Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and di...

Full description

Saved in:
Bibliographic Details
Published inPLoS neglected tropical diseases Vol. 9; no. 3; p. e0003539
Main Authors Baniecki, Mary Lynn, Faust, Aubrey L., Schaffner, Stephen F., Park, Daniel J., Galinsky, Kevin, Daniels, Rachel F., Hamilton, Elizabeth, Ferreira, Marcelo U., Karunaweera, Nadira D., Serre, David, Zimmerman, Peter A., Sá, Juliana M., Wellems, Thomas E., Musset, Lise, Legrand, Eric, Melnikov, Alexandre, Neafsey, Daniel E., Volkman, Sarah K., Wirth, Dyann F., Sabeti, Pardis C.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1935-2735
1935-2727
1935-2735
DOI10.1371/journal.pntd.0003539

Cover

Abstract Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.
AbstractList Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/µl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.
  Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/ mu l) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax malaria is a major global public health problem, with nearly 2.5 billion people at risk for infection and approximately 132-391 million clinical infections annually. It has a wide geographical range, with a high disease burden in Asia, Central and South America, the Middle East, Oceania, and East Africa. Advances in sequencing technology and sample processing have made it possible to characterize the genetic diversity of P. vivax populations. This genetic variation provides a means to identify parasites by unique genetic signatures, or "barcodes." We developed such a genetic barcode for P. vivax, composed of 42 robust and informative variants. Here we report its development and validation based on 87 clinical samples identified by microscopy to contain P. vivax from geographically diverse parasite populations from South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We show that the SNP barcode provides a genotyping tool that can be performed at low cost, providing a means to uniquely identify parasite infections and distinguish geographic origins, and that barcode data may offer new insights into P. vivax population structure and diversity.
Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.
Plasmodium vivax , one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax . We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. Plasmodium vivax malaria is a major global public health problem, with nearly 2.5 billion people at risk for infection and approximately 132–391 million clinical infections annually. It has a wide geographical range, with a high disease burden in Asia, Central and South America, the Middle East, Oceania, and East Africa. Advances in sequencing technology and sample processing have made it possible to characterize the genetic diversity of P. vivax populations. This genetic variation provides a means to identify parasites by unique genetic signatures, or “barcodes.” We developed such a genetic barcode for P. vivax , composed of 42 robust and informative variants. Here we report its development and validation based on 87 clinical samples identified by microscopy to contain P. vivax from geographically diverse parasite populations from South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We show that the SNP barcode provides a genotyping tool that can be performed at low cost, providing a means to uniquely identify parasite infections and distinguish geographic origins, and that barcode data may offer new insights into P. vivax population structure and diversity.
Audience Academic
Author Baniecki, Mary Lynn
Wellems, Thomas E.
Neafsey, Daniel E.
Legrand, Eric
Volkman, Sarah K.
Ferreira, Marcelo U.
Zimmerman, Peter A.
Sá, Juliana M.
Sabeti, Pardis C.
Karunaweera, Nadira D.
Park, Daniel J.
Faust, Aubrey L.
Hamilton, Elizabeth
Musset, Lise
Galinsky, Kevin
Wirth, Dyann F.
Daniels, Rachel F.
Serre, David
Melnikov, Alexandre
Schaffner, Stephen F.
AuthorAffiliation 4 Department of Parasitology, University of São Paulo, São Paulo, Brazil
10 School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America
5 Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
8 Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
6 Department of Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
3 Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
7 Department of International Health, Biology and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
9 Department of Parasitology, Institute P
AuthorAffiliation_xml – name: 8 Laboratory of Malaria and Vector Research, Malaria Genetics Section, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
– name: 3 Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
– name: 5 Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
– name: 6 Department of Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
– name: 7 Department of International Health, Biology and Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
– name: Walter and Eliza Hall Institute, AUSTRALIA
– name: 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
– name: 4 Department of Parasitology, University of São Paulo, São Paulo, Brazil
– name: 1 Broad Institute, Cambridge, Massachusetts, United States of America
– name: 9 Department of Parasitology, Institute Pasteur de la Guyane, Cayenne, French Guiana
– name: 10 School of Nursing and Health Sciences, Simmons College, Boston, Massachusetts, United States of America
Author_xml – sequence: 1
  givenname: Mary Lynn
  surname: Baniecki
  fullname: Baniecki, Mary Lynn
– sequence: 2
  givenname: Aubrey L.
  surname: Faust
  fullname: Faust, Aubrey L.
– sequence: 3
  givenname: Stephen F.
  surname: Schaffner
  fullname: Schaffner, Stephen F.
– sequence: 4
  givenname: Daniel J.
  surname: Park
  fullname: Park, Daniel J.
– sequence: 5
  givenname: Kevin
  surname: Galinsky
  fullname: Galinsky, Kevin
– sequence: 6
  givenname: Rachel F.
  surname: Daniels
  fullname: Daniels, Rachel F.
– sequence: 7
  givenname: Elizabeth
  surname: Hamilton
  fullname: Hamilton, Elizabeth
– sequence: 8
  givenname: Marcelo U.
  surname: Ferreira
  fullname: Ferreira, Marcelo U.
– sequence: 9
  givenname: Nadira D.
  surname: Karunaweera
  fullname: Karunaweera, Nadira D.
– sequence: 10
  givenname: David
  surname: Serre
  fullname: Serre, David
– sequence: 11
  givenname: Peter A.
  surname: Zimmerman
  fullname: Zimmerman, Peter A.
– sequence: 12
  givenname: Juliana M.
  surname:
  fullname: Sá, Juliana M.
– sequence: 13
  givenname: Thomas E.
  surname: Wellems
  fullname: Wellems, Thomas E.
– sequence: 14
  givenname: Lise
  surname: Musset
  fullname: Musset, Lise
– sequence: 15
  givenname: Eric
  surname: Legrand
  fullname: Legrand, Eric
– sequence: 16
  givenname: Alexandre
  surname: Melnikov
  fullname: Melnikov, Alexandre
– sequence: 17
  givenname: Daniel E.
  surname: Neafsey
  fullname: Neafsey, Daniel E.
– sequence: 18
  givenname: Sarah K.
  surname: Volkman
  fullname: Volkman, Sarah K.
– sequence: 19
  givenname: Dyann F.
  surname: Wirth
  fullname: Wirth, Dyann F.
– sequence: 20
  givenname: Pardis C.
  surname: Sabeti
  fullname: Sabeti, Pardis C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25781890$$D View this record in MEDLINE/PubMed
https://riip.hal.science/pasteur-01133539$$DView record in HAL
BookMark eNqNk22r0zAUx4tc8T7oNxAtCOKbzaRJ2sYXwrzqvYOhgvo6nKanW0ba1KYd7tubbruX7SIiedFw-vufp5xzGZ01rsEoek7JlLKMvl27oWvATtumL6eEECaYfBRdUMnEJMmYODu6n0eX3q8JEVLk9El0nogsp7kkF5H6iBu0rq2x6WNXxRB_N83SYvxl0BZdb0qMvzm7rV3Xroyv4w_QaReMvYtvsHH9tg2ABV-70gx1vDEb-B3Pmwp1b1zjn0aPK7Aenx2-V9HPz59-XN9OFl9v5tezxUSnadZPRFFAUdBCSEaITEQuK9AIVJQospCrBMiKlORQIOWcBJBkOYqqKoNEV8iuopd7v611Xh164xVNc5EmWZ7QQMz3ROlgrdrO1NBtlQOjdgbXLRV0vQlVq5QSJouMFbkUnAqUXAPwVOYJ0SWCDr7eH6INRY2lDs3rwJ44Pf3TmJVauo3iLGSTjslM9g5WD2S3s4Vqwfc4dIpQysZX3Yz8m0PAzv0a0PeqNl6jtdCgG3Z1Es5FQvL_QFOeZWnKWEBf7dElhKpNU7mQrB5xNeNhPvKESx6o6V-ocEqsjQ5DWZlgPxG8PhKsEGy_8s4Ou4E4BV8ct_G-EXfjGQC-B3TnvO-wukcoUeMW3L20GrdAHbYgyN49kGnTwxg-ZG7sv8V_ADLED9k
CitedBy_id crossref_primary_10_3389_fmicb_2022_984394
crossref_primary_10_1128_microbiolspec_AME_0002_2018
crossref_primary_10_1186_s12936_020_03440_0
crossref_primary_10_3389_fcimb_2022_900878
crossref_primary_10_3390_genes10060434
crossref_primary_10_1186_s12900_019_0104_0
crossref_primary_10_1002_prca_201700024
crossref_primary_10_1186_s13071_016_1899_1
crossref_primary_10_1177_1176934318760856
crossref_primary_10_1179_2047773215Y_0000000014
crossref_primary_10_1371_journal_pntd_0008945
crossref_primary_10_1016_j_meegid_2018_02_018
crossref_primary_10_1038_ng_3588
crossref_primary_10_1038_s41598_023_40935_7
crossref_primary_10_1371_journal_pntd_0008506
crossref_primary_10_1111_tmi_12594
crossref_primary_10_1038_s41467_024_54731_y
crossref_primary_10_1179_2047773215Y_0000000015
crossref_primary_10_1186_s12936_020_03221_9
crossref_primary_10_1038_s42003_022_04352_2
crossref_primary_10_1101_cshperspect_a025544
crossref_primary_10_1186_s12936_020_03386_3
crossref_primary_10_3389_fcimb_2018_00034
crossref_primary_10_1371_journal_pntd_0005824
crossref_primary_10_1038_s41576_021_00349_5
crossref_primary_10_1128_spectrum_00960_22
crossref_primary_10_1038_s41467_024_51015_3
crossref_primary_10_1038_s41598_019_49991_4
crossref_primary_10_1186_s12879_018_3314_3
crossref_primary_10_1128_microbiolspec_AME_0010_2019
crossref_primary_10_1038_s41598_020_78103_w
crossref_primary_10_1371_journal_pntd_0007194
crossref_primary_10_1186_s12936_016_1335_1
crossref_primary_10_1186_s12864_017_3523_y
crossref_primary_10_1111_mec_15654
crossref_primary_10_1128_AAC_01163_21
crossref_primary_10_1016_j_ijpara_2016_08_006
crossref_primary_10_1186_s12936_015_0842_9
crossref_primary_10_1186_s12936_020_03330_5
crossref_primary_10_1016_j_molmed_2015_10_004
crossref_primary_10_1371_journal_pntd_0004526
crossref_primary_10_1186_s12936_016_1524_y
crossref_primary_10_3390_genes12060843
crossref_primary_10_1371_journal_pntd_0003872
crossref_primary_10_1371_journal_pntd_0005930
crossref_primary_10_3389_fgene_2024_1488109
crossref_primary_10_1016_j_pt_2017_08_013
crossref_primary_10_1371_journal_pone_0140780
crossref_primary_10_1371_journal_pntd_0008962
crossref_primary_10_1126_scitranslmed_aav1636
crossref_primary_10_1371_journal_pone_0170948
crossref_primary_10_1371_journal_pmed_1003560
crossref_primary_10_1128_AAC_00095_21
crossref_primary_10_1371_journal_pntd_0008234
crossref_primary_10_3389_fgene_2019_01065
crossref_primary_10_1093_infdis_jiaa527
crossref_primary_10_1371_journal_pone_0177134
crossref_primary_10_1371_journal_pone_0268680
crossref_primary_10_1038_s41598_022_21028_3
crossref_primary_10_1371_journal_pntd_0012299
crossref_primary_10_3389_fpubh_2021_649170
crossref_primary_10_1186_s12936_018_2322_5
crossref_primary_10_1038_s41598_023_46076_1
crossref_primary_10_1371_journal_pgen_1008576
crossref_primary_10_1186_s12936_018_2623_8
crossref_primary_10_3389_fcimb_2022_953187
crossref_primary_10_1016_j_pt_2023_11_006
crossref_primary_10_1016_j_tmaid_2021_102130
crossref_primary_10_1371_journal_pone_0150947
Cites_doi 10.1186/1475-2875-13-8
10.4269/ajtmh.2010.09-0588
10.1371/journal.pntd.0003071
10.1038/ng.806
10.1007/BF01245622
10.1186/1471-2156-11-65
10.4269/ajtmh.2007.77.79
10.1186/1475-2875-9-134
10.1016/j.pt.2007.09.010
10.1093/molbev/msj116
10.1016/j.gene.2007.11.022
10.4269/ajtmh.2009.09-0337
10.4269/ajtmh.2003.69.377
10.1038/ng.2373
10.1016/j.pt.2013.03.012
10.1038/nature07327
10.1073/pnas.1003776107
10.1016/B978-0-12-397900-1.00001-3
10.1186/1475-2875-12-447
10.1186/1471-2164-11-218
10.2217/14622416.8.6.597
10.1038/ng1930
10.1371/journal.pone.0060780
10.4269/ajtmh.2009.80.729
10.1016/j.ijpara.2007.02.010
10.1086/512685
10.4269/ajtmh.2010.09-0458
10.1371/journal.pntd.0001811
10.1128/AAC.05737-11
10.1146/annurev.genet.36.050802.093940
10.1016/B978-0-12-407826-0.00005-9
10.1373/49.6.853
10.1186/gb-2008-9-12-r171
10.1038/ncomms5052
10.1186/1475-2875-7-223
10.1093/molbev/msn073
10.1186/1471-2164-13-262
10.1373/clinchem.2004.032136
10.1073/pnas.082089499
10.1186/1475-2875-13-59
10.1186/1475-2875-9-151
10.1371/journal.pgen.0020190
ContentType Journal Article
Copyright COPYRIGHT 2015 Public Library of Science
CC0 - Public Domain Dedication
2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Infections. PLoS Negl Trop Dis 9(3): e0003539. doi:10.1371/journal.pntd.0003539
Copyright_xml – notice: COPYRIGHT 2015 Public Library of Science
– notice: CC0 - Public Domain Dedication
– notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Infections. PLoS Negl Trop Dis 9(3): e0003539. doi:10.1371/journal.pntd.0003539
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
C1K
F1W
H95
H97
L.G
M7N
1XC
VOOES
5PM
DOA
DOI 10.1371/journal.pntd.0003539
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
DatabaseTitleList



Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate SNP Barcode to Genotype P. vivax Infections
EISSN 1935-2735
ExternalDocumentID 1685627821
oai_doaj_org_article_61039b73b895415e94caa469820cdeac
PMC4362761
oai_HAL_pasteur_01133539v1
A418982494
25781890
10_1371_journal_pntd_0003539
Genre Journal Article
GeographicLocations Middle East
INW, Asia
Asia
Africa
ASW, Brazil
ISW, Sri Lanka
ASW, French Guiana
Ethiopia
GeographicLocations_xml – name: INW, Asia
– name: Asia
– name: Middle East
– name: ISW, Sri Lanka
– name: ASW, French Guiana
– name: Ethiopia
– name: Africa
– name: ASW, Brazil
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI110818
– fundername: NIH HHS
  grantid: DP2 OD006514
– fundername: NCI NIH HHS
  grantid: T32 CA009337
– fundername: NIAID NIH HHS
  grantid: R01 AI097366
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8C1
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
ECGQY
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
ITC
KQ8
M1P
M48
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
RIG
WOQ
PMFND
7X8
PUEGO
7TM
C1K
F1W
H95
H97
L.G
M7N
1XC
VOOES
5PM
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c667t-5bbabb1b5930092589facea15de577819aa7b608abe14401b5078e5ffdb59cfe3
IEDL.DBID M48
ISSN 1935-2735
1935-2727
IngestDate Fri Nov 26 17:13:52 EST 2021
Wed Aug 27 01:30:54 EDT 2025
Thu Aug 21 14:12:48 EDT 2025
Fri Sep 12 12:44:48 EDT 2025
Fri Sep 05 04:28:54 EDT 2025
Thu Sep 04 20:47:25 EDT 2025
Tue Jun 17 21:19:45 EDT 2025
Tue Jun 10 20:41:41 EDT 2025
Thu May 22 21:22:02 EDT 2025
Mon Jul 21 05:40:19 EDT 2025
Tue Jul 01 00:19:41 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License CC0 - Public Domain Dedication: http://creativecommons.org/publicdomain/zero/1.0
This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c667t-5bbabb1b5930092589facea15de577819aa7b608abe14401b5078e5ffdb59cfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: MLB. Performed the experiments: MLB. Analyzed the data: ALF SFS DJP KG DEN SKV DFW PCS. Contributed reagents/materials/analysis tools: RFD EH MUF NDK DS PAZ TEW JMS LM EL AM. Wrote the paper: MLB ALF.
The authors have declared that no competing interests exist.
ORCID 0000-0003-0215-4110
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pntd.0003539
PMID 25781890
PQID 1664776633
PQPubID 23479
ParticipantIDs plos_journals_1685627821
doaj_primary_oai_doaj_org_article_61039b73b895415e94caa469820cdeac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4362761
hal_primary_oai_HAL_pasteur_01133539v1
proquest_miscellaneous_1680445208
proquest_miscellaneous_1664776633
gale_infotracmisc_A418982494
gale_infotracacademiconefile_A418982494
gale_healthsolutions_A418982494
pubmed_primary_25781890
crossref_primary_10_1371_journal_pntd_0003539
crossref_citationtrail_10_1371_journal_pntd_0003539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS neglected tropical diseases
PublicationTitleAlternate PLoS Negl Trop Dis
PublicationYear 2015
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References SK Volkman (ref37) 2007; 39
MU Ferreira (ref11) 2007; 195
ref33
S Gunawardena (ref32) 2010; 82
P Orjuela-Sanchez (ref31) 2009; 81
JM Carlton (ref16) 2008; 455
DE Neafsey (ref38) 2008; 9
C Delgado-Ratto (ref40) 2014; 13
AM Rezende (ref42) 2009; 80
KE Battle (ref1) 2012; 80
C. Kevin Galinsky V (ref44) 2014
M Imwong (ref43) 2007; 37
M Liew (ref27) 2004; 50
R Daniels (ref23) 2012; 56
P Van den Eede (ref13) 2010; 82
FB Dean (ref39) 2002; 99
R Udomsangpetch (ref4) 2008; 24
AD Ball (ref15) 2010; 11
DE Neafsey (ref20) 2012; 44
PL Sutton (ref14) 2013; 12
ER Chan (ref19) 2012; 6
R Daniels (ref22) 2008; 7
JC Gomez (ref9) 2003; 69
R Daniels (ref25) 2013; 8
MA DePristo (ref29) 2011; 43
CT Wittwer (ref26) 2003; 49
WG Hill (ref34) 1968; 38
DA Joy (ref12) 2008; 25
P Van den Eede (ref41) 2010; 9
LA Goncalves (ref5) 2014; 0
ND Karunaweera (ref7) 2014; 13
LS Gan (ref24) 2010; 9
AT Bright (ref18) 2012; 13
F Noulin (ref3) 2013; 29
BS Weir (ref35) 2002; 36
ND Karunaweera (ref10) 2008; 410
P Orjuela-Sanchez (ref45) 2010; 11
NV Dharia (ref30) 2010; 107
C Naing (ref6) 2014; 8
MD Preston (ref21) 2014; 5
M Imwong (ref8) 2006; 23
RN Price (ref2) 2007; 77
GH Reed (ref28) 2007; 8
JM Carlton (ref17) 2013; 81
N Patterson (ref36) 2006; 2
References_xml – volume: 13
  start-page: 8
  year: 2014
  ident: ref40
  article-title: Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon
  publication-title: Malar J
  doi: 10.1186/1475-2875-13-8
– volume: 82
  start-page: 235
  year: 2010
  ident: ref32
  article-title: Geographic structure of Plasmodium vivax: microsatellite analysis of parasite populations from Sri Lanka, Myanmar, and Ethiopia
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2010.09-0588
– volume: 8
  start-page: e3071
  year: 2014
  ident: ref6
  article-title: Is Plasmodium vivax Malaria a Severe Malaria?: A Systematic Review and Meta-Analysis
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0003071
– volume: 43
  start-page: 491
  year: 2011
  ident: ref29
  article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data
  publication-title: Nat Genet
  doi: 10.1038/ng.806
– volume: 38
  start-page: 226
  year: 1968
  ident: ref34
  article-title: Linkage disequilibrium in finite populations
  publication-title: Theor Appl Genet
  doi: 10.1007/BF01245622
– volume: 11
  start-page: 65
  year: 2010
  ident: ref45
  article-title: Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: prospects for genome-wide association studies
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-11-65
– volume: 77
  start-page: 79
  year: 2007
  ident: ref2
  article-title: Vivax malaria: neglected and not benign
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2007.77.79
– volume: 9
  start-page: 134
  year: 2010
  ident: ref24
  article-title: Rapid identification of chloroquine and atovaquone drug resistance in Plasmodium falciparum using high-resolution melt polymerase chain reaction
  publication-title: Malar J
  doi: 10.1186/1475-2875-9-134
– volume: 24
  start-page: 85
  year: 2008
  ident: ref4
  article-title: Cultivation of Plasmodium vivax
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2007.09.010
– volume: 23
  start-page: 1016
  year: 2006
  ident: ref8
  article-title: Microsatellite variation, repeat array length, and population history of Plasmodium vivax
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msj116
– volume: 410
  start-page: 105
  year: 2008
  ident: ref10
  article-title: Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax
  publication-title: Gene
  doi: 10.1016/j.gene.2007.11.022
– volume: 81
  start-page: 961
  year: 2009
  ident: ref31
  article-title: Recurrent parasitemias and population dynamics of Plasmodium vivax polymorphisms in rural Amazonia
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2009.09-0337
– volume: 69
  start-page: 377
  year: 2003
  ident: ref9
  article-title: Identification of a polymorphic Plasmodium vivax microsatellite marker
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2003.69.377
– volume: 44
  start-page: 1046
  year: 2012
  ident: ref20
  article-title: The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum
  publication-title: Nat Genet
  doi: 10.1038/ng.2373
– volume: 29
  start-page: 286
  year: 2013
  ident: ref3
  article-title: 1912–2012: a century of research on Plasmodium vivax in vitro culture
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2013.03.012
– volume: 455
  start-page: 757
  year: 2008
  ident: ref16
  article-title: Comparative genomics of the neglected human malaria parasite Plasmodium vivax
  publication-title: Nature
  doi: 10.1038/nature07327
– volume: 107
  start-page: 20045
  year: 2010
  ident: ref30
  article-title: Whole-genome sequencing and microarray analysis of ex vivo Plasmodium vivax reveal selective pressure on putative drug resistance genes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1003776107
– volume: 80
  start-page: 1
  year: 2012
  ident: ref1
  article-title: The global public health significance of Plasmodium vivax
  publication-title: Adv Parasitol
  doi: 10.1016/B978-0-12-397900-1.00001-3
– volume: 12
  start-page: 447
  year: 2013
  ident: ref14
  article-title: A call to arms: on refining Plasmodium vivax microsatellite marker panels for comparing global diversity
  publication-title: Malar J
  doi: 10.1186/1475-2875-12-447
– volume: 0
  year: 2014
  ident: ref5
  article-title: Emerging Plasmodium vivax resistance to chloroquine in South America: an overview
  publication-title: Mem Inst Oswaldo Cruz
– volume: 11
  start-page: 218
  year: 2010
  ident: ref15
  article-title: A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata)
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-218
– volume: 8
  start-page: 597
  year: 2007
  ident: ref28
  article-title: High-resolution DNA melting analysis for simple and efficient molecular diagnostics
  publication-title: Pharmacogenomics
  doi: 10.2217/14622416.8.6.597
– volume: 39
  start-page: 113
  year: 2007
  ident: ref37
  article-title: A genome-wide map of diversity in Plasmodium falciparum
  publication-title: Nat Genet
  doi: 10.1038/ng1930
– volume: 8
  start-page: e60780
  year: 2013
  ident: ref25
  article-title: Genetic surveillance detects both clonal and epidemic transmission of malaria following enhanced intervention in Senegal
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060780
– volume: 80
  start-page: 729
  year: 2009
  ident: ref42
  article-title: Analysis of genetic variability of Plasmodium vivax isolates from different Brazilian Amazon areas using tandem repeats
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2009.80.729
– volume: 37
  start-page: 1013
  year: 2007
  ident: ref43
  article-title: Contrasting genetic structure in Plasmodium vivax populations from Asia and South America
  publication-title: Int J Parasitol
  doi: 10.1016/j.ijpara.2007.02.010
– volume: 195
  start-page: 1218
  year: 2007
  ident: ref11
  article-title: Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia
  publication-title: J Infect Dis
  doi: 10.1086/512685
– volume: 82
  start-page: 223
  year: 2010
  ident: ref13
  article-title: High complexity of Plasmodium vivax infections in symptomatic patients from a rural community in central Vietnam detected by microsatellite genotyping
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2010.09-0458
– volume: 6
  start-page: e1811
  year: 2012
  ident: ref19
  article-title: Whole genome sequencing of field isolates provides robust characterization of genetic diversity in Plasmodium vivax
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0001811
– volume: 56
  start-page: 2976
  year: 2012
  ident: ref23
  article-title: Rapid, field-deployable method for genotyping and discovery of single-nucleotide polymorphisms associated with drug resistance in Plasmodium falciparum
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.05737-11
– volume: 36
  start-page: 721
  year: 2002
  ident: ref35
  article-title: Estimating F-statistics
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.36.050802.093940
– year: 2014
  ident: ref44
  article-title: COIL: A methodology for evaluating malarial Complexity of Infection using Likelihood from SNP genotype datadology for evaluating malarial Complexity of Infection using Likelihood from SNP genotype data
  publication-title: Malar J
– volume: 81
  start-page: 203
  year: 2013
  ident: ref17
  article-title: Genomics, population genetics and evolutionary history of Plasmodium vivax
  publication-title: Adv Parasitol
  doi: 10.1016/B978-0-12-407826-0.00005-9
– volume: 49
  start-page: 853
  year: 2003
  ident: ref26
  article-title: High-resolution genotyping by amplicon melting analysis using LCGreen
  publication-title: Clin Chem
  doi: 10.1373/49.6.853
– volume: 9
  start-page: R171
  year: 2008
  ident: ref38
  article-title: Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-12-r171
– volume: 5
  start-page: 4052
  year: 2014
  ident: ref21
  article-title: A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains
  publication-title: Nat Commun
  doi: 10.1038/ncomms5052
– volume: 7
  start-page: 223
  year: 2008
  ident: ref22
  article-title: A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking
  publication-title: Malar J
  doi: 10.1186/1475-2875-7-223
– volume: 25
  start-page: 1245
  year: 2008
  ident: ref12
  article-title: Local adaptation and vector-mediated population structure in Plasmodium vivax malaria
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msn073
– volume: 13
  start-page: 262
  year: 2012
  ident: ref18
  article-title: Whole genome sequencing analysis of Plasmodium vivax using whole genome capture
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-262
– volume: 50
  start-page: 1156
  year: 2004
  ident: ref27
  article-title: Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2004.032136
– volume: 99
  start-page: 5261
  year: 2002
  ident: ref39
  article-title: Comprehensive human genome amplification using multiple displacement amplification
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.082089499
– volume: 13
  start-page: 59
  year: 2014
  ident: ref7
  article-title: On the road to eliminate malaria in Sri Lanka: lessons from history, challenges, gaps in knowledge and research needs
  publication-title: Malar J
  doi: 10.1186/1475-2875-13-59
– volume: 9
  start-page: 151
  year: 2010
  ident: ref41
  article-title: Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon
  publication-title: Malar J
  doi: 10.1186/1475-2875-9-151
– volume: 2
  start-page: e190
  year: 2006
  ident: ref36
  article-title: Population structure and eigenanalysis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020190
– ident: ref33
SSID ssj0059581
Score 2.3926244
Snippet Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria...
Plasmodium vivax , one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria...
  Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0003539
SubjectTerms Africa - epidemiology
Asia - epidemiology
Base Sequence
Chromosome Mapping
Disease
DNA Barcoding, Taxonomic - methods
DNA, Protozoan - genetics
Genetic aspects
Genetic diversity
Genetic Markers - genetics
Genomes
Genomics
Genotype & phenotype
Humans
Identification and classification
Infections
Life Sciences
Malaria
Malaria, Vivax - epidemiology
Malaria, Vivax - parasitology
Microbiology and Parasitology
Mortality
Parasites
Parasitology
Physiological aspects
Plasmodium falciparum
Plasmodium falciparum - classification
Plasmodium falciparum - genetics
Plasmodium falciparum - isolation & purification
Plasmodium vivax
Plasmodium vivax - classification
Plasmodium vivax - genetics
Plasmodium vivax - isolation & purification
Polymorphism, Single Nucleotide
Population genetics
Single nucleotide polymorphisms
South America - epidemiology
Standard deviation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagB8QF8d7AAkZCcMpu0tixfSyIVYVYxIGV9mbZjq1WapNom1bw75nJo0oQYi9c40nkeXj8OZ4HIe-UtUnGgoqDMyFmQWYxnFVcnCjHpC-843PMRr78li-v2Jdrfj1q9YUxYV154E5w5zneVVqRWak4bDZeMWcMtj2cJ64Ar4HeN1HJcJjqfDBXvG1PCugEM67mok-ay0R63uvorC6b4qy9ScNG4aNNqa3df_TQd1cYIDmrN9XubyD0z1jK0eZ08ZA86FElXXTcPCJ3fPmY3Lvs782fED2KDaJVoIbiL4KNpyWWM66adeFpXW1-bSsQ-3q3pRbsv4KHTUWxiiv-qKXfAWhvq2K939LD-mB-0iGQq9w9JVcXn398WsZ9a4XY5bloYm6tsTa1XGVYdYlLFYzzJuWF50IASjBG2DyRxnq8_QVCgBKeh1DAKy747BmZlVXpTzA2CqsIIs5TKeNzaYIHDFKkXOZBmJxFJBtkq11fdxzbX2x0e5km4PzRCUmjRnSvkYjEx7fqru7GLfQfUW1HWqya3T4AW9K9LenbbCkib1DpuktBPa59vWCpBCKmgJkPLQWufmDCmT6JAUSBdbQmlKcTSli1bjL8foUsjKa7XHzVtYG1vb_R4HUzZOuQRuQEbW9geqfTXAJmBWAHQ28He9T4eQyXK321RxrMLwYwmf2LRiYMFJbIiDzvbPg4HfTjMNMkImJi3ZP5TkfK9aotTs4AEYk8ffE_9PGS3Ad8yruQv1Mya272_hVgwMa-bpf7b5quWdI
  priority: 102
  providerName: Directory of Open Access Journals
Title Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections
URI https://www.ncbi.nlm.nih.gov/pubmed/25781890
https://www.proquest.com/docview/1664776633
https://www.proquest.com/docview/1680445208
https://riip.hal.science/pasteur-01133539
https://pubmed.ncbi.nlm.nih.gov/PMC4362761
https://doaj.org/article/61039b73b895415e94caa469820cdeac
http://dx.doi.org/10.1371/journal.pntd.0003539
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdNCmMvY9_11mUejO3JwY4lS34YIy0tYayljAXyJiRZXgKJnSVOaP_73fmLeHQfL36wTkbS3ck_6b4IeR9r7Yc0jb3UqNSjqQg9OKsYz48NFTaxho0wGvnqOppM6ZcZmx2RpmZrvYDbe492WE9qulkOb3_efQaF_1RWbeBB02m4zopkWNrGwrhHjkuLETrz0dauwGJWli0F1IKRWCGrg-n-9JXOz6rM6d_u3L05Ok7218t8ex84_d3H8uCndfmYPKrRpjuuxOMJObLZU_LgqranPyPywGfIzVNXuXh1sLRuhmmO82KRWHedL-9WObBjsV25GvQih5dF7mJ2V7zAdW8AgK_yZLFbufvFXt26jYNXtn1OppcX388nXl1ywTNRxAuPaa20DjSLQ8zGxEScKmNVwBLLOAf0oBTXkS-UtmgVBkKAGJalaQJdTGrDF6Sf5Zk9QZ8pzC6I-C8OKBsJlVrAJknARJRyFVGHhM3aSlPnI8eyGEtZGtk4nEuqRZLIEVlzxCFe22td5eP4B_0Zsq2lxWza5Yt880PWyikjtIdrHmoRMwA0NqZGKSytOfJNAn8mh7xFpssqNLXdE-SYBgKIaAyT-VhSoJzCJIyqgxtgKTC_VofytEMJ2mw6zR_mOIWD4U7GX-Vagc7vNhJ24xCntQ8ccoKy10x6K4NIAJYFwAdN7xp5lPh5dKPLbL5DGow7BpAZ_o1G-BQY5guHvKxkuB0O7u8wUt8hvCPdnfF2W7LFvExaTgEp8Sh49R9je00eAixllaffKekXm519A9Cv0APS4zMOT3EeDMjx2cX1zbdBeY0yKPX8FwQNXbY
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+single+nucleotide+polymorphism+barcode+to+genotype+Plasmodium+vivax+infections&rft.jtitle=PLoS+neglected+tropical+diseases&rft.au=Baniecki%2C+Mary+Lynn&rft.au=Faust%2C+Aubrey+L&rft.au=Schaffner%2C+Stephen+F&rft.au=Park%2C+Daniel+J&rft.date=2015-03-01&rft.issn=1935-2735&rft.eissn=1935-2735&rft.volume=9&rft.issue=3&rft.spage=e0003539&rft_id=info:doi/10.1371%2Fjournal.pntd.0003539&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-2735&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-2735&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-2735&client=summon