
– sequence: 2
  givenname: Anjali
  surname: Tarun
  fullname: Tarun, Anjali
  email: anjalibtarun@gmail.com
  organization: Neuro-X Institute, EPFL, Geneva, Switzerland
– sequence: 3
  givenname: David
  surname: Abramian
  fullname: Abramian, David
  email: david.abramian@liu.se
  organization: Department of Biomedical Engineering, Linköping University, Linköping, Sweden
– sequence: 4
  givenname: Martin
  orcidid: 0000-0001-6008-7206
  surname: Larsson
  fullname: Larsson, Martin
  email: martin.larsson@math.lth.se
  organization: Centre for Mathematical Sciences, Lund University, Lund, Sweden
– sequence: 5
  givenname: Dimitri Van De
  orcidid: 0000-0002-2879-3861
  surname: Ville
  fullname: Ville, Dimitri Van De
  email: dimitri.vandeville@epfl.ch
  organization: Neuro-X Institute, EPFL, Geneva, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39698118$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196438$$DView record from Swedish Publication Index
BookMark eNp1U0tv1DAQjlARLaV_ACEUiQuXLfEjdsyl6ptFrSohKEdr4kxar7xxsBNKxYUrf5Nfgne3rdoiTjPyfPPNNw8_z9Y632GWvSTFNiGFenf28fB0b5sWlG0zKqSk4km2QQXnE0KlWLvnr2dbMc6KoqAlIYRWz7J1poSqCKk2sp_n_ge6yVcb8c-v33sBbJfscYD-MibnKPh5Mge2bcdo_SJ2-mn6Pp92Q7BdtCY_tBfYxR4M5gd2ntyEAmeH6xy6Jt_te2cNDOkxH3x-NHZmWALyRPMie9qCi7h1YzezL0eHn_c_TE7Ojqf7uycTI4QcJoZLSQwjpqoNg0K1ilDTEIp1TbEQrakqVKSmRSO5ES2SGkqWIopWhipo2WY2XfE2Hma6D3YO4Vp7sHr54MOFhjBY41AzVgpoANAozqVQirVNxVsGjNZgiEpcbMU1dj1cX4Fzd4Sk0IvNaD_Dea0Xm9E3m0lZsMqKV9iP9QMNvQ8DOB0wIgRzqd2oI-qEuh1c1LxsC6Uqo1lDpeaUKq0k1FoKIiQmuVXLUo3Jf2sc2PPdZZ_OjpoowVmV8DsrfALPsTGYVgruobQHkc5e6gv_PTUpypKk9jaztzcMwX8bMQ56bqNB56BDP0bNCJeEMcUX4t48gs78GNIdLFCME1ZWfCHp9X1Jd1puzzUB6Apggo8xYPvP8Jff4vHwX62SLCLeS0gtKCLZX_pZDmI
CODEN IOJEA7
Cites_doi 10.1016/j.neuroimage.2013.04.127
10.1109/JPROC.2018.2798928
10.1038/s42003-023-04474-1
10.1016/j.neuroimage.2020.117695
10.1109/tsp.2024.3349788
10.1016/j.acha.2021.10.004
10.1109/LSP.2021.3074090
10.1109/ISBI45749.2020.9098667
10.1038/s41467-017-01285-x
10.1109/LSP.2017.2704359
10.1109/TSIPN.2021.3100302
10.1016/j.neuroimage.2020.117137
10.1038/s41598-017-17546-0
10.1007/978-3-030-03574-7_4
10.1109/TBME.2019.2904473
10.1109/EMBC46164.2021.9629662
10.1109/TNSRE.2018.2860629
10.1109/ISBI48211.2021.9433958
10.1109/TIP.2022.3171414
10.1109/MSP.2012.2235192
10.1016/j.media.2021.101986
10.1093/cercor/bhr388
10.1016/j.neuroimage.2013.05.041
10.1109/ISBI.2019.8759496
10.3389/fphys.2012.00186
10.1109/TSP.2014.2321121
10.1002/hbm.24580
10.1016/j.neuroimage.2021.118095
10.1109/JPROC.2018.2820126
10.1016/j.neuroimage.2007.07.007
10.1162/netn_a_00084
10.1162/netn_a_00153
10.1109/TSP.2016.2591513
10.1002/mrm.20279
10.23919/EUSIPCO55093.2022.9909570
10.1111/j.2517-6161.1991.tb01825.x
10.1093/brain/aww243
10.1109/TSIPN.2022.3183498
10.1007/s00041-021-09826-1
10.1109/tmi.2010.2045126
10.1038/s41467-019-12765-7
10.1109/MSP.2020.3015024
10.1109/TSIPN.2020.2964230
10.1073/pnas.1007841107
10.1103/PhysRevE.106.014401
10.1016/j.neuroimage.2015.06.010
10.1016/j.tics.2020.01.008
10.1016/j.neuroimage.2022.118970
10.1038/nn.4502
10.1109/EMBC46164.2021.9630788
10.1016/j.neuroimage.2012.06.081
10.1016/j.neuroimage.2020.116718
10.1109/TSP.2022.3182470
10.1016/j.neuroimage.2013.03.053
10.1038/nrn2575
10.1016/j.neuroimage.2007.02.012
10.1109/TNSRE.2021.3049998
10.1016/j.neuroimage.2022.119399
10.1006/jmrb.1994.1037
10.1016/j.neuroimage.2021.118611
10.1016/j.nurt.2007.05.011
10.1016/j.neuron.2015.05.035
ContentType Journal Article
Copyright 2023 The Authors.
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
2023 The Authors 2023 Authors
Copyright_xml – notice: 2023 The Authors.
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
– notice: 2023 The Authors 2023 Authors
CorporateAuthor Matematik LTH
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
Faculty of Science
Lund University
ELLIIT: the Linköping-Lund initiative on IT and mobile communication
Strategiska forskningsområden (SFO)
Centre for Mathematical Sciences
Strategic research areas (SRA)
Mathematics (Faculty of Engineering)
Matematikcentrum
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: ELLIIT: the Linköping-Lund initiative on IT and mobile communication
– name: Strategiska forskningsområden (SFO)
– name: Mathematics (Faculty of Engineering)
– name: Strategic research areas (SRA)
– name: Faculty of Science
– name: Lunds universitet
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Matematik LTH
– name: Centre for Mathematical Sciences
– name: Profile areas and other strong research environments
– name: Matematikcentrum
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
P64
7X8
5PM
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
AGCHP
D95
ADTOC
UNPAY
DOA
DOI 10.1109/OJEMB.2023.3267726
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
SWEPUB Lunds universitet full text
SWEPUB Lunds universitet
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic




ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL) (F)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2644-1276
EndPage 167
ExternalDocumentID oai_doaj_org_article_3356adaaec94476993fd84f3a32bac19
10.1109/ojemb.2023.3267726
oai_portal_research_lu_se_publications_45f0998c_3d27_4229_97ab_76167edaa8f3
oai_DiVA_org_liu_196438
PMC11655102
39698118
10_1109_OJEMB_2023_3267726
10102917
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; Swiss National Science Foundation
  grantid: 205321-163376
  funderid: 10.13039/501100001711
– fundername: Vetenskapsrådet; Swedish Research Council
  grantid: 2018-06689
  funderid: 10.13039/501100004359
– fundername: ;
  grantid: 205321-163376
– fundername: ;
  grantid: 2018-06689
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
PGMZT
RIA
RIE
RPM
AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
P64
7X8
5PM
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
AGCHP
D95
ADTOC
UNPAY
ID FETCH-LOGICAL-c667t-c4771c31c8bc3a09f912cd12ebb2e06fc88e91b20d74c6fe1ba532e0928c29af3
IEDL.DBID RIE
ISSN 2644-1276
IngestDate Fri Oct 03 12:40:40 EDT 2025
Sun Oct 26 02:58:58 EDT 2025
Wed Oct 15 12:37:38 EDT 2025
Thu Aug 21 07:01:41 EDT 2025
Tue Sep 30 17:05:50 EDT 2025
Thu Oct 02 04:11:57 EDT 2025
Tue Oct 07 07:06:33 EDT 2025
Sun Mar 30 02:12:52 EDT 2025
Tue Jul 01 01:18:16 EDT 2025
Wed Aug 27 03:00:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords diffusion MRI
functional MRI
Brain graph
graph signal processing
spectral graph theory
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
2023 The Authors.
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c667t-c4771c31c8bc3a09f912cd12ebb2e06fc88e91b20d74c6fe1ba532e0928c29af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6729-6801
0000-0001-6008-7206
0000-0002-2879-3861
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10102917
PMID 39698118
PQID 3134135848
PQPubID 5075789
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11655102
pubmed_primary_39698118
ieee_primary_10102917
swepub_primary_oai_DiVA_org_liu_196438
doaj_primary_oai_doaj_org_article_3356adaaec94476993fd84f3a32bac19
unpaywall_primary_10_1109_ojemb_2023_3267726
proquest_miscellaneous_3147133943
proquest_journals_3134135848
swepub_primary_oai_portal_research_lu_se_publications_45f0998c_3d27_4229_97ab_76167edaa8f3
crossref_primary_10_1109_OJEMB_2023_3267726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE open journal of engineering in medicine and biology
PublicationTitleAbbrev OJEMB
PublicationTitleAlternate IEEE Open J Eng Med Biol
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
C (ref44) 1991; 53
ref1
Chung (ref35) 1997
ref39
ref38
Petrantonakis (ref12) 2018; 26
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref34
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: ref26
  doi: 10.1109/JPROC.2018.2798928
– ident: ref29
  doi: 10.1038/s42003-023-04474-1
– ident: ref30
  doi: 10.1016/j.neuroimage.2020.117695
– ident: ref60
  doi: 10.1109/tsp.2024.3349788
– ident: ref62
  doi: 10.1016/j.acha.2021.10.004
– ident: ref37
  doi: 10.1109/LSP.2021.3074090
– ident: ref50
  doi: 10.1109/ISBI45749.2020.9098667
– ident: ref46
  doi: 10.1038/s41467-017-01285-x
– ident: ref56
  doi: 10.1109/LSP.2017.2704359
– ident: ref14
  doi: 10.1109/TSIPN.2021.3100302
– ident: ref21
  doi: 10.1016/j.neuroimage.2020.117137
– ident: ref28
  doi: 10.1038/s41598-017-17546-0
– ident: ref52
  doi: 10.1007/978-3-030-03574-7_4
– ident: ref19
  doi: 10.1109/TBME.2019.2904473
– ident: ref18
  doi: 10.1109/EMBC46164.2021.9629662
– volume: 26
  start-page: 1700
  issue: 9
  year: 2018
  ident: ref12
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2860629
– ident: ref47
  doi: 10.1109/ISBI48211.2021.9433958
– ident: ref25
  doi: 10.1109/TIP.2022.3171414
– ident: ref10
  doi: 10.1109/MSP.2012.2235192
– ident: ref20
  doi: 10.1016/j.media.2021.101986
– ident: ref55
  doi: 10.1093/cercor/bhr388
– ident: ref2
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: ref1
  doi: 10.1109/ISBI.2019.8759496
– ident: ref49
  doi: 10.3389/fphys.2012.00186
– ident: ref36
  doi: 10.1109/TSP.2014.2321121
– ident: ref6
  doi: 10.1002/hbm.24580
– ident: ref17
  doi: 10.1016/j.neuroimage.2021.118095
– ident: ref11
  doi: 10.1109/JPROC.2018.2820126
– ident: ref43
  doi: 10.1016/j.neuroimage.2007.07.007
– ident: ref57
  doi: 10.1162/netn_a_00084
– ident: ref8
  doi: 10.1162/netn_a_00153
– ident: ref51
  doi: 10.1109/TSP.2016.2591513
– ident: ref33
  doi: 10.1002/mrm.20279
– ident: ref38
  doi: 10.23919/EUSIPCO55093.2022.9909570
– volume: 53
  start-page: 285
  issue: 2
  year: 1991
  ident: ref44
  article-title: Procrustes methods in the statistical analysis of shape
  publication-title: J. Roy. Stat. Soc.. Ser. B. (Methodological)
  doi: 10.1111/j.2517-6161.1991.tb01825.x
– ident: ref54
  doi: 10.1093/brain/aww243
– ident: ref15
  doi: 10.1109/TSIPN.2022.3183498
– ident: ref61
  doi: 10.1007/s00041-021-09826-1
– ident: ref42
  doi: 10.1109/tmi.2010.2045126
– ident: ref24
  doi: 10.1038/s41467-019-12765-7
– ident: ref59
  doi: 10.1109/MSP.2020.3015024
– ident: ref13
  doi: 10.1109/TSIPN.2020.2964230
– ident: ref48
  doi: 10.1073/pnas.1007841107
– volume-title: Spectral Graph Theory
  year: 1997
  ident: ref35
– ident: ref9
  doi: 10.1103/PhysRevE.106.014401
– ident: ref16
  doi: 10.1016/j.neuroimage.2015.06.010
– ident: ref7
  doi: 10.1016/j.tics.2020.01.008
– ident: ref23
  doi: 10.1016/j.neuroimage.2022.118970
– ident: ref3
  doi: 10.1038/nn.4502
– ident: ref53
  doi: 10.1109/EMBC46164.2021.9630788
– ident: ref40
  doi: 10.1016/j.neuroimage.2012.06.081
– ident: ref27
  doi: 10.1016/j.neuroimage.2020.116718
– ident: ref63
  doi: 10.1109/TSP.2022.3182470
– ident: ref45
  doi: 10.1016/j.neuroimage.2013.03.053
– ident: ref4
  doi: 10.1038/nrn2575
– ident: ref39
  doi: 10.1016/j.neuroimage.2007.02.012
– ident: ref58
  doi: 10.1109/TNSRE.2021.3049998
– ident: ref31
  doi: 10.1016/j.neuroimage.2022.119399
– ident: ref32
  doi: 10.1006/jmrb.1994.1037
– ident: ref22
  doi: 10.1016/j.neuroimage.2021.118611
– ident: ref41
  doi: 10.1016/j.nurt.2007.05.011
– ident: ref5
  doi: 10.1016/j.neuron.2015.05.035
SSID ssj0002511128
Score 2.3142855
Snippet Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal...
Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal...
Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas,with edges reflecting the density of axonal...
SourceID doaj
unpaywall
swepub
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 158
SubjectTerms Annan medicinteknik
Brain
Brain graph
diffusion MRI
Diffusion tensor imaging
Distribution functions
Eigenvalues and eigenfunctions
Engineering and Technology
Functional magnetic resonance imaging
functional MRI
Functionals
graph signal processing
Graph theory
Graphs
High resolution
Information processing
Laplace equations
Medical Engineering
Medicinteknik
Nodes
Other Medical Engineering
Signal processing
Spatial data
spectral graph theory
Structure-function relationships
Substantia alba
Substantia grisea
Task analysis
Teknik
Tensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL9AD4qNAoKAgIS6QNrEdx-a2y-7SVlqQEC0VF8txbDVVmqy6GwHiwpW_yS9hnGSXRK3EhVOi2Plw3tjzxonfIPTCAodVJFIBF5wGVGUpdKmYBuBMiGZaZIq5Bc7z9-zgmB6dxqe9VF_un7BWHrh9cfuExExlShktKE0YuFObcWqJIjhVuhH8xCEXvWDKjcGOOMPIu14lE4r9D0fT-XjPJQvfA8YCnJINPFEj2N9lWLmObF79Z7JTFt1GN-tyob5_VUXR80yzO-h2Ryn9UduUu-iGKe-h7Z7Q4H3046T6Zorgc740v3_-Gru0ELB958Sql7Azu6wuYDPJra3d7Bnszz8evvEP4SHyEnD0p060EwYfbfyJywfQankAg_dVmfmjv1_B_VXlz8BXtlOMPlxmBx3Ppp_eHgRd2oVAM5asAk2TJNIk0jzVRIXCigjrLMImTbEJmdWcGxGlOMwSqpk1UapiAiUCc42FsuQB2iqr0jxCPpC7GChewiwFzOAkt-iA0Izo2EmlxR56tYZALlp1DdlEJaGQDWDSASY7wDw0dihtajpl7OYA2Ivs7EX-y148tOMw7t0OKBbErB7aXYMuu268lMTJ3RHgaNxDzzfF0AHdVxVVmqp2dagL9AUlHnrY2sjm4kQwwSGE8xAfWM-gCcOSMj9rRL6dLBKMl9hDL1tDG5wzyU9GTbOLvJaNphrc48s1FdsgTnbKUWeyqOXSyEVvSljS2EKYwLUkGU4kxVhIkahUJixiiYFXyS007fXGyq8gVZ2bi3SA1OP_gdQTdAu7ZMvNfNcu2lpd1uYpMMBV-qzp7H8AcXhd8g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegO8AOfA4IDBQkxAXSJrbjD24tbdkmbSBEx-BiOY6jBbq0Whsx4MKVf5O_hOckLS3bBU6xajfWy3vP78P27yH0JAMfVpNIB0IKGlCdJqBSMQ3AmBDDjEw1cxec9w_YzojuHcVHTcKtugtjra0On9m2a1Z7-bkdn_GOAFvGw7jjDGyMQ1B3sI0QbLSnaXYZbbAYfPEW2hgdvOl-cBXlwNAHEeZscVMmlJ3JJ3uStF3B8DZ4LeBXsjVrVIH2N1VWLnI4z5-bbNBFN9GVspjqr1_0eLxinYbXkVrQVR9K-dwu50nbfPsL8vH_Cb-BrjWOq9-tJe0mumSLW2hzBc7wNvp-ODmz4-B9PrO_fvzsueIT8HzlILFn0BieTk7g0c-zrHQ5Omjvv9194e8CmXkB0uIPHDQoLHHG-n1XdaBGDIE4wddF6nf_7LX784k_BItcJzJ9eM0WGg0H717uBE1xh8AwxueBoZxHhkRGJIboUGYywiaNsE0SbEOWGSGsjBIcppwaltko0TGBHomFwVJn5A5qFZPC3kM-uJAxOJKcZVRQeE_irjYQmhITO0C22EPPFkxW0xrDQ1WxTyjV673Bfk85kVCNSHio5-RgOdLhb1c_AEdUo86KkJjpVGtrJKWcgZOXpTA30QQn2kTSQ1uOiyvT1Tzz0PZCrFSzWMwUcaB6BDxB4aHHy25Qc7d3ows7Kd0Y6tIJkhIP3a2lcPlyIpkUECh6SKzJ5xoJ6z1FflxBiTvwJViVsYee1qK89p9-ftityB7npaqQ22COjxcMrENF1eBTHatxqWZWTVcSz4rGGQQjwiiSYq4oxlJJrhPFWcS4hU8pMiDt-VKPznGqUt41Tt3_t-EP0FXsijdX-bNt1JqflvYheJTz5FGzbPwGo4N2hQ
  priority: 102
  providerName: Unpaywall
Title Voxel-Wise Brain Graphs From Diffusion MRI: Intrinsic Eigenspace Dimensionality and Application to Functional MRI
URI https://ieeexplore.ieee.org/document/10102917
https://www.ncbi.nlm.nih.gov/pubmed/39698118
https://www.proquest.com/docview/3134135848
https://www.proquest.com/docview/3147133943
https://pubmed.ncbi.nlm.nih.gov/PMC11655102
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196438
https://ieeexplore.ieee.org/ielx7/8782705/8937520/10102917.pdf
https://doaj.org/article/3356adaaec94476993fd84f3a32bac19
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2644-1276
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511128
  issn: 2644-1276
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2644-1276
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511128
  issn: 2644-1276
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2644-1276
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511128
  issn: 2644-1276
  databaseCode: RPM
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYeIA98DkgMKogIV4gpYkdx-atpS3bpBWE6Nh4sWzH0QJdUq2N-HrhlX-Tv4Szk5aWDYmnWLFj63Jn--7s-x1CjzPQYSUOZcA4IwGRqYIpFZMANhOsqeappDbA-WBEd8dk_yg-aoLVXSyMMcZdPjNtW3Rn-WmpK-sqgxkO2yHYFxtoI2G0DtZaOlSsrgyL7SIwpsOfv94fHPTaNj94G5QUUCPp2ubjMPqbpCoX6Zfnr0k2YKJb6EpVTOXXz3IyWdmMhtfRaEFGfQflU7uaq7b-9hfC43_TeQNda9RSv1vL0U10yRS30NYKWOFt9P2w_GImwft8Zn79-NmzqSXg-coCXs-gMDwrT-HRz7Ossh44KB-83Xvh7wFVeQGy4A8s8CcsYNr4fZtToMYDASvAl0Xqd_-cpPvz0h_Cflu7KX3oZhuNh4N3L3eDJnVDoClN5oEmSRJqHGqmNJYdnvEw0mkYGaUi06GZZszwUEWdNCGaZiZUMsZQwyOmIy4zfAdtFmVh7iEfFMQY1MSEZoQR6EfZwAVMUqxjC7cWe-jpgqdiWiN0CGfZdLhwEiCsBIhGAjzUs2xftrTo2u4FMEA0k1VgHFOZSmk0JyShoMJlKYyNJY6U1CH30LZl2spwNb88tLOQItEsBTOBLWQeBj2PeejRshomsT2ZkYUpK9uGWGcBJ9hDd2uhW3aOOeUMzEAPsTVxXCNhvabITxxQuIVWgjU38tCTWnLXvunnh11H9iSvhMNlgzE-XNCwNgRFgz51IiaVmBkxXXErCxJnYGowLXAaJYJEERc8kUokNKSJgV_JMiDt2XLanONU-dGcqjVO3f_HT36ArkY2B7Nzg-2gzflZZR6CYjhXLedQablloeX8di10eTx60z3-Ddcvaws
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgOSx74LlAYIEgIS6Q0tiOE3NraUu7bIuE9iUuluM42kA3qbaNeF248jf5JYydtDTsInGKFTu2JjO2Z8aebxB6moIOK4kvvYhH1KMyiWFKBdSDzYQopngimQlwHk_Y8IDuHgfHdbC6jYXRWtvLZ7plivYsPylUaVxlMMNhOwT74jK6ElBKgypca-VSMdoyLLfL0Jg2f_lutz_utkyG8BaoKaBIssb2Y1H667QqF2mY5y9K1nCiW2izzGfy62c5na5tR4PraLIkpLqF8qlVLuKW-vYXxuN_U3oDXasVU7dTSdJNdEnnt9DWGlzhbfT9sPiip95RNte_fvzsmuQS8HxjIK_nUBicFafw6GVpWhofHJTH70ev3BFQleUgDW7fQH_CEqa02zNZBSpEELADXJknbufPWbq7KNwB7LiVo9KFbrbRwaC__3ro1ckbPMVYuPAUDUNfEV9FsSKyzVPuY5X4WMcx1m2WqijS3I9xOwmpYqn2YxkQqOE4UpjLlNxBG3mR63vIBRUxAEUxZCmNKPQTm9AFQhOiAgO4Fjjo-ZKnYlZhdAhr27S5sBIgjASIWgIc1DVsX7U0-Nr2BTBA1NNVEBIwmUipFac0ZKDEpQmMTSTBsVQ-d9C2YdracBW_HLSzlCJRLwZzQQxoHgFNL3LQk1U1TGNzNiNzXZSmDTXuAk6Jg-5WQrfqnHDGIzAEHRQ1xLFBQrMmz04sVLgBV4JVFzvoWSW5jW962WHHkj3NSmGR2WCMDxc0rExBUeNPnYhpKeZazNYcy4IGKRgbkRIkwaGgGHPBQxmLkPks1PAroxRIe7GaNuc4VXzUp3GDU_f_8ZMfo83h_nhP7I0mbx-gq9hkZLZOsR20sTgr9UNQExfxI7s4_AZwZmqj
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegO8AOfA4IDBQkxAXSJrbjD24tbdkmbSBEx-BiOY6jBbq0Whsx4MKVf5O_hOckLS3bBU6xajfWy3vP78P27yH0JAMfVpNIB0IKGlCdJqBSMQ3AmBDDjEw1cxec9w_YzojuHcVHTcKtugtjra0On9m2a1Z7-bkdn_GOAFvGw7jjDGyMQ1B3sI0QbLSnaXYZbbAYfPEW2hgdvOl-cBXlwNAHEeZscVMmlJ3JJ3uStF3B8DZ4LeBXsjVrVIH2N1VWLnI4z5-bbNBFN9GVspjqr1_0eLxinYbXkVrQVR9K-dwu50nbfPsL8vH_Cb-BrjWOq9-tJe0mumSLW2hzBc7wNvp-ODmz4-B9PrO_fvzsueIT8HzlILFn0BieTk7g0c-zrHQ5Omjvv9194e8CmXkB0uIPHDQoLHHG-n1XdaBGDIE4wddF6nf_7LX784k_BItcJzJ9eM0WGg0H717uBE1xh8AwxueBoZxHhkRGJIboUGYywiaNsE0SbEOWGSGsjBIcppwaltko0TGBHomFwVJn5A5qFZPC3kM-uJAxOJKcZVRQeE_irjYQmhITO0C22EPPFkxW0xrDQ1WxTyjV673Bfk85kVCNSHio5-RgOdLhb1c_AEdUo86KkJjpVGtrJKWcgZOXpTA30QQn2kTSQ1uOiyvT1Tzz0PZCrFSzWMwUcaB6BDxB4aHHy25Qc7d3ows7Kd0Y6tIJkhIP3a2lcPlyIpkUECh6SKzJ5xoJ6z1FflxBiTvwJViVsYee1qK89p9-ftityB7npaqQ22COjxcMrENF1eBTHatxqWZWTVcSz4rGGQQjwiiSYq4oxlJJrhPFWcS4hU8pMiDt-VKPznGqUt41Tt3_t-EP0FXsijdX-bNt1JqflvYheJTz5FGzbPwGo4N2hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voxel-Wise%E2%80%89Brain%E2%80%89Graphs%E2%80%89From%E2%80%89Diffusion%E2%80%89MRI%3A+Intrinsic+Eigenspace+Dimensionality+and+Application+to+Functional+MRI&rft.jtitle=IEEE+open+journal+of+engineering+in+medicine+and+biology&rft.au=Behjat%2C+Hamid&rft.au=Tarun%2C+Anjali&rft.au=Abramian%2C+David&rft.au=Larsson%2C+Martin&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2644-1276&rft.volume=6&rft.spage=158&rft.epage=167&rft_id=info:doi/10.1109%2FOJEMB.2023.3267726&rft.externalDocID=10102917
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1276&client=summon