Workflows for microarray data processing in the Kepler environment

Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 13; no. 1; p. 102
Main Authors Stropp, Thomas, McPhillips, Timothy, Ludäscher, Bertram, Bieda, Mark
Format Journal Article
LanguageEnglish
Published London BioMed Central 17.05.2012
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-13-102

Cover

Abstract Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. Conclusions We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
AbstractList Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. Conclusions We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
Background: Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results: We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. Conclusions: We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services.BACKGROUNDMicroarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services.We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems.RESULTSWe developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems.We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.CONCLUSIONSWe provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
Abstract Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. Conclusions We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
Doc number: 102 Abstract Background: Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results: We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. Conclusions: We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
ArticleNumber 102
Audience Academic
Author Stropp, Thomas
Ludäscher, Bertram
McPhillips, Timothy
Bieda, Mark
AuthorAffiliation 2 Genome Center, University of California-Davis, Davis, CA, USA
1 Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
AuthorAffiliation_xml – name: 1 Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
– name: 2 Genome Center, University of California-Davis, Davis, CA, USA
Author_xml – sequence: 1
  givenname: Thomas
  surname: Stropp
  fullname: Stropp, Thomas
  organization: Department of Biochemistry and Molecular Biology, University of Calgary
– sequence: 2
  givenname: Timothy
  surname: McPhillips
  fullname: McPhillips, Timothy
  organization: Genome Center, University of California-Davis
– sequence: 3
  givenname: Bertram
  surname: Ludäscher
  fullname: Ludäscher, Bertram
  organization: Genome Center, University of California-Davis
– sequence: 4
  givenname: Mark
  surname: Bieda
  fullname: Bieda, Mark
  email: mbieda@ucalgary.ca
  organization: Department of Biochemistry and Molecular Biology, University of Calgary
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22594911$$D View this record in MEDLINE/PubMed
BookMark eNqNkstv1DAQxiNURB9w54QicaGHLZ74EeeCVCoeKyoh8RBHy5vYqZesvdhJ2_3vmbDLslvxUqTEmvy-L5Nv5jg78MGbLHsM5AxAiufASpgUQPgE6ARIcS872pYOds6H2XFKc0KglIQ_yA6LglesAjjKXn4J8avtwk3KbYj5wtUx6Bj1Km90r_NlDLVJyfk2dz7vr0z-ziw7E3Pjr10MfmF8_zC7b3WXzKPN8yT7_PrVp4u3k8v3b6YX55eTWgjRj_fa4DcpNlSVlYWyZBz7oNJq0NQ0ppEMCAPGZxYRTgQvG20or2eVqUp6kk3Xvk3Qc7WMbqHjSgXt1I9CiK3SsXd1Z1QhOAgpGZO1ZcJWcoZnq3XBG5hxAugFa6_BL_XqRnfd1hCIGrNVY3hqDE8BxWKBmhdrzXKYLUxT469H3e01sv_GuyvVhmtFGYWiIGjwbGMQw7fBpF4tXKpN12lvwpAUFJKTCvvm_0YJLYUAWVJEn95B52GIHicxUkKWwBj5RbUa83HeBmyxHk3VOaeMVbzkI3X2GwqvxuBm4O5Zh_U9wemeAJne3PatHlJS048f9tknu_ltg_u5jAiINYA7mFI0VtWu170LY5yu-9tkyB3hfwxzswAJUd-auJvaHzTfARmfCvU
CitedBy_id crossref_primary_10_1093_nar_gkv907
crossref_primary_10_1109_TVCG_2020_2990336
crossref_primary_10_1186_s12859_016_1241_0
crossref_primary_10_1016_j_datak_2013_08_008
crossref_primary_10_1093_bioinformatics_btz956
crossref_primary_10_1186_1471_2105_15_69
crossref_primary_10_1016_j_future_2017_05_041
crossref_primary_10_1093_nar_gkt328
crossref_primary_10_1186_s12859_016_1125_3
crossref_primary_10_1093_bib_bbt055
crossref_primary_10_1016_j_procs_2014_05_201
Cites_doi 10.1186/1471-2105-7-30
10.1186/gb-2010-11-8-r86
10.1093/bioinformatics/bti605
10.1186/1471-2105-7-335
10.1016/j.ecoinf.2009.08.008
10.1038/nature07385
10.1093/bioinformatics/btr499
10.1038/nature05874
10.1186/1471-2105-10-397
10.1101/gr.4887606
10.1186/1471-2105-11-237
10.2202/1544-6115.1027
10.1158/0008-5472.CAN-07-5590
10.1186/gb-2004-5-10-r80
10.1186/1471-2105-9-334
10.1186/1471-2105-11-317
10.1186/gb-2011-12-8-r83
10.1007/978-1-60327-429-6_24
10.1093/bioinformatics/btp709
10.1093/bioinformatics/bth361
10.1093/nar/gkl767
10.1016/j.future.2008.06.013
10.1093/nar/gkn303
10.1158/0008-5472.CAN-06-4180
10.1186/1471-2105-12-304
10.1093/bioinformatics/btp430
10.1101/gr.361602
ContentType Journal Article
Copyright Stropp et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2012 BioMed Central Ltd.
2012 Stropp et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Stropp et al.; licensee BioMed Central Ltd. 2012 Stropp et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Stropp et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: 2012 Stropp et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Stropp et al.; licensee BioMed Central Ltd. 2012 Stropp et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-13-102
DatabaseName SpringerLink - Revues - OpenAccess
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Engineering Research Database
MEDLINE - Academic

Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerLink Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 102
ExternalDocumentID oai_doaj_org_article_2651688448cf46f98b844faa25d1b501
10.1186/1471-2105-13-102
PMC3431220
2747865621
A534495750
22594911
10_1186_1471_2105_13_102
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
ADTOC
C1A
H13
UNPAY
ID FETCH-LOGICAL-c666t-c66ce9113210979f1774525938fa1a3eded84104145bf10950657dae35cb9e973
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:50:56 EDT 2025
Sun Oct 26 03:57:19 EDT 2025
Tue Sep 30 16:56:49 EDT 2025
Mon Oct 06 18:09:37 EDT 2025
Thu Sep 04 18:12:56 EDT 2025
Mon Oct 06 18:36:35 EDT 2025
Mon Oct 20 21:53:10 EDT 2025
Mon Oct 20 16:49:52 EDT 2025
Thu Oct 16 14:46:57 EDT 2025
Mon Jul 21 05:38:42 EDT 2025
Wed Oct 01 04:15:21 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Sat Sep 06 07:27:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Shell Script
UCSC Browser
External Program
Kepler System
Bioinformatics Pipeline
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c666t-c66ce9113210979f1774525938fa1a3eded84104145bf10950657dae35cb9e973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-13-102
PMID 22594911
PQID 1036871440
PQPubID 44065
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_2651688448cf46f98b844faa25d1b501
unpaywall_primary_10_1186_1471_2105_13_102
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3431220
proquest_miscellaneous_1285096885
proquest_miscellaneous_1037661873
proquest_journals_1036871440
gale_infotracmisc_A534495750
gale_infotracacademiconefile_A534495750
gale_incontextgauss_ISR_A534495750
pubmed_primary_22594911
crossref_citationtrail_10_1186_1471_2105_13_102
crossref_primary_10_1186_1471_2105_13_102
springer_journals_10_1186_1471_2105_13_102
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-17
PublicationDateYYYYMMDD 2012-05-17
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-17
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2012
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References G Smyth (5305_CR28) 2004; 3
A Kamburov (5305_CR39) 2011; 27
V Curcin (5305_CR12) 2008; 2008
CL Wilson (5305_CR30) 2005; 21
J Tárraga (5305_CR10) 2008; 36
T Liu (5305_CR8) 2011; 12
X-Q Xia (5305_CR4) 2009; 25
P McConnell (5305_CR18) 2010
5305_CR19
T McPhillips (5305_CR13) 2009; 25
D Barseghian (5305_CR21) 2010; 5
JE Stajich (5305_CR6) 2002; 12
B Ludäscher (5305_CR24) 2005; 18
5305_CR31
ID Dinov (5305_CR15) 2011; 12
P Li (5305_CR20) 2008; 9
F Hahne (5305_CR34) 2008
R Gentleman (5305_CR7) 2004; 5
M Halling-Brown (5305_CR5) 2008; 453
O Spjuth (5305_CR16) 2009; 10
V Martín-Requena (5305_CR17) 2010; 26
LJ Zhu (5305_CR27) 2010; 11
M Pelizzola (5305_CR9) 2006; 7
T Oinn (5305_CR14) 2004; 20
D Beier (5305_CR32) 2007; 67
J Goecks (5305_CR11) 2010; 11
C Gibas (5305_CR23) 2001
M Bieda (5305_CR26) 2006; 16
D Karolchik (5305_CR37) 2011; 18
W Cui (5305_CR36) 2007; 35
AL Hartman (5305_CR22) 2010; 11
5305_CR29
S Dudoit (5305_CR33) 2003
5305_CR3
5305_CR25
M Yi (5305_CR38) 2006; 7
5305_CR40
E Birney (5305_CR2) 2007; 447
LG Acevedo (5305_CR35) 2008; 68
5305_CR1
21791102 - BMC Bioinformatics. 2011;12:304
19602526 - Bioinformatics. 2009 Sep 15;25(18):2425-9
17483311 - Cancer Res. 2007 May 1;67(9):4010-5
18413731 - Cancer Res. 2008 Apr 15;68(8):2641-51
21859476 - Genome Biol. 2011;12(8):R83
16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
15201187 - Bioinformatics. 2004 Nov 22;20(17):3045-54
16606705 - Genome Res. 2006 May;16(5):595-605
17068075 - Nucleic Acids Res. 2007 Jan;35(Database issue):D805-9
12368254 - Genome Res. 2002 Oct;12(10):1611-8
18687127 - BMC Bioinformatics. 2008;9:334
21975940 - Curr Protoc Hum Genet. 2011 Oct;Chapter 18:Unit18.6
20738864 - Genome Biol. 2010;11(8):R86
19958528 - BMC Bioinformatics. 2009;10:397
18712319 - Methods Mol Biol. 2008;453:451-70
18772890 - Nature. 2008 Oct 23;455(7216):1061-8
12664684 - Biotechniques. 2003 Mar;Suppl:45-51
15461798 - Genome Biol. 2004;5(10):R80
16076888 - Bioinformatics. 2005 Sep 15;21(18):3683-5
20540779 - BMC Bioinformatics. 2010;11:317
18508806 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W308-14
17571346 - Nature. 2007 Jun 14;447(7146):799-816
16423281 - BMC Bioinformatics. 2006;7:30
20459804 - BMC Bioinformatics. 2010;11:237
21893519 - Bioinformatics. 2011 Oct 15;27(20):2917-8
16824223 - BMC Bioinformatics. 2006;7:335
20047879 - Bioinformatics. 2010 Feb 15;26(4):553-9
References_xml – volume: 7
  start-page: 30
  year: 2006
  ident: 5305_CR38
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-7-30
– volume: 11
  start-page: R86
  year: 2010
  ident: 5305_CR11
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-8-r86
– ident: 5305_CR25
– volume: 21
  start-page: 3683
  year: 2005
  ident: 5305_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti605
– ident: 5305_CR29
– volume: 7
  start-page: 335
  year: 2006
  ident: 5305_CR9
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-7-335
– volume: 18
  start-page: 2006
  year: 2005
  ident: 5305_CR24
  publication-title: Concurr Comput: Pract Exper
– volume: 5
  start-page: 42
  year: 2010
  ident: 5305_CR21
  publication-title: Ecological Informatics
  doi: 10.1016/j.ecoinf.2009.08.008
– volume-title: Methods of Microarray Data Analysis V
  year: 2010
  ident: 5305_CR18
– ident: 5305_CR3
  doi: 10.1038/nature07385
– volume: 2008
  start-page: 1
  year: 2008
  ident: 5305_CR12
  publication-title: IEEE
– volume: 27
  start-page: 2917
  year: 2011
  ident: 5305_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr499
– ident: 5305_CR31
– volume-title: Cancer Res
  year: 2008
  ident: 5305_CR34
– volume: 447
  start-page: 799
  year: 2007
  ident: 5305_CR2
  publication-title: Nature
  doi: 10.1038/nature05874
– volume: 10
  start-page: 397
  year: 2009
  ident: 5305_CR16
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-10-397
– volume: 16
  start-page: 595
  year: 2006
  ident: 5305_CR26
  publication-title: Genome Res
  doi: 10.1101/gr.4887606
– volume: 11
  start-page: 237
  year: 2010
  ident: 5305_CR27
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-11-237
– volume: 3
  start-page: 3
  year: 2004
  ident: 5305_CR28
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1027
– volume: 68
  start-page: 2641
  year: 2008
  ident: 5305_CR35
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-5590
– volume: 18
  start-page: 18.6
  year: 2011
  ident: 5305_CR37
  publication-title: Curr Protoc Hum Genet
– volume: 5
  start-page: R80
  year: 2004
  ident: 5305_CR7
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-10-r80
– volume: 9
  start-page: 334
  year: 2008
  ident: 5305_CR20
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-9-334
– start-page: 45
  volume-title: BioTechniques
  year: 2003
  ident: 5305_CR33
– volume: 11
  start-page: 317
  year: 2010
  ident: 5305_CR22
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-11-317
– volume: 12
  start-page: R83
  year: 2011
  ident: 5305_CR8
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-8-r83
– volume: 453
  start-page: 451
  year: 2008
  ident: 5305_CR5
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60327-429-6_24
– ident: 5305_CR1
– volume: 26
  start-page: 553
  year: 2010
  ident: 5305_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp709
– volume: 20
  start-page: 3045
  year: 2004
  ident: 5305_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth361
– volume: 35
  start-page: D805
  year: 2007
  ident: 5305_CR36
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl767
– ident: 5305_CR40
– volume: 25
  start-page: 541
  year: 2009
  ident: 5305_CR13
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2008.06.013
– ident: 5305_CR19
– volume: 36
  start-page: W308
  year: 2008
  ident: 5305_CR10
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn303
– volume: 67
  start-page: 4010
  year: 2007
  ident: 5305_CR32
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-4180
– volume-title: Developing Bioinformatics Computer Skills
  year: 2001
  ident: 5305_CR23
– volume: 12
  start-page: 304
  year: 2011
  ident: 5305_CR15
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-12-304
– volume: 25
  start-page: 2425
  year: 2009
  ident: 5305_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp430
– volume: 12
  start-page: 1611
  year: 2002
  ident: 5305_CR6
  publication-title: Genome Res
  doi: 10.1101/gr.361602
– reference: 18508806 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W308-14
– reference: 15461798 - Genome Biol. 2004;5(10):R80
– reference: 16423281 - BMC Bioinformatics. 2006;7:30
– reference: 20459804 - BMC Bioinformatics. 2010;11:237
– reference: 16824223 - BMC Bioinformatics. 2006;7:335
– reference: 18772890 - Nature. 2008 Oct 23;455(7216):1061-8
– reference: 19958528 - BMC Bioinformatics. 2009;10:397
– reference: 21975940 - Curr Protoc Hum Genet. 2011 Oct;Chapter 18:Unit18.6
– reference: 21859476 - Genome Biol. 2011;12(8):R83
– reference: 17483311 - Cancer Res. 2007 May 1;67(9):4010-5
– reference: 17068075 - Nucleic Acids Res. 2007 Jan;35(Database issue):D805-9
– reference: 21791102 - BMC Bioinformatics. 2011;12:304
– reference: 12368254 - Genome Res. 2002 Oct;12(10):1611-8
– reference: 18712319 - Methods Mol Biol. 2008;453:451-70
– reference: 18687127 - BMC Bioinformatics. 2008;9:334
– reference: 12664684 - Biotechniques. 2003 Mar;Suppl:45-51
– reference: 20047879 - Bioinformatics. 2010 Feb 15;26(4):553-9
– reference: 21893519 - Bioinformatics. 2011 Oct 15;27(20):2917-8
– reference: 15201187 - Bioinformatics. 2004 Nov 22;20(17):3045-54
– reference: 17571346 - Nature. 2007 Jun 14;447(7146):799-816
– reference: 16076888 - Bioinformatics. 2005 Sep 15;21(18):3683-5
– reference: 16606705 - Genome Res. 2006 May;16(5):595-605
– reference: 20540779 - BMC Bioinformatics. 2010;11:317
– reference: 18413731 - Cancer Res. 2008 Apr 15;68(8):2641-51
– reference: 19602526 - Bioinformatics. 2009 Sep 15;25(18):2425-9
– reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
– reference: 20738864 - Genome Biol. 2010;11(8):R86
SSID ssj0017805
Score 2.0975218
Snippet Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several...
Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each...
Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several...
Doc number: 102 Abstract Background: Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the...
Background: Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several...
Abstract Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102
SubjectTerms Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Chromatin Immunoprecipitation
Computational biology
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer Graphics
Data processing
Design and construction
DNA microarrays
Electronic data processing
Gene expression
Information management
Life Sciences
Methods
Microarrays
Oligonucleotide Array Sequence Analysis - methods
Pipelines
Software
Transcriptome analysis
User-Computer Interface
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SEPVBvLu1ShRBLCynue1mH1uxVEUf1ELfQpJNamHdczgXyvn3ndkbu4rtiy-HJZnlZGdmk_k2k28IeasELwUPIrVaOAAo2qUOQFgaWC6sVCrmTZnOr9-yk1P5-UydjUp9YU5YSw_cKm7GM8UyrQFF-CizWGgH19FarkrmVHty60AXPZjq9g-Qqb85V5SzFECN6jcodTYb2lKGWVl8siA1vP1_z86j5enP1Mlh__QeubOpF3Z7aatqtEQdPyD3u9iSHrbP9JDcCvUjcrutNrl9TI7ww3is5pcrCpEq_Y2peHa5tFuKaaJ00R4ZgH-hFzWFuJB-CYsqLOnoLNwTcnr88eeHk7QroZB6wCVr_PWhwGryuNNcRAbRngLEI3S0zIpQhlJLQGRMKhdBREFEkpc2COVdEYpcPCU79bwOzwkNPCokoy-t81KH6JS31iKkjIEdOJmQWa9H4zt-cSxzUZkGZ-jMoOYNat4wAY08Ie-HOxYtt8Y1skdomkEOWbGbBvAV0_mKuclXEvIGDWuQ96LGxJpzu1mtzKcf382hEhKwIsRPCXnXCcU5jN_b7pwCaAGpsiaSexNJeDH9tLv3H9NNDCt4FJEBRpUSul8P3XgnJrvVYb5pZHIIm3QurpHhGol7tFYJeda65KAbmKILCUZPSD5x1onypj31xa-GWlxAPMk5jG2_d-vx0P9lmv3B8W-04-7_sOMLchfiVo5JHCzfIzvr5Sa8hNhw7V4108AVtIVWhQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEB_OPUR9EL-tnlJFEA_KbZKmTR9EbuWOU3GR04N7C0mbnAdru-4Hx_73znTbulVcX0pppjRMJpPfNJPfALySgheCOxEZJSwGKMpGFoOwyLFUmFhKn9ZlOj-Pk5Oz-OO5PN-BcXsWhtIqW59YO-qiyukfOc5ukSC4j-Phu-nPiKpG0e5qW0LDNKUVirc1xdg12OXEjDWA3dHR-Mtpt69ADP7tZqVKDhi65gjlZMQoQ4v3Fqeaw_9vT72xVP2ZRtntpd6CG8tyalZXZjLZWK6O78DtBmeGh2vDuAs7rrwH19eVJ1f3YUQ_yf2kupqHiFrDH5SWZ2YzswopZTScro8P4FfCyzJEjBh-ctOJm4Ub5-IewNnx0bf3J1FTTiHKMUZZ0DV3GVWWp13nzDNEfhKjH6G8YUa4whUqxuiMxdJ6FJGITtLCOCFzm7ksFQ9hUFalewyh414SMX1hbB4r563MjTEUXnrHhjYO4KDVo84brnEqeTHRdcyhEk2a16R5zQQ-5AG86d6Yrnk2tsiOaGg6OWLIrh9UswvdTDjNE8kSpTD6zH2c-ExZvPfGcFkwK4csgJc0sJo4MEpKsrkwy_lcf_h6qg-liDFuRCwVwOtGyFfY_9w0ZxZQC0Sb1ZPc60niJM37za396MZJzPVvkw7gRddMb1LiW-mqZS2TIoRSqdgiwxWR-CglA3i0NslON-iusxgHPYC0Z6w95fVbysvvNc24QGzJOfZtvzXrza7_a2j2O8P_7zg-2a6Up3AT0SmnVA2W7sFgMVu6Z4gAF_Z5M61_Ab02U5k
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink - Revues - OpenAccess
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEBYlpbR5KL3rHEUthdKASXTZ8mMSEtKW9qFtIG9CkqU04HqXPQj77zNje43dI6Uvi7FGa3lmJM3nGc0Q8lYJXgoeRGq1cABQtEsdgLA0sFxYqVTMmzKdn79kZ-fy44W66L534FmYof-e6WyfweKZAixRKcMYKlhs78IWlTVu2ey49xdgZv61E_IPvUabTpOb__cVeLAF_Roe2ftIN8n9ZT21q2tbVYNt6PQRedjZj_SwFfhjcifUT8i9tqLk6ik5wo_fsZpczylYo_QnhtvZ2cyuKIaC0ml7LACeQq9qCrYf_RSmVZjRwXm3Z-T89OT78VnalUlIPWCPBf76UGDFePQmF5GBRacA1QgdLbMilKHUElAXk8pFIFFgdeSlDUJ5V4QiF8_JRj2pw0tCA48KE86X1nmpQ3TKW2sRNsbADpxMyP6aj8Z3OcSxlEVlGiyhM4OcN8h5wwTc5Al53_eYtvkzbqE9QtH0dJj5urkBCmG6iWR4plimNaBKH2UWC-3gOlrLVcmcOmAJeYOCNZjbosbgmUu7nM_Nh29fzaESEvAg2EgJedcRxQmM39vuLAJwAdNhjSh3RpQw-fy4ea0_ppv8c3gVkQEOlRKaX_fN2BMD2uowWTY0OZhGOhe30HCNyXm0Vgl50apkzxtYhgsJQk9IPlLWEfPGLfXVjyZ9uACbkXMY295arYdD_5to9nrF_6cct_7nn7fJA7BBOQZksHyHbCxmy7ALdt7CvWqm-A35dUSN
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTgh44PsjMFBASIhJaec4TpzHDjENENMEVBpPke3YoyJLQtpqKn89d_lSM2AIiZeois-Kffad7-q73xHygjM_Zb5hnhRMgYMilKfACfMMjZgMOLdRXabzw1F4OAvenfCTLXLc5cKoM63mRQsaikDF48009KzJcsAqCqaalKlthF6EEwpK1gP3hXsUY61AKW-HHKzzEdmeHR1Pv9RJRi1Jd1v5m26D06kG8f9VVW-cVRfjKPvL1Ovk6iov5fpcZtnGeXVwk3zvZtqEqXwbr5ZqrH9cAIH8n6y4RW60xq07bXbjbbJl8jvkSlPucn2X7OM_8zYrzhcufM09w1hAWVVy7WKcqls2OQswM3eeu2CYuu9NmZnK3UjGu0dmB28-vz702hoOngbHaIlPbWIsZ49X3bGlYG5ycLmYsJJKZlKTigBcQhpwZYGEg0kUpdIwrlVs4ojdJ6O8yM1D4hrfckTDT6XSgTBWcS2lRJ_WGrqnAodMurVLdAtwjnU2sqR2dESYIGcS5ExCGbz0HfKq71E24B6X0O7jdujpEJa7flFUp0kr5YkfchoKAS6vtkFoY6Hgt5XS5ylVfI865DlupgSBN3KM7DmVq8UiefvpYzLlLABnFQw4h7xsiWwB49eyTZQALiBW14ByZ0AJmkEPm7s9m7SaaQFTYSE4yUEAzc_6ZuyJ0Xa5KVY1TQR2m4jYJTS-QOQgIbhDHjRi0PMGzog4gEV3SDQQkAHzhi35_GuNbc7AoPV9GNtuJ0qbQ__T0uz2wvbXdXz0L8SPyTUwkH2MFqHRDhktq5V5AkboUj1t9cpPqOp8Uw
  priority: 102
  providerName: Unpaywall
Title Workflows for microarray data processing in the Kepler environment
URI https://link.springer.com/article/10.1186/1471-2105-13-102
https://www.ncbi.nlm.nih.gov/pubmed/22594911
https://www.proquest.com/docview/1036871440
https://www.proquest.com/docview/1037661873
https://www.proquest.com/docview/1285096885
https://pubmed.ncbi.nlm.nih.gov/PMC3431220
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-13-102
https://doaj.org/article/2651688448cf46f98b844faa25d1b501
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgEwIeEN8LjCogJMSksDm2E-cBobZaGUWrpo1K3VNkJ_Y2KaQlbTX633OXplkDY4iXJLIvqXt3tu9nn-8IeSuYnzLfME9JpgGgSO1pAGGeoSFTXAgblmk6DwfBwZD3R2J0dTy6YuD0WmiH-aSGRfbh54_FJ-jwH8sOL4NdCgOsB9BFeBT9rGBA3oR5KsJEDof8ak8Bo_eXZ40q6tWm5TVfaExSZSz_P0fstSnrd3fKek_1Prk7zydqcamybG3a6j0kDyp7020vFeQRuWXyx-TOMgPl4gnp4GK5zcaXUxesV_c7uuepolALF11H3cnyGAH8inuRu2Arul_NJDOFu3Y-7ikZ9va_dQ-8Kq2ClwBWmeE1MRFmmMfd58hSsAAFoCAmraKKmdSkkgNKo1xoCyQCrJQwVYaJREcmCtkzspGPc7NFXONbgQHqU6UTLo3VIlFKIcy0hu5p7pDdFR_jpIo5jqkvsrjEHjKIkfMxcj6mDAp9h7yv35gs423cQNtB0dR0GCm7LBgXZ3HV8WI_EDSQElBoYnlgI6nh2Srli5RqsUcd8gYFG2MsjBydbc7UfDqNv5wcx23BOOBHsKkc8q4ismNof6KqswvABQyf1aDcblBCZ02a1Sv9iVe6Dn-FBYBbOYfq13U1vokOcLkZz0uaEEwpGbIbaHyJwXykFA55vlTJmjcwbEcchO6QsKGsDeY1a_KL8zLcOAMb0_ehbTsrtV5v-t9Es1Mr_j_l-OI_ZP6S3AOT1cdVfRpuk41ZMTevwCyc6Ra5HY5CuMre5xbZbLf7J324d_YHR8dQ2g26rXLBpVWOClAzHBy1T38BhVhc8w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlQ4IN4YChgEQlSymn3Z6wNCLVAl9HGAVsptWdu7pVKwQx6K8qf4jcz4RQwinHqJLO84Xs3MznzjnZ0h5KXkLOPM8sAonkCAopIggSAssDTiRkjporJN5_FJ2D8Tn4ZyuEF-NmdhMK2ysYmloc6KFL-Rw-rmIYB7IXrvxj8C7BqFu6tNC41KLQ7tcgEh2_Tt4API9xVjBx9P3_eDuqtAkAJUn-FvamNssI6br7GjAIAkBAFcOUMNt5nNlIAghQqZOCCR4KSjzFgu0yS2ccThf6-Qq4KDLYH1Ew3bAI9if4BmK1SFuxQMfwBvkQHF_C_WcX1lh4C__cCKI_wzSbPdqb1Btub52CwXZjRacYYHt8jNGsX6e5Xa3SYbNr9DrlV9LZd3yT5-gnejYjH1ARP73zHpz0wmZuljQqo_rg4nwFv8i9wHBOof2vHITvyVU3f3yNmlsPU-2cyL3D4kvmVOYtn7zCSpUNYlMjXGYPDqLO0lwiO7DR91Wlcyx4YaI11GNCrUyHmNnNeUw03mkTftE-Oqisca2n0UTUuH9bfLG8XkXNfLWbNQ0lApiG1TJ0IXqwSunTFMZjSRPeqRFyhYjRU2ckzhOTfz6VQPvnzWe5ILiEoBqXnkdU3kCph_auoTEcAFLMrVodzuUIIJSLvDjf7o2gRN9e8F45Hn7TA-iWl1uS3mJU0EAE1FfA0NU1giSCnpkQeVSra8AWcQCxC6R6KOsnaY1x3JL76VRcw5IFfGYG47jVqvTv1fotlpFf-_cny0ninPyFb_9PhIHw1ODh-T64CDGSaF0GibbM4mc_sEsOYseVoucJ98vWyL8gu9aIfy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZQEdcD4iZQICAkRKVo69hOnMd2YdVSqBBQqW-WndilUkiiZFfV_ntmcmnDUcRLtIrHiXc8tueLx98Q8lqwMGOhZYGWzABAkSYwAMICS2OmuRAubtN0fjqODk74h1Nx2n9wa4Zo92FLsjvTgCxNxXJWZa4b4jKaUZhSAwArIqAYWQVT8FV4DcUMBvNoPu4iIF__sDX5h1qTpahl7P99Xt5YmH4Nmhx3Tm-RG6ui0usLnecbi9PiDrnde5X-XmcGd8kVW9wj17o8k-v7ZB8_ibu8vGh88FH9HxiEp-tar30MEPWr7rAAvMU_L3zwCP0jW-W29jdOwT0gJ4v33-YHQZ88IUgBkSzxmtoE88jjHnPiKPh5ArAOk05TzWxmM8kBi1EujAMRAb5InGnLRGoSm8TsIdkqysI-Jr4NnUAa-kyblEvrjEi11ggmnaW7hntkNuhRpT2zOCa4yFWLMGSkUPMKNa8og5uhR96ONaqOVeMS2X3smlEO-bDbG2V9pvrhpcJI0EhKwJqp45FLpIHfTutQZNSIXeqRV9ixChkvCgypOdOrplGHX7-oPcE4oETwnDzyphdyJbQ_1f0JBdACkmRNJLcnkjAk02nxYD-qnxIa-CssAnTKORS_HIuxJoa5FbZctTIxOEwyZpfIhBIpe6QUHnnUmeSoG5icEw6d7pF4YqwT5U1LivPvLak4A08yDKFtO4NZbzb9b12zMxr-P_vxyf88-QW5_vndQn08PD56Sm6CkxpixAaNt8nWsl7ZZ-AILs3zdrT_BEbHT8M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTgh44PsjMFBASIhJaec4TpzHDjENENMEVBpPke3YoyJLQtpqKn89d_lSM2AIiZeois-Kffad7-q73xHygjM_Zb5hnhRMgYMilKfACfMMjZgMOLdRXabzw1F4OAvenfCTLXLc5cKoM63mRQsaikDF48009KzJcsAqCqaalKlthF6EEwpK1gP3hXsUY61AKW-HHKzzEdmeHR1Pv9RJRi1Jd1v5m26D06kG8f9VVW-cVRfjKPvL1Ovk6iov5fpcZtnGeXVwk3zvZtqEqXwbr5ZqrH9cAIH8n6y4RW60xq07bXbjbbJl8jvkSlPucn2X7OM_8zYrzhcufM09w1hAWVVy7WKcqls2OQswM3eeu2CYuu9NmZnK3UjGu0dmB28-vz702hoOngbHaIlPbWIsZ49X3bGlYG5ycLmYsJJKZlKTigBcQhpwZYGEg0kUpdIwrlVs4ojdJ6O8yM1D4hrfckTDT6XSgTBWcS2lRJ_WGrqnAodMurVLdAtwjnU2sqR2dESYIGcS5ExCGbz0HfKq71E24B6X0O7jdujpEJa7flFUp0kr5YkfchoKAS6vtkFoY6Hgt5XS5ylVfI865DlupgSBN3KM7DmVq8UiefvpYzLlLABnFQw4h7xsiWwB49eyTZQALiBW14ByZ0AJmkEPm7s9m7SaaQFTYSE4yUEAzc_6ZuyJ0Xa5KVY1TQR2m4jYJTS-QOQgIbhDHjRi0PMGzog4gEV3SDQQkAHzhi35_GuNbc7AoPV9GNtuJ0qbQ__T0uz2wvbXdXz0L8SPyTUwkH2MFqHRDhktq5V5AkboUj1t9cpPqOp8Uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Workflows+for+microarray+data+processing+in+the+Kepler+environment&rft.jtitle=BMC+bioinformatics&rft.au=Stropp%2C+Thomas&rft.au=McPhillips%2C+Timothy&rft.au=Lud%C3%A4scher%2C+Bertram&rft.au=Bieda%2C+Mark&rft.date=2012-05-17&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1186%2F1471-2105-13-102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_1471_2105_13_102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon