DNA copy number evolution in Drosophila cell lines

Background Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of c...

Full description

Saved in:
Bibliographic Details
Published inGenome biology Vol. 15; no. 8; p. R70
Main Authors Lee, Hangnoh, McManus, C Joel, Cho, Dong-Yeon, Eaton, Matthew, Renda, Fioranna, Somma, Maria Patrizia, Cherbas, Lucy, May, Gemma, Powell, Sara, Zhang, Dayu, Zhan, Lijun, Resch, Alissa, Andrews, Justen, Celniker, Susan E, Cherbas, Peter, Przytycka, Teresa M, Gatti, Maurizio, Oliver, Brian, Graveley, Brenton, MacAlpine, David
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.08.2014
Subjects
Online AccessGet full text
ISSN1474-760X
1465-6906
1474-760X
1465-6914
DOI10.1186/gb-2014-15-8-r70

Cover

Abstract Background Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles. Results Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam , an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line ( S2-DRSC ), whereas tumor suppressor genes were under-represented in another ( Kc167 ). Conclusion Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro . This has implications for other cell-level natural selection progressions, including tumorigenesis.
AbstractList Background Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles. Results Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam , an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line ( S2-DRSC ), whereas tumor suppressor genes were under-represented in another ( Kc167 ). Conclusion Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro . This has implications for other cell-level natural selection progressions, including tumorigenesis.
Background: Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles. Results: Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167). Conclusion: Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.
Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles. Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167). Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.
Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles. Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167). Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.
Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles.BACKGROUNDStructural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles.Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167).RESULTSOur work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167).Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.CONCLUSIONOur study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.
ArticleNumber R70
Author Cherbas, Lucy
Przytycka, Teresa M
Somma, Maria Patrizia
Oliver, Brian
Lee, Hangnoh
Zhan, Lijun
Eaton, Matthew
Powell, Sara
May, Gemma
MacAlpine, David
Cho, Dong-Yeon
Graveley, Brenton
Gatti, Maurizio
McManus, C Joel
Resch, Alissa
Cherbas, Peter
Andrews, Justen
Celniker, Susan E
Renda, Fioranna
Zhang, Dayu
Author_xml – sequence: 1
  givenname: Hangnoh
  surname: Lee
  fullname: Lee, Hangnoh
  organization: National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health
– sequence: 2
  givenname: C Joel
  surname: McManus
  fullname: McManus, C Joel
  organization: Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Department of Biological Sciences, Carnegie Mellon University
– sequence: 3
  givenname: Dong-Yeon
  surname: Cho
  fullname: Cho, Dong-Yeon
  organization: Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health
– sequence: 4
  givenname: Matthew
  surname: Eaton
  fullname: Eaton, Matthew
  organization: Department of Pharmacology and Cancer Biology, Duke University Medical Center, Levine Science Research Center
– sequence: 5
  givenname: Fioranna
  surname: Renda
  fullname: Renda, Fioranna
  organization: Istituto di Biologia e Patologia Molecolari (IBPM) del CNR and Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma
– sequence: 6
  givenname: Maria Patrizia
  surname: Somma
  fullname: Somma, Maria Patrizia
  organization: Istituto di Biologia e Patologia Molecolari (IBPM) del CNR and Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma
– sequence: 7
  givenname: Lucy
  surname: Cherbas
  fullname: Cherbas, Lucy
  organization: Department of Biology, Indiana University
– sequence: 8
  givenname: Gemma
  surname: May
  fullname: May, Gemma
  organization: Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Department of Biological Sciences, Carnegie Mellon University
– sequence: 9
  givenname: Sara
  surname: Powell
  fullname: Powell, Sara
  organization: Department of Pharmacology and Cancer Biology, Duke University Medical Center, Levine Science Research Center
– sequence: 10
  givenname: Dayu
  surname: Zhang
  fullname: Zhang, Dayu
  organization: Department of Biology, Indiana University, School of Agricultural and Food Science, Zhejiang A&F University
– sequence: 11
  givenname: Lijun
  surname: Zhan
  fullname: Zhan, Lijun
  organization: Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center
– sequence: 12
  givenname: Alissa
  surname: Resch
  fullname: Resch, Alissa
  organization: Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center
– sequence: 13
  givenname: Justen
  surname: Andrews
  fullname: Andrews, Justen
  organization: Department of Biology, Indiana University
– sequence: 14
  givenname: Susan E
  surname: Celniker
  fullname: Celniker, Susan E
  organization: Department of Genome Dynamics, Lawrence Berkeley National Laboratory
– sequence: 15
  givenname: Peter
  surname: Cherbas
  fullname: Cherbas, Peter
  organization: Department of Biology, Indiana University
– sequence: 16
  givenname: Teresa M
  surname: Przytycka
  fullname: Przytycka, Teresa M
  organization: Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health
– sequence: 17
  givenname: Maurizio
  surname: Gatti
  fullname: Gatti, Maurizio
  organization: Istituto di Biologia e Patologia Molecolari (IBPM) del CNR and Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma
– sequence: 18
  givenname: Brian
  surname: Oliver
  fullname: Oliver, Brian
  email: briano@helix.nih.gov
  organization: National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health
– sequence: 19
  givenname: Brenton
  surname: Graveley
  fullname: Graveley, Brenton
  email: graveley@uchc.edu
  organization: Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center
– sequence: 20
  givenname: David
  surname: MacAlpine
  fullname: MacAlpine, David
  email: david.macalpine@duke.edu
  organization: Department of Pharmacology and Cancer Biology, Duke University Medical Center, Levine Science Research Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25262759$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1626745$$D View this record in Osti.gov
BookMark eNqFksFLHDEYxUNZqavtvScZevIymmSTL5NLQXarFkQvLfQWkkxmNzKbrMmMsP99s6yKLVRPCeT33sfL-47QJMTgEPpC8BkhDZwvTU0xYTXhdVMngT-gKWGC1QLw78mr-yE6yvkeYyIZhY_okHIKVHA5RXRxe1HZuNlWYVwblyr3GPtx8DFUPlSLFHPcrHyvK-v6vup9cPkTOuh0n93np_MY_br8_nN-Xd_cXf2YX9zUFgCGGiTlTnYCA-OdpW0LltpWghS0ZVp0jM9aIYxp2k5KC7yThptGgmDCWK7N7Bh92_tuRrN2rXVhSLpXm-TXOm1V1F79_RL8Si3jo2K0kVSIYvB1bxDz4FW2fnB2ZWMIzg6KAC2jeIFOn6ak-DC6PKi1z7uwOrg4ZkUxxrTBDIt3UQKz8r0Smtn7KIeCESJYQU9ex3zJ99xRAfAesKWNnFz3ghCsdmuglkbt1qC4qkaVNSgS-EdSwutdq-WjfP-WkOyFucwIS5fUfRxTKDX_X_MHA2TGRA
CitedBy_id crossref_primary_10_3389_fgene_2022_734208
crossref_primary_10_1534_genetics_117_300077
crossref_primary_10_1186_s12915_018_0528_1
crossref_primary_10_1534_g3_115_017632
crossref_primary_10_1371_journal_pgen_1008371
crossref_primary_10_1534_genetics_117_1113
crossref_primary_10_1093_nar_gkv1193
crossref_primary_10_1186_s12864_021_08057_4
crossref_primary_10_1101_pdb_top086843
crossref_primary_10_1002_wdev_339
crossref_primary_10_1038_s41467_019_13350_8
crossref_primary_10_1371_journal_pgen_1006784
crossref_primary_10_1093_nar_gkw063
crossref_primary_10_1534_genetics_119_302819
crossref_primary_10_1093_nar_gkac794
crossref_primary_10_15252_embr_201744292
crossref_primary_10_1186_s12864_022_08472_1
crossref_primary_10_1186_s13059_019_1668_5
crossref_primary_10_1016_j_yexcr_2022_113431
crossref_primary_10_1126_scisignal_aab3729
crossref_primary_10_1093_nar_gkad680
crossref_primary_10_1016_j_mex_2016_10_003
crossref_primary_10_1038_s41598_020_70330_5
crossref_primary_10_1101_gad_295717_116
crossref_primary_10_1534_g3_115_023366
crossref_primary_10_1093_genetics_iyab113
crossref_primary_10_1093_g3journal_jkab403
crossref_primary_10_1371_journal_ppat_1007445
crossref_primary_10_1038_s42003_022_04226_7
crossref_primary_10_1093_jmcb_mjy029
crossref_primary_10_7554_eLife_85814
crossref_primary_10_1038_s41598_022_08409_4
crossref_primary_10_1093_g3journal_jkab161
crossref_primary_10_1371_journal_pbio_3000241
crossref_primary_10_7554_eLife_63368
crossref_primary_10_1038_s41596_020_0383_8
crossref_primary_10_1038_s41467_019_13174_6
crossref_primary_10_1016_j_ymeth_2014_03_007
crossref_primary_10_3390_genes12121997
crossref_primary_10_1093_gbe_evae092
crossref_primary_10_1093_nar_gkab558
crossref_primary_10_1101_gr_161554_113
crossref_primary_10_1038_s41598_022_10686_y
crossref_primary_10_1371_journal_pgen_1006295
crossref_primary_10_1038_s41467_023_37876_0
crossref_primary_10_1038_s41467_020_20490_9
crossref_primary_10_7554_eLife_36333
crossref_primary_10_1093_genetics_iyac077
crossref_primary_10_1016_j_csbj_2020_11_006
crossref_primary_10_1186_s13071_017_2008_9
crossref_primary_10_1002_1878_0261_13704
crossref_primary_10_1146_annurev_genom_090413_025448
crossref_primary_10_3390_genes10090671
crossref_primary_10_1534_g3_115_019364
crossref_primary_10_1186_s13059_021_02532_7
crossref_primary_10_1534_g3_117_300489
crossref_primary_10_1534_g3_117_300400
crossref_primary_10_1016_j_tibs_2015_03_011
crossref_primary_10_1534_genetics_117_300620
crossref_primary_10_1080_19336934_2017_1372068
crossref_primary_10_1093_nar_gkx106
crossref_primary_10_1186_s13071_018_3059_2
crossref_primary_10_1534_genetics_115_181610
crossref_primary_10_1016_j_semcdb_2016_04_013
crossref_primary_10_1038_s41467_024_51343_4
crossref_primary_10_1073_pnas_1517124112
crossref_primary_10_1016_j_cub_2022_03_017
crossref_primary_10_1080_19336934_2016_1191716
crossref_primary_10_1101_gr_246710_118
crossref_primary_10_1186_s13072_018_0232_y
crossref_primary_10_1101_gr_160010_113
crossref_primary_10_1016_j_neures_2023_06_005
Cites_doi 10.1111/j.2517-6161.1995.tb02031.x
10.1073/pnas.0709888104
10.1371/journal.pbio.1000320
10.1146/annurev.genom.9.081307.164217
10.1186/gb-2009-10-3-r25
10.1038/nmeth.1226
10.1242/dev.102.4.805
10.1038/nmeth711
10.1371/journal.pgen.1002659
10.1093/bioinformatics/btp352
10.1016/S0092-8674(00)80262-7
10.1186/1471-2105-14-320
10.1016/j.cell.2004.09.034
10.1101/gr.126003.111
10.1016/j.cell.2011.02.013
10.1038/nature09725
10.1083/jcb.20112068
10.1073/pnas.93.4.1596
10.1371/journal.pgen.1000705
10.1093/genetics/107.2.231
10.1016/j.cub.2004.07.019
10.1089/cmb.2009.0108
10.1101/gr.091827.109
10.1101/gr.122614.111
10.1152/physrev.00032.2007
10.1038/nrg2593
10.1038/274255a0
10.1086/284115
10.1093/aob/mcl273
10.1101/gr.103713.109
10.1016/S0092-8674(03)00231-9
10.1146/annurev-genet-110711-155454
10.1038/nature08822
10.1093/embo-reports/kvf056
10.1038/nmeth.1923
10.1093/bioinformatics/bti551
10.1093/nar/gkp335
10.1126/science.1098918
10.1007/BF02620984
10.1371/journal.pone.0030377
10.1093/bioinformatics/btp120
10.1038/sj.emboj.7601604
10.1093/bioinformatics/btq675
10.1126/science.266.5193.1999
10.1038/22112
10.1074/jbc.273.48.32353
10.1093/gbe/evq001
10.1101/gad.1255204
10.1038/285573a0
10.1534/genetics.108.090878
10.1016/S1097-2765(00)80430-X
10.1073/pnas.79.4.1200
10.1038/nature09715
10.1371/journal.pbio.0050332
10.1038/nrc2781
10.1007/s10495-006-5341-6
10.1016/S1097-2765(00)80193-8
10.1038/344461a0
10.1038/nature03160
10.1016/j.devcel.2004.06.007
10.1038/35066065
10.1093/nar/gkr991
10.1038/nbt.1621
10.1093/nar/gkr1030
10.1038/sj.cdd.4400756
10.1016/S1097-2765(03)00477-5
10.1038/nature01771
10.1038/nrm2718
10.1073/pnas.85.7.2096
10.1038/ng2093
10.1101/gr.112961.110
10.1042/BJ20091617
10.1016/0092-8674(81)90373-1
10.1101/gr.140301.112
10.1007/BF02632042
10.1093/bioinformatics/btr670
10.1016/j.devcel.2004.08.019
10.1186/gb-2012-13-4-r28
10.1046/j.1365-2958.2000.01997.x
10.1146/annurev.genet.34.1.297
10.1016/j.cell.2011.08.047
10.1093/nar/gks245
10.1016/S0092-8674(00)81683-9
10.1073/pnas.1207726109
10.1016/0168-9525(94)90135-X
10.1073/pnas.97.26.14295
10.1126/science.1158078
10.1534/genetics.107.086108
10.1007/s10495-009-0358-2
10.1126/science.1091266
10.1038/sj.onc.1203125
10.1038/nature08516
10.1093/genetics/71.1.157
10.1371/journal.pgen.1000465
10.1038/nature08979
ContentType Journal Article
Copyright Lee et al.; licensee BioMed Central Ltd. 2014
Copyright_xml – notice: Lee et al.; licensee BioMed Central Ltd. 2014
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – sequence: 0
  name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TM
8FD
FR3
P64
RC3
7X8
7S9
L.6
OIOZB
OTOTI
5PM
DOI 10.1186/gb-2014-15-8-r70
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Entomology Abstracts
MEDLINE

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
1465-6914
EndPage R70
ExternalDocumentID PMC4289277
1626745
25262759
10_1186_gb_2014_15_8_r70
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA014236
– fundername: NHGRI NIH HHS
  grantid: U01 HG004279
– fundername: NHGRI NIH HHS
  grantid: HG004279
– fundername: NHGRI NIH HHS
  grantid: U01 HG004271
– fundername: NIGMS NIH HHS
  grantid: T32 GM071340
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
AAFWJ
AAHBH
AAJSJ
AASML
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFPKN
AHBYD
AHSBF
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BFQNJ
BMC
C6C
EBD
EBLON
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
IAO
IGS
IHR
ISR
ITC
KPI
ROL
RPM
RSV
SJN
SOJ
SV3
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
2WC
7SS
7TM
8FD
AENEX
CS3
E3Z
EJD
F5P
FR3
HZ~
KQ8
O5R
O5S
O9-
OK1
P64
RBZ
RC3
SBL
TR2
WOQ
7X8
7S9
L.6
C24
DIK
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c666t-6925e9f70645fc2dd6c2cd96972d4a7f453d77bb8df99c65f9b5b896747bc5ab3
IEDL.DBID C6C
ISSN 1474-760X
1465-6906
IngestDate Thu Aug 21 13:55:50 EDT 2025
Thu Dec 05 06:23:15 EST 2024
Fri Sep 05 10:24:41 EDT 2025
Thu Sep 04 16:05:40 EDT 2025
Fri Jul 11 07:39:20 EDT 2025
Thu Apr 03 06:59:56 EDT 2025
Tue Jul 01 03:10:37 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Sat Sep 06 07:24:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Fourth Chromosome
Kc167 Cell
Copy Number Change
Data Coordination Center
Dosage Compensation
Language English
License This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c666t-6925e9f70645fc2dd6c2cd96972d4a7f453d77bb8df99c65f9b5b896747bc5ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231; U01 HG004271; HG004279; IG10793
National Library of Medicine
National Human Genome Research Institute (NHGRI)
National Institute of Diabetes and Digestive and Kidney Diseases
National Institutes of Health (NIH)
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Associazione Italiana per la Ricerca sul Cancro (AIRC)
OpenAccessLink https://doi.org/10.1186/gb-2014-15-8-r70
PMID 25262759
PQID 1566831174
PQPubID 23462
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4289277
osti_scitechconnect_1626745
proquest_miscellaneous_2000280407
proquest_miscellaneous_1634269683
proquest_miscellaneous_1566831174
pubmed_primary_25262759
crossref_primary_10_1186_gb_2014_15_8_r70
crossref_citationtrail_10_1186_gb_2014_15_8_r70
springer_journals_10_1186_gb_2014_15_8_r70
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140828
PublicationDateYYYYMMDD 2014-08-28
PublicationDate_xml – month: 8
  year: 2014
  text: 20140828
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Genome biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2014
Publisher BioMed Central
Publisher_xml – sequence: 0
  name: BioMed Central
– name: BioMed Central
References AM Selmecki (3375_CR24) 2009; 5
KG Guruharsha (3375_CR54) 2011; 147
LG Shaffer (3375_CR12) 2000; 34
JA Birchler (3375_CR23) 2012; 109
JR Nelson (3375_CR80) 2000; 37
M Dierssen (3375_CR11) 2009; 89
P Cherbas (3375_CR37) 1988; 85
BR Graveley (3375_CR87) 2011; 471
SW Scherer (3375_CR8) 2007; 39
JA Birchler (3375_CR62) 2010; 426
T Adachi-Yamada (3375_CR74) 1999; 400
S Castro (3375_CR6) 2007; 99
M Orme (3375_CR77) 2009; 14
RH Devlin (3375_CR20) 1982; 79
R Beroukhim (3375_CR17) 2010; 463
R Deuring (3375_CR49) 2000; 5
N Sher (3375_CR58) 2012; 22
DL Lindsley (3375_CR21) 1972; 71
G Echalier (3375_CR36) 1969; 268
A Bhutkar (3375_CR55) 2008; 179
B Langmead (3375_CR89) 2009; 10
BE Stronach (3375_CR73) 1999; 18
AJ Holland (3375_CR9) 2009; 10
TW Cline (3375_CR42) 1984; 107
M Bettencourt-Dias (3375_CR72) 2004; 432
R Development Core Team (3375_CR92) 2011
EB Dopman (3375_CR59) 2007; 104
K Inoue (3375_CR45) 1990; 344
M Von Grotthuss (3375_CR56) 2010; 20
LE Lundberg (3375_CR65) 2012; 40
M Ashburner (3375_CR4) 2011
D Sturgill (3375_CR103) 2013; 14
AC Spradling (3375_CR3) 1981; 27
DFV Corona (3375_CR48) 2002; 3
H Li (3375_CR93) 2009; 25
PW Lewis (3375_CR52) 2004; 18
K Ui (3375_CR33) 1994; 30A
TL Bailey (3375_CR97) 2009; 37
M Korenjak (3375_CR51) 2004; 119
A Mortazavi (3375_CR102) 2008; 5
JH Malone (3375_CR53) 2012; 13
E Gateff (3375_CR38) 1979
JM Belote (3375_CR27) 1980; 285
Y Benjamini (3375_CR95) 1995; 57
C Trapnell (3375_CR100) 2009; 25
C Trapnell (3375_CR101) 2010; 28
T-M Kim (3375_CR18) 2013; 23
S Yanagawa (3375_CR40) 1998; 273
A Debec (3375_CR32) 1978; 274
T Lipták (3375_CR96) 1958; 3
J Brennecke (3375_CR67) 2003; 113
B Li (3375_CR82) 1996; 93
P Flicek (3375_CR98) 2011; 40
A Schlattl (3375_CR66) 2011; 21
ME Smoot (3375_CR105) 2011; 27
F Zhang (3375_CR47) 2009; 10
N Craddock (3375_CR16) 2010; 464
JJ Emerson (3375_CR60) 2008; 320
J Sebat (3375_CR7) 2004; 305
M Boutros (3375_CR70) 2004; 303
M Ashburner (3375_CR29) 2011
J Xing (3375_CR46) 2009; 19
JW Erickson (3375_CR26) 2007; 5
D Currie (3375_CR34) 1988; 102
A Franke (3375_CR43) 1999; 4
GJ Bashaw (3375_CR44) 1997; 89
JM Cridland (3375_CR61) 2010; 2
S Kumar (3375_CR76) 2000; 7
PV Kharchenko (3375_CR88) 2011; 471
Y Zhang (3375_CR31) 2010; 8
T Derrien (3375_CR94) 2012; 7
AHFM Peters (3375_CR50) 2003; 12
L Ciapponi (3375_CR10) 2004; 14
DB Wheeler (3375_CR71) 2004; 1
M Sammeth (3375_CR104) 2009; 16
S Maere (3375_CR106) 2005; 21
M Guo (3375_CR63) 1994; 266
J Wen (3375_CR68) 2014
I Schneider (3375_CR39) 1972; 27
S Holm (3375_CR107) 1979; 6
M Gorman (3375_CR28) 1994; 10
K Ui (3375_CR35) 1987; 23
B Langmead (3375_CR90) 2012; 9
V Boeva (3375_CR91) 2012; 28
A-M Johansson (3375_CR30) 2007; 26
P Stenberg (3375_CR64) 2009; 5
CM Disteche (3375_CR2) 2012; 46
M Herrmann (3375_CR5) 2005; 4
DF Conrad (3375_CR15) 2010; 464
3375_CR86
P McQuilton (3375_CR99) 2012; 40
M LaFave (3375_CR57) 2011
L Cherbas (3375_CR41) 2011; 21
T Hassold (3375_CR14) 2001; 2
DP Kane (3375_CR81) 2012; 8
P Duesberg (3375_CR25) 2000; 97
KC Zimmermann (3375_CR78) 2002; 156
K Brückner (3375_CR69) 2004; 7
EM Torres (3375_CR1) 2008; 179
D Levin (3375_CR22) 1983; 122
PJ Hastings (3375_CR13) 2009; 10
S Kiessling (3375_CR79) 2006; 11
J-M Schvartzman (3375_CR19) 2010; 10
D Hanahan (3375_CR84) 2000; 100
D Hanahan (3375_CR85) 2011; 144
HD Ryoo (3375_CR75) 2004; 7
B Papp (3375_CR83) 2003; 424
30857560 - Genome Biol. 2019 Mar 11;20(1):53
References_xml – volume: 57
  start-page: 289
  year: 1995
  ident: 3375_CR95
  publication-title: J Roy Statist Soc Ser B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 104
  start-page: 19920
  year: 2007
  ident: 3375_CR59
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0709888104
– volume: 8
  start-page: e1000320
  year: 2010
  ident: 3375_CR31
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000320
– volume: 10
  start-page: 451
  year: 2009
  ident: 3375_CR47
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev.genom.9.081307.164217
– volume: 10
  start-page: R25
  year: 2009
  ident: 3375_CR89
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 5
  start-page: 621
  year: 2008
  ident: 3375_CR102
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1226
– volume: 4
  start-page: 624
  year: 2005
  ident: 3375_CR5
  publication-title: Genet Mol Res
– volume: 102
  start-page: 805
  year: 1988
  ident: 3375_CR34
  publication-title: Development
  doi: 10.1242/dev.102.4.805
– volume: 1
  start-page: 127
  year: 2004
  ident: 3375_CR71
  publication-title: Nat Methods
  doi: 10.1038/nmeth711
– volume: 8
  start-page: e1002659
  year: 2012
  ident: 3375_CR81
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002659
– volume: 25
  start-page: 2078
  year: 2009
  ident: 3375_CR93
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 89
  start-page: 789
  year: 1997
  ident: 3375_CR44
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80262-7
– volume: 14
  start-page: 320
  year: 2013
  ident: 3375_CR103
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-14-320
– volume: 119
  start-page: 181
  year: 2004
  ident: 3375_CR51
  publication-title: Cell
  doi: 10.1016/j.cell.2004.09.034
– volume: 22
  start-page: 64
  year: 2012
  ident: 3375_CR58
  publication-title: Genome Res
  doi: 10.1101/gr.126003.111
– volume: 144
  start-page: 646
  year: 2011
  ident: 3375_CR85
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 471
  start-page: 480
  year: 2011
  ident: 3375_CR88
  publication-title: Nature
  doi: 10.1038/nature09725
– volume: 156
  start-page: 1077
  year: 2002
  ident: 3375_CR78
  publication-title: J Cell Biol
  doi: 10.1083/jcb.20112068
– volume: 93
  start-page: 1596
  year: 1996
  ident: 3375_CR82
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.4.1596
– volume: 5
  start-page: e1000705
  year: 2009
  ident: 3375_CR24
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000705
– volume: 107
  start-page: 231
  year: 1984
  ident: 3375_CR42
  publication-title: Genetics
  doi: 10.1093/genetics/107.2.231
– volume: 14
  start-page: 1360
  year: 2004
  ident: 3375_CR10
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2004.07.019
– start-page: 624
  volume-title: Drosophila: a Laboratory Handbook
  year: 2011
  ident: 3375_CR29
– volume: 16
  start-page: 1117
  year: 2009
  ident: 3375_CR104
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2009.0108
– volume: 19
  start-page: 1516
  year: 2009
  ident: 3375_CR46
  publication-title: Genome Res
  doi: 10.1101/gr.091827.109
– volume: 21
  start-page: 2004
  year: 2011
  ident: 3375_CR66
  publication-title: Genome Res
  doi: 10.1101/gr.122614.111
– volume: 89
  start-page: 887
  year: 2009
  ident: 3375_CR11
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00032.2007
– volume: 10
  start-page: 551
  year: 2009
  ident: 3375_CR13
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2593
– volume: 274
  start-page: 255
  year: 1978
  ident: 3375_CR32
  publication-title: Nature
  doi: 10.1038/274255a0
– volume: 122
  start-page: 1
  year: 1983
  ident: 3375_CR22
  publication-title: Am Nat
  doi: 10.1086/284115
– volume: 99
  start-page: 507
  year: 2007
  ident: 3375_CR6
  publication-title: Ann Bot
  doi: 10.1093/aob/mcl273
– volume: 20
  start-page: 1084
  year: 2010
  ident: 3375_CR56
  publication-title: Genome Res
  doi: 10.1101/gr.103713.109
– volume: 113
  start-page: 25
  year: 2003
  ident: 3375_CR67
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00231-9
– volume: 46
  start-page: 537
  year: 2012
  ident: 3375_CR2
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev-genet-110711-155454
– volume: 463
  start-page: 899
  year: 2010
  ident: 3375_CR17
  publication-title: Nature
  doi: 10.1038/nature08822
– volume: 3
  start-page: 242
  year: 2002
  ident: 3375_CR48
  publication-title: EMBO Rep
  doi: 10.1093/embo-reports/kvf056
– volume: 9
  start-page: 357
  year: 2012
  ident: 3375_CR90
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 21
  start-page: 3448
  year: 2005
  ident: 3375_CR106
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti551
– volume: 37
  start-page: W202
  year: 2009
  ident: 3375_CR97
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp335
– volume: 305
  start-page: 525
  year: 2004
  ident: 3375_CR7
  publication-title: Science
  doi: 10.1126/science.1098918
– volume: 23
  start-page: 707
  year: 1987
  ident: 3375_CR35
  publication-title: In Vitro Cell Dev Biol
  doi: 10.1007/BF02620984
– volume: 7
  start-page: e30377
  year: 2012
  ident: 3375_CR94
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030377
– volume: 25
  start-page: 1105
  year: 2009
  ident: 3375_CR100
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 26
  start-page: 2307
  year: 2007
  ident: 3375_CR30
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601604
– volume: 27
  start-page: 431
  year: 2011
  ident: 3375_CR105
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq675
– volume: 27
  start-page: 353
  year: 1972
  ident: 3375_CR39
  publication-title: J Embryol Exp Morphol
– volume: 266
  start-page: 1999
  year: 1994
  ident: 3375_CR63
  publication-title: Science
  doi: 10.1126/science.266.5193.1999
– volume-title: Genome Res
  year: 2014
  ident: 3375_CR68
– volume: 400
  start-page: 166
  year: 1999
  ident: 3375_CR74
  publication-title: Nature
  doi: 10.1038/22112
– volume-title: PhD thesis
  year: 2011
  ident: 3375_CR57
– volume: 273
  start-page: 32353
  year: 1998
  ident: 3375_CR40
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.48.32353
– volume: 2
  start-page: 83
  year: 2010
  ident: 3375_CR61
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evq001
– volume: 18
  start-page: 2929
  year: 2004
  ident: 3375_CR52
  publication-title: Genes Dev
  doi: 10.1101/gad.1255204
– start-page: 39
  volume-title: Drosophila: a Laboratory Handbook
  year: 2011
  ident: 3375_CR4
– volume: 285
  start-page: 573
  year: 1980
  ident: 3375_CR27
  publication-title: Nature
  doi: 10.1038/285573a0
– volume: 179
  start-page: 737
  year: 2008
  ident: 3375_CR1
  publication-title: Genetics
  doi: 10.1534/genetics.108.090878
– start-page: 517
  volume-title: Invertebrate Systems In Vitro Fifth International Conference on Invertebrate Tissue Culture
  year: 1979
  ident: 3375_CR38
– volume: 5
  start-page: 355
  year: 2000
  ident: 3375_CR49
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80430-X
– volume: 6
  start-page: 65
  year: 1979
  ident: 3375_CR107
  publication-title: Scand J Statist
– volume: 79
  start-page: 1200
  year: 1982
  ident: 3375_CR20
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.79.4.1200
– volume: 471
  start-page: 473
  year: 2011
  ident: 3375_CR87
  publication-title: Nature
  doi: 10.1038/nature09715
– volume: 5
  start-page: e332
  year: 2007
  ident: 3375_CR26
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050332
– volume: 10
  start-page: 102
  year: 2010
  ident: 3375_CR19
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2781
– volume: 11
  start-page: 497
  year: 2006
  ident: 3375_CR79
  publication-title: Apoptosis
  doi: 10.1007/s10495-006-5341-6
– volume: 4
  start-page: 117
  year: 1999
  ident: 3375_CR43
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80193-8
– volume: 344
  start-page: 461
  year: 1990
  ident: 3375_CR45
  publication-title: Nature
  doi: 10.1038/344461a0
– volume: 432
  start-page: 980
  year: 2004
  ident: 3375_CR72
  publication-title: Nature
  doi: 10.1038/nature03160
– volume: 7
  start-page: 73
  year: 2004
  ident: 3375_CR69
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2004.06.007
– volume: 2
  start-page: 280
  year: 2001
  ident: 3375_CR14
  publication-title: Nat Rev Genet
  doi: 10.1038/35066065
– volume: 40
  start-page: D84
  year: 2011
  ident: 3375_CR98
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr991
– volume: 28
  start-page: 511
  year: 2010
  ident: 3375_CR101
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1621
– volume: 40
  start-page: D706
  year: 2012
  ident: 3375_CR99
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1030
– volume: 7
  start-page: 1039
  year: 2000
  ident: 3375_CR76
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4400756
– volume: 12
  start-page: 1577
  year: 2003
  ident: 3375_CR50
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00477-5
– volume: 424
  start-page: 194
  year: 2003
  ident: 3375_CR83
  publication-title: Nature
  doi: 10.1038/nature01771
– volume: 10
  start-page: 478
  year: 2009
  ident: 3375_CR9
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2718
– volume: 85
  start-page: 2096
  year: 1988
  ident: 3375_CR37
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.85.7.2096
– volume: 39
  start-page: S7
  year: 2007
  ident: 3375_CR8
  publication-title: Nat Genet
  doi: 10.1038/ng2093
– volume: 21
  start-page: 301
  year: 2011
  ident: 3375_CR41
  publication-title: Genome Res
  doi: 10.1101/gr.112961.110
– volume: 426
  start-page: 119
  year: 2010
  ident: 3375_CR62
  publication-title: Biochem J
  doi: 10.1042/BJ20091617
– volume: 27
  start-page: 193
  year: 1981
  ident: 3375_CR3
  publication-title: Cell
  doi: 10.1016/0092-8674(81)90373-1
– volume: 23
  start-page: 217
  year: 2013
  ident: 3375_CR18
  publication-title: Genome Res
  doi: 10.1101/gr.140301.112
– volume: 30A
  start-page: 209
  year: 1994
  ident: 3375_CR33
  publication-title: In Vitro Cell Dev Biol Anim
  doi: 10.1007/BF02632042
– volume: 28
  start-page: 423
  year: 2012
  ident: 3375_CR91
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr670
– volume: 3
  start-page: 171
  year: 1958
  ident: 3375_CR96
  publication-title: Magyar Tud Akad Mat Kutato Int Közl
– volume: 7
  start-page: 491
  year: 2004
  ident: 3375_CR75
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2004.08.019
– volume: 13
  start-page: r28
  year: 2012
  ident: 3375_CR53
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-4-r28
– volume: 37
  start-page: 549
  year: 2000
  ident: 3375_CR80
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.01997.x
– volume: 34
  start-page: 297
  year: 2000
  ident: 3375_CR12
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.34.1.297
– volume: 147
  start-page: 690
  year: 2011
  ident: 3375_CR54
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.047
– volume: 40
  start-page: 5926
  year: 2012
  ident: 3375_CR65
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks245
– volume: 100
  start-page: 57
  year: 2000
  ident: 3375_CR84
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81683-9
– volume: 109
  start-page: 14746
  year: 2012
  ident: 3375_CR23
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1207726109
– volume: 10
  start-page: 376
  year: 1994
  ident: 3375_CR28
  publication-title: Trends Genet
  doi: 10.1016/0168-9525(94)90135-X
– volume: 97
  start-page: 14295
  year: 2000
  ident: 3375_CR25
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.26.14295
– volume: 320
  start-page: 1629
  year: 2008
  ident: 3375_CR60
  publication-title: Science
  doi: 10.1126/science.1158078
– ident: 3375_CR86
– volume: 268
  start-page: 1771
  year: 1969
  ident: 3375_CR36
  publication-title: CR Hebd Seances Acad Sci Ser D Sci Nat
– volume: 179
  start-page: 1657
  year: 2008
  ident: 3375_CR55
  publication-title: Genetics
  doi: 10.1534/genetics.107.086108
– volume: 14
  start-page: 950
  year: 2009
  ident: 3375_CR77
  publication-title: Apoptosis
  doi: 10.1007/s10495-009-0358-2
– volume: 303
  start-page: 832
  year: 2004
  ident: 3375_CR70
  publication-title: Science
  doi: 10.1126/science.1091266
– volume: 18
  start-page: 6172
  year: 1999
  ident: 3375_CR73
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203125
– volume: 464
  start-page: 704
  year: 2010
  ident: 3375_CR15
  publication-title: Nature
  doi: 10.1038/nature08516
– volume: 71
  start-page: 157
  year: 1972
  ident: 3375_CR21
  publication-title: Genetics
  doi: 10.1093/genetics/71.1.157
– volume: 5
  start-page: e1000465
  year: 2009
  ident: 3375_CR64
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000465
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2011
  ident: 3375_CR92
– volume: 464
  start-page: 713
  year: 2010
  ident: 3375_CR16
  publication-title: Nature
  doi: 10.1038/nature08979
– reference: 30857560 - Genome Biol. 2019 Mar 11;20(1):53
SSID ssj0019426
ssj0017866
Score 2.4225714
Snippet Background Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but...
Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in...
Background: Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but...
BACKGROUND: Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage R70
SubjectTerms Animal Genetics and Genomics
Animals
Bantam
BASIC BIOLOGICAL SCIENCES
biochemical pathways
Bioinformatics
Biomedical and Life Sciences
carcinogenesis
Cell Line
Cell Survival
copy number change
data coordination center
DNA
DNA - analysis
dosage compensation
Drosophila
Drosophila melanogaster - cytology
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Evolution, Molecular
Evolutionary Biology
Female
fourth chromosome
Gene Dosage
Genetic Fitness
Genetic Variation
Human Genetics
Kc167 cell
Life Sciences
Male
Microbial Genetics and Genomics
microRNA
MicroRNAs - genetics
natural selection
neoplasm cells
neoplasms
phenotype
Plant Genetics and Genomics
proto-oncogenes
Receptor Protein-Tyrosine Kinases - genetics
Selection, Genetic
sequence analysis
Sequence Analysis, DNA
Sex Chromosomes - genetics
tissue culture
Tissue Culture Techniques
tumor suppressor genes
vascular endothelial growth factor receptors
vascular endothelial growth factors
Title DNA copy number evolution in Drosophila cell lines
URI https://link.springer.com/article/10.1186/gb-2014-15-8-r70
https://www.ncbi.nlm.nih.gov/pubmed/25262759
https://www.proquest.com/docview/1566831174
https://www.proquest.com/docview/1634269683
https://www.proquest.com/docview/2000280407
https://www.osti.gov/servlets/purl/1626745
https://pubmed.ncbi.nlm.nih.gov/PMC4289277
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBclpbCXsbX78LIWFfqygUitbz22aUMotA9lhbAXYUlWFyhOSdJB_vudbCc0axPoi198MubudHe_O-kOoRNWUIg780iM55JwzgUxQkcSSsZ8DAEihJQauL6Rwzt-NRKjNt-R7sI8r9_nWvbuHcgx5yQXRJOpAnC-K8DsJl3uy_6qXmDA0SyLkK-sWnM6nQlsntcCypfnIv8rjtY-Z_ABvW-DRXzWSPcj2imrfbTXjI9cHCB6cXOG_eRxgZu5Hrj82yoSHlf4YlqPKBg_FDhl53GKJ2ef0N3g8ld_SNoZCMQDsJgTaagoTVSprVz0NATpqQ9GGkUDL1TkggWlnNMhGuOliMYJp40ElOC8KBz7jDrVpCq_IlwqQU9FIQDwgBsHpMJZobwB-WgZmcwz1Fsyyfq2QXiaU_Fga6Cgpb13NrHV5sJqC2zN0I_VisemOcYW2m7iuwXHnrrT-nSMx89tDoBKcZGh46U4LOh3YktRlZOnmU34UrMcgNMWGsnSjVyg20xD60QimCyVoS-NmFf_TAVNzZpNhtSaAqwIUg_u9TfV-E_dixvQm6EKvvlzqSq2NQKzjaz49hbiLnpXq_IpGDT9HXXm06fyEOKguTuqt8BRnUWA5-35739mSwLz
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA_lpLQvRfu51doU-tJC0M13HuVUrq3ek4JvYZNs7IHsyd1Z8L_vzO7e4bUq-LyzyzIzycxvJvkNIV9FxSHvLDNzUWompVTMKZtZqoWIOSXIELA0cDrWo3P580Jd9PUOvAtzt39fWr13GcCOpWSlYpbNDIDzDexbIkv-UA9X_QIHgWbZhLznrbWgM5jC4rkvofz_XOQ_zdE25hxvkld9skgPOutukWd185o878ZH3r4h_HB8QOP0-pZ2cz1o_ad3JDpp6OGsHVEwuaooVucp5pPzt-T8-OhsOGL9DAQWAVgsmHZc1S4bpJXLkaekI4_JaWd4kpXJUolkTAg2ZeeiVtkFFazTgBJCVFUQ78igmTb1B0Jro_i-qhQAHgjjgFSkqEx0YB-rs9BlQfaWSvKxJwjHORVXvgUKVvvL4FGtvlTeelBrQb6t3rjuyDEekd1GvXsI7MhOG_EYT1z4EgCVkaogX5bm8ODfqJaqqac3c4_40ooSgNMjMlrgjVyQe1iGt4VE2LJMQd53Zl79M1ccyZpdQcyaA6wEkIN7_Ukz-d1ycQN6c9zAN78vXcX3m8D8QVV8fIrwZ_JidHZ64k9-jH9tk5etW-_D5mZ3yGAxu6k_QU60CLvtcvgLjOwD3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA_liqUvUrWtW1ubQl8shHPznUe587BfRx8UfAubZKMHsnfcrQX_-0724-CsCj7v7LLMTDLzm0x-g9BXVlDIO_NIjOeScM4FMUJHEkrGfAwBMoRUGvg9lWcX_MeluOwKbqu-270_kmzvNCSWpqoeLkJsl7iWwysH1s05yQXRZKkAsr9MTF2ppW8kR-tTBAPhpz-afOCtjVA0mMOSeijN_L9b8t6RaROJJm_QdpdC4pPW5jvoRVntoq12qOTdHqLj6Qn288Udbqd94PJv5154VuHxshlcMLspcKrZ45Rlrt6ii8np-eiMdJMRiAe4URNpqChNVIlsLnoagvTUByONooEXKnLBglLO6RCN8VJE44TTRgJ2cF4Ujr1Dg2pelfsIl0rQY1EIgEEQ3AG_cFYob8BqWkYm8wwNeyVZ39GGp-kVN7aBD1raK2eTWm0urLag1gwdrd9YtJQZT8geJL1bCPeJs9an5h5f2xxgluIiQ196c1jw-qSWoirntyubUKdmOcCpJ2QkS_d0Qe5xGdqUF2EjUxl635p5_c9U0EThbDKkNhxgLZCYuTefVLPrhqEbMJ2hCr75rXcV220Nq0dV8eE5wp_Rqz_jif31ffrzAL1uvPoYdjz9EQ3q5W35CRKl2h02q-EfQ7kMLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+copy+number+evolution+in+Drosophila+cell+lines&rft.jtitle=Genome+biology&rft.au=Lee%2C+Hangnoh&rft.au=McManus%2C+C+Joel&rft.au=Cho%2C+Dong-Yeon&rft.au=Eaton%2C+Matthew&rft.date=2014-08-28&rft.eissn=1474-760X&rft.volume=15&rft.issue=8&rft.spage=R70&rft_id=info:doi/10.1186%2Fgb-2014-15-8-r70&rft_id=info%3Apmid%2F25262759&rft.externalDocID=25262759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon