Prediction and classification of ncRNAs using structural information
Background Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is theref...
Saved in:
| Published in | BMC genomics Vol. 15; no. 1; p. 127 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
13.02.2014
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2164 1471-2164 |
| DOI | 10.1186/1471-2164-15-127 |
Cover
| Abstract | Background
Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts.
Results
In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models.
Conclusions
This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool--
RNAcon
(
http://crdd.osdd.net/raghava/rnacon
). |
|---|---|
| AbstractList | Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts.BACKGROUNDEvidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts.In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models.RESULTSIn this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models.This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon).CONCLUSIONSThis work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon). Background: Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. Results: In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. Conclusions: This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon ). Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon (http://crdd.osdd.net/raghava/rnacon). Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon). Background Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. Results In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. Conclusions This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( Keywords: ncRNA, SVM, RandomForest, Graph properties, Prediction, RNAcon Background Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. Results In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. Conclusions This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon ). Doc number: 127 Abstract Background: Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High throughput techniques like next generation sequencing have resulted in the generation of vast amounts of sequence data. It is therefore desirable, not only to discriminate coding and non-coding transcripts, but also to assign the noncoding RNA (ncRNA) transcripts into respective classes (families). Although there are several algorithms available for this task, their classification performance remains a major concern. Acknowledging the crucial role that non-coding transcripts play in cellular processes, it is required to develop algorithms that are able to precisely classify ncRNA transcripts. Results: In this study, we initially develop prediction tools to discriminate coding or non-coding transcripts and thereafter classify ncRNAs into respective classes. In comparison to the existing methods that employed multiple features, our SVM-based method by using a single feature (tri-nucleotide composition), achieved MCC of 0.98. Knowing that the structure of a ncRNA transcript could provide insights into its biological function, we use graph properties of predicted ncRNA structures to classify the transcripts into 18 different non-coding RNA classes. We developed classification models using a variety of algorithms (BayeNet, NaiveBayes, MultilayerPerceptron, IBk, libSVM, SMO and RandomForest) and observed that model based on RandomForest performed better than other models. As compared to the GraPPLE study, the sensitivity (of 13 classes) and specificity (of 14 classes) was higher. Moreover, the overall sensitivity of 0.43 outperforms the sensitivity of GraPPLE (0.33) whereas the overall MCC measure of 0.40 (in contrast to MCC of 0.29 of GraPPLE) was significantly higher for our method. This clearly demonstrates that our models are more accurate than existing models. Conclusions: This work conclusively demonstrates that a simple feature, tri-nucleotide composition, is sufficient to discriminate between coding and non-coding RNA sequences. Similarly, graph properties based feature set along with RandomForest algorithm are most suitable to classify different ncRNA classes. We have also developed an online and standalone tool-- RNAcon ( http://crdd.osdd.net/raghava/rnacon ). |
| ArticleNumber | 127 |
| Audience | Academic |
| Author | Panwar, Bharat Raghava, Gajendra PS Arora, Amit |
| AuthorAffiliation | 1 Bioinformatics Centre, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh, India |
| AuthorAffiliation_xml | – name: 1 Bioinformatics Centre, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh, India |
| Author_xml | – sequence: 1 givenname: Bharat surname: Panwar fullname: Panwar, Bharat organization: Bioinformatics Centre, Institute of Microbial Technology (CSIR) – sequence: 2 givenname: Amit surname: Arora fullname: Arora, Amit email: amit_arora@imtech.res.in organization: Bioinformatics Centre, Institute of Microbial Technology (CSIR) – sequence: 3 givenname: Gajendra PS surname: Raghava fullname: Raghava, Gajendra PS email: raghava@imtech.res.in organization: Bioinformatics Centre, Institute of Microbial Technology (CSIR) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24521294$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhi1URD_gzglF4gKHlNiOnfiCtCpflSpABc6W49jBVWIvdkLbf89kd1l2K0BV5DgaP-9k5vUcowMfvEHoKS5OMa75K1xWOCeYlzlmOSbVA3S0DR3sfB-i45SuigJXNWGP0CEpGcFElEfozedoWqdHF3ymfJvpXqXkrNNqFQo28_ry4yJlU3K-y9IYJz1OUfWZ8zbEYYU9Rg-t6pN5stlP0Ld3b7-efcgvPr0_P1tc5JpzPuamaTVlWgiuMJRGrRCCCtpWrVa0UVXLKGZlxUiFeVXbGhthuWrquiFGNZbQE4TXeSe_VLfXqu_lMrpBxVuJCzk7IueW5dyyxEyCI6B5vdYsp2YwrTZ-hOq3uqCc3D_x7rvswk9JBWG0wpDgxSZBDD8mk0Y5uKRN3ytvwpTgPwWjJafwvgda8JrSsgb0-R30KkzRg3vQgqgZLFz-oTrVGzk7DiXqOalcMCoYZ7wugDr9CwVPawanYWKsg_ie4OWeAJjR3IydmlKS518u99lnu_5tjfs9QgDwNaBjSCkaK7UbV2MBVbj-fzdT3BHe4zI3A5AA9Z2JO679S_MLAFb0zg |
| CitedBy_id | crossref_primary_10_3390_ijms24108884 crossref_primary_10_1016_j_ygeno_2015_01_005 crossref_primary_10_1039_C4MB00340C crossref_primary_10_2174_1574893614666191105160633 crossref_primary_10_1093_bib_bbab178 crossref_primary_10_3390_genes11090981 crossref_primary_10_1016_j_jbi_2016_09_012 crossref_primary_10_1016_j_biochi_2014_06_001 crossref_primary_10_1016_j_isci_2022_104807 crossref_primary_10_1093_bioinformatics_btaf051 crossref_primary_10_2139_ssrn_4166768 crossref_primary_10_1186_s13040_022_00291_0 crossref_primary_10_1039_C5MB00214A crossref_primary_10_1371_journal_pone_0197206 crossref_primary_10_1093_bib_bbad303 crossref_primary_10_1016_j_plaphy_2023_107940 crossref_primary_10_1186_s12859_023_05191_6 crossref_primary_10_1038_s41598_017_17510_y crossref_primary_10_1109_TCBB_2020_2982873 crossref_primary_10_1021_acs_jproteome_5b00883 crossref_primary_10_1007_s41870_022_01064_y crossref_primary_10_3390_genes16030284 crossref_primary_10_1080_15476286_2019_1574161 crossref_primary_10_1002_cam4_2952 crossref_primary_10_1186_s13046_020_01622_x crossref_primary_10_3390_ncrna4040041 crossref_primary_10_3390_ijms21072611 crossref_primary_10_3390_biom13111643 crossref_primary_10_1093_nar_gky576 crossref_primary_10_1109_TCBB_2015_2495140 crossref_primary_10_1371_journal_pcbi_1007760 crossref_primary_10_1016_j_compbiomed_2022_105216 crossref_primary_10_1016_j_csbj_2023_02_012 crossref_primary_10_1186_s12859_017_1594_z crossref_primary_10_1109_TCBB_2021_3098126 crossref_primary_10_1016_j_biosystems_2018_09_001 crossref_primary_10_1038_srep12478 crossref_primary_10_1186_1471_2105_15_326 crossref_primary_10_1186_s12864_024_10439_3 crossref_primary_10_1109_TCBB_2021_3131136 crossref_primary_10_1017_qpb_2022_18 crossref_primary_10_1186_s12859_021_04365_4 crossref_primary_10_1109_TCBB_2021_3118358 crossref_primary_10_1186_s12864_015_2266_x crossref_primary_10_1038_s42256_024_00836_4 crossref_primary_10_1109_ACCESS_2021_3058263 crossref_primary_10_12688_f1000research_52350_2 crossref_primary_10_1089_dna_2024_0181 crossref_primary_10_1111_ede_12230 crossref_primary_10_7717_peerj_3561 crossref_primary_10_2174_1573406414666181015151610 crossref_primary_10_3390_ncrna7040070 crossref_primary_10_2142_biophys_56_217 crossref_primary_10_1155_2017_9139504 crossref_primary_10_1186_s13040_017_0148_2 crossref_primary_10_1093_bfgp_elab016 crossref_primary_10_1093_bib_bbu028 crossref_primary_10_1097_RLU_0000000000001332 crossref_primary_10_1371_journal_pone_0139654 crossref_primary_10_1038_s42256_019_0051_2 crossref_primary_10_1016_j_compbiolchem_2020_107364 crossref_primary_10_1093_bib_bbaa099 crossref_primary_10_1155_2016_8496165 crossref_primary_10_1016_j_canlet_2017_12_029 crossref_primary_10_1016_j_bioactmat_2023_11_007 crossref_primary_10_1371_journal_pcbi_1012446 crossref_primary_10_1186_1471_2105_15_340 crossref_primary_10_1016_j_ygeno_2021_07_004 crossref_primary_10_1038_srep20678 crossref_primary_10_1126_science_aan0032 crossref_primary_10_2174_0115665232301727240422092311 crossref_primary_10_12677_hjcb_2023_134004 crossref_primary_10_7717_peerj_6946 crossref_primary_10_1016_j_molbiopara_2017_04_002 |
| Cites_doi | 10.1002/ajmg.a.32364 10.1038/418244a 10.1038/nrg1379 10.1073/pnas.0409169102 10.1146/annurev.biochem.70.1.755 10.1126/science.283.5405.1168 10.1093/nar/gkg107 10.1038/35057062 10.1126/science.1072249 10.1007/s00726-011-0872-8 10.1038/nature07756 10.1038/nrg3074 10.1093/nar/gkt418 10.1093/bioinformatics/btr215 10.1084/jem.20070823 10.1038/35104575 10.1016/j.sbi.2010.11.005 10.1016/j.sbi.2006.05.010 10.1016/j.cell.2007.03.030 10.1145/1656274.1656278 10.1093/bioinformatics/bth315 10.1109/72.788640 10.1146/annurev-biophys-083012-130404 10.1093/nar/27.1.314 10.1186/1471-2164-11-507 10.1093/nar/gkn721 10.1126/science.1064921 10.1371/journal.pgen.0020029 10.1038/nrg2634 10.1038/nature01266 10.1016/j.tig.2008.12.003 10.1093/nar/gkp206 10.1093/bioinformatics/16.7.583 10.1038/nature11247 10.1093/nar/gkh102 10.1016/j.gene.2006.09.028 10.1093/nar/gkm391 10.1093/nar/gki487 10.1093/nar/gkg006 |
| ContentType | Journal Article |
| Copyright | Panwar et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2014 BioMed Central Ltd. 2014 Panwar et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2014 Panwar et al.; licensee BioMed Central Ltd. 2014 Panwar et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Panwar et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2014 BioMed Central Ltd. – notice: 2014 Panwar et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright © 2014 Panwar et al.; licensee BioMed Central Ltd. 2014 Panwar et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/1471-2164-15-127 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological science database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest One Academic url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| EndPage | 127 |
| ExternalDocumentID | 10.1186/1471-2164-15-127 PMC3925371 3220762791 A539565680 24521294 10_1186_1471_2164_15_127 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM 2VQ ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c666t-ebdc35c996a11473f999393d7dca3ba7d5315475271678f81e9f6ab88b2eabf23 |
| IEDL.DBID | BENPR |
| ISSN | 1471-2164 |
| IngestDate | Sun Oct 26 03:54:34 EDT 2025 Tue Sep 30 16:59:09 EDT 2025 Fri Sep 05 11:09:39 EDT 2025 Thu Oct 02 06:36:54 EDT 2025 Tue Oct 07 05:18:22 EDT 2025 Mon Oct 20 22:49:43 EDT 2025 Mon Oct 20 17:02:25 EDT 2025 Thu Oct 16 16:00:20 EDT 2025 Mon Jul 21 05:34:44 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Wed Oct 01 03:03:11 EDT 2025 Sat Sep 06 07:35:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Graph properties RNAcon SVM ncRNA RandomForest Prediction |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c666t-ebdc35c996a11473f999393d7dca3ba7d5315475271678f81e9f6ab88b2eabf23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://www.proquest.com/docview/1498549814?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 24521294 |
| PQID | 1498549814 |
| PQPubID | 44682 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1186_1471_2164_15_127 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3925371 proquest_miscellaneous_1505346305 proquest_miscellaneous_1500683348 proquest_journals_1498549814 gale_infotracmisc_A539565680 gale_infotracacademiconefile_A539565680 gale_incontextgauss_ISR_A539565680 pubmed_primary_24521294 crossref_citationtrail_10_1186_1471_2164_15_127 crossref_primary_10_1186_1471_2164_15_127 springer_journals_10_1186_1471_2164_15_127 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-13 |
| PublicationDateYYYYMMDD | 2014-02-13 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-13 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2014 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | J Liu (5745_CR24) 2006; 2 L He (5745_CR20) 2004; 5 T Joachims (5745_CR41) 1999 GJ Hannon (5745_CR8) 2002; 418 I Dunham (5745_CR2) 2012; 489 M Esteller (5745_CR22) 2011; 12 LJ Collins (5745_CR4) 2009; 25 RJ Keenan (5745_CR15) 2001; 70 ES Lander (5745_CR1) 2001; 409 K Sato (5745_CR31) 2011; 27 M Hall (5745_CR33) 2009; 11 A Schaefer (5745_CR18) 2007; 204 S Griffiths-Jones (5745_CR38) 2003; 31 Y Okazaki (5745_CR23) 2002; 420 KJ Hoff (5745_CR35) 2013; 41 P Gueneau De Novoa (5745_CR14) 2004; 32 KD Pruitt (5745_CR39) 2009; 37 G Csardi (5745_CR34) 2006; Complex Systems B Panwar (5745_CR42) 2012; 42 VN Vapnik (5745_CR40) 1999; 10 Y Zhao (5745_CR19) 2007; 129 E Rivas (5745_CR27) 2000; 16 CM Croce (5745_CR17) 2009; 10 M Mason (5745_CR5) 2011; 21 Z Yang (5745_CR6) 2001; 414 M Lagos-Quintana (5745_CR7) 2001; 294 L Childs (5745_CR30) 2009; 37 WH Majoros (5745_CR37) 2004; 20 JW Brown (5745_CR12) 1999; 27 TM Lowe (5745_CR11) 1999; 283 MA Rosenblad (5745_CR16) 2003; 31 G Storz (5745_CR13) 2002; 296 DH Mathews (5745_CR26) 2006; 16 Y Karklin (5745_CR29) 2005 RC Wilson (5745_CR9) 2013; 42 B Panwar (5745_CR32) 2010; 11 S Washietl (5745_CR28) 2005; 102 FF Costa (5745_CR3) 2007; 386 D Moazed (5745_CR10) 2009; 457 J Besemer (5745_CR36) 2005; 33 B Horsthemke (5745_CR21) 2008; 146A L Kong (5745_CR25) 2007; 35 11713532 - Nature. 2001 Nov 15;414(6861):317-22 17113247 - Gene. 2007 Jan 15;386(1-2):1-10 12016301 - Science. 2002 May 17;296(5571):1260-3 16713706 - Curr Opin Struct Biol. 2006 Jun;16(3):270-8 11395422 - Annu Rev Biochem. 2001;70:755-75 21400228 - Amino Acids. 2012 May;42(5):1703-13 17631615 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9 9847214 - Nucleic Acids Res. 1999 Jan 1;27(1):314 11679670 - Science. 2001 Oct 26;294(5543):853-8 18927115 - Nucleic Acids Res. 2009 Jan;37(Database issue):D32-6 12520045 - Nucleic Acids Res. 2003 Jan 1;31(1):439-41 18627066 - Am J Med Genet A. 2008 Aug 15;146A(16):2041-52 21685106 - Bioinformatics. 2011 Jul 1;27(13):i85-93 15665081 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2454-9 22094949 - Nat Rev Genet. 2011 Dec;12(12):861-74 15211354 - Nat Rev Genet. 2004 Jul;5(7):522-31 19763153 - Nat Rev Genet. 2009 Oct;10(10):704-14 15980510 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W451-4 19158787 - Nature. 2009 Jan 22;457(7228):413-20 10024243 - Science. 1999 Feb 19;283(5405):1168-71 17397913 - Cell. 2007 Apr 20;129(2):303-17 12466851 - Nature. 2002 Dec 5;420(6915):563-73 12110901 - Nature. 2002 Jul 11;418(6894):244-51 23700307 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W123-8 15759609 - Pac Symp Biocomput. 2005;:4-15 21168327 - Curr Opin Struct Biol. 2011 Feb;21(1):92-100 17606634 - J Exp Med. 2007 Jul 9;204(7):1553-8 18252602 - IEEE Trans Neural Netw. 1999;10(5):988-99 11038329 - Bioinformatics. 2000 Jul;16(7):583-605 14681369 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D104-8 15145805 - Bioinformatics. 2004 Nov 1;20(16):2878-9 11237011 - Nature. 2001 Feb 15;409(6822):860-921 19339518 - Nucleic Acids Res. 2009 May;37(9):e66 20860794 - BMC Genomics. 2010;11:507 12520023 - Nucleic Acids Res. 2003 Jan 1;31(1):363-4 23654304 - Annu Rev Biophys. 2013;42:217-39 19171405 - Trends Genet. 2009 Mar;25(3):120-8 16683024 - PLoS Genet. 2006 Apr;2(4):e29 |
| References_xml | – volume: 146A start-page: 2041 year: 2008 ident: 5745_CR21 publication-title: Am J Med Genet A doi: 10.1002/ajmg.a.32364 – volume: 418 start-page: 244 year: 2002 ident: 5745_CR8 publication-title: Nature doi: 10.1038/418244a – volume: 5 start-page: 522 year: 2004 ident: 5745_CR20 publication-title: Nat Rev Genet doi: 10.1038/nrg1379 – volume: 102 start-page: 2454 year: 2005 ident: 5745_CR28 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0409169102 – volume: 70 start-page: 755 year: 2001 ident: 5745_CR15 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.70.1.755 – start-page: 4 volume-title: Pac Symp Biocomput year: 2005 ident: 5745_CR29 – volume: 283 start-page: 1168 year: 1999 ident: 5745_CR11 publication-title: Science (New York, NY) doi: 10.1126/science.283.5405.1168 – volume: 31 start-page: 363 year: 2003 ident: 5745_CR16 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg107 – start-page: 169 volume-title: Adv Kernel Methods Support Learn year: 1999 ident: 5745_CR41 – volume: 409 start-page: 860 year: 2001 ident: 5745_CR1 publication-title: Nature doi: 10.1038/35057062 – volume: 296 start-page: 1260 year: 2002 ident: 5745_CR13 publication-title: Science (New York, NY) doi: 10.1126/science.1072249 – volume: 42 start-page: 1703 year: 2012 ident: 5745_CR42 publication-title: Amino Acids doi: 10.1007/s00726-011-0872-8 – volume: 457 start-page: 413 year: 2009 ident: 5745_CR10 publication-title: Nature doi: 10.1038/nature07756 – volume: Complex Systems start-page: 1695 year: 2006 ident: 5745_CR34 publication-title: Inter Journal – volume: 12 start-page: 861 year: 2011 ident: 5745_CR22 publication-title: Nat Rev Genet doi: 10.1038/nrg3074 – volume: 41 start-page: W123 year: 2013 ident: 5745_CR35 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt418 – volume: 27 start-page: i85 year: 2011 ident: 5745_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr215 – volume: 204 start-page: 1553 year: 2007 ident: 5745_CR18 publication-title: J Exp Med doi: 10.1084/jem.20070823 – volume: 414 start-page: 317 year: 2001 ident: 5745_CR6 publication-title: Nature doi: 10.1038/35104575 – volume: 21 start-page: 92 year: 2011 ident: 5745_CR5 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2010.11.005 – volume: 16 start-page: 270 year: 2006 ident: 5745_CR26 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2006.05.010 – volume: 129 start-page: 303 year: 2007 ident: 5745_CR19 publication-title: Cell doi: 10.1016/j.cell.2007.03.030 – volume: 11 start-page: 10 year: 2009 ident: 5745_CR33 publication-title: SIGKDD Explorations doi: 10.1145/1656274.1656278 – volume: 20 start-page: 2878 year: 2004 ident: 5745_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth315 – volume: 10 start-page: 988 year: 1999 ident: 5745_CR40 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.788640 – volume: 42 start-page: 217 year: 2013 ident: 5745_CR9 publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-083012-130404 – volume: 27 start-page: 314 year: 1999 ident: 5745_CR12 publication-title: Nucleic Acids Res doi: 10.1093/nar/27.1.314 – volume: 11 start-page: 507 year: 2010 ident: 5745_CR32 publication-title: BMC Genomics doi: 10.1186/1471-2164-11-507 – volume: 37 start-page: D32 year: 2009 ident: 5745_CR39 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn721 – volume: 294 start-page: 853 year: 2001 ident: 5745_CR7 publication-title: Science (New York, NY) doi: 10.1126/science.1064921 – volume: 2 start-page: e29 year: 2006 ident: 5745_CR24 publication-title: PLoS Genet doi: 10.1371/journal.pgen.0020029 – volume: 10 start-page: 704 year: 2009 ident: 5745_CR17 publication-title: Nat Rev Genet doi: 10.1038/nrg2634 – volume: 420 start-page: 563 year: 2002 ident: 5745_CR23 publication-title: Nature doi: 10.1038/nature01266 – volume: 25 start-page: 120 year: 2009 ident: 5745_CR4 publication-title: Trends Genet doi: 10.1016/j.tig.2008.12.003 – volume: 37 start-page: e66 year: 2009 ident: 5745_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp206 – volume: 16 start-page: 583 year: 2000 ident: 5745_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.7.583 – volume: 489 start-page: 57 year: 2012 ident: 5745_CR2 publication-title: Nature doi: 10.1038/nature11247 – volume: 32 start-page: D104 year: 2004 ident: 5745_CR14 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh102 – volume: 386 start-page: 1 year: 2007 ident: 5745_CR3 publication-title: Gene doi: 10.1016/j.gene.2006.09.028 – volume: 35 start-page: W345 year: 2007 ident: 5745_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm391 – volume: 33 start-page: W451 year: 2005 ident: 5745_CR36 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki487 – volume: 31 start-page: 439 year: 2003 ident: 5745_CR38 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg006 – reference: 17606634 - J Exp Med. 2007 Jul 9;204(7):1553-8 – reference: 23700307 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W123-8 – reference: 11395422 - Annu Rev Biochem. 2001;70:755-75 – reference: 12520023 - Nucleic Acids Res. 2003 Jan 1;31(1):363-4 – reference: 11237011 - Nature. 2001 Feb 15;409(6822):860-921 – reference: 19339518 - Nucleic Acids Res. 2009 May;37(9):e66 – reference: 20860794 - BMC Genomics. 2010;11:507 – reference: 10024243 - Science. 1999 Feb 19;283(5405):1168-71 – reference: 19763153 - Nat Rev Genet. 2009 Oct;10(10):704-14 – reference: 15759609 - Pac Symp Biocomput. 2005;:4-15 – reference: 19158787 - Nature. 2009 Jan 22;457(7228):413-20 – reference: 16683024 - PLoS Genet. 2006 Apr;2(4):e29 – reference: 9847214 - Nucleic Acids Res. 1999 Jan 1;27(1):314 – reference: 15980510 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W451-4 – reference: 14681369 - Nucleic Acids Res. 2004 Jan 1;32(Database issue):D104-8 – reference: 11679670 - Science. 2001 Oct 26;294(5543):853-8 – reference: 12110901 - Nature. 2002 Jul 11;418(6894):244-51 – reference: 23654304 - Annu Rev Biophys. 2013;42:217-39 – reference: 18252602 - IEEE Trans Neural Netw. 1999;10(5):988-99 – reference: 17631615 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9 – reference: 18927115 - Nucleic Acids Res. 2009 Jan;37(Database issue):D32-6 – reference: 11713532 - Nature. 2001 Nov 15;414(6861):317-22 – reference: 18627066 - Am J Med Genet A. 2008 Aug 15;146A(16):2041-52 – reference: 15211354 - Nat Rev Genet. 2004 Jul;5(7):522-31 – reference: 15145805 - Bioinformatics. 2004 Nov 1;20(16):2878-9 – reference: 21400228 - Amino Acids. 2012 May;42(5):1703-13 – reference: 12520045 - Nucleic Acids Res. 2003 Jan 1;31(1):439-41 – reference: 21168327 - Curr Opin Struct Biol. 2011 Feb;21(1):92-100 – reference: 17113247 - Gene. 2007 Jan 15;386(1-2):1-10 – reference: 12466851 - Nature. 2002 Dec 5;420(6915):563-73 – reference: 11038329 - Bioinformatics. 2000 Jul;16(7):583-605 – reference: 16713706 - Curr Opin Struct Biol. 2006 Jun;16(3):270-8 – reference: 17397913 - Cell. 2007 Apr 20;129(2):303-17 – reference: 22094949 - Nat Rev Genet. 2011 Dec;12(12):861-74 – reference: 21685106 - Bioinformatics. 2011 Jul 1;27(13):i85-93 – reference: 15665081 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2454-9 – reference: 19171405 - Trends Genet. 2009 Mar;25(3):120-8 – reference: 12016301 - Science. 2002 May 17;296(5571):1260-3 |
| SSID | ssj0017825 |
| Score | 2.4102604 |
| Snippet | Background
Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular... Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular activities. High... Background Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular... Doc number: 127 Abstract Background: Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in... Background: Evidence is accumulating that non-coding transcripts, previously thought to be functionally inert, play important roles in various cellular... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 127 |
| SubjectTerms | Accuracy Algorithms Animal Genetics and Genomics Bioinformatics Biomedical and Life Sciences Classification Gene expression Genomes Genomics Graph representations Human and rodent genomics Internet Life Sciences Methods Microarrays Microbial Genetics and Genomics Performance evaluation Plant Genetics and Genomics Proteins Proteomics Research Article RNA, Untranslated - classification RNA, Untranslated - metabolism Support Vector Machine User-Computer Interface |
| SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhR1ra9RAcKgVUT-Ib6NVoohiYW03u5vdfBA51FKFFqke9Nuy2WyqcOSuvR56_96ZvLyUen7eSTaZ9zAvgJdByJyj5Wfo2jomdeJYVvISxb1wCaq_TDvqRj44TPfH8suxOt6ArrukReD80tCO9kmNzyZvf58u36PAv6sF3qQ7HBUsS9DvZ1wxnuhXs1NGa6Uo_dru2LgCV9F0ZbTb4UD-TTOgeVRd7vKSFw1s1UWNvWKyLpZT9jnVm3B9Uc3c8pebTFbM1t5tuNX6m_GoYZA7sBGqu3Ct2UC5vAcfv55RpoaoE7uqiD0501Q9VBMsnpZx5Y8OR_OY6uNP4mbaLE3qiNuJqwR2H8Z7n75_2GftYgXmMVo5ZyEvvFAeQx2H4ZAWJdJEZKLQhXcid7pAwVRSqwSDKW1Kw0NWpi43Jk-Cy8tEPIDNalqFRxBrFYJyJktC6uWuUyZ1MvcpqgkhtRYugp0Ohda3U8dp-cXE1tGHSS0h3RLSLVcWkR7Bm_6JWTNxYw3sC6KKpUEWFVXKnLjFfG4_fzuyIyUyclbNbgSvW6Byild71zYe4A_Q7KsB5NYAEiXND4874tuOUfGTMoMxtuEyguf9MT1J1WtVmC4QRlEnDvU8r4VRQqaofiN42PBT__uUHUe_DG_QA07rAWhG-PCk-vmjnhWO7q8Smkew3fHkyqf_E6vbPdf-lwSP1yPlCdxAF1NSnTsXW7CJbBqeoht3nj-rRfEPmiNAUQ priority: 102 providerName: Scholars Portal – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEB9qRdQP4tvVKqsIYiG0eW2yHw-1VMEi1YN-C9lstgpHrng9pP-9M_vitmjFz5nsY16ZYWZ-AXgdpao4nvwMQ1vPlBGelQ1v0NxrL9D9lcbTNPLno-Jwrj6d6JMtEMMsTNvtPpQkW0_dmrUt9ji6USYwumdcMy7MNbiuCcwLdXguZmPlAE88PZQj_7BrcvxcdsIbp9DlDsmxTHobbq7Tmb_45ReLjZPo4C7c6UPIfNbJ_B5sxXQfbnSXSl48gPdfflLxhRie-1TngeJjaghqZZAvmzyF46PZKqeW99O8A5Al8I28B1ElsocwP_jw7d0h6-9KYAETkHMWqzpIHTB78ZjhGNkgm2Upa1MHLytvarQ1rYwWmB8Z21gey6bwlbWViL5qhHwE22mZ4hPIjY5Re1uKWAS177UtvKpCgZYvlTHSZ7A3sNCFHkic7rNYuDahsIUjpjtiuuPaIdMzeDvuOOtANK6gfUVScYRNkaj55dSvVyv38euxm2lZUvxp9zN40xM1S3x18P0sAf4AwVlNKHcmlGg8Ybo8CN_1xrvCTyotps2Wqwxejsu0kxrSUlyukUbTcA2NMV9Jo6Uq0KNm8LjTp_H3qeCNoRa-wUw0bSQg2O_pSvrxvYX_xohWS8Mz2B10cuPT_8rV3VFr_ymCp__z5GdwC2NIRY3sXO7ANiptfI5x2nn1ojXM37IoMec priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BJwQ88DkgMFBASIhJaZfYjp3HCpgGEtU0qDSeIttxxrQurZZWaPz13DVu1FQwhMSzz_LX3fl38t3PAK8d4ybGmz9CaKsjLhMdZWVcorkXOkH3l0lN1cifR-nBmH86Fsc-_4lqYcy5JXLS81Nb99cL0CdNfQP9n-AuBrOibMxdpYMY3WuUIOqPYhHFibwOW6lAXN6DrfHocPhtWV7kRVbvlL_p1rmXNr3z2vW0mTrZvp_ehpuLaqYvf-jJZO2K2r8LZ6vFNZkpZ_3F3PTtzw3ex_-z-ntwxyPZcNio3n245qoHcKP52_LyIbw_vKA3IDr3UFdFaAmmU17SUhXCaRlW9mg0rEPKvD8JGx5b4gAJPZcriW3DeP_D13cHkf-yIbIYB80jZwrLhMUgSmOgJVmJp80yVsjCama0LNDkBZciwTBNqlLFLitTbZQyidOmTNgj6FXTyj2BUArnhFZZ4lLL97RQqebGpuiAGJeS6QAGqwPLreczp281JvkyrlFpTnuT097kschxbwJ42_aYNVweV8i-Ih3IiSKjohycE72o6_zjl6N8KFhGMFjtBfDGC5VTHNpqX9KACyBWrY7kTkcSbdh2m1eqlnsfUuOUMoXRu4p5AC_bZupJeXGVmy5QRlCND1VTXykjGE_RsQfwuNHedvn07o6ID0eQHb1uBYh9vNtSnX5fspAjsBZMxgHsrixgbep_3NXd1kb-egRP_0X4GdxCKMspnz5mO9BDpXXPES7OzQvvB34BzvZghg priority: 102 providerName: Unpaywall |
| Title | Prediction and classification of ncRNAs using structural information |
| URI | https://link.springer.com/article/10.1186/1471-2164-15-127 https://www.ncbi.nlm.nih.gov/pubmed/24521294 https://www.proquest.com/docview/1498549814 https://www.proquest.com/docview/1500683348 https://www.proquest.com/docview/1505346305 https://pubmed.ncbi.nlm.nih.gov/PMC3925371 https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-15-127 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Open Access customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest One Academic customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9NAEB_uWkR9EL9Oo2eJIogH4S7Z3ezmQaTWO07hSqkW6tOy2WxOoSTVXpH7753Jl-2B9SU07CRpZmZnZzKzvwF47RhPQ1z5A3RtTcBlZIIkD3Oc7pmJ0Pwl0tBu5ItxfD7jn-divgfjdi8MlVW2NrEy1Flp6Rv5MXryCmMZFfL3y58BdY2i7GrbQsM0rRWydxXE2D70I0LG6kH_w-l4Mu3yCrgeijZZqWK8qQyDCCOGIBRB1VlmY3G6aaI31qib9ZNdEvUu3F4XS3P92ywWG-vU2X241ziY_rDWiAew54qHcKtuOXn9CD5OflFqhsThmyLzLXnPVC5UScgvc7-w0_Fw5VNB_KVfw8sSNIffQKwS2WOYnZ1-HZ0HTSeFwGJ4chW4NLNMWIxtDMY_kuUoBJawTGbWsNTIDGei4FJEGD1JlavQJXlsUqXSyJk0j9gB9IqycE_Bl8I5YVQSudjyEyNUbHhqY7QLjEvJjAfHLQu1bWDGqdvFQlfhhoo1MV0T03UoNDLdg7fdFcsaYmMH7SuSiibkioJKYy7NerXSn75M9VCwhLxTdeLBm4YoL_HR1jQ7DfAFCOxqi_JwixKnlt0eboWvm6m90n8V0YOX3TBdSeVqhSvXSCNo6w1tct5JIxiP0d568KTWp-71KR2Ojhg-QW5pWkdAoODbI8WP7xU4OPq7gsnQg6NWJzf--j-5etRp7X9F8Gw3U57DHfQpORW2h-wQeqim7gX6bVfpAPblXA6aKYlno3g0qL6B4PGCKzzOIvzdn40nw29_AMsVQwU |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9Nm9DgAfFNYEBAIMSkaEtsx87DhArb1LKtmsom7c04jrNNqpJCV0395_jbuEuT0E6iPO3ZFyU-n-8jd_c7gPeO8TREyx-ga2sCLiMTJHmY43XPTITqL5GGupGP-nH3lH87E2cr8LvphaGyykYnVoo6Ky39I99CT15hLKNC_nn0M6CpUZRdbUZomHq0QrZTQYzVjR0HbnqNIdx4p7eL5_0hivb3Tr52g3rKQGDRdb8KXJpZJiz6_QZjA8ly_ECWsExm1rDUyAylVHApIowspMpV6JI8NqlSaeRMmhPwAZqANc54gsHf2pe9_vGgzWOg_RVNclTFuAkZBhFGKEEogmqSzZwxvGkS5mzizXrNNml7D9YnxchMr81wOGcX9x_A_dqh9TszCXwIK654BHdmIy6nj2H3-Belguj4fVNkviVvncqTKonwy9wv7KDfGftUgH_uz-BsCQrEryFdiewJnN4KT5_CalEW7jn4UjgnjEoiF1u-bYSKDU9tjHqIcSmZ8WCrYaG2Naw5TdcY6iq8UbEmpmtiug6FRqZ78Kl9YjSD9FhC-45ORRNSRkGlOOdmMh7r3veB7giWkDestj34WBPlJb7amrqzATdA4FoLlBsLlHiV7eJyc_i6ViVj_VfwPXjbLtOTVB5XuHKCNIJafaipeimNYDxG_e7Bs5k8tdun9Ds6fvgGuSBpLQGBkC-uFJcXFRg5-teCydCDzUYm5z79n1zdbKX2v0fwYjlT3sB69-ToUB_2-gcv4S76s5yK6kO2Aasosu4V-oxX6ev6Yvrw47Z1wR8nb3nf |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwED_BEK8PiOcIDAgICW1S1Dm2Y-dj1VFtPKppMGnfLMdxxqTKrWgrtP-eu-ahZoIhPvvcJPe-3vlngPeei4Jh5E8wtbWJUKlN8opVaO6lTdH95crSaeSvk-zwVHw6k2fNH26Ldtq9bUnWZxoIpSksB_Oyqk1cZwOGLjVJMdNPmExYqm7CLYGxjW4wGGWjrouA0U-2rck_7OqFoqsOeSMiXZ2W7Fqm9-HuKszt5S87nW5EpfFDeNCkk_Gwlv8juOHDY7hdXzB5-QQOjn9SI4aYH9tQxo5yZRoOWssjnlVxcCeT4SKm8ffzuAaTJSCOuAFUJbKncDr--H10mDT3JiQOi5Fl4ovScemwkrFY7SheIct5zktVOssLq0q0OymUTLFWUrrSzOdVZguti9Tbokr5M9gKs-CfQ6yk99LqPPWZE_tW6syKwmXoBbhQitsIBi0LjWtAxelui6lZFxc6M8R0Q0w3TBpkegS73Y55DahxDe07koohnIpAgzDndrVYmKNvJ2YoeU65qN6P4ENDVM3w0c425wrwAwjaqke506NEQ3L95Vb4pjHkBb5SrrGE1kxE8LZbpp00nBb8bIU0kg7a0JHma2kkFxl61wi2a33qPp-a35h24RNUT9M6AoIA76-Eix9rKHDMbiVXLIK9Vic3Xv2vXN3rtPafInjxP7_8Bu4cH4zNl6PJ55dwD1NLQfPtjO_AFuqvf4Xp27J4vbbR32XqOPk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BJwQ88DkgMFBASIhJaZfYjp3HCpgGEtU0qDSeIttxxrQurZZWaPz13DVu1FQwhMSzz_LX3fl38t3PAK8d4ybGmz9CaKsjLhMdZWVcorkXOkH3l0lN1cifR-nBmH86Fsc-_4lqYcy5JXLS81Nb99cL0CdNfQP9n-AuBrOibMxdpYMY3WuUIOqPYhHFibwOW6lAXN6DrfHocPhtWV7kRVbvlL_p1rmXNr3z2vW0mTrZvp_ehpuLaqYvf-jJZO2K2r8LZ6vFNZkpZ_3F3PTtzw3ex_-z-ntwxyPZcNio3n245qoHcKP52_LyIbw_vKA3IDr3UFdFaAmmU17SUhXCaRlW9mg0rEPKvD8JGx5b4gAJPZcriW3DeP_D13cHkf-yIbIYB80jZwrLhMUgSmOgJVmJp80yVsjCama0LNDkBZciwTBNqlLFLitTbZQyidOmTNgj6FXTyj2BUArnhFZZ4lLL97RQqebGpuiAGJeS6QAGqwPLreczp281JvkyrlFpTnuT097kschxbwJ42_aYNVweV8i-Ih3IiSKjohycE72o6_zjl6N8KFhGMFjtBfDGC5VTHNpqX9KACyBWrY7kTkcSbdh2m1eqlnsfUuOUMoXRu4p5AC_bZupJeXGVmy5QRlCND1VTXykjGE_RsQfwuNHedvn07o6ID0eQHb1uBYh9vNtSnX5fspAjsBZMxgHsrixgbep_3NXd1kb-egRP_0X4GdxCKMspnz5mO9BDpXXPES7OzQvvB34BzvZghg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+classification+of+ncRNAs+using+structural+information&rft.jtitle=BMC+genomics&rft.au=Panwar%2C+Bharat&rft.au=Arora%2C+Amit&rft.au=Raghava%2C+Gajendra+PS&rft.date=2014-02-13&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2164&rft.volume=15&rft_id=info:doi/10.1186%2F1471-2164-15-127&rft.externalDocID=3220762791 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |