Prediction and classification of ncRNAs using structural information

Background Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is theref...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 15; no. 1; p. 127
Main Authors Panwar, Bharat, Arora, Amit, Raghava, Gajendra PS
Format Journal Article
LanguageEnglish
Published London BioMed Central 13.02.2014
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-15-127

Cover

Abstract Background Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. Results In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. Conclusions This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon ).
AbstractList Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts.BACKGROUNDEvidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts.In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models.RESULTSIn this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models.This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon).CONCLUSIONSThis work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon).
Background: Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. Results: In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. Conclusions: This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon ).
Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon (http://crdd.osdd.net/raghava/rnacon).
Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon).
Background Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. Results In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. Conclusions This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( Keywords: ncRNA, SVM, RandomForest, Graph properties, Prediction, RNAcon
Background Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. Results In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. Conclusions This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon ).
Doc number: 127 Abstract Background: Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. Results: In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. Conclusions: This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon ).
ArticleNumber 127
Audience Academic
Author Panwar, Bharat
Raghava, Gajendra PS
Arora, Amit
AuthorAffiliation 1 Bioinformatics Centre, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh, India
AuthorAffiliation_xml – name: 1 Bioinformatics Centre, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh, India
Author_xml – sequence: 1
  givenname: Bharat
  surname: Panwar
  fullname: Panwar, Bharat
  organization: Bioinformatics Centre, Institute of Microbial Technology (CSIR)
– sequence: 2
  givenname: Amit
  surname: Arora
  fullname: Arora, Amit
  email: amit_arora@imtech.res.in
  organization: Bioinformatics Centre, Institute of Microbial Technology (CSIR)
– sequence: 3
  givenname: Gajendra PS
  surname: Raghava
  fullname: Raghava, Gajendra PS
  email: raghava@imtech.res.in
  organization: Bioinformatics Centre, Institute of Microbial Technology (CSIR)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24521294$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URD_gzglF4gKHlNiOnfiCtCpflSpABc6W49jBVWIvdkLbf89kd1l2K0BV5DgaP-9k5vUcowMfvEHoKS5OMa75K1xWOCeYlzlmOSbVA3S0DR3sfB-i45SuigJXNWGP0CEpGcFElEfozedoWqdHF3ymfJvpXqXkrNNqFQo28_ry4yJlU3K-y9IYJz1OUfWZ8zbEYYU9Rg-t6pN5stlP0Ld3b7-efcgvPr0_P1tc5JpzPuamaTVlWgiuMJRGrRCCCtpWrVa0UVXLKGZlxUiFeVXbGhthuWrquiFGNZbQE4TXeSe_VLfXqu_lMrpBxVuJCzk7IueW5dyyxEyCI6B5vdYsp2YwrTZ-hOq3uqCc3D_x7rvswk9JBWG0wpDgxSZBDD8mk0Y5uKRN3ytvwpTgPwWjJafwvgda8JrSsgb0-R30KkzRg3vQgqgZLFz-oTrVGzk7DiXqOalcMCoYZ7wugDr9CwVPawanYWKsg_ie4OWeAJjR3IydmlKS518u99lnu_5tjfs9QgDwNaBjSCkaK7UbV2MBVbj-fzdT3BHe4zI3A5AA9Z2JO679S_MLAFb0zg
CitedBy_id crossref_primary_10_3390_ijms24108884
crossref_primary_10_1016_j_ygeno_2015_01_005
crossref_primary_10_1039_C4MB00340C
crossref_primary_10_2174_1574893614666191105160633
crossref_primary_10_1093_bib_bbab178
crossref_primary_10_3390_genes11090981
crossref_primary_10_1016_j_jbi_2016_09_012
crossref_primary_10_1016_j_biochi_2014_06_001
crossref_primary_10_1016_j_isci_2022_104807
crossref_primary_10_1093_bioinformatics_btaf051
crossref_primary_10_2139_ssrn_4166768
crossref_primary_10_1186_s13040_022_00291_0
crossref_primary_10_1039_C5MB00214A
crossref_primary_10_1371_journal_pone_0197206
crossref_primary_10_1093_bib_bbad303
crossref_primary_10_1016_j_plaphy_2023_107940
crossref_primary_10_1186_s12859_023_05191_6
crossref_primary_10_1038_s41598_017_17510_y
crossref_primary_10_1109_TCBB_2020_2982873
crossref_primary_10_1021_acs_jproteome_5b00883
crossref_primary_10_1007_s41870_022_01064_y
crossref_primary_10_3390_genes16030284
crossref_primary_10_1080_15476286_2019_1574161
crossref_primary_10_1002_cam4_2952
crossref_primary_10_1186_s13046_020_01622_x
crossref_primary_10_3390_ncrna4040041
crossref_primary_10_3390_ijms21072611
crossref_primary_10_3390_biom13111643
crossref_primary_10_1093_nar_gky576
crossref_primary_10_1109_TCBB_2015_2495140
crossref_primary_10_1371_journal_pcbi_1007760
crossref_primary_10_1016_j_compbiomed_2022_105216
crossref_primary_10_1016_j_csbj_2023_02_012
crossref_primary_10_1186_s12859_017_1594_z
crossref_primary_10_1109_TCBB_2021_3098126
crossref_primary_10_1016_j_biosystems_2018_09_001
crossref_primary_10_1038_srep12478
crossref_primary_10_1186_1471_2105_15_326
crossref_primary_10_1186_s12864_024_10439_3
crossref_primary_10_1109_TCBB_2021_3131136
crossref_primary_10_1017_qpb_2022_18
crossref_primary_10_1186_s12859_021_04365_4
crossref_primary_10_1109_TCBB_2021_3118358
crossref_primary_10_1186_s12864_015_2266_x
crossref_primary_10_1038_s42256_024_00836_4
crossref_primary_10_1109_ACCESS_2021_3058263
crossref_primary_10_12688_f1000research_52350_2
crossref_primary_10_1089_dna_2024_0181
crossref_primary_10_1111_ede_12230
crossref_primary_10_7717_peerj_3561
crossref_primary_10_2174_1573406414666181015151610
crossref_primary_10_3390_ncrna7040070
crossref_primary_10_2142_biophys_56_217
crossref_primary_10_1155_2017_9139504
crossref_primary_10_1186_s13040_017_0148_2
crossref_primary_10_1093_bfgp_elab016
crossref_primary_10_1093_bib_bbu028
crossref_primary_10_1097_RLU_0000000000001332
crossref_primary_10_1371_journal_pone_0139654
crossref_primary_10_1038_s42256_019_0051_2
crossref_primary_10_1016_j_compbiolchem_2020_107364
crossref_primary_10_1093_bib_bbaa099
crossref_primary_10_1155_2016_8496165
crossref_primary_10_1016_j_canlet_2017_12_029
crossref_primary_10_1016_j_bioactmat_2023_11_007
crossref_primary_10_1371_journal_pcbi_1012446
crossref_primary_10_1186_1471_2105_15_340
crossref_primary_10_1016_j_ygeno_2021_07_004
crossref_primary_10_1038_srep20678
crossref_primary_10_1126_science_aan0032
crossref_primary_10_2174_0115665232301727240422092311
crossref_primary_10_12677_hjcb_2023_134004
crossref_primary_10_7717_peerj_6946
crossref_primary_10_1016_j_molbiopara_2017_04_002
Cites_doi 10.1002/ajmg.a.32364
10.1038/418244a
10.1038/nrg1379
10.1073/pnas.0409169102
10.1146/annurev.biochem.70.1.755
10.1126/science.283.5405.1168
10.1093/nar/gkg107
10.1038/35057062
10.1126/science.1072249
10.1007/s00726-011-0872-8
10.1038/nature07756
10.1038/nrg3074
10.1093/nar/gkt418
10.1093/bioinformatics/btr215
10.1084/jem.20070823
10.1038/35104575
10.1016/j.sbi.2010.11.005
10.1016/j.sbi.2006.05.010
10.1016/j.cell.2007.03.030
10.1145/1656274.1656278
10.1093/bioinformatics/bth315
10.1109/72.788640
10.1146/annurev-biophys-083012-130404
10.1093/nar/27.1.314
10.1186/1471-2164-11-507
10.1093/nar/gkn721
10.1126/science.1064921
10.1371/journal.pgen.0020029
10.1038/nrg2634
10.1038/nature01266
10.1016/j.tig.2008.12.003
10.1093/nar/gkp206
10.1093/bioinformatics/16.7.583
10.1038/nature11247
10.1093/nar/gkh102
10.1016/j.gene.2006.09.028
10.1093/nar/gkm391
10.1093/nar/gki487
10.1093/nar/gkg006
ContentType Journal Article
Copyright Panwar et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2014 BioMed Central Ltd.
2014 Panwar et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2014 Panwar et al.; licensee BioMed Central Ltd. 2014 Panwar et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Panwar et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 Panwar et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright © 2014 Panwar et al.; licensee BioMed Central Ltd. 2014 Panwar et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2164-15-127
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological science database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts

MEDLINE



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest One Academic
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 127
ExternalDocumentID 10.1186/1471-2164-15-127
PMC3925371
3220762791
A539565680
24521294
10_1186_1471_2164_15_127
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
2VQ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c666t-ebdc35c996a11473f999393d7dca3ba7d5315475271678f81e9f6ab88b2eabf23
IEDL.DBID BENPR
ISSN 1471-2164
IngestDate Sun Oct 26 03:54:34 EDT 2025
Tue Sep 30 16:59:09 EDT 2025
Fri Sep 05 11:09:39 EDT 2025
Thu Oct 02 06:36:54 EDT 2025
Tue Oct 07 05:18:22 EDT 2025
Mon Oct 20 22:49:43 EDT 2025
Mon Oct 20 17:02:25 EDT 2025
Thu Oct 16 16:00:20 EDT 2025
Mon Jul 21 05:34:44 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Wed Oct 01 03:03:11 EDT 2025
Sat Sep 06 07:35:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Graph properties
RNAcon
SVM
ncRNA
RandomForest
Prediction
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c666t-ebdc35c996a11473f999393d7dca3ba7d5315475271678f81e9f6ab88b2eabf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.proquest.com/docview/1498549814?pq-origsite=%requestingapplication%&accountid=15518
PMID 24521294
PQID 1498549814
PQPubID 44682
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_1471_2164_15_127
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3925371
proquest_miscellaneous_1505346305
proquest_miscellaneous_1500683348
proquest_journals_1498549814
gale_infotracmisc_A539565680
gale_infotracacademiconefile_A539565680
gale_incontextgauss_ISR_A539565680
pubmed_primary_24521294
crossref_citationtrail_10_1186_1471_2164_15_127
crossref_primary_10_1186_1471_2164_15_127
springer_journals_10_1186_1471_2164_15_127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-13
PublicationDateYYYYMMDD 2014-02-13
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-13
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2014
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References J Liu (5745_CR24) 2006; 2
L He (5745_CR20) 2004; 5
T Joachims (5745_CR41) 1999
GJ Hannon (5745_CR8) 2002; 418
I Dunham (5745_CR2) 2012; 489
M Esteller (5745_CR22) 2011; 12
LJ Collins (5745_CR4) 2009; 25
RJ Keenan (5745_CR15) 2001; 70
ES Lander (5745_CR1) 2001; 409
K Sato (5745_CR31) 2011; 27
M Hall (5745_CR33) 2009; 11
A Schaefer (5745_CR18) 2007; 204
S Griffiths-Jones (5745_CR38) 2003; 31
Y Okazaki (5745_CR23) 2002; 420
KJ Hoff (5745_CR35) 2013; 41
P Gueneau De Novoa (5745_CR14) 2004; 32
KD Pruitt (5745_CR39) 2009; 37
G Csardi (5745_CR34) 2006; Complex Systems
B Panwar (5745_CR42) 2012; 42
VN Vapnik (5745_CR40) 1999; 10
Y Zhao (5745_CR19) 2007; 129
E Rivas (5745_CR27) 2000; 16
CM Croce (5745_CR17) 2009; 10
M Mason (5745_CR5) 2011; 21
Z Yang (5745_CR6) 2001; 414
M Lagos-Quintana (5745_CR7) 2001; 294
L Childs (5745_CR30) 2009; 37
WH Majoros (5745_CR37) 2004; 20
JW Brown (5745_CR12) 1999; 27
TM Lowe (5745_CR11) 1999; 283
MA Rosenblad (5745_CR16) 2003; 31
G Storz (5745_CR13) 2002; 296
DH Mathews (5745_CR26) 2006; 16
Y Karklin (5745_CR29) 2005
RC Wilson (5745_CR9) 2013; 42
B Panwar (5745_CR32) 2010; 11
S Washietl (5745_CR28) 2005; 102
FF Costa (5745_CR3) 2007; 386
D Moazed (5745_CR10) 2009; 457
J Besemer (5745_CR36) 2005; 33
B Horsthemke (5745_CR21) 2008; 146A
L Kong (5745_CR25) 2007; 35
11713532 - Nature. 2001 Nov 15;414(6861):317-22
17113247 - Gene. 2007 Jan 15;386(1-2):1-10
12016301 - Science. 2002 May 17;296(5571):1260-3
16713706 - Curr Opin Struct Biol. 2006 Jun;16(3):270-8
11395422 - Annu Rev Biochem. 2001;70:755-75
21400228 - Amino Acids. 2012 May;42(5):1703-13
17631615 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9
9847214 - Nucleic Acids Res. 1999 Jan 1;27(1):314
11679670 - Science. 2001 Oct 26;294(5543):853-8
18927115 - Nucleic Acids Res. 2009 Jan;37(Database issue):D32-6
12520045 - Nucleic Acids Res. 2003 Jan 1;31(1):439-41
18627066 - Am J Med Genet A. 2008 Aug 15;146A(16):2041-52
21685106 - Bioinformatics. 2011 Jul 1;27(13):i85-93
15665081 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2454-9
22094949 - Nat Rev Genet. 2011 Dec;12(12):861-74
15211354 - Nat Rev Genet. 2004 Jul;5(7):522-31
19763153 - Nat Rev Genet. 2009 Oct;10(10):704-14
15980510 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W451-4
19158787 - Nature. 2009 Jan 22;457(7228):413-20
10024243 - Science. 1999 Feb 19;283(5405):1168-71
17397913 - Cell. 2007 Apr 20;129(2):303-17
12466851 - Nature. 2002 Dec 5;420(6915):563-73
12110901 - Nature. 2002 Jul 11;418(6894):244-51
23700307 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W123-8
15759609 - Pac Symp Biocomput. 2005;:4-15
21168327 - Curr Opin Struct Biol. 2011 Feb;21(1):92-100
17606634 - J Exp Med. 2007 Jul 9;204(7):1553-8
18252602 - IEEE Trans Neural Netw. 1999;10(5):988-99
11038329 - Bioinformatics. 2000 Jul;16(7):583-605
14681369 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D104-8
15145805 - Bioinformatics. 2004 Nov 1;20(16):2878-9
11237011 - Nature. 2001 Feb 15;409(6822):860-921
19339518 - Nucleic Acids Res. 2009 May;37(9):e66
20860794 - BMC Genomics. 2010;11:507
12520023 - Nucleic Acids Res. 2003 Jan 1;31(1):363-4
23654304 - Annu Rev Biophys. 2013;42:217-39
19171405 - Trends Genet. 2009 Mar;25(3):120-8
16683024 - PLoS Genet. 2006 Apr;2(4):e29
References_xml – volume: 146A
  start-page: 2041
  year: 2008
  ident: 5745_CR21
  publication-title: Am J Med Genet A
  doi: 10.1002/ajmg.a.32364
– volume: 418
  start-page: 244
  year: 2002
  ident: 5745_CR8
  publication-title: Nature
  doi: 10.1038/418244a
– volume: 5
  start-page: 522
  year: 2004
  ident: 5745_CR20
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1379
– volume: 102
  start-page: 2454
  year: 2005
  ident: 5745_CR28
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0409169102
– volume: 70
  start-page: 755
  year: 2001
  ident: 5745_CR15
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.70.1.755
– start-page: 4
  volume-title: Pac Symp Biocomput
  year: 2005
  ident: 5745_CR29
– volume: 283
  start-page: 1168
  year: 1999
  ident: 5745_CR11
  publication-title: Science (New York, NY)
  doi: 10.1126/science.283.5405.1168
– volume: 31
  start-page: 363
  year: 2003
  ident: 5745_CR16
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg107
– start-page: 169
  volume-title: Adv Kernel Methods Support Learn
  year: 1999
  ident: 5745_CR41
– volume: 409
  start-page: 860
  year: 2001
  ident: 5745_CR1
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 296
  start-page: 1260
  year: 2002
  ident: 5745_CR13
  publication-title: Science (New York, NY)
  doi: 10.1126/science.1072249
– volume: 42
  start-page: 1703
  year: 2012
  ident: 5745_CR42
  publication-title: Amino Acids
  doi: 10.1007/s00726-011-0872-8
– volume: 457
  start-page: 413
  year: 2009
  ident: 5745_CR10
  publication-title: Nature
  doi: 10.1038/nature07756
– volume: Complex Systems
  start-page: 1695
  year: 2006
  ident: 5745_CR34
  publication-title: Inter Journal
– volume: 12
  start-page: 861
  year: 2011
  ident: 5745_CR22
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3074
– volume: 41
  start-page: W123
  year: 2013
  ident: 5745_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt418
– volume: 27
  start-page: i85
  year: 2011
  ident: 5745_CR31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr215
– volume: 204
  start-page: 1553
  year: 2007
  ident: 5745_CR18
  publication-title: J Exp Med
  doi: 10.1084/jem.20070823
– volume: 414
  start-page: 317
  year: 2001
  ident: 5745_CR6
  publication-title: Nature
  doi: 10.1038/35104575
– volume: 21
  start-page: 92
  year: 2011
  ident: 5745_CR5
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2010.11.005
– volume: 16
  start-page: 270
  year: 2006
  ident: 5745_CR26
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2006.05.010
– volume: 129
  start-page: 303
  year: 2007
  ident: 5745_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2007.03.030
– volume: 11
  start-page: 10
  year: 2009
  ident: 5745_CR33
  publication-title: SIGKDD Explorations
  doi: 10.1145/1656274.1656278
– volume: 20
  start-page: 2878
  year: 2004
  ident: 5745_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth315
– volume: 10
  start-page: 988
  year: 1999
  ident: 5745_CR40
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788640
– volume: 42
  start-page: 217
  year: 2013
  ident: 5745_CR9
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev-biophys-083012-130404
– volume: 27
  start-page: 314
  year: 1999
  ident: 5745_CR12
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.1.314
– volume: 11
  start-page: 507
  year: 2010
  ident: 5745_CR32
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-507
– volume: 37
  start-page: D32
  year: 2009
  ident: 5745_CR39
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn721
– volume: 294
  start-page: 853
  year: 2001
  ident: 5745_CR7
  publication-title: Science (New York, NY)
  doi: 10.1126/science.1064921
– volume: 2
  start-page: e29
  year: 2006
  ident: 5745_CR24
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020029
– volume: 10
  start-page: 704
  year: 2009
  ident: 5745_CR17
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2634
– volume: 420
  start-page: 563
  year: 2002
  ident: 5745_CR23
  publication-title: Nature
  doi: 10.1038/nature01266
– volume: 25
  start-page: 120
  year: 2009
  ident: 5745_CR4
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2008.12.003
– volume: 37
  start-page: e66
  year: 2009
  ident: 5745_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp206
– volume: 16
  start-page: 583
  year: 2000
  ident: 5745_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.7.583
– volume: 489
  start-page: 57
  year: 2012
  ident: 5745_CR2
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 32
  start-page: D104
  year: 2004
  ident: 5745_CR14
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh102
– volume: 386
  start-page: 1
  year: 2007
  ident: 5745_CR3
  publication-title: Gene
  doi: 10.1016/j.gene.2006.09.028
– volume: 35
  start-page: W345
  year: 2007
  ident: 5745_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm391
– volume: 33
  start-page: W451
  year: 2005
  ident: 5745_CR36
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki487
– volume: 31
  start-page: 439
  year: 2003
  ident: 5745_CR38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg006
– reference: 17606634 - J Exp Med. 2007 Jul 9;204(7):1553-8
– reference: 23700307 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W123-8
– reference: 11395422 - Annu Rev Biochem. 2001;70:755-75
– reference: 12520023 - Nucleic Acids Res. 2003 Jan 1;31(1):363-4
– reference: 11237011 - Nature. 2001 Feb 15;409(6822):860-921
– reference: 19339518 - Nucleic Acids Res. 2009 May;37(9):e66
– reference: 20860794 - BMC Genomics. 2010;11:507
– reference: 10024243 - Science. 1999 Feb 19;283(5405):1168-71
– reference: 19763153 - Nat Rev Genet. 2009 Oct;10(10):704-14
– reference: 15759609 - Pac Symp Biocomput. 2005;:4-15
– reference: 19158787 - Nature. 2009 Jan 22;457(7228):413-20
– reference: 16683024 - PLoS Genet. 2006 Apr;2(4):e29
– reference: 9847214 - Nucleic Acids Res. 1999 Jan 1;27(1):314
– reference: 15980510 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W451-4
– reference: 14681369 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D104-8
– reference: 11679670 - Science. 2001 Oct 26;294(5543):853-8
– reference: 12110901 - Nature. 2002 Jul 11;418(6894):244-51
– reference: 23654304 - Annu Rev Biophys. 2013;42:217-39
– reference: 18252602 - IEEE Trans Neural Netw. 1999;10(5):988-99
– reference: 17631615 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9
– reference: 18927115 - Nucleic Acids Res. 2009 Jan;37(Database issue):D32-6
– reference: 11713532 - Nature. 2001 Nov 15;414(6861):317-22
– reference: 18627066 - Am J Med Genet A. 2008 Aug 15;146A(16):2041-52
– reference: 15211354 - Nat Rev Genet. 2004 Jul;5(7):522-31
– reference: 15145805 - Bioinformatics. 2004 Nov 1;20(16):2878-9
– reference: 21400228 - Amino Acids. 2012 May;42(5):1703-13
– reference: 12520045 - Nucleic Acids Res. 2003 Jan 1;31(1):439-41
– reference: 21168327 - Curr Opin Struct Biol. 2011 Feb;21(1):92-100
– reference: 17113247 - Gene. 2007 Jan 15;386(1-2):1-10
– reference: 12466851 - Nature. 2002 Dec 5;420(6915):563-73
– reference: 11038329 - Bioinformatics. 2000 Jul;16(7):583-605
– reference: 16713706 - Curr Opin Struct Biol. 2006 Jun;16(3):270-8
– reference: 17397913 - Cell. 2007 Apr 20;129(2):303-17
– reference: 22094949 - Nat Rev Genet. 2011 Dec;12(12):861-74
– reference: 21685106 - Bioinformatics. 2011 Jul 1;27(13):i85-93
– reference: 15665081 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2454-9
– reference: 19171405 - Trends Genet. 2009 Mar;25(3):120-8
– reference: 12016301 - Science. 2002 May 17;296(5571):1260-3
SSID ssj0017825
Score 2.4102604
Snippet Background Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular...
Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High...
Background Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular...
Doc number: 127 Abstract Background: Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in...
Background: Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127
SubjectTerms Accuracy
Algorithms
Animal Genetics and Genomics
Bioinformatics
Biomedical and Life Sciences
Classification
Gene expression
Genomes
Genomics
Graph representations
Human and rodent genomics
Internet
Life Sciences
Methods
Microarrays
Microbial Genetics and Genomics
Performance evaluation
Plant Genetics and Genomics
Proteins
Proteomics
Research Article
RNA, Untranslated - classification
RNA, Untranslated - metabolism
Support Vector Machine
User-Computer Interface
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1ra9RAcKgVUT-Ib6NVoohiYW03u5vdfBA51FKFFqke9Nuy2WyqcOSuvR56_96ZvLyUen7eSTaZ9zAvgJdByJyj5Wfo2jomdeJYVvISxb1wCaq_TDvqRj44TPfH8suxOt6ArrukReD80tCO9kmNzyZvf58u36PAv6sF3qQ7HBUsS9DvZ1wxnuhXs1NGa6Uo_dru2LgCV9F0ZbTb4UD-TTOgeVRd7vKSFw1s1UWNvWKyLpZT9jnVm3B9Uc3c8pebTFbM1t5tuNX6m_GoYZA7sBGqu3Ct2UC5vAcfv55RpoaoE7uqiD0501Q9VBMsnpZx5Y8OR_OY6uNP4mbaLE3qiNuJqwR2H8Z7n75_2GftYgXmMVo5ZyEvvFAeQx2H4ZAWJdJEZKLQhXcid7pAwVRSqwSDKW1Kw0NWpi43Jk-Cy8tEPIDNalqFRxBrFYJyJktC6uWuUyZ1MvcpqgkhtRYugp0Ohda3U8dp-cXE1tGHSS0h3RLSLVcWkR7Bm_6JWTNxYw3sC6KKpUEWFVXKnLjFfG4_fzuyIyUyclbNbgSvW6Byild71zYe4A_Q7KsB5NYAEiXND4874tuOUfGTMoMxtuEyguf9MT1J1WtVmC4QRlEnDvU8r4VRQqaofiN42PBT__uUHUe_DG_QA07rAWhG-PCk-vmjnhWO7q8Smkew3fHkyqf_E6vbPdf-lwSP1yPlCdxAF1NSnTsXW7CJbBqeoht3nj-rRfEPmiNAUQ
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEB9qRdQP4tvVKqsIYiG0eW2yHw-1VMEi1YN-C9lstgpHrng9pP-9M_vitmjFz5nsY16ZYWZ-AXgdpao4nvwMQ1vPlBGelQ1v0NxrL9D9lcbTNPLno-Jwrj6d6JMtEMMsTNvtPpQkW0_dmrUt9ji6USYwumdcMy7MNbiuCcwLdXguZmPlAE88PZQj_7BrcvxcdsIbp9DlDsmxTHobbq7Tmb_45ReLjZPo4C7c6UPIfNbJ_B5sxXQfbnSXSl48gPdfflLxhRie-1TngeJjaghqZZAvmzyF46PZKqeW99O8A5Al8I28B1ElsocwP_jw7d0h6-9KYAETkHMWqzpIHTB78ZjhGNkgm2Upa1MHLytvarQ1rYwWmB8Z21gey6bwlbWViL5qhHwE22mZ4hPIjY5Re1uKWAS177UtvKpCgZYvlTHSZ7A3sNCFHkic7rNYuDahsIUjpjtiuuPaIdMzeDvuOOtANK6gfUVScYRNkaj55dSvVyv38euxm2lZUvxp9zN40xM1S3x18P0sAf4AwVlNKHcmlGg8Ybo8CN_1xrvCTyotps2Wqwxejsu0kxrSUlyukUbTcA2NMV9Jo6Uq0KNm8LjTp_H3qeCNoRa-wUw0bSQg2O_pSvrxvYX_xohWS8Mz2B10cuPT_8rV3VFr_ymCp__z5GdwC2NIRY3sXO7ANiptfI5x2nn1ojXM37IoMec
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BJwQ88DkgMFBASIhJaZfYjp3HCpgGEtU0qDSeIttxxrQurZZWaPz13DVu1FQwhMSzz_LX3fl38t3PAK8d4ybGmz9CaKsjLhMdZWVcorkXOkH3l0lN1cifR-nBmH86Fsc-_4lqYcy5JXLS81Nb99cL0CdNfQP9n-AuBrOibMxdpYMY3WuUIOqPYhHFibwOW6lAXN6DrfHocPhtWV7kRVbvlL_p1rmXNr3z2vW0mTrZvp_ehpuLaqYvf-jJZO2K2r8LZ6vFNZkpZ_3F3PTtzw3ex_-z-ntwxyPZcNio3n245qoHcKP52_LyIbw_vKA3IDr3UFdFaAmmU17SUhXCaRlW9mg0rEPKvD8JGx5b4gAJPZcriW3DeP_D13cHkf-yIbIYB80jZwrLhMUgSmOgJVmJp80yVsjCama0LNDkBZciwTBNqlLFLitTbZQyidOmTNgj6FXTyj2BUArnhFZZ4lLL97RQqebGpuiAGJeS6QAGqwPLreczp281JvkyrlFpTnuT097kschxbwJ42_aYNVweV8i-Ih3IiSKjohycE72o6_zjl6N8KFhGMFjtBfDGC5VTHNpqX9KACyBWrY7kTkcSbdh2m1eqlnsfUuOUMoXRu4p5AC_bZupJeXGVmy5QRlCND1VTXykjGE_RsQfwuNHedvn07o6ID0eQHb1uBYh9vNtSnX5fspAjsBZMxgHsrixgbep_3NXd1kb-egRP_0X4GdxCKMspnz5mO9BDpXXPES7OzQvvB34BzvZghg
  priority: 102
  providerName: Unpaywall
Title Prediction and classification of ncRNAs using structural information
URI https://link.springer.com/article/10.1186/1471-2164-15-127
https://www.ncbi.nlm.nih.gov/pubmed/24521294
https://www.proquest.com/docview/1498549814
https://www.proquest.com/docview/1500683348
https://www.proquest.com/docview/1505346305
https://pubmed.ncbi.nlm.nih.gov/PMC3925371
https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-15-127
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9NAEB_uWkR9EL9Oo2eJIogH4S7Z3ezmQaTWO07hSqkW6tOy2WxOoSTVXpH7753Jl-2B9SU07CRpZmZnZzKzvwF47RhPQ1z5A3RtTcBlZIIkD3Oc7pmJ0Pwl0tBu5ItxfD7jn-divgfjdi8MlVW2NrEy1Flp6Rv5MXryCmMZFfL3y58BdY2i7GrbQsM0rRWydxXE2D70I0LG6kH_w-l4Mu3yCrgeijZZqWK8qQyDCCOGIBRB1VlmY3G6aaI31qib9ZNdEvUu3F4XS3P92ywWG-vU2X241ziY_rDWiAew54qHcKtuOXn9CD5OflFqhsThmyLzLXnPVC5UScgvc7-w0_Fw5VNB_KVfw8sSNIffQKwS2WOYnZ1-HZ0HTSeFwGJ4chW4NLNMWIxtDMY_kuUoBJawTGbWsNTIDGei4FJEGD1JlavQJXlsUqXSyJk0j9gB9IqycE_Bl8I5YVQSudjyEyNUbHhqY7QLjEvJjAfHLQu1bWDGqdvFQlfhhoo1MV0T03UoNDLdg7fdFcsaYmMH7SuSiibkioJKYy7NerXSn75M9VCwhLxTdeLBm4YoL_HR1jQ7DfAFCOxqi_JwixKnlt0eboWvm6m90n8V0YOX3TBdSeVqhSvXSCNo6w1tct5JIxiP0d568KTWp-71KR2Ojhg-QW5pWkdAoODbI8WP7xU4OPq7gsnQg6NWJzf--j-5etRp7X9F8Gw3U57DHfQpORW2h-wQeqim7gX6bVfpAPblXA6aKYlno3g0qL6B4PGCKzzOIvzdn40nw29_AMsVQwU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9Nm9DgAfFNYEBAIMSkaEtsx87DhArb1LKtmsom7c04jrNNqpJCV0395_jbuEuT0E6iPO3ZFyU-n-8jd_c7gPeO8TREyx-ga2sCLiMTJHmY43XPTITqL5GGupGP-nH3lH87E2cr8LvphaGyykYnVoo6Ky39I99CT15hLKNC_nn0M6CpUZRdbUZomHq0QrZTQYzVjR0HbnqNIdx4p7eL5_0hivb3Tr52g3rKQGDRdb8KXJpZJiz6_QZjA8ly_ECWsExm1rDUyAylVHApIowspMpV6JI8NqlSaeRMmhPwAZqANc54gsHf2pe9_vGgzWOg_RVNclTFuAkZBhFGKEEogmqSzZwxvGkS5mzizXrNNml7D9YnxchMr81wOGcX9x_A_dqh9TszCXwIK654BHdmIy6nj2H3-Belguj4fVNkviVvncqTKonwy9wv7KDfGftUgH_uz-BsCQrEryFdiewJnN4KT5_CalEW7jn4UjgnjEoiF1u-bYSKDU9tjHqIcSmZ8WCrYaG2Naw5TdcY6iq8UbEmpmtiug6FRqZ78Kl9YjSD9FhC-45ORRNSRkGlOOdmMh7r3veB7giWkDestj34WBPlJb7amrqzATdA4FoLlBsLlHiV7eJyc_i6ViVj_VfwPXjbLtOTVB5XuHKCNIJafaipeimNYDxG_e7Bs5k8tdun9Ds6fvgGuSBpLQGBkC-uFJcXFRg5-teCydCDzUYm5z79n1zdbKX2v0fwYjlT3sB69-ToUB_2-gcv4S76s5yK6kO2Aasosu4V-oxX6ev6Yvrw47Z1wR8nb3nf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwED_BEK8PiOcIDAgICW1S1Dm2Y-dj1VFtPKppMGnfLMdxxqTKrWgrtP-eu-ahZoIhPvvcJPe-3vlngPeei4Jh5E8wtbWJUKlN8opVaO6lTdH95crSaeSvk-zwVHw6k2fNH26Ldtq9bUnWZxoIpSksB_Oyqk1cZwOGLjVJMdNPmExYqm7CLYGxjW4wGGWjrouA0U-2rck_7OqFoqsOeSMiXZ2W7Fqm9-HuKszt5S87nW5EpfFDeNCkk_Gwlv8juOHDY7hdXzB5-QQOjn9SI4aYH9tQxo5yZRoOWssjnlVxcCeT4SKm8ffzuAaTJSCOuAFUJbKncDr--H10mDT3JiQOi5Fl4ovScemwkrFY7SheIct5zktVOssLq0q0OymUTLFWUrrSzOdVZguti9Tbokr5M9gKs-CfQ6yk99LqPPWZE_tW6syKwmXoBbhQitsIBi0LjWtAxelui6lZFxc6M8R0Q0w3TBpkegS73Y55DahxDe07koohnIpAgzDndrVYmKNvJ2YoeU65qN6P4ENDVM3w0c425wrwAwjaqke506NEQ3L95Vb4pjHkBb5SrrGE1kxE8LZbpp00nBb8bIU0kg7a0JHma2kkFxl61wi2a33qPp-a35h24RNUT9M6AoIA76-Eix9rKHDMbiVXLIK9Vic3Xv2vXN3rtPafInjxP7_8Bu4cH4zNl6PJ55dwD1NLQfPtjO_AFuqvf4Xp27J4vbbR32XqOPk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BJwQ88DkgMFBASIhJaZfYjp3HCpgGEtU0qDSeIttxxrQurZZWaPz13DVu1FQwhMSzz_LX3fl38t3PAK8d4ybGmz9CaKsjLhMdZWVcorkXOkH3l0lN1cifR-nBmH86Fsc-_4lqYcy5JXLS81Nb99cL0CdNfQP9n-AuBrOibMxdpYMY3WuUIOqPYhHFibwOW6lAXN6DrfHocPhtWV7kRVbvlL_p1rmXNr3z2vW0mTrZvp_ehpuLaqYvf-jJZO2K2r8LZ6vFNZkpZ_3F3PTtzw3ex_-z-ntwxyPZcNio3n245qoHcKP52_LyIbw_vKA3IDr3UFdFaAmmU17SUhXCaRlW9mg0rEPKvD8JGx5b4gAJPZcriW3DeP_D13cHkf-yIbIYB80jZwrLhMUgSmOgJVmJp80yVsjCama0LNDkBZciwTBNqlLFLitTbZQyidOmTNgj6FXTyj2BUArnhFZZ4lLL97RQqebGpuiAGJeS6QAGqwPLreczp281JvkyrlFpTnuT097kschxbwJ42_aYNVweV8i-Ih3IiSKjohycE72o6_zjl6N8KFhGMFjtBfDGC5VTHNpqX9KACyBWrY7kTkcSbdh2m1eqlnsfUuOUMoXRu4p5AC_bZupJeXGVmy5QRlCND1VTXykjGE_RsQfwuNHedvn07o6ID0eQHb1uBYh9vNtSnX5fspAjsBZMxgHsrixgbep_3NXd1kb-egRP_0X4GdxCKMspnz5mO9BDpXXPES7OzQvvB34BzvZghg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+classification+of+ncRNAs+using+structural+information&rft.jtitle=BMC+genomics&rft.au=Panwar%2C+Bharat&rft.au=Arora%2C+Amit&rft.au=Raghava%2C+Gajendra+PS&rft.date=2014-02-13&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2164&rft.volume=15&rft_id=info:doi/10.1186%2F1471-2164-15-127&rft.externalDocID=3220762791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon