Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and di...
Saved in:
Published in | PLoS neglected tropical diseases Vol. 9; no. 3; p. e0003539 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.03.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1935-2735 1935-2727 1935-2735 |
DOI | 10.1371/journal.pntd.0003539 |
Cover
Abstract | Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. |
---|---|
AbstractList | Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/µl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/ mu l) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax malaria is a major global public health problem, with nearly 2.5 billion people at risk for infection and approximately 132-391 million clinical infections annually. It has a wide geographical range, with a high disease burden in Asia, Central and South America, the Middle East, Oceania, and East Africa. Advances in sequencing technology and sample processing have made it possible to characterize the genetic diversity of P. vivax populations. This genetic variation provides a means to identify parasites by unique genetic signatures, or "barcodes." We developed such a genetic barcode for P. vivax, composed of 42 robust and informative variants. Here we report its development and validation based on 87 clinical samples identified by microscopy to contain P. vivax from geographically diverse parasite populations from South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We show that the SNP barcode provides a genotyping tool that can be performed at low cost, providing a means to uniquely identify parasite infections and distinguish geographic origins, and that barcode data may offer new insights into P. vivax population structure and diversity. Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax , one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax . We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax malaria is a major global public health problem, with nearly 2.5 billion people at risk for infection and approximately 132–391 million clinical infections annually. It has a wide geographical range, with a high disease burden in Asia, Central and South America, the Middle East, Oceania, and East Africa. Advances in sequencing technology and sample processing have made it possible to characterize the genetic diversity of P. vivax populations. This genetic variation provides a means to identify parasites by unique genetic signatures, or “barcodes.” We developed such a genetic barcode for P. vivax , composed of 42 robust and informative variants. Here we report its development and validation based on 87 clinical samples identified by microscopy to contain P. vivax from geographically diverse parasite populations from South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We show that the SNP barcode provides a genotyping tool that can be performed at low cost, providing a means to uniquely identify parasite infections and distinguish geographic origins, and that barcode data may offer new insights into P. vivax population structure and diversity. |
Audience | Academic |
Author | Baniecki, Mary Lynn Wellems, Thomas E. Neafsey, Daniel E. Legrand, Eric Volkman, Sarah K. Ferreira, Marcelo U. Zimmerman, Peter A. Sá, Juliana M. Sabeti, Pardis C. Karunaweera, Nadira D. Park, Daniel J. Faust, Aubrey L. Hamilton, Elizabeth Musset, Lise Galinsky, Kevin Wirth, Dyann F. Daniels, Rachel F. Serre, David Melnikov, Alexandre Schaffner, Stephen F. |
AuthorAffiliation | 4 Department of Parasitology, University of São Paulo, São Paulo, Brazil 10 School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America 5 Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka 8 Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America 6 Department of Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America 3 Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America 7 Department of International Health, Biology and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America 9 Department of Parasitology, Institute P |
AuthorAffiliation_xml | – name: 8 Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America – name: 3 Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America – name: 5 Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka – name: 6 Department of Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America – name: 7 Department of International Health, Biology and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America – name: Walter and Eliza Hall Institute, AUSTRALIA – name: 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America – name: 4 Department of Parasitology, University of São Paulo, São Paulo, Brazil – name: 1 Broad Institute, Cambridge, Massachusetts, United States of America – name: 9 Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana – name: 10 School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America |
Author_xml | – sequence: 1 givenname: Mary Lynn surname: Baniecki fullname: Baniecki, Mary Lynn – sequence: 2 givenname: Aubrey L. surname: Faust fullname: Faust, Aubrey L. – sequence: 3 givenname: Stephen F. surname: Schaffner fullname: Schaffner, Stephen F. – sequence: 4 givenname: Daniel J. surname: Park fullname: Park, Daniel J. – sequence: 5 givenname: Kevin surname: Galinsky fullname: Galinsky, Kevin – sequence: 6 givenname: Rachel F. surname: Daniels fullname: Daniels, Rachel F. – sequence: 7 givenname: Elizabeth surname: Hamilton fullname: Hamilton, Elizabeth – sequence: 8 givenname: Marcelo U. surname: Ferreira fullname: Ferreira, Marcelo U. – sequence: 9 givenname: Nadira D. surname: Karunaweera fullname: Karunaweera, Nadira D. – sequence: 10 givenname: David surname: Serre fullname: Serre, David – sequence: 11 givenname: Peter A. surname: Zimmerman fullname: Zimmerman, Peter A. – sequence: 12 givenname: Juliana M. surname: Sá fullname: Sá, Juliana M. – sequence: 13 givenname: Thomas E. surname: Wellems fullname: Wellems, Thomas E. – sequence: 14 givenname: Lise surname: Musset fullname: Musset, Lise – sequence: 15 givenname: Eric surname: Legrand fullname: Legrand, Eric – sequence: 16 givenname: Alexandre surname: Melnikov fullname: Melnikov, Alexandre – sequence: 17 givenname: Daniel E. surname: Neafsey fullname: Neafsey, Daniel E. – sequence: 18 givenname: Sarah K. surname: Volkman fullname: Volkman, Sarah K. – sequence: 19 givenname: Dyann F. surname: Wirth fullname: Wirth, Dyann F. – sequence: 20 givenname: Pardis C. surname: Sabeti fullname: Sabeti, Pardis C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25781890$$D View this record in MEDLINE/PubMed https://riip.hal.science/pasteur-01133539$$DView record in HAL |
BookMark | eNqNk22r0zAUx4tc8T7oNxAtCOKbzaRJ2sYXwrzqvYOhgvo6nKanW0ba1KYd7tubbruX7SIiedFw-vufp5xzGZ01rsEoek7JlLKMvl27oWvATtumL6eEECaYfBRdUMnEJMmYODu6n0eX3q8JEVLk9El0nogsp7kkF5H6iBu0rq2x6WNXxRB_N83SYvxl0BZdb0qMvzm7rV3Xroyv4w_QaReMvYtvsHH9tg2ABV-70gx1vDEb-B3Pmwp1b1zjn0aPK7Aenx2-V9HPz59-XN9OFl9v5tezxUSnadZPRFFAUdBCSEaITEQuK9AIVJQospCrBMiKlORQIOWcBJBkOYqqKoNEV8iuopd7v611Xh164xVNc5EmWZ7QQMz3ROlgrdrO1NBtlQOjdgbXLRV0vQlVq5QSJouMFbkUnAqUXAPwVOYJ0SWCDr7eH6INRY2lDs3rwJ44Pf3TmJVauo3iLGSTjslM9g5WD2S3s4Vqwfc4dIpQysZX3Yz8m0PAzv0a0PeqNl6jtdCgG3Z1Es5FQvL_QFOeZWnKWEBf7dElhKpNU7mQrB5xNeNhPvKESx6o6V-ocEqsjQ5DWZlgPxG8PhKsEGy_8s4Ou4E4BV8ct_G-EXfjGQC-B3TnvO-wukcoUeMW3L20GrdAHbYgyN49kGnTwxg-ZG7sv8V_ADLED9k |
CitedBy_id | crossref_primary_10_3389_fmicb_2022_984394 crossref_primary_10_1128_microbiolspec_AME_0002_2018 crossref_primary_10_1186_s12936_020_03440_0 crossref_primary_10_3389_fcimb_2022_900878 crossref_primary_10_3390_genes10060434 crossref_primary_10_1186_s12900_019_0104_0 crossref_primary_10_1002_prca_201700024 crossref_primary_10_1186_s13071_016_1899_1 crossref_primary_10_1177_1176934318760856 crossref_primary_10_1179_2047773215Y_0000000014 crossref_primary_10_1371_journal_pntd_0008945 crossref_primary_10_1016_j_meegid_2018_02_018 crossref_primary_10_1038_ng_3588 crossref_primary_10_1038_s41598_023_40935_7 crossref_primary_10_1371_journal_pntd_0008506 crossref_primary_10_1111_tmi_12594 crossref_primary_10_1038_s41467_024_54731_y crossref_primary_10_1179_2047773215Y_0000000015 crossref_primary_10_1186_s12936_020_03221_9 crossref_primary_10_1038_s42003_022_04352_2 crossref_primary_10_1101_cshperspect_a025544 crossref_primary_10_1186_s12936_020_03386_3 crossref_primary_10_3389_fcimb_2018_00034 crossref_primary_10_1371_journal_pntd_0005824 crossref_primary_10_1038_s41576_021_00349_5 crossref_primary_10_1128_spectrum_00960_22 crossref_primary_10_1038_s41467_024_51015_3 crossref_primary_10_1038_s41598_019_49991_4 crossref_primary_10_1186_s12879_018_3314_3 crossref_primary_10_1128_microbiolspec_AME_0010_2019 crossref_primary_10_1038_s41598_020_78103_w crossref_primary_10_1371_journal_pntd_0007194 crossref_primary_10_1186_s12936_016_1335_1 crossref_primary_10_1186_s12864_017_3523_y crossref_primary_10_1111_mec_15654 crossref_primary_10_1128_AAC_01163_21 crossref_primary_10_1016_j_ijpara_2016_08_006 crossref_primary_10_1186_s12936_015_0842_9 crossref_primary_10_1186_s12936_020_03330_5 crossref_primary_10_1016_j_molmed_2015_10_004 crossref_primary_10_1371_journal_pntd_0004526 crossref_primary_10_1186_s12936_016_1524_y crossref_primary_10_3390_genes12060843 crossref_primary_10_1371_journal_pntd_0003872 crossref_primary_10_1371_journal_pntd_0005930 crossref_primary_10_3389_fgene_2024_1488109 crossref_primary_10_1016_j_pt_2017_08_013 crossref_primary_10_1371_journal_pone_0140780 crossref_primary_10_1371_journal_pntd_0008962 crossref_primary_10_1126_scitranslmed_aav1636 crossref_primary_10_1371_journal_pone_0170948 crossref_primary_10_1371_journal_pmed_1003560 crossref_primary_10_1128_AAC_00095_21 crossref_primary_10_1371_journal_pntd_0008234 crossref_primary_10_3389_fgene_2019_01065 crossref_primary_10_1093_infdis_jiaa527 crossref_primary_10_1371_journal_pone_0177134 crossref_primary_10_1371_journal_pone_0268680 crossref_primary_10_1038_s41598_022_21028_3 crossref_primary_10_1371_journal_pntd_0012299 crossref_primary_10_3389_fpubh_2021_649170 crossref_primary_10_1186_s12936_018_2322_5 crossref_primary_10_1038_s41598_023_46076_1 crossref_primary_10_1371_journal_pgen_1008576 crossref_primary_10_1186_s12936_018_2623_8 crossref_primary_10_3389_fcimb_2022_953187 crossref_primary_10_1016_j_pt_2023_11_006 crossref_primary_10_1016_j_tmaid_2021_102130 crossref_primary_10_1371_journal_pone_0150947 |
Cites_doi | 10.1186/1475-2875-13-8 10.4269/ajtmh.2010.09-0588 10.1371/journal.pntd.0003071 10.1038/ng.806 10.1007/BF01245622 10.1186/1471-2156-11-65 10.4269/ajtmh.2007.77.79 10.1186/1475-2875-9-134 10.1016/j.pt.2007.09.010 10.1093/molbev/msj116 10.1016/j.gene.2007.11.022 10.4269/ajtmh.2009.09-0337 10.4269/ajtmh.2003.69.377 10.1038/ng.2373 10.1016/j.pt.2013.03.012 10.1038/nature07327 10.1073/pnas.1003776107 10.1016/B978-0-12-397900-1.00001-3 10.1186/1475-2875-12-447 10.1186/1471-2164-11-218 10.2217/14622416.8.6.597 10.1038/ng1930 10.1371/journal.pone.0060780 10.4269/ajtmh.2009.80.729 10.1016/j.ijpara.2007.02.010 10.1086/512685 10.4269/ajtmh.2010.09-0458 10.1371/journal.pntd.0001811 10.1128/AAC.05737-11 10.1146/annurev.genet.36.050802.093940 10.1016/B978-0-12-407826-0.00005-9 10.1373/49.6.853 10.1186/gb-2008-9-12-r171 10.1038/ncomms5052 10.1186/1475-2875-7-223 10.1093/molbev/msn073 10.1186/1471-2164-13-262 10.1373/clinchem.2004.032136 10.1073/pnas.082089499 10.1186/1475-2875-13-59 10.1186/1475-2875-9-151 10.1371/journal.pgen.0020190 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Public Library of Science CC0 - Public Domain Dedication 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Infections. PLoS Negl Trop Dis 9(3): e0003539. doi:10.1371/journal.pntd.0003539 |
Copyright_xml | – notice: COPYRIGHT 2015 Public Library of Science – notice: CC0 - Public Domain Dedication – notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Infections. PLoS Negl Trop Dis 9(3): e0003539. doi:10.1371/journal.pntd.0003539 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM C1K F1W H95 H97 L.G M7N 1XC VOOES 5PM DOA |
DOI | 10.1371/journal.pntd.0003539 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | SNP Barcode to Genotype P. vivax Infections |
EISSN | 1935-2735 |
ExternalDocumentID | 1685627821 oai_doaj_org_article_61039b73b895415e94caa469820cdeac PMC4362761 oai_HAL_pasteur_01133539v1 A418982494 25781890 10_1371_journal_pntd_0003539 |
Genre | Journal Article |
GeographicLocations | Middle East INW, Asia Asia Africa ASW, Brazil ISW, Sri Lanka ASW, French Guiana Ethiopia |
GeographicLocations_xml | – name: INW, Asia – name: Asia – name: Middle East – name: ISW, Sri Lanka – name: ASW, French Guiana – name: Ethiopia – name: Africa – name: ASW, Brazil |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U19 AI110818 – fundername: NIH HHS grantid: DP2 OD006514 – fundername: NCI NIH HHS grantid: T32 CA009337 – fundername: NIAID NIH HHS grantid: R01 AI097366 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8C1 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD ECGQY EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW ITC KQ8 M1P M48 O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY RIG WOQ PMFND 7X8 PUEGO 7TM C1K F1W H95 H97 L.G M7N 1XC VOOES 5PM - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c667t-5bbabb1b5930092589facea15de577819aa7b608abe14401b5078e5ffdb59cfe3 |
IEDL.DBID | M48 |
ISSN | 1935-2735 1935-2727 |
IngestDate | Fri Nov 26 17:13:52 EST 2021 Wed Aug 27 01:30:54 EDT 2025 Thu Aug 21 14:12:48 EDT 2025 Fri Sep 12 12:44:48 EDT 2025 Fri Sep 05 04:28:54 EDT 2025 Thu Sep 04 20:47:25 EDT 2025 Tue Jun 17 21:19:45 EDT 2025 Tue Jun 10 20:41:41 EDT 2025 Thu May 22 21:22:02 EDT 2025 Mon Jul 21 05:40:19 EDT 2025 Tue Jul 01 00:19:41 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | CC0 - Public Domain Dedication: http://creativecommons.org/publicdomain/zero/1.0 This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c667t-5bbabb1b5930092589facea15de577819aa7b608abe14401b5078e5ffdb59cfe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: MLB. Performed the experiments: MLB. Analyzed the data: ALF SFS DJP KG DEN SKV DFW PCS. Contributed reagents/materials/analysis tools: RFD EH MUF NDK DS PAZ TEW JMS LM EL AM. Wrote the paper: MLB ALF. The authors have declared that no competing interests exist. |
ORCID | 0000-0003-0215-4110 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pntd.0003539 |
PMID | 25781890 |
PQID | 1664776633 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685627821 doaj_primary_oai_doaj_org_article_61039b73b895415e94caa469820cdeac pubmedcentral_primary_oai_pubmedcentral_nih_gov_4362761 hal_primary_oai_HAL_pasteur_01133539v1 proquest_miscellaneous_1680445208 proquest_miscellaneous_1664776633 gale_infotracmisc_A418982494 gale_infotracacademiconefile_A418982494 gale_healthsolutions_A418982494 pubmed_primary_25781890 crossref_primary_10_1371_journal_pntd_0003539 crossref_citationtrail_10_1371_journal_pntd_0003539 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS neglected tropical diseases |
PublicationTitleAlternate | PLoS Negl Trop Dis |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | SK Volkman (ref37) 2007; 39 MU Ferreira (ref11) 2007; 195 ref33 S Gunawardena (ref32) 2010; 82 P Orjuela-Sanchez (ref31) 2009; 81 JM Carlton (ref16) 2008; 455 DE Neafsey (ref38) 2008; 9 C Delgado-Ratto (ref40) 2014; 13 AM Rezende (ref42) 2009; 80 KE Battle (ref1) 2012; 80 C. Kevin Galinsky V (ref44) 2014 M Imwong (ref43) 2007; 37 M Liew (ref27) 2004; 50 R Daniels (ref23) 2012; 56 P Van den Eede (ref13) 2010; 82 FB Dean (ref39) 2002; 99 R Udomsangpetch (ref4) 2008; 24 AD Ball (ref15) 2010; 11 DE Neafsey (ref20) 2012; 44 PL Sutton (ref14) 2013; 12 ER Chan (ref19) 2012; 6 R Daniels (ref22) 2008; 7 JC Gomez (ref9) 2003; 69 R Daniels (ref25) 2013; 8 MA DePristo (ref29) 2011; 43 CT Wittwer (ref26) 2003; 49 WG Hill (ref34) 1968; 38 DA Joy (ref12) 2008; 25 P Van den Eede (ref41) 2010; 9 LA Goncalves (ref5) 2014; 0 ND Karunaweera (ref7) 2014; 13 LS Gan (ref24) 2010; 9 AT Bright (ref18) 2012; 13 F Noulin (ref3) 2013; 29 BS Weir (ref35) 2002; 36 ND Karunaweera (ref10) 2008; 410 P Orjuela-Sanchez (ref45) 2010; 11 NV Dharia (ref30) 2010; 107 C Naing (ref6) 2014; 8 MD Preston (ref21) 2014; 5 M Imwong (ref8) 2006; 23 RN Price (ref2) 2007; 77 GH Reed (ref28) 2007; 8 JM Carlton (ref17) 2013; 81 N Patterson (ref36) 2006; 2 |
References_xml | – volume: 13 start-page: 8 year: 2014 ident: ref40 article-title: Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon publication-title: Malar J doi: 10.1186/1475-2875-13-8 – volume: 82 start-page: 235 year: 2010 ident: ref32 article-title: Geographic structure of Plasmodium vivax: microsatellite analysis of parasite populations from Sri Lanka, Myanmar, and Ethiopia publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2010.09-0588 – volume: 8 start-page: e3071 year: 2014 ident: ref6 article-title: Is Plasmodium vivax Malaria a Severe Malaria?: A Systematic Review and Meta-Analysis publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0003071 – volume: 43 start-page: 491 year: 2011 ident: ref29 article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data publication-title: Nat Genet doi: 10.1038/ng.806 – volume: 38 start-page: 226 year: 1968 ident: ref34 article-title: Linkage disequilibrium in finite populations publication-title: Theor Appl Genet doi: 10.1007/BF01245622 – volume: 11 start-page: 65 year: 2010 ident: ref45 article-title: Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: prospects for genome-wide association studies publication-title: BMC Genet doi: 10.1186/1471-2156-11-65 – volume: 77 start-page: 79 year: 2007 ident: ref2 article-title: Vivax malaria: neglected and not benign publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2007.77.79 – volume: 9 start-page: 134 year: 2010 ident: ref24 article-title: Rapid identification of chloroquine and atovaquone drug resistance in Plasmodium falciparum using high-resolution melt polymerase chain reaction publication-title: Malar J doi: 10.1186/1475-2875-9-134 – volume: 24 start-page: 85 year: 2008 ident: ref4 article-title: Cultivation of Plasmodium vivax publication-title: Trends Parasitol doi: 10.1016/j.pt.2007.09.010 – volume: 23 start-page: 1016 year: 2006 ident: ref8 article-title: Microsatellite variation, repeat array length, and population history of Plasmodium vivax publication-title: Mol Biol Evol doi: 10.1093/molbev/msj116 – volume: 410 start-page: 105 year: 2008 ident: ref10 article-title: Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax publication-title: Gene doi: 10.1016/j.gene.2007.11.022 – volume: 81 start-page: 961 year: 2009 ident: ref31 article-title: Recurrent parasitemias and population dynamics of Plasmodium vivax polymorphisms in rural Amazonia publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2009.09-0337 – volume: 69 start-page: 377 year: 2003 ident: ref9 article-title: Identification of a polymorphic Plasmodium vivax microsatellite marker publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2003.69.377 – volume: 44 start-page: 1046 year: 2012 ident: ref20 article-title: The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum publication-title: Nat Genet doi: 10.1038/ng.2373 – volume: 29 start-page: 286 year: 2013 ident: ref3 article-title: 1912–2012: a century of research on Plasmodium vivax in vitro culture publication-title: Trends Parasitol doi: 10.1016/j.pt.2013.03.012 – volume: 455 start-page: 757 year: 2008 ident: ref16 article-title: Comparative genomics of the neglected human malaria parasite Plasmodium vivax publication-title: Nature doi: 10.1038/nature07327 – volume: 107 start-page: 20045 year: 2010 ident: ref30 article-title: Whole-genome sequencing and microarray analysis of ex vivo Plasmodium vivax reveal selective pressure on putative drug resistance genes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1003776107 – volume: 80 start-page: 1 year: 2012 ident: ref1 article-title: The global public health significance of Plasmodium vivax publication-title: Adv Parasitol doi: 10.1016/B978-0-12-397900-1.00001-3 – volume: 12 start-page: 447 year: 2013 ident: ref14 article-title: A call to arms: on refining Plasmodium vivax microsatellite marker panels for comparing global diversity publication-title: Malar J doi: 10.1186/1475-2875-12-447 – volume: 0 year: 2014 ident: ref5 article-title: Emerging Plasmodium vivax resistance to chloroquine in South America: an overview publication-title: Mem Inst Oswaldo Cruz – volume: 11 start-page: 218 year: 2010 ident: ref15 article-title: A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata) publication-title: BMC Genomics doi: 10.1186/1471-2164-11-218 – volume: 8 start-page: 597 year: 2007 ident: ref28 article-title: High-resolution DNA melting analysis for simple and efficient molecular diagnostics publication-title: Pharmacogenomics doi: 10.2217/14622416.8.6.597 – volume: 39 start-page: 113 year: 2007 ident: ref37 article-title: A genome-wide map of diversity in Plasmodium falciparum publication-title: Nat Genet doi: 10.1038/ng1930 – volume: 8 start-page: e60780 year: 2013 ident: ref25 article-title: Genetic surveillance detects both clonal and epidemic transmission of malaria following enhanced intervention in Senegal publication-title: PLoS One doi: 10.1371/journal.pone.0060780 – volume: 80 start-page: 729 year: 2009 ident: ref42 article-title: Analysis of genetic variability of Plasmodium vivax isolates from different Brazilian Amazon areas using tandem repeats publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2009.80.729 – volume: 37 start-page: 1013 year: 2007 ident: ref43 article-title: Contrasting genetic structure in Plasmodium vivax populations from Asia and South America publication-title: Int J Parasitol doi: 10.1016/j.ijpara.2007.02.010 – volume: 195 start-page: 1218 year: 2007 ident: ref11 article-title: Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia publication-title: J Infect Dis doi: 10.1086/512685 – volume: 82 start-page: 223 year: 2010 ident: ref13 article-title: High complexity of Plasmodium vivax infections in symptomatic patients from a rural community in central Vietnam detected by microsatellite genotyping publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.2010.09-0458 – volume: 6 start-page: e1811 year: 2012 ident: ref19 article-title: Whole genome sequencing of field isolates provides robust characterization of genetic diversity in Plasmodium vivax publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0001811 – volume: 56 start-page: 2976 year: 2012 ident: ref23 article-title: Rapid, field-deployable method for genotyping and discovery of single-nucleotide polymorphisms associated with drug resistance in Plasmodium falciparum publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.05737-11 – volume: 36 start-page: 721 year: 2002 ident: ref35 article-title: Estimating F-statistics publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.36.050802.093940 – year: 2014 ident: ref44 article-title: COIL: A methodology for evaluating malarial Complexity of Infection using Likelihood from SNP genotype datadology for evaluating malarial Complexity of Infection using Likelihood from SNP genotype data publication-title: Malar J – volume: 81 start-page: 203 year: 2013 ident: ref17 article-title: Genomics, population genetics and evolutionary history of Plasmodium vivax publication-title: Adv Parasitol doi: 10.1016/B978-0-12-407826-0.00005-9 – volume: 49 start-page: 853 year: 2003 ident: ref26 article-title: High-resolution genotyping by amplicon melting analysis using LCGreen publication-title: Clin Chem doi: 10.1373/49.6.853 – volume: 9 start-page: R171 year: 2008 ident: ref38 article-title: Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence publication-title: Genome Biol doi: 10.1186/gb-2008-9-12-r171 – volume: 5 start-page: 4052 year: 2014 ident: ref21 article-title: A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains publication-title: Nat Commun doi: 10.1038/ncomms5052 – volume: 7 start-page: 223 year: 2008 ident: ref22 article-title: A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking publication-title: Malar J doi: 10.1186/1475-2875-7-223 – volume: 25 start-page: 1245 year: 2008 ident: ref12 article-title: Local adaptation and vector-mediated population structure in Plasmodium vivax malaria publication-title: Mol Biol Evol doi: 10.1093/molbev/msn073 – volume: 13 start-page: 262 year: 2012 ident: ref18 article-title: Whole genome sequencing analysis of Plasmodium vivax using whole genome capture publication-title: BMC Genomics doi: 10.1186/1471-2164-13-262 – volume: 50 start-page: 1156 year: 2004 ident: ref27 article-title: Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons publication-title: Clin Chem doi: 10.1373/clinchem.2004.032136 – volume: 99 start-page: 5261 year: 2002 ident: ref39 article-title: Comprehensive human genome amplification using multiple displacement amplification publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.082089499 – volume: 13 start-page: 59 year: 2014 ident: ref7 article-title: On the road to eliminate malaria in Sri Lanka: lessons from history, challenges, gaps in knowledge and research needs publication-title: Malar J doi: 10.1186/1475-2875-13-59 – volume: 9 start-page: 151 year: 2010 ident: ref41 article-title: Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon publication-title: Malar J doi: 10.1186/1475-2875-9-151 – volume: 2 start-page: e190 year: 2006 ident: ref36 article-title: Population structure and eigenanalysis publication-title: PLoS Genet doi: 10.1371/journal.pgen.0020190 – ident: ref33 |
SSID | ssj0059581 |
Score | 2.3926244 |
Snippet | Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria... Plasmodium vivax , one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria... Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria... |
SourceID | plos doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0003539 |
SubjectTerms | Africa - epidemiology Asia - epidemiology Base Sequence Chromosome Mapping Disease DNA Barcoding, Taxonomic - methods DNA, Protozoan - genetics Genetic aspects Genetic diversity Genetic Markers - genetics Genomes Genomics Genotype & phenotype Humans Identification and classification Infections Life Sciences Malaria Malaria, Vivax - epidemiology Malaria, Vivax - parasitology Microbiology and Parasitology Mortality Parasites Parasitology Physiological aspects Plasmodium falciparum Plasmodium falciparum - classification Plasmodium falciparum - genetics Plasmodium falciparum - isolation & purification Plasmodium vivax Plasmodium vivax - classification Plasmodium vivax - genetics Plasmodium vivax - isolation & purification Polymorphism, Single Nucleotide Population genetics Single nucleotide polymorphisms South America - epidemiology Standard deviation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagB8QF8d7AAkZCcMpu0tixfSyIVYVYxIGV9mbZjq1WapNom1bw75nJo0oQYi9c40nkeXj8OZ4HIe-UtUnGgoqDMyFmQWYxnFVcnCjHpC-843PMRr78li-v2Jdrfj1q9YUxYV154E5w5zneVVqRWak4bDZeMWcMtj2cJ64Ar4HeN1HJcJjqfDBXvG1PCugEM67mok-ay0R63uvorC6b4qy9ScNG4aNNqa3df_TQd1cYIDmrN9XubyD0z1jK0eZ08ZA86FElXXTcPCJ3fPmY3Lvs782fED2KDaJVoIbiL4KNpyWWM66adeFpXW1-bSsQ-3q3pRbsv4KHTUWxiiv-qKXfAWhvq2K939LD-mB-0iGQq9w9JVcXn398WsZ9a4XY5bloYm6tsTa1XGVYdYlLFYzzJuWF50IASjBG2DyRxnq8_QVCgBKeh1DAKy747BmZlVXpTzA2CqsIIs5TKeNzaYIHDFKkXOZBmJxFJBtkq11fdxzbX2x0e5km4PzRCUmjRnSvkYjEx7fqru7GLfQfUW1HWqya3T4AW9K9LenbbCkib1DpuktBPa59vWCpBCKmgJkPLQWufmDCmT6JAUSBdbQmlKcTSli1bjL8foUsjKa7XHzVtYG1vb_R4HUzZOuQRuQEbW9geqfTXAJmBWAHQ28He9T4eQyXK321RxrMLwYwmf2LRiYMFJbIiDzvbPg4HfTjMNMkImJi3ZP5TkfK9aotTs4AEYk8ffE_9PGS3Ad8yruQv1Mya272_hVgwMa-bpf7b5quWdI priority: 102 providerName: Directory of Open Access Journals |
Title | Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25781890 https://www.proquest.com/docview/1664776633 https://www.proquest.com/docview/1680445208 https://riip.hal.science/pasteur-01133539 https://pubmed.ncbi.nlm.nih.gov/PMC4362761 https://doaj.org/article/61039b73b895415e94caa469820cdeac http://dx.doi.org/10.1371/journal.pntd.0003539 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdNCmMvY9_11mUejO3JwY4lS34YIy0tYayljAXyJiRZXgKJnSVOaP_73fmLeHQfL36wTkbS3ck_6b4IeR9r7Yc0jb3UqNSjqQg9OKsYz48NFTaxho0wGvnqOppM6ZcZmx2RpmZrvYDbe492WE9qulkOb3_efQaF_1RWbeBB02m4zopkWNrGwrhHjkuLETrz0dauwGJWli0F1IKRWCGrg-n-9JXOz6rM6d_u3L05Ok7218t8ex84_d3H8uCndfmYPKrRpjuuxOMJObLZU_LgqranPyPywGfIzVNXuXh1sLRuhmmO82KRWHedL-9WObBjsV25GvQih5dF7mJ2V7zAdW8AgK_yZLFbufvFXt26jYNXtn1OppcX388nXl1ywTNRxAuPaa20DjSLQ8zGxEScKmNVwBLLOAf0oBTXkS-UtmgVBkKAGJalaQJdTGrDF6Sf5Zk9QZ8pzC6I-C8OKBsJlVrAJknARJRyFVGHhM3aSlPnI8eyGEtZGtk4nEuqRZLIEVlzxCFe22td5eP4B_0Zsq2lxWza5Yt880PWyikjtIdrHmoRMwA0NqZGKSytOfJNAn8mh7xFpssqNLXdE-SYBgKIaAyT-VhSoJzCJIyqgxtgKTC_VofytEMJ2mw6zR_mOIWD4U7GX-Vagc7vNhJ24xCntQ8ccoKy10x6K4NIAJYFwAdN7xp5lPh5dKPLbL5DGow7BpAZ_o1G-BQY5guHvKxkuB0O7u8wUt8hvCPdnfF2W7LFvExaTgEp8Sh49R9je00eAixllaffKekXm519A9Cv0APS4zMOT3EeDMjx2cX1zbdBeY0yKPX8FwQNXbY |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+single+nucleotide+polymorphism+barcode+to+genotype+Plasmodium+vivax+infections&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Baniecki%2C+Mary+Lynn&rft.au=Faust%2C+Aubrey+L&rft.au=Schaffner%2C+Stephen+F&rft.au=Park%2C+Daniel+J&rft.date=2015-03-01&rft.issn=1935-2735&rft.eissn=1935-2735&rft.volume=9&rft.issue=3&rft.spage=e0003539&rft_id=info:doi/10.1371%2Fjournal.pntd.0003539&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon |