Expression in Aneuploid Drosophila S2 Cells
Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA...
Saved in:
Published in | PLoS biology Vol. 8; no. 2; p. e1000320 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.02.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.1000320 |
Cover
Abstract | Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components. |
---|---|
AbstractList |
Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype (~ two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components. Analysis of the relationship between gene copy number and gene expression in aneuploid male Drosophila cells reveals a global compensation mechanism in addition to X chromosome-specific dosage compensation. Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype (∼ two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system “anticipates” the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal–independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components. While it is widely recognized that mutations in protein coding genes can have harmful consequences, one can also have too much or too little of a good thing. Except for the sex chromosomes, genes come in sets of two in diploid organisms. Extra or missing copies of genes or chromosomes result in an imbalance that can lead to cancers, miscarriages, and disease susceptibility. We have examined what happens to gene expression in Drosophila cells with the types of gross copy number changes that are typical of cancers. We have compared the response of autosomes and sex chromosomes and show that there is some compensation for copy number change in both cases. One response is universal and acts to correct copy number changes by changing transcript abundance. The other is specific to the X chromosome and acts to increase expression regardless of gene dose. Our data highlight how important gene expression balance is for cell function. Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components. Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype (~ two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components. Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components. |
Audience | Academic |
Author | Zhang, Yu Malone, John H. Oliver, Brian MacAlpine, David M. Powell, Sara K. Periwal, Vipul Spana, Eric |
AuthorAffiliation | 2 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America Adolf Butenandt Institute, Germany 4 Department of Biology, Duke University, Durham, North Carolina, United States of America 3 Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America 1 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America |
AuthorAffiliation_xml | – name: 3 Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America – name: 4 Department of Biology, Duke University, Durham, North Carolina, United States of America – name: Adolf Butenandt Institute, Germany – name: 2 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America – name: 1 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America |
Author_xml | – sequence: 1 givenname: Yu surname: Zhang fullname: Zhang, Yu – sequence: 2 givenname: John H. surname: Malone fullname: Malone, John H. – sequence: 3 givenname: Sara K. surname: Powell fullname: Powell, Sara K. – sequence: 4 givenname: Vipul surname: Periwal fullname: Periwal, Vipul – sequence: 5 givenname: Eric surname: Spana fullname: Spana, Eric – sequence: 6 givenname: David M. surname: MacAlpine fullname: MacAlpine, David M. – sequence: 7 givenname: Brian surname: Oliver fullname: Oliver, Brian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20186269$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl2L1DAYhYusuB_6D0QLXojIjEmaTy-EYVx1YHHBVW9DmqSzGTpJN2ll_fdmnI5sRUTJRULynJM3b85pceSDt0XxGII5rBh8tQlD9Kqdd7ULcwgAqBC4V5xAgsmMcU6O7qyPi9OUNgAgJBB_UBwjADlFVJwUL89vu2hTcsGXzpcLb4euDc6Ub2NIobt2rSqvULm0bZseFvcb1Sb7aJzPii_vzj8vP8wuLt-vlouLmaaU9jOutKBCU1UzSBnCotZIcFIThWqrsAaEqxoTA7VFjcHEam5UxYEGTJha2-qseLr3zZUkOb4zSYgEFBBDBjOx2hMmqI3sotuq-F0G5eTPjRDXUsXe6dZKBhFjFBlaG4pzVdwyYxkQtKkoQoRkrzfjbUO9tUZb30fVTkynJ95dy3X4JhFHtGI0GzwfDWK4GWzq5dYlnRumvA1DkqyqKCcE7q56tifXKlfmfBOyod7RcoGg4EJgjDM1_wOVh7Fbp3MIGpf3J4IXE0Fmenvbr9WQklxdffoP9uO_s5dfp-yTu1381b5D0jLweg_oHKwUbSO161Wfc5df51oJgdzF-vDdchdrOcY6i_Fv4oP_X2U_AHTH-hk |
CitedBy_id | crossref_primary_10_1101_gr_199323_115 crossref_primary_10_1186_gb_2012_13_4_r28 crossref_primary_10_3389_fgene_2022_734208 crossref_primary_10_1038_s41580_021_00436_9 crossref_primary_10_1146_annurev_genet_110711_155454 crossref_primary_10_1534_g3_115_017632 crossref_primary_10_3390_genes9050242 crossref_primary_10_1038_nsmb_2763 crossref_primary_10_3390_ijms22020786 crossref_primary_10_1038_s41467_019_13350_8 crossref_primary_10_1038_ng_948 crossref_primary_10_1371_journal_pone_0020455 crossref_primary_10_3389_fgene_2020_00101 crossref_primary_10_1093_nar_gkac794 crossref_primary_10_1083_jcb_201502016 crossref_primary_10_1074_mcp_M114_040667 crossref_primary_10_1093_molbev_mst239 crossref_primary_10_1093_g3journal_jkab403 crossref_primary_10_1371_journal_pgen_1004159 crossref_primary_10_1016_j_molcel_2015_08_024 crossref_primary_10_1038_nrg3687 crossref_primary_10_1038_srep12510 crossref_primary_10_1093_genetics_iyad052 crossref_primary_10_1080_19336934_2015_1074786 crossref_primary_10_1101_gr_112961_110 crossref_primary_10_1038_s41467_017_01962_x crossref_primary_10_1038_s41467_019_13174_6 crossref_primary_10_1016_j_devcel_2019_04_036 crossref_primary_10_1016_j_devcel_2018_02_002 crossref_primary_10_1371_journal_pgen_1002646 crossref_primary_10_1083_jcb_201711175 crossref_primary_10_1016_j_gde_2011_01_012 crossref_primary_10_1091_mbc_E18_07_0445 crossref_primary_10_1186_gb_2014_15_8_r70 crossref_primary_10_4161_trns_26185 crossref_primary_10_1371_journal_pgen_1006295 crossref_primary_10_1093_nar_gks245 crossref_primary_10_1073_pnas_1009781108 crossref_primary_10_1016_j_celrep_2013_09_037 crossref_primary_10_1093_gbe_evr036 crossref_primary_10_1093_molbev_msv227 crossref_primary_10_1371_journal_pgen_1007932 crossref_primary_10_1534_g3_116_035444 crossref_primary_10_1083_jcb_201404097 crossref_primary_10_3389_fpls_2015_00763 crossref_primary_10_1128_MCB_06622_11 crossref_primary_10_1371_journal_pbio_1002499 crossref_primary_10_1101_gr_121095_111 crossref_primary_10_1534_g3_112_002840 crossref_primary_10_1186_1471_2199_11_80 crossref_primary_10_1016_j_tibs_2015_03_011 crossref_primary_10_1093_hmg_ddu572 crossref_primary_10_1007_s00412_011_0319_8 crossref_primary_10_1007_s00412_015_0509_x crossref_primary_10_1016_j_devcel_2013_01_028 crossref_primary_10_1016_j_semcdb_2013_02_004 crossref_primary_10_1093_gbe_evs077 crossref_primary_10_1242_dev_201896 crossref_primary_10_1186_s13072_018_0232_y crossref_primary_10_1101_gr_160010_113 crossref_primary_10_1111_febs_13591 crossref_primary_10_1093_nar_gkac109 crossref_primary_10_1242_dmm_013391 crossref_primary_10_1242_dev_109850 crossref_primary_10_1371_journal_pbio_1001711 crossref_primary_10_1093_gbe_evv054 crossref_primary_10_1101_gr_122614_111 crossref_primary_10_1371_journal_pone_0106800 crossref_primary_10_1371_journal_pgen_1004240 crossref_primary_10_1371_journal_pgen_1008443 crossref_primary_10_1002_wdev_339 crossref_primary_10_1371_journal_pcbi_1011389 crossref_primary_10_1016_j_ibmb_2015_01_014 crossref_primary_10_1038_nmeth_1985 crossref_primary_10_1186_1471_2164_13_97 crossref_primary_10_1016_j_devcel_2023_12_009 crossref_primary_10_1371_journal_pbio_1000590 crossref_primary_10_1186_s12864_015_2353_z crossref_primary_10_1146_annurev_cellbio_101011_155807 crossref_primary_10_1038_srep04412 crossref_primary_10_1093_nar_gkr949 crossref_primary_10_1016_j_bbamcr_2013_11_017 crossref_primary_10_1038_s41467_024_55711_y crossref_primary_10_1038_nprot_2013_052 crossref_primary_10_1038_cr_2015_114 crossref_primary_10_1093_biomethods_bpae059 crossref_primary_10_1083_jcb_201207183 crossref_primary_10_2217_epi_2019_0135 crossref_primary_10_3389_fpls_2016_01432 crossref_primary_10_1371_journal_pgen_1010110 crossref_primary_10_1016_j_semcdb_2014_03_014 crossref_primary_10_1093_nar_gkac208 crossref_primary_10_1371_journal_pone_0178590 crossref_primary_10_1007_s00412_011_0344_7 crossref_primary_10_1038_nature09757 crossref_primary_10_1371_journal_pgen_1004865 crossref_primary_10_1038_cr_2013_135 crossref_primary_10_1038_nrg3124 crossref_primary_10_1101_gr_114348_110 crossref_primary_10_1093_nar_gkr236 crossref_primary_10_1126_sciadv_abh4390 crossref_primary_10_1093_molbev_msv147 crossref_primary_10_1038_s41556_018_0243_8 crossref_primary_10_1186_1756_8935_6_35 crossref_primary_10_1186_2042_6410_5_5 crossref_primary_10_1073_pnas_1305638110 crossref_primary_10_1534_g3_113_006866 crossref_primary_10_1371_journal_pbio_1001126 crossref_primary_10_1186_1471_2164_12_91 crossref_primary_10_1371_journal_pone_0027942 crossref_primary_10_1534_genetics_117_300581 crossref_primary_10_7554_eLife_05462 crossref_primary_10_1534_g3_117_300400 crossref_primary_10_1371_journal_pbio_1000318 crossref_primary_10_1093_gbe_evp054 crossref_primary_10_1093_nar_gkx106 crossref_primary_10_1101_gr_239913_118 crossref_primary_10_1093_g3journal_jkac151 crossref_primary_10_3389_fpls_2018_00377 crossref_primary_10_1371_journal_pgen_1007842 crossref_primary_10_1016_j_semcdb_2016_04_013 crossref_primary_10_1159_000445924 crossref_primary_10_1371_journal_pgen_1009906 crossref_primary_10_3390_ijms231810976 |
Cites_doi | 10.1093/nar/gkm282 10.1038/nmeth.1226 10.1101/gad.430807 10.1016/j.cell.2008.04.036 10.1016/0092-8674(95)90007-1 10.1016/S0378-1119(00)00224-9 10.1016/S1097-2765(00)80431-1 10.1093/hmg/ddp011 10.1093/genetics/71.1.157 10.1016/j.mib.2008.05.007 10.1101/gad.1246404 10.1016/j.ceb.2006.10.002 10.1093/genetics/124.3.677 10.1016/j.gde.2007.02.002 10.1126/science.287.5461.2185 10.1126/science.290.5500.2306 10.1093/nar/gkm930 10.1093/bioinformatics/btn404 10.1093/bioinformatics/btl289 10.1186/gb-2004-5-3-r19 10.1186/jbiol30 10.1146/annurev.genet.42.110807.091711 10.1038/nm.1924 10.1073/pnas.95.25.14863 10.1038/nrm2298 10.1371/journal.pgen.1000302 10.1038/nature07517 10.1371/journal.pgen.1000465 10.1093/emboj/17.18.5409 10.1038/nmeth935 10.1093/genetics/97.3-4.639 10.1126/science.1139816 10.1101/gad.1400206 10.1534/genetics.104.036020 10.1146/annurev.genet.39.073003.094210 10.1159/000112058 10.1016/j.tig.2008.05.005 10.1186/gb-2004-5-10-r80 10.1186/1471-2164-10-138 10.1038/nsmb1280 10.1038/285573a0 10.1242/dev.122.9.2751 10.1038/nature06330 10.1186/gb-2005-6-7-r63 10.1073/pnas.0806239105 10.1073/pnas.79.4.1200 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 Public Library of Science This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010 2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Zhang Y, Malone JH, Powell SK, Periwal V, Spana E, et al. (2010) Expression in Aneuploid Drosophila S2 Cells. PLoS Biol 8(2): e1000320. doi:10.1371/journal.pbio.1000320 |
Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010 – notice: 2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Zhang Y, Malone JH, Powell SK, Periwal V, Spana E, et al. (2010) Expression in Aneuploid Drosophila S2 Cells. PLoS Biol 8(2): e1000320. doi:10.1371/journal.pbio.1000320 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.1000320 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Science In Context MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Expression in Aneuploid Cells |
EISSN | 1545-7885 |
ExternalDocumentID | 1291914171 oai_doaj_org_article_7127762d6bd649c68e7de7096f362255 PMC2826376 A219899444 20186269 10_1371_journal_pbio_1000320 |
Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA DK015600 – fundername: NHGRI NIH HHS grantid: U01 HG004279 – fundername: NHGRI NIH HHS grantid: HG004279 |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV IPNFZ ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PYCSY QN7 RIG RNS RPM SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M ALIPV CGR CUY CVF ECM EIF NPM PMFND 7X8 5PM 3V. AAPBV ABPTK AGJBV CZG M~E ZA5 |
ID | FETCH-LOGICAL-c666t-8ac969c6ab7167249bc2985b5a2bea4c058ab45d1ce2fd45ec8da380c079dbce3 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun Oct 01 00:20:28 EDT 2023 Wed Aug 27 01:28:20 EDT 2025 Tue Sep 30 16:38:11 EDT 2025 Fri Sep 05 12:01:55 EDT 2025 Tue Jun 17 22:02:03 EDT 2025 Tue Jun 10 21:02:02 EDT 2025 Fri Jun 27 05:31:31 EDT 2025 Fri Jun 27 05:31:15 EDT 2025 Fri Jun 27 05:30:01 EDT 2025 Sat May 31 02:10:26 EDT 2025 Wed Oct 01 04:17:22 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Cell Line Drosophila Proteins Oligonucleotide Array Sequence Analysis Drosophila Gene Expression Regulation Aneuploidy Male Sequence Analysis, DNA Blotting, Western Dosage Compensation, Genetic Animals Chromatin Immunoprecipitation Comparative Genomic Hybridization RNA Interference X Chromosome |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c666t-8ac969c6ab7167249bc2985b5a2bea4c058ab45d1ce2fd45ec8da380c079dbce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: YZ SKP ES DMM BO. Performed the experiments: YZ SKP. Analyzed the data: YZ JHM SKP VP DMM BO. Contributed reagents/materials/analysis tools: JHM ES. Wrote the paper: YZ BO. |
OpenAccessLink | https://doaj.org/article/7127762d6bd649c68e7de7096f362255 |
PMID | 20186269 |
PQID | 733685515 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1291914171 doaj_primary_oai_doaj_org_article_7127762d6bd649c68e7de7096f362255 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2826376 proquest_miscellaneous_733685515 gale_infotracmisc_A219899444 gale_infotracacademiconefile_A219899444 gale_incontextgauss_ISR_A219899444 gale_incontextgauss_ISN_A219899444 gale_incontextgauss_IOV_A219899444 pubmed_primary_20186269 crossref_citationtrail_10_1371_journal_pbio_1000320 crossref_primary_10_1371_journal_pbio_1000320 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-01 |
PublicationDateYYYYMMDD | 2010-02-01 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | B Ren (ref40) 2000; 290 Y Mileyko (ref26) 2008; 105 J Laffaire (ref35) 2009; 10 O Altug-Teber (ref34) 2007; 119 B. A Weaver (ref7) 2006; 18 D. R Bentley (ref36) 2008; 456 R. H Devlin (ref21) 1982; 79 M Ptashne (ref25) 2004 T Straub (ref31) 2008; 4 A Akhtar (ref15) 2000; 5 A Mortazavi (ref37) 2008; 5 W Huber (ref49) 2006; 22 I Schneider (ref9) 1972; 27 M. D Adams (ref43) 2000; 287 B Payer (ref2) 2008; 42 A. J Ruthenburg (ref17) 2007; 8 J Kind (ref29) 2007; 21 K Copps (ref10) 1998; 17 R Johnston (ref42) 2004; 5 R. A Hoskins (ref6) 2007; 316 H Kacser (ref24) 1981; 97 D. M MacAlpine (ref48) 2004; 18 D. L Lindsley (ref5) 1972; 71 J Kind (ref16) 2008; 133 J. M Belote (ref12) 1980; 285 Y Zhang (ref33) 2007; 17 J. C Lucchesi (ref11) 2005; 39 M. B Eisen (ref47) 1998; 95 P Stenberg (ref19) 2009; 5 A. A Alekseyenko (ref28) 2006; 20 R. J Wilson (ref45) 2008; 36 R. L Kelley (ref14) 1995; 81 C Erdman (ref44) 2008; 24 S Cherry (ref8) 2008; 11 M. M Kulkarni (ref39) 2006; 3 V Gupta (ref13) 2006; 5 F Heylighen (ref22) 2001 N. J Caplen (ref38) 2000; 252 C. N Henrichsen (ref1) 2009; 18 D Sturgill (ref32) 2007; 450 R. C Gentleman (ref46) 2004; 5 J. A Birchler (ref20) 1990; 124 I Birch-Machin (ref41) 2005; 6 M. P Bhadra (ref18) 2005; 169 X Darzacq (ref23) 2007; 14 E Vanneste (ref3) 2009; 15 R. A Veitia (ref4) 2008; 24 A Franke (ref27) 1996; 122 G. D Gilfillan (ref30) 2007; 35 |
References_xml | – volume: 35 start-page: 3561 year: 2007 ident: ref30 article-title: Cumulative contributions of weak DNA determinants to targeting the Drosophila dosage compensation complex. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm282 – volume: 5 start-page: 621 year: 2008 ident: ref37 article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq. publication-title: Nat Methods doi: 10.1038/nmeth.1226 – volume: 21 start-page: 2030 year: 2007 ident: ref29 article-title: Cotranscriptional recruitment of the dosage compensation complex to X-linked target genes. publication-title: Genes Dev doi: 10.1101/gad.430807 – volume: 133 start-page: 813 year: 2008 ident: ref16 article-title: Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. publication-title: Cell doi: 10.1016/j.cell.2008.04.036 – volume: 81 start-page: 867 year: 1995 ident: ref14 article-title: Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. publication-title: Cell doi: 10.1016/0092-8674(95)90007-1 – volume: 252 start-page: 95 year: 2000 ident: ref38 article-title: dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. publication-title: Gene doi: 10.1016/S0378-1119(00)00224-9 – volume: 5 start-page: 367 year: 2000 ident: ref15 article-title: Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80431-1 – volume: 18 start-page: R1 year: 2009 ident: ref1 article-title: Copy number variants, diseases and gene expression. publication-title: Hum Mol Genet doi: 10.1093/hmg/ddp011 – volume: 71 start-page: 157 year: 1972 ident: ref5 article-title: Segmental aneuploidy and the genetic gross structure of the Drosophila genome. publication-title: Genetics doi: 10.1093/genetics/71.1.157 – volume: 11 start-page: 262 year: 2008 ident: ref8 article-title: Genomic RNAi screening in Drosophila S2 cells: what have we learned about host-pathogen interactions? publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2008.05.007 – volume: 18 start-page: 3094 year: 2004 ident: ref48 article-title: Coordination of replication and transcription along a Drosophila chromosome. publication-title: Genes Dev doi: 10.1101/gad.1246404 – volume: 18 start-page: 658 year: 2006 ident: ref7 article-title: Does aneuploidy cause cancer? publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2006.10.002 – volume: 124 start-page: 679 year: 1990 ident: ref20 article-title: Analysis of autosomal dosage compensation involving the alcohol dehydrogenase locus in Drosophila melanogaster. publication-title: Genetics doi: 10.1093/genetics/124.3.677 – volume: 17 start-page: 113 year: 2007 ident: ref33 article-title: Dosage compensation goes global. publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2007.02.002 – volume: 287 start-page: 2185 year: 2000 ident: ref43 article-title: The genome sequence of Drosophila melanogaster. publication-title: Science doi: 10.1126/science.287.5461.2185 – volume: 290 start-page: 2306 year: 2000 ident: ref40 article-title: Genome-wide location and function of DNA binding proteins. publication-title: Science doi: 10.1126/science.290.5500.2306 – volume: 36 start-page: D588 year: 2008 ident: ref45 article-title: FlyBase: integration and improvements to query tools. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm930 – volume: 24 start-page: 2143 year: 2008 ident: ref44 article-title: A fast Bayesian change point analysis for the segmentation of microarray data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn404 – volume: 22 start-page: 1963 year: 2006 ident: ref49 article-title: Transcript mapping with high-density oligonucleotide tiling arrays. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl289 – volume: 5 start-page: R19 year: 2004 ident: ref42 article-title: FlyGEM, a full transcriptome array platform for the Drosophila community. publication-title: Genome Biol doi: 10.1186/gb-2004-5-3-r19 – volume: 5 start-page: 3 year: 2006 ident: ref13 article-title: Global analysis of X-chromosome dosage compensation. publication-title: J Biol doi: 10.1186/jbiol30 – volume: 42 start-page: 733 year: 2008 ident: ref2 article-title: X chromosome dosage compensation: how mammals keep the balance. publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.42.110807.091711 – volume: 15 start-page: 577 year: 2009 ident: ref3 article-title: Chromosome instability is common in human cleavage-stage embryos. publication-title: Nat Med doi: 10.1038/nm.1924 – volume: 95 start-page: 14863 year: 1998 ident: ref47 article-title: Cluster analysis and display of genome-wide expression patterns. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.25.14863 – volume: 27 start-page: 353 year: 1972 ident: ref9 article-title: Cell lines derived from late embryonic stages of Drosophila melanogaster. publication-title: J Embryol Exp Morphol – start-page: xiv, 154 year: 2004 ident: ref25 article-title: A genetic switch: phage lambda revisited. – volume: 8 start-page: 983 year: 2007 ident: ref17 article-title: Multivalent engagement of chromatin modifications by linked binding modules. publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2298 – volume: 4 start-page: e1000302 year: 2008 ident: ref31 article-title: The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000302 – volume: 456 start-page: 53 year: 2008 ident: ref36 article-title: Accurate whole human genome sequencing using reversible terminator chemistry. publication-title: Nature doi: 10.1038/nature07517 – volume: 5 start-page: e1000465 year: 2009 ident: ref19 article-title: Buffering of segmental and chromosomal aneuploidies in Drosophila melanogaster. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000465 – volume: 17 start-page: 5409 year: 1998 ident: ref10 article-title: Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly. publication-title: Embo J doi: 10.1093/emboj/17.18.5409 – volume: 3 start-page: 833 year: 2006 ident: ref39 article-title: Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. publication-title: Nat Methods doi: 10.1038/nmeth935 – volume: 97 start-page: 639 year: 1981 ident: ref24 article-title: The molecular basis of dominance. publication-title: Genetics doi: 10.1093/genetics/97.3-4.639 – volume: 316 start-page: 1625 year: 2007 ident: ref6 article-title: Sequence finishing and mapping of Drosophila melanogaster heterochromatin. publication-title: Science doi: 10.1126/science.1139816 – volume: 20 start-page: 848 year: 2006 ident: ref28 article-title: High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. publication-title: Genes Dev doi: 10.1101/gad.1400206 – volume: 169 start-page: 2061 year: 2005 ident: ref18 article-title: Gene expression analysis of the function of the male-specific lethal complex in Drosophila. publication-title: Genetics doi: 10.1534/genetics.104.036020 – volume: 39 start-page: 615 year: 2005 ident: ref11 article-title: Chromatin remodeling in dosage compensation. publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.39.073003.094210 – volume: 119 start-page: 171 year: 2007 ident: ref34 article-title: Specific transcriptional changes in human fetuses with autosomal trisomies. publication-title: Cytogenet Genome Res doi: 10.1159/000112058 – volume: 24 start-page: 390 year: 2008 ident: ref4 article-title: Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. publication-title: Trends Genet doi: 10.1016/j.tig.2008.05.005 – volume: 5 start-page: R80 year: 2004 ident: ref46 article-title: Bioconductor: open software development for computational biology and bioinformatics. publication-title: Genome Biol doi: 10.1186/gb-2004-5-10-r80 – volume: 10 start-page: 138 year: 2009 ident: ref35 article-title: Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development. publication-title: BMC Genomics doi: 10.1186/1471-2164-10-138 – volume: 14 start-page: 796 year: 2007 ident: ref23 article-title: In vivo dynamics of RNA polymerase II transcription. publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1280 – volume: 285 start-page: 573 year: 1980 ident: ref12 article-title: Control of X chromosome transcription by the maleless gene in Drosophila. publication-title: Nature doi: 10.1038/285573a0 – volume: 122 start-page: 2751 year: 1996 ident: ref27 article-title: Evidence that MSL-mediated dosage compensation in Drosophila begins at blastoderm. publication-title: Development doi: 10.1242/dev.122.9.2751 – volume: 450 start-page: 238 year: 2007 ident: ref32 article-title: Demasculinization of X chromosomes in the Drosophila genus. publication-title: Nature doi: 10.1038/nature06330 – volume: 6 start-page: R63 year: 2005 ident: ref41 article-title: Genomic analysis of heat-shock factor targets in Drosophila. publication-title: Genome Biol doi: 10.1186/gb-2005-6-7-r63 – start-page: 1 year: 2001 ident: ref22 article-title: Cybernetics and second-order cybernetics. – volume: 105 start-page: 16659 year: 2008 ident: ref26 article-title: Small-scale copy number variation and large-scale changes in gene expression. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0806239105 – volume: 79 start-page: 1200 year: 1982 ident: ref21 article-title: Autosomal dosage compensation Drosophila melanogaster strains trisomic for the left arm of chromosome 2. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.79.4.1200 |
SSID | ssj0022928 |
Score | 2.3673298 |
Snippet | Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number... Analysis of the relationship between gene copy number and gene expression in aneuploid male Drosophila cells reveals a global compensation mechanism in... Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1000320 |
SubjectTerms | Aneuploidy Animals Blotting, Western Cell culture Cell Line Chromatin Immunoprecipitation Chromosomes Comparative Genomic Hybridization Compensation Dosage Compensation, Genetic - genetics Drosophila Drosophila - genetics Drosophila - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Dynamic programming Experiments Gene expression Gene Expression Regulation Genetic aspects Genetics Genetics and Genomics/Cancer Genetics Genetics and Genomics/Chromosome Biology Genetics and Genomics/Epigenetics Genetics and Genomics/Functional Genomics Genomes Hypotheses Insects Male Mutation Oligonucleotide Array Sequence Analysis Organisms Risk factors RNA Interference Sequence Analysis, DNA Tumors X Chromosome - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEN8NFBQhJE6hsePE9rEFqoJEkShFvVn-Co20clbN7oF_35nEu2oQqBy4JhNFfh575iXjN4S8EXVjgKPRgooWj-TYupChoUWLLSYr4UtP8TTyl9Pm5Jx_vqgvbrT6wpqwSR54Au5AUCZgwfrG-oYr18ggfBCQeLew9UI-jLsvhLEtmUpUi6mxqypKzcByFlU6NFcJepDm6N3Kdj3WCGAH8VlQGrX7dzv0YrXshz-ln79XUd4IS8cPyP2UT-aH0zgekjshPiJ3pw6Tvx4TlDKeKl1j3sXcxLCBN3U-_3A1NjDoliY_Yzl-vh-ekPPjj9_fnxSpP0LhgHSsC2mcagASY4H0COBR1jEla1sbZoPhrqylsbz21AXWel4HJ72pZOlKobx1oXpKFrGPYY_k3gsWOGQLruQQoVqpvKpoK710hlWNz0i1BUi7JB6OPSyWevwjJoBETOPVCKtOsGak2D21msQzbrE_Qux3tih9PV4Ah9DJIfRtDpGR1zhzGsUtIlbP_DSbYdCfvv7QhwwrxBTn_G9GZ6f_YvRtZvQ2GbU9IOJMOtYAuKKy1sxyf2YJ69jNbu-hq22BGTRkYii-RwXNSL51P41PYV1cDP1m0ChmKSHphVE_m7xxBx5kdshWVUbEzE9n6M7vxO5yFBgHGt5A4Hn-P6bjBbk3FVxgBdA-WayvNuEl5HFr-2pcstfCF0ER priority: 102 providerName: Directory of Open Access Journals |
Title | Expression in Aneuploid Drosophila S2 Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20186269 https://www.proquest.com/docview/733685515 https://pubmed.ncbi.nlm.nih.gov/PMC2826376 https://doaj.org/article/7127762d6bd649c68e7de7096f362255 http://dx.doi.org/10.1371/journal.pbio.1000320 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: KQ8 dateStart: 20031001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: KQ8 dateStart: 20031201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: ABDBF dateStart: 20031001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: 7X7 dateStart: 20031001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: BENPR dateStart: 20031001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1545-7885 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: M48 dateStart: 20031001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZtymAvY7_rrQtmDPbkEsmyJT-U0W4t3UazrV1G3oQsya0h2GmcwPrf786_mEfL-pKH-JSgzyfffdbpO0LeiSjWwNFoQEWGR3LSKJAupkGGLSZDYSeW4mnks2l8OuNf5tF8i3Q9W1sAq1upHfaTmq0W-7-vbz7Agj-ouzYI2g3aX6Z5ibv-2BN8m-xAbGLo52e831dgLKm7raIEDSxzEbaH6e76lUGwqjX9-yf3aLkoq9vS0n-rK_8KVyePyaM2z_QPG8d4QrZc8ZQ8aDpP3jwjKHHcVMAWfl74unAb-Kfc-p9WdWODfKH9C-bja_3qOZmdHP_8eBq0fRMCA2RkHUhtkjgxsU6BDAngV6lhiYzSSLPUaW4mkdQpjyw1jmWWR85Iq0M5MROR2NS48AUZFWXhdolvrWCOQxZhJhwiVyYTm4Q0k1YazcLYeiTsAFKmFRXH3hYLVe-UCSAXzXwVwqpaWD0S9KOWjajGf-yPEPveFiWx6y_K1aVqV5gSlAl4sts4tTGH2UsnrBPA0DKI0UCcPPIW75xC0YsCq2ou9aaq1Odvv9Qhw8qxhHN-l9HF9D5G5wOj961RVgIiRrfHHQBXVNwaWO4NLGF9m8HlXXS1DphKgVejKB8V1CN-534KR2G9XOHKTaVQ5FJCMgyzftl4Yw8eZHzIYhOPiIGfDtAdXinyq1p4HOh5DAHp1X3m_5o8bAotsPJnj4zWq417A_nbOh2TbTEXY7JzdDz9fj6u34LA59cfclwv1j8EX0X- |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+in+aneuploid+Drosophila+S2+cells&rft.jtitle=PLoS+biology&rft.au=Zhang%2C+Yu&rft.au=Malone%2C+John+H&rft.au=Powell%2C+Sara+K&rft.au=Periwal%2C+Vipul&rft.date=2010-02-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.volume=8&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pbio.1000320&rft.externalDBID=ISR&rft.externalDocID=A219899444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |