Expression in Aneuploid Drosophila S2 Cells

Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 8; no. 2; p. e1000320
Main Authors Zhang, Yu, Malone, John H., Powell, Sara K., Periwal, Vipul, Spana, Eric, MacAlpine, David M., Oliver, Brian
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.1000320

Cover

Abstract Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.
AbstractList   Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype (~ two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.
Analysis of the relationship between gene copy number and gene expression in aneuploid male Drosophila cells reveals a global compensation mechanism in addition to X chromosome-specific dosage compensation. Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype (∼ two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system “anticipates” the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal–independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components. While it is widely recognized that mutations in protein coding genes can have harmful consequences, one can also have too much or too little of a good thing. Except for the sex chromosomes, genes come in sets of two in diploid organisms. Extra or missing copies of genes or chromosomes result in an imbalance that can lead to cancers, miscarriages, and disease susceptibility. We have examined what happens to gene expression in Drosophila cells with the types of gross copy number changes that are typical of cancers. We have compared the response of autosomes and sex chromosomes and show that there is some compensation for copy number change in both cases. One response is universal and acts to correct copy number changes by changing transcript abundance. The other is specific to the X chromosome and acts to increase expression regardless of gene dose. Our data highlight how important gene expression balance is for cell function.
Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.
Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype (~ two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.
Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.
Audience Academic
Author Zhang, Yu
Malone, John H.
Oliver, Brian
MacAlpine, David M.
Powell, Sara K.
Periwal, Vipul
Spana, Eric
AuthorAffiliation 2 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
Adolf Butenandt Institute, Germany
4 Department of Biology, Duke University, Durham, North Carolina, United States of America
3 Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
1 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
AuthorAffiliation_xml – name: 3 Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
– name: 4 Department of Biology, Duke University, Durham, North Carolina, United States of America
– name: Adolf Butenandt Institute, Germany
– name: 2 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
– name: 1 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
– sequence: 2
  givenname: John H.
  surname: Malone
  fullname: Malone, John H.
– sequence: 3
  givenname: Sara K.
  surname: Powell
  fullname: Powell, Sara K.
– sequence: 4
  givenname: Vipul
  surname: Periwal
  fullname: Periwal, Vipul
– sequence: 5
  givenname: Eric
  surname: Spana
  fullname: Spana, Eric
– sequence: 6
  givenname: David M.
  surname: MacAlpine
  fullname: MacAlpine, David M.
– sequence: 7
  givenname: Brian
  surname: Oliver
  fullname: Oliver, Brian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20186269$$D View this record in MEDLINE/PubMed
BookMark eNqVkl2L1DAYhYusuB_6D0QLXojIjEmaTy-EYVx1YHHBVW9DmqSzGTpJN2ll_fdmnI5sRUTJRULynJM3b85pceSDt0XxGII5rBh8tQlD9Kqdd7ULcwgAqBC4V5xAgsmMcU6O7qyPi9OUNgAgJBB_UBwjADlFVJwUL89vu2hTcsGXzpcLb4euDc6Ub2NIobt2rSqvULm0bZseFvcb1Sb7aJzPii_vzj8vP8wuLt-vlouLmaaU9jOutKBCU1UzSBnCotZIcFIThWqrsAaEqxoTA7VFjcHEam5UxYEGTJha2-qseLr3zZUkOb4zSYgEFBBDBjOx2hMmqI3sotuq-F0G5eTPjRDXUsXe6dZKBhFjFBlaG4pzVdwyYxkQtKkoQoRkrzfjbUO9tUZb30fVTkynJ95dy3X4JhFHtGI0GzwfDWK4GWzq5dYlnRumvA1DkqyqKCcE7q56tifXKlfmfBOyod7RcoGg4EJgjDM1_wOVh7Fbp3MIGpf3J4IXE0Fmenvbr9WQklxdffoP9uO_s5dfp-yTu1381b5D0jLweg_oHKwUbSO161Wfc5df51oJgdzF-vDdchdrOcY6i_Fv4oP_X2U_AHTH-hk
CitedBy_id crossref_primary_10_1101_gr_199323_115
crossref_primary_10_1186_gb_2012_13_4_r28
crossref_primary_10_3389_fgene_2022_734208
crossref_primary_10_1038_s41580_021_00436_9
crossref_primary_10_1146_annurev_genet_110711_155454
crossref_primary_10_1534_g3_115_017632
crossref_primary_10_3390_genes9050242
crossref_primary_10_1038_nsmb_2763
crossref_primary_10_3390_ijms22020786
crossref_primary_10_1038_s41467_019_13350_8
crossref_primary_10_1038_ng_948
crossref_primary_10_1371_journal_pone_0020455
crossref_primary_10_3389_fgene_2020_00101
crossref_primary_10_1093_nar_gkac794
crossref_primary_10_1083_jcb_201502016
crossref_primary_10_1074_mcp_M114_040667
crossref_primary_10_1093_molbev_mst239
crossref_primary_10_1093_g3journal_jkab403
crossref_primary_10_1371_journal_pgen_1004159
crossref_primary_10_1016_j_molcel_2015_08_024
crossref_primary_10_1038_nrg3687
crossref_primary_10_1038_srep12510
crossref_primary_10_1093_genetics_iyad052
crossref_primary_10_1080_19336934_2015_1074786
crossref_primary_10_1101_gr_112961_110
crossref_primary_10_1038_s41467_017_01962_x
crossref_primary_10_1038_s41467_019_13174_6
crossref_primary_10_1016_j_devcel_2019_04_036
crossref_primary_10_1016_j_devcel_2018_02_002
crossref_primary_10_1371_journal_pgen_1002646
crossref_primary_10_1083_jcb_201711175
crossref_primary_10_1016_j_gde_2011_01_012
crossref_primary_10_1091_mbc_E18_07_0445
crossref_primary_10_1186_gb_2014_15_8_r70
crossref_primary_10_4161_trns_26185
crossref_primary_10_1371_journal_pgen_1006295
crossref_primary_10_1093_nar_gks245
crossref_primary_10_1073_pnas_1009781108
crossref_primary_10_1016_j_celrep_2013_09_037
crossref_primary_10_1093_gbe_evr036
crossref_primary_10_1093_molbev_msv227
crossref_primary_10_1371_journal_pgen_1007932
crossref_primary_10_1534_g3_116_035444
crossref_primary_10_1083_jcb_201404097
crossref_primary_10_3389_fpls_2015_00763
crossref_primary_10_1128_MCB_06622_11
crossref_primary_10_1371_journal_pbio_1002499
crossref_primary_10_1101_gr_121095_111
crossref_primary_10_1534_g3_112_002840
crossref_primary_10_1186_1471_2199_11_80
crossref_primary_10_1016_j_tibs_2015_03_011
crossref_primary_10_1093_hmg_ddu572
crossref_primary_10_1007_s00412_011_0319_8
crossref_primary_10_1007_s00412_015_0509_x
crossref_primary_10_1016_j_devcel_2013_01_028
crossref_primary_10_1016_j_semcdb_2013_02_004
crossref_primary_10_1093_gbe_evs077
crossref_primary_10_1242_dev_201896
crossref_primary_10_1186_s13072_018_0232_y
crossref_primary_10_1101_gr_160010_113
crossref_primary_10_1111_febs_13591
crossref_primary_10_1093_nar_gkac109
crossref_primary_10_1242_dmm_013391
crossref_primary_10_1242_dev_109850
crossref_primary_10_1371_journal_pbio_1001711
crossref_primary_10_1093_gbe_evv054
crossref_primary_10_1101_gr_122614_111
crossref_primary_10_1371_journal_pone_0106800
crossref_primary_10_1371_journal_pgen_1004240
crossref_primary_10_1371_journal_pgen_1008443
crossref_primary_10_1002_wdev_339
crossref_primary_10_1371_journal_pcbi_1011389
crossref_primary_10_1016_j_ibmb_2015_01_014
crossref_primary_10_1038_nmeth_1985
crossref_primary_10_1186_1471_2164_13_97
crossref_primary_10_1016_j_devcel_2023_12_009
crossref_primary_10_1371_journal_pbio_1000590
crossref_primary_10_1186_s12864_015_2353_z
crossref_primary_10_1146_annurev_cellbio_101011_155807
crossref_primary_10_1038_srep04412
crossref_primary_10_1093_nar_gkr949
crossref_primary_10_1016_j_bbamcr_2013_11_017
crossref_primary_10_1038_s41467_024_55711_y
crossref_primary_10_1038_nprot_2013_052
crossref_primary_10_1038_cr_2015_114
crossref_primary_10_1093_biomethods_bpae059
crossref_primary_10_1083_jcb_201207183
crossref_primary_10_2217_epi_2019_0135
crossref_primary_10_3389_fpls_2016_01432
crossref_primary_10_1371_journal_pgen_1010110
crossref_primary_10_1016_j_semcdb_2014_03_014
crossref_primary_10_1093_nar_gkac208
crossref_primary_10_1371_journal_pone_0178590
crossref_primary_10_1007_s00412_011_0344_7
crossref_primary_10_1038_nature09757
crossref_primary_10_1371_journal_pgen_1004865
crossref_primary_10_1038_cr_2013_135
crossref_primary_10_1038_nrg3124
crossref_primary_10_1101_gr_114348_110
crossref_primary_10_1093_nar_gkr236
crossref_primary_10_1126_sciadv_abh4390
crossref_primary_10_1093_molbev_msv147
crossref_primary_10_1038_s41556_018_0243_8
crossref_primary_10_1186_1756_8935_6_35
crossref_primary_10_1186_2042_6410_5_5
crossref_primary_10_1073_pnas_1305638110
crossref_primary_10_1534_g3_113_006866
crossref_primary_10_1371_journal_pbio_1001126
crossref_primary_10_1186_1471_2164_12_91
crossref_primary_10_1371_journal_pone_0027942
crossref_primary_10_1534_genetics_117_300581
crossref_primary_10_7554_eLife_05462
crossref_primary_10_1534_g3_117_300400
crossref_primary_10_1371_journal_pbio_1000318
crossref_primary_10_1093_gbe_evp054
crossref_primary_10_1093_nar_gkx106
crossref_primary_10_1101_gr_239913_118
crossref_primary_10_1093_g3journal_jkac151
crossref_primary_10_3389_fpls_2018_00377
crossref_primary_10_1371_journal_pgen_1007842
crossref_primary_10_1016_j_semcdb_2016_04_013
crossref_primary_10_1159_000445924
crossref_primary_10_1371_journal_pgen_1009906
crossref_primary_10_3390_ijms231810976
Cites_doi 10.1093/nar/gkm282
10.1038/nmeth.1226
10.1101/gad.430807
10.1016/j.cell.2008.04.036
10.1016/0092-8674(95)90007-1
10.1016/S0378-1119(00)00224-9
10.1016/S1097-2765(00)80431-1
10.1093/hmg/ddp011
10.1093/genetics/71.1.157
10.1016/j.mib.2008.05.007
10.1101/gad.1246404
10.1016/j.ceb.2006.10.002
10.1093/genetics/124.3.677
10.1016/j.gde.2007.02.002
10.1126/science.287.5461.2185
10.1126/science.290.5500.2306
10.1093/nar/gkm930
10.1093/bioinformatics/btn404
10.1093/bioinformatics/btl289
10.1186/gb-2004-5-3-r19
10.1186/jbiol30
10.1146/annurev.genet.42.110807.091711
10.1038/nm.1924
10.1073/pnas.95.25.14863
10.1038/nrm2298
10.1371/journal.pgen.1000302
10.1038/nature07517
10.1371/journal.pgen.1000465
10.1093/emboj/17.18.5409
10.1038/nmeth935
10.1093/genetics/97.3-4.639
10.1126/science.1139816
10.1101/gad.1400206
10.1534/genetics.104.036020
10.1146/annurev.genet.39.073003.094210
10.1159/000112058
10.1016/j.tig.2008.05.005
10.1186/gb-2004-5-10-r80
10.1186/1471-2164-10-138
10.1038/nsmb1280
10.1038/285573a0
10.1242/dev.122.9.2751
10.1038/nature06330
10.1186/gb-2005-6-7-r63
10.1073/pnas.0806239105
10.1073/pnas.79.4.1200
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010
2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Zhang Y, Malone JH, Powell SK, Periwal V, Spana E, et al. (2010) Expression in Aneuploid Drosophila S2 Cells. PLoS Biol 8(2): e1000320. doi:10.1371/journal.pbio.1000320
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010
– notice: 2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Zhang Y, Malone JH, Powell SK, Periwal V, Spana E, et al. (2010) Expression in Aneuploid Drosophila S2 Cells. PLoS Biol 8(2): e1000320. doi:10.1371/journal.pbio.1000320
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
CZG
DOI 10.1371/journal.pbio.1000320
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Science In Context
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Expression in Aneuploid Cells
EISSN 1545-7885
ExternalDocumentID 1291914171
oai_doaj_org_article_7127762d6bd649c68e7de7096f362255
PMC2826376
A219899444
20186269
10_1371_journal_pbio_1000320
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA DK015600
– fundername: NHGRI NIH HHS
  grantid: U01 HG004279
– fundername: NHGRI NIH HHS
  grantid: HG004279
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
IPNFZ
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PYCSY
QN7
RIG
RNS
RPM
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
3V.
AAPBV
ABPTK
AGJBV
CZG
M~E
ZA5
ID FETCH-LOGICAL-c666t-8ac969c6ab7167249bc2985b5a2bea4c058ab45d1ce2fd45ec8da380c079dbce3
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Sun Oct 01 00:20:28 EDT 2023
Wed Aug 27 01:28:20 EDT 2025
Tue Sep 30 16:38:11 EDT 2025
Fri Sep 05 12:01:55 EDT 2025
Tue Jun 17 22:02:03 EDT 2025
Tue Jun 10 21:02:02 EDT 2025
Fri Jun 27 05:31:31 EDT 2025
Fri Jun 27 05:31:15 EDT 2025
Fri Jun 27 05:30:01 EDT 2025
Sat May 31 02:10:26 EDT 2025
Wed Oct 01 04:17:22 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cell Line
Drosophila Proteins
Oligonucleotide Array Sequence Analysis
Drosophila
Gene Expression Regulation
Aneuploidy
Male
Sequence Analysis, DNA
Blotting, Western
Dosage Compensation, Genetic
Animals
Chromatin Immunoprecipitation
Comparative Genomic Hybridization
RNA Interference
X Chromosome
Language English
License This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c666t-8ac969c6ab7167249bc2985b5a2bea4c058ab45d1ce2fd45ec8da380c079dbce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: YZ SKP ES DMM BO. Performed the experiments: YZ SKP. Analyzed the data: YZ JHM SKP VP DMM BO. Contributed reagents/materials/analysis tools: JHM ES. Wrote the paper: YZ BO.
OpenAccessLink https://doaj.org/article/7127762d6bd649c68e7de7096f362255
PMID 20186269
PQID 733685515
PQPubID 23479
ParticipantIDs plos_journals_1291914171
doaj_primary_oai_doaj_org_article_7127762d6bd649c68e7de7096f362255
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2826376
proquest_miscellaneous_733685515
gale_infotracmisc_A219899444
gale_infotracacademiconefile_A219899444
gale_incontextgauss_ISR_A219899444
gale_incontextgauss_ISN_A219899444
gale_incontextgauss_IOV_A219899444
pubmed_primary_20186269
crossref_citationtrail_10_1371_journal_pbio_1000320
crossref_primary_10_1371_journal_pbio_1000320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-01
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References B Ren (ref40) 2000; 290
Y Mileyko (ref26) 2008; 105
J Laffaire (ref35) 2009; 10
O Altug-Teber (ref34) 2007; 119
B. A Weaver (ref7) 2006; 18
D. R Bentley (ref36) 2008; 456
R. H Devlin (ref21) 1982; 79
M Ptashne (ref25) 2004
T Straub (ref31) 2008; 4
A Akhtar (ref15) 2000; 5
A Mortazavi (ref37) 2008; 5
W Huber (ref49) 2006; 22
I Schneider (ref9) 1972; 27
M. D Adams (ref43) 2000; 287
B Payer (ref2) 2008; 42
A. J Ruthenburg (ref17) 2007; 8
J Kind (ref29) 2007; 21
K Copps (ref10) 1998; 17
R Johnston (ref42) 2004; 5
R. A Hoskins (ref6) 2007; 316
H Kacser (ref24) 1981; 97
D. M MacAlpine (ref48) 2004; 18
D. L Lindsley (ref5) 1972; 71
J Kind (ref16) 2008; 133
J. M Belote (ref12) 1980; 285
Y Zhang (ref33) 2007; 17
J. C Lucchesi (ref11) 2005; 39
M. B Eisen (ref47) 1998; 95
P Stenberg (ref19) 2009; 5
A. A Alekseyenko (ref28) 2006; 20
R. J Wilson (ref45) 2008; 36
R. L Kelley (ref14) 1995; 81
C Erdman (ref44) 2008; 24
S Cherry (ref8) 2008; 11
M. M Kulkarni (ref39) 2006; 3
V Gupta (ref13) 2006; 5
F Heylighen (ref22) 2001
N. J Caplen (ref38) 2000; 252
C. N Henrichsen (ref1) 2009; 18
D Sturgill (ref32) 2007; 450
R. C Gentleman (ref46) 2004; 5
J. A Birchler (ref20) 1990; 124
I Birch-Machin (ref41) 2005; 6
M. P Bhadra (ref18) 2005; 169
X Darzacq (ref23) 2007; 14
E Vanneste (ref3) 2009; 15
R. A Veitia (ref4) 2008; 24
A Franke (ref27) 1996; 122
G. D Gilfillan (ref30) 2007; 35
References_xml – volume: 35
  start-page: 3561
  year: 2007
  ident: ref30
  article-title: Cumulative contributions of weak DNA determinants to targeting the Drosophila dosage compensation complex.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm282
– volume: 5
  start-page: 621
  year: 2008
  ident: ref37
  article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq.
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1226
– volume: 21
  start-page: 2030
  year: 2007
  ident: ref29
  article-title: Cotranscriptional recruitment of the dosage compensation complex to X-linked target genes.
  publication-title: Genes Dev
  doi: 10.1101/gad.430807
– volume: 133
  start-page: 813
  year: 2008
  ident: ref16
  article-title: Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila.
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.036
– volume: 81
  start-page: 867
  year: 1995
  ident: ref14
  article-title: Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila.
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90007-1
– volume: 252
  start-page: 95
  year: 2000
  ident: ref38
  article-title: dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference.
  publication-title: Gene
  doi: 10.1016/S0378-1119(00)00224-9
– volume: 5
  start-page: 367
  year: 2000
  ident: ref15
  article-title: Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80431-1
– volume: 18
  start-page: R1
  year: 2009
  ident: ref1
  article-title: Copy number variants, diseases and gene expression.
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddp011
– volume: 71
  start-page: 157
  year: 1972
  ident: ref5
  article-title: Segmental aneuploidy and the genetic gross structure of the Drosophila genome.
  publication-title: Genetics
  doi: 10.1093/genetics/71.1.157
– volume: 11
  start-page: 262
  year: 2008
  ident: ref8
  article-title: Genomic RNAi screening in Drosophila S2 cells: what have we learned about host-pathogen interactions?
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2008.05.007
– volume: 18
  start-page: 3094
  year: 2004
  ident: ref48
  article-title: Coordination of replication and transcription along a Drosophila chromosome.
  publication-title: Genes Dev
  doi: 10.1101/gad.1246404
– volume: 18
  start-page: 658
  year: 2006
  ident: ref7
  article-title: Does aneuploidy cause cancer?
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2006.10.002
– volume: 124
  start-page: 679
  year: 1990
  ident: ref20
  article-title: Analysis of autosomal dosage compensation involving the alcohol dehydrogenase locus in Drosophila melanogaster.
  publication-title: Genetics
  doi: 10.1093/genetics/124.3.677
– volume: 17
  start-page: 113
  year: 2007
  ident: ref33
  article-title: Dosage compensation goes global.
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2007.02.002
– volume: 287
  start-page: 2185
  year: 2000
  ident: ref43
  article-title: The genome sequence of Drosophila melanogaster.
  publication-title: Science
  doi: 10.1126/science.287.5461.2185
– volume: 290
  start-page: 2306
  year: 2000
  ident: ref40
  article-title: Genome-wide location and function of DNA binding proteins.
  publication-title: Science
  doi: 10.1126/science.290.5500.2306
– volume: 36
  start-page: D588
  year: 2008
  ident: ref45
  article-title: FlyBase: integration and improvements to query tools.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm930
– volume: 24
  start-page: 2143
  year: 2008
  ident: ref44
  article-title: A fast Bayesian change point analysis for the segmentation of microarray data.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn404
– volume: 22
  start-page: 1963
  year: 2006
  ident: ref49
  article-title: Transcript mapping with high-density oligonucleotide tiling arrays.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl289
– volume: 5
  start-page: R19
  year: 2004
  ident: ref42
  article-title: FlyGEM, a full transcriptome array platform for the Drosophila community.
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-3-r19
– volume: 5
  start-page: 3
  year: 2006
  ident: ref13
  article-title: Global analysis of X-chromosome dosage compensation.
  publication-title: J Biol
  doi: 10.1186/jbiol30
– volume: 42
  start-page: 733
  year: 2008
  ident: ref2
  article-title: X chromosome dosage compensation: how mammals keep the balance.
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.42.110807.091711
– volume: 15
  start-page: 577
  year: 2009
  ident: ref3
  article-title: Chromosome instability is common in human cleavage-stage embryos.
  publication-title: Nat Med
  doi: 10.1038/nm.1924
– volume: 95
  start-page: 14863
  year: 1998
  ident: ref47
  article-title: Cluster analysis and display of genome-wide expression patterns.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.25.14863
– volume: 27
  start-page: 353
  year: 1972
  ident: ref9
  article-title: Cell lines derived from late embryonic stages of Drosophila melanogaster.
  publication-title: J Embryol Exp Morphol
– start-page: xiv, 154
  year: 2004
  ident: ref25
  article-title: A genetic switch: phage lambda revisited.
– volume: 8
  start-page: 983
  year: 2007
  ident: ref17
  article-title: Multivalent engagement of chromatin modifications by linked binding modules.
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2298
– volume: 4
  start-page: e1000302
  year: 2008
  ident: ref31
  article-title: The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000302
– volume: 456
  start-page: 53
  year: 2008
  ident: ref36
  article-title: Accurate whole human genome sequencing using reversible terminator chemistry.
  publication-title: Nature
  doi: 10.1038/nature07517
– volume: 5
  start-page: e1000465
  year: 2009
  ident: ref19
  article-title: Buffering of segmental and chromosomal aneuploidies in Drosophila melanogaster.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000465
– volume: 17
  start-page: 5409
  year: 1998
  ident: ref10
  article-title: Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly.
  publication-title: Embo J
  doi: 10.1093/emboj/17.18.5409
– volume: 3
  start-page: 833
  year: 2006
  ident: ref39
  article-title: Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays.
  publication-title: Nat Methods
  doi: 10.1038/nmeth935
– volume: 97
  start-page: 639
  year: 1981
  ident: ref24
  article-title: The molecular basis of dominance.
  publication-title: Genetics
  doi: 10.1093/genetics/97.3-4.639
– volume: 316
  start-page: 1625
  year: 2007
  ident: ref6
  article-title: Sequence finishing and mapping of Drosophila melanogaster heterochromatin.
  publication-title: Science
  doi: 10.1126/science.1139816
– volume: 20
  start-page: 848
  year: 2006
  ident: ref28
  article-title: High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome.
  publication-title: Genes Dev
  doi: 10.1101/gad.1400206
– volume: 169
  start-page: 2061
  year: 2005
  ident: ref18
  article-title: Gene expression analysis of the function of the male-specific lethal complex in Drosophila.
  publication-title: Genetics
  doi: 10.1534/genetics.104.036020
– volume: 39
  start-page: 615
  year: 2005
  ident: ref11
  article-title: Chromatin remodeling in dosage compensation.
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.39.073003.094210
– volume: 119
  start-page: 171
  year: 2007
  ident: ref34
  article-title: Specific transcriptional changes in human fetuses with autosomal trisomies.
  publication-title: Cytogenet Genome Res
  doi: 10.1159/000112058
– volume: 24
  start-page: 390
  year: 2008
  ident: ref4
  article-title: Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects.
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2008.05.005
– volume: 5
  start-page: R80
  year: 2004
  ident: ref46
  article-title: Bioconductor: open software development for computational biology and bioinformatics.
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-10-r80
– volume: 10
  start-page: 138
  year: 2009
  ident: ref35
  article-title: Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-138
– volume: 14
  start-page: 796
  year: 2007
  ident: ref23
  article-title: In vivo dynamics of RNA polymerase II transcription.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1280
– volume: 285
  start-page: 573
  year: 1980
  ident: ref12
  article-title: Control of X chromosome transcription by the maleless gene in Drosophila.
  publication-title: Nature
  doi: 10.1038/285573a0
– volume: 122
  start-page: 2751
  year: 1996
  ident: ref27
  article-title: Evidence that MSL-mediated dosage compensation in Drosophila begins at blastoderm.
  publication-title: Development
  doi: 10.1242/dev.122.9.2751
– volume: 450
  start-page: 238
  year: 2007
  ident: ref32
  article-title: Demasculinization of X chromosomes in the Drosophila genus.
  publication-title: Nature
  doi: 10.1038/nature06330
– volume: 6
  start-page: R63
  year: 2005
  ident: ref41
  article-title: Genomic analysis of heat-shock factor targets in Drosophila.
  publication-title: Genome Biol
  doi: 10.1186/gb-2005-6-7-r63
– start-page: 1
  year: 2001
  ident: ref22
  article-title: Cybernetics and second-order cybernetics.
– volume: 105
  start-page: 16659
  year: 2008
  ident: ref26
  article-title: Small-scale copy number variation and large-scale changes in gene expression.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0806239105
– volume: 79
  start-page: 1200
  year: 1982
  ident: ref21
  article-title: Autosomal dosage compensation Drosophila melanogaster strains trisomic for the left arm of chromosome 2.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.79.4.1200
SSID ssj0022928
Score 2.3673298
Snippet Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number...
Analysis of the relationship between gene copy number and gene expression in aneuploid male Drosophila cells reveals a global compensation mechanism in...
  Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000320
SubjectTerms Aneuploidy
Animals
Blotting, Western
Cell culture
Cell Line
Chromatin Immunoprecipitation
Chromosomes
Comparative Genomic Hybridization
Compensation
Dosage Compensation, Genetic - genetics
Drosophila
Drosophila - genetics
Drosophila - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Dynamic programming
Experiments
Gene expression
Gene Expression Regulation
Genetic aspects
Genetics
Genetics and Genomics/Cancer Genetics
Genetics and Genomics/Chromosome Biology
Genetics and Genomics/Epigenetics
Genetics and Genomics/Functional Genomics
Genomes
Hypotheses
Insects
Male
Mutation
Oligonucleotide Array Sequence Analysis
Organisms
Risk factors
RNA Interference
Sequence Analysis, DNA
Tumors
X Chromosome - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEN8NFBQhJE6hsePE9rEFqoJEkShFvVn-Co20clbN7oF_35nEu2oQqBy4JhNFfh575iXjN4S8EXVjgKPRgooWj-TYupChoUWLLSYr4UtP8TTyl9Pm5Jx_vqgvbrT6wpqwSR54Au5AUCZgwfrG-oYr18ggfBCQeLew9UI-jLsvhLEtmUpUi6mxqypKzcByFlU6NFcJepDm6N3Kdj3WCGAH8VlQGrX7dzv0YrXshz-ln79XUd4IS8cPyP2UT-aH0zgekjshPiJ3pw6Tvx4TlDKeKl1j3sXcxLCBN3U-_3A1NjDoliY_Yzl-vh-ekPPjj9_fnxSpP0LhgHSsC2mcagASY4H0COBR1jEla1sbZoPhrqylsbz21AXWel4HJ72pZOlKobx1oXpKFrGPYY_k3gsWOGQLruQQoVqpvKpoK710hlWNz0i1BUi7JB6OPSyWevwjJoBETOPVCKtOsGak2D21msQzbrE_Qux3tih9PV4Ah9DJIfRtDpGR1zhzGsUtIlbP_DSbYdCfvv7QhwwrxBTn_G9GZ6f_YvRtZvQ2GbU9IOJMOtYAuKKy1sxyf2YJ69jNbu-hq22BGTRkYii-RwXNSL51P41PYV1cDP1m0ChmKSHphVE_m7xxBx5kdshWVUbEzE9n6M7vxO5yFBgHGt5A4Hn-P6bjBbk3FVxgBdA-WayvNuEl5HFr-2pcstfCF0ER
  priority: 102
  providerName: Directory of Open Access Journals
Title Expression in Aneuploid Drosophila S2 Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/20186269
https://www.proquest.com/docview/733685515
https://pubmed.ncbi.nlm.nih.gov/PMC2826376
https://doaj.org/article/7127762d6bd649c68e7de7096f362255
http://dx.doi.org/10.1371/journal.pbio.1000320
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: KQ8
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: KQ8
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: ABDBF
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: 7X7
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: BENPR
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: M48
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZtymAvY7_rrQtmDPbkEsmyJT-U0W4t3UazrV1G3oQsya0h2GmcwPrf786_mEfL-pKH-JSgzyfffdbpO0LeiSjWwNFoQEWGR3LSKJAupkGGLSZDYSeW4mnks2l8OuNf5tF8i3Q9W1sAq1upHfaTmq0W-7-vbz7Agj-ouzYI2g3aX6Z5ibv-2BN8m-xAbGLo52e831dgLKm7raIEDSxzEbaH6e76lUGwqjX9-yf3aLkoq9vS0n-rK_8KVyePyaM2z_QPG8d4QrZc8ZQ8aDpP3jwjKHHcVMAWfl74unAb-Kfc-p9WdWODfKH9C-bja_3qOZmdHP_8eBq0fRMCA2RkHUhtkjgxsU6BDAngV6lhiYzSSLPUaW4mkdQpjyw1jmWWR85Iq0M5MROR2NS48AUZFWXhdolvrWCOQxZhJhwiVyYTm4Q0k1YazcLYeiTsAFKmFRXH3hYLVe-UCSAXzXwVwqpaWD0S9KOWjajGf-yPEPveFiWx6y_K1aVqV5gSlAl4sts4tTGH2UsnrBPA0DKI0UCcPPIW75xC0YsCq2ou9aaq1Odvv9Qhw8qxhHN-l9HF9D5G5wOj961RVgIiRrfHHQBXVNwaWO4NLGF9m8HlXXS1DphKgVejKB8V1CN-534KR2G9XOHKTaVQ5FJCMgyzftl4Yw8eZHzIYhOPiIGfDtAdXinyq1p4HOh5DAHp1X3m_5o8bAotsPJnj4zWq417A_nbOh2TbTEXY7JzdDz9fj6u34LA59cfclwv1j8EX0X-
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+in+aneuploid+Drosophila+S2+cells&rft.jtitle=PLoS+biology&rft.au=Zhang%2C+Yu&rft.au=Malone%2C+John+H&rft.au=Powell%2C+Sara+K&rft.au=Periwal%2C+Vipul&rft.date=2010-02-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.volume=8&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pbio.1000320&rft.externalDBID=ISR&rft.externalDocID=A219899444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon