Expression in Aneuploid Drosophila S2 Cells

Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 8; no. 2; p. e1000320
Main Authors Zhang, Yu, Malone, John H., Powell, Sara K., Periwal, Vipul, Spana, Eric, MacAlpine, David M., Oliver, Brian
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.1000320

Cover

More Information
Summary:Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: YZ SKP ES DMM BO. Performed the experiments: YZ SKP. Analyzed the data: YZ JHM SKP VP DMM BO. Contributed reagents/materials/analysis tools: JHM ES. Wrote the paper: YZ BO.
ISSN:1545-7885
1544-9173
1545-7885
DOI:10.1371/journal.pbio.1000320