Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study

Background Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions. Results We present a computational pipeline for detectin...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 13; no. 1; p. 331
Main Authors Sun, Lei, Zhang, Zhihua, Bailey, Timothy L, Perkins, Andrew C, Tallack, Michael R, Xu, Zhao, Liu, Hui
Format Journal Article
LanguageEnglish
Published London BioMed Central 13.12.2012
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-13-331

Cover

Abstract Background Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions. Results We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions. Conclusions Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.
AbstractList Doc number: 331 Abstract Background: Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions. Results: We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions. Conclusions: Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.
Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions. We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions. Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.
Background: Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions. Results: We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions. Conclusions: Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.
Background Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions. Results We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions. Conclusions Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.
Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions.BACKGROUNDStudy on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions.We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions.RESULTSWe present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions.Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.CONCLUSIONSOur method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.
Abstract Background Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions. Results We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions. Conclusions Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.
Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to uncover their functions. We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further filtering known transcripts and those with high protein coding potential, using a newly developed program called lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions. Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs can be given high priority in further functional studies.
ArticleNumber 331
Audience Academic
Author Tallack, Michael R
Bailey, Timothy L
Liu, Hui
Sun, Lei
Zhang, Zhihua
Xu, Zhao
Perkins, Andrew C
AuthorAffiliation 2 Center for Computational Biology, and Laboratory of Disease Genomics and Personalized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, No.7 Beitucheng West Road, Chaoyang District, Beijing, 100029, PR China
4 Mater Medical Research Institute, Mater Hospital, Brisbane, 4101, Queensland, Australia
3 Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Queensland, Australia
1 School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, 221008, JiangSu, PR China
AuthorAffiliation_xml – name: 2 Center for Computational Biology, and Laboratory of Disease Genomics and Personalized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, No.7 Beitucheng West Road, Chaoyang District, Beijing, 100029, PR China
– name: 1 School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, 221008, JiangSu, PR China
– name: 4 Mater Medical Research Institute, Mater Hospital, Brisbane, 4101, Queensland, Australia
– name: 3 Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Queensland, Australia
Author_xml – sequence: 1
  givenname: Lei
  surname: Sun
  fullname: Sun, Lei
  organization: School of Information and Electrical Engineering, China University of Mining and Technology, Center for Computational Biology, and Laboratory of Disease Genomics and Personalized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Institute for Molecular Bioscience, The University of Queensland
– sequence: 2
  givenname: Zhihua
  surname: Zhang
  fullname: Zhang, Zhihua
  organization: Center for Computational Biology, and Laboratory of Disease Genomics and Personalized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences
– sequence: 3
  givenname: Timothy L
  surname: Bailey
  fullname: Bailey, Timothy L
  organization: Institute for Molecular Bioscience, The University of Queensland
– sequence: 4
  givenname: Andrew C
  surname: Perkins
  fullname: Perkins, Andrew C
  organization: Mater Medical Research Institute, Mater Hospital
– sequence: 5
  givenname: Michael R
  surname: Tallack
  fullname: Tallack, Michael R
  organization: Mater Medical Research Institute, Mater Hospital
– sequence: 6
  givenname: Zhao
  surname: Xu
  fullname: Xu, Zhao
  organization: School of Information and Electrical Engineering, China University of Mining and Technology
– sequence: 7
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  email: lhcumt@hotmail.com
  organization: School of Information and Electrical Engineering, China University of Mining and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23237380$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB-wZ4UisSmLFD9iO94gjSoeIypALaxYWI7tDJ5m7GmcFObfc8MMw0wFqIqi3DjfObk-vsfZQYjBZdlTjM4wrvhLXApcEIxYgWlBKX6QHW2XDnbqw-w4pTlCWFSIPcoOCSVU0AodZV8_dc560_sY8tjkId66Nm9jmEEZChOth_LywyTltU7O5oDBW3HlbnKrez1qFnFILn_fNji_DtFcx6HPUz_Y1ePsYaPb5J5snifZlzevP5-_Ky4-vp2eTy4KwznvC1yWrJG2lBr6NcyZinEkCa10IyoupTW4roUouamJxZJj4hrNuBQ1EZWoKD3JpmtfG_VcLTu_0N1KRe3Vr4XYzZTuem9ap6SQxNYaG8NJWWumCROaI84a0ZQ14uCF115DWOrVd922W0OM1Bi6GlNVY6oKUwWhg-bVWrMc6oWzxoW-0-1eI_tfgv-mZvFWUQbbkgIMTjcGXbwZXOrVwifj2lYHB-HCfzDjsHPE7oMSLOBGgD6_g87j0AU4CYVJJRFMAKn-UDMN-fjQRGjRjKZqwmhZSlYhAtTZXyi4rFt4A0PZeFjfE7zYEwDTux_9TA8pqenV5T77bDe_bXC_pxQAvgZMF1PqXKOM7_U4s9CFb_93MuiO8B6HuRmABGiYuW4ntX9pfgJclRK1
CitedBy_id crossref_primary_10_1038_s41598_017_13844_9
crossref_primary_10_1111_age_12539
crossref_primary_10_1016_j_celrep_2016_04_087
crossref_primary_10_1186_s12864_017_3817_0
crossref_primary_10_1016_j_semarthrit_2017_01_003
crossref_primary_10_1371_journal_pone_0283770
crossref_primary_10_3390_toxics10120724
crossref_primary_10_7717_peerj_18542
crossref_primary_10_1007_s00438_019_01593_5
crossref_primary_10_1038_s41597_023_02649_3
crossref_primary_10_1111_jcmm_70453
crossref_primary_10_3389_fbioe_2015_00077
crossref_primary_10_1186_s12985_017_0882_6
crossref_primary_10_1016_j_ymeth_2013_03_019
crossref_primary_10_1007_s13258_019_00799_6
crossref_primary_10_3390_plants12061377
crossref_primary_10_3390_genes9120609
crossref_primary_10_1007_s11010_024_04933_1
crossref_primary_10_1093_bib_bbv067
crossref_primary_10_1007_s13721_016_0129_2
crossref_primary_10_1186_s12864_019_5894_8
crossref_primary_10_1186_s12985_016_0592_5
crossref_primary_10_1089_dna_2019_5340
crossref_primary_10_3390_ijerph14030270
crossref_primary_10_1161_CIRCRESAHA_117_310910
crossref_primary_10_1186_1745_6150_9_15
crossref_primary_10_1186_s12915_021_01127_9
crossref_primary_10_1186_s13075_015_0677_3
crossref_primary_10_1016_j_bcmd_2016_03_002
crossref_primary_10_1074_jbc_RA120_013017
crossref_primary_10_1186_s13046_020_01622_x
crossref_primary_10_3389_fpls_2022_784511
crossref_primary_10_1111_1744_7917_12443
crossref_primary_10_1038_s41419_022_05129_5
crossref_primary_10_1093_bib_bbw143
crossref_primary_10_1007_s00438_014_0882_9
crossref_primary_10_1038_s41598_017_10853_6
crossref_primary_10_1186_1480_9222_16_11
crossref_primary_10_1016_j_critrevonc_2022_103849
crossref_primary_10_1093_nar_gkt818
crossref_primary_10_1371_journal_pone_0071152
crossref_primary_10_1186_1471_2164_15_592
crossref_primary_10_1371_journal_pone_0158784
crossref_primary_10_1039_C3MB70608G
crossref_primary_10_1016_j_canlet_2013_10_021
crossref_primary_10_1371_journal_pone_0084500
crossref_primary_10_18632_aging_102652
crossref_primary_10_1007_s10126_016_9689_5
crossref_primary_10_1093_database_bay067
crossref_primary_10_3892_mmr_2019_10300
crossref_primary_10_1002_jcb_27113
crossref_primary_10_1016_j_gene_2019_04_014
crossref_primary_10_3390_insects10080245
crossref_primary_10_1534_g3_116_037069
crossref_primary_10_18632_oncotarget_11304
crossref_primary_10_1002_jcb_27319
crossref_primary_10_1089_dna_2018_4312
crossref_primary_10_3389_fevo_2022_842704
crossref_primary_10_1007_s11816_015_0363_6
crossref_primary_10_3390_ijms21062117
crossref_primary_10_1371_journal_pone_0139654
crossref_primary_10_1093_jxb_erw057
crossref_primary_10_18632_aging_202989
crossref_primary_10_1186_s12935_023_03121_3
crossref_primary_10_1186_s13071_020_04457_9
crossref_primary_10_3390_foods13020300
crossref_primary_10_1038_s41598_017_05279_z
crossref_primary_10_3390_f8090348
crossref_primary_10_1038_s41598_018_33274_5
crossref_primary_10_3390_genes8120366
crossref_primary_10_3389_fgene_2019_00777
crossref_primary_10_1080_17435390_2020_1731857
crossref_primary_10_1111_nph_13718
crossref_primary_10_1186_s12864_015_1507_3
crossref_primary_10_1007_s00425_014_2168_1
crossref_primary_10_1080_21505594_2018_1475795
crossref_primary_10_1128_spectrum_01456_21
crossref_primary_10_1186_s12902_020_00593_6
crossref_primary_10_1186_s12935_022_02752_2
crossref_primary_10_3390_agronomy9100629
crossref_primary_10_1007_s12374_021_09324_3
crossref_primary_10_1016_j_brainresbull_2020_03_015
crossref_primary_10_1093_nar_gkt1222
crossref_primary_10_1186_s12859_016_1251_y
crossref_primary_10_1186_s12864_021_07679_y
crossref_primary_10_2527_jas2016_1297
crossref_primary_10_1007_s00468_019_01812_x
crossref_primary_10_1016_j_canlet_2014_11_005
crossref_primary_10_2217_epi_2018_0182
Cites_doi 10.1186/gb-2009-10-3-r25
10.1093/bioinformatics/btp352
10.3389/fgene.2012.00017
10.1038/nature10887
10.1126/science.1112014
10.1038/nmeth0511-379
10.1093/bioinformatics/btr398
10.1126/science.1103388
10.1111/j.2517-6161.1995.tb02031.x
10.1186/gb-2007-8-3-r43
10.1016/j.cell.2007.05.022
10.1101/gad.1324305
10.1101/gad.17446611
10.1038/nbt.1633
10.1371/journal.pone.0017305
10.1186/1471-2105-12-77
10.1093/bioinformatics/btr209
10.1146/annurev-biochem-051410-092902
10.1101/gr.133009.111
10.1093/bioinformatics/btr355
10.1093/bioinformatics/btl048
10.1007/978-0-387-98141-3
10.1093/nar/gkl842
10.1126/science.1155472
10.1038/nbt.1621
10.1371/journal.pcbi.1000176
10.1038/nrg2521
10.1038/nmeth.1613
10.1186/gb-2011-12-3-r22
10.1038/nprot.2012.016
10.1093/nar/gkr1175
10.1038/emboj.2011.459
10.1093/bioinformatics/btp120
10.1101/gr.4086505
10.1016/j.cell.2011.03.014
10.1093/nar/30.1.38
10.1128/MCB.13.5.2776
10.1038/375318a0
10.1038/nmeth.1311
10.1038/nature01266
10.1126/science.1138341
10.1186/gb-2010-11-8-r86
10.1038/nature10398
10.1038/nmeth.1226
ContentType Journal Article
Copyright Sun et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2012 BioMed Central Ltd.
2012 Sun et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Sun et al.; licensee BioMed Central Ltd. 2012 Sun et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Sun et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: 2012 Sun et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Sun et al.; licensee BioMed Central Ltd. 2012 Sun et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7TM
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-13-331
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Nucleic Acids Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
Nucleic Acids Abstracts
DatabaseTitleList Publicly Available Content Database

Engineering Research Database

MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 331
ExternalDocumentID oai_doaj_org_article_9792dba1cc624ba5a257a6065f7f4b06
10.1186/1471-2105-13-331
PMC3577497
2896251551
A534495802
23237380
10_1186_1471_2105_13_331
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Queensland Australia
Australia
GeographicLocations_xml – name: Queensland Australia
– name: Australia
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
2VQ
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7TM
5PM
123
ADTOC
C1A
H13
UNPAY
ID FETCH-LOGICAL-c666t-1445f9d49a147c5ec85609238af78699dc1bb7746cb2d19612efa5697b2787833
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:53:55 EDT 2025
Sun Oct 26 04:06:33 EDT 2025
Tue Sep 30 16:58:33 EDT 2025
Mon Oct 06 18:07:15 EDT 2025
Fri Sep 05 07:39:25 EDT 2025
Mon Oct 06 18:18:59 EDT 2025
Mon Oct 20 22:50:27 EDT 2025
Mon Oct 20 16:58:00 EDT 2025
Thu Oct 16 16:17:25 EDT 2025
Mon Jul 21 05:40:01 EDT 2025
Wed Oct 01 04:15:22 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Sat Sep 06 07:27:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Differential Expression Analysis
ncRNA Candidate
Partial Transcript
Computational Pipeline
Initial Assembly
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c666t-1445f9d49a147c5ec85609238af78699dc1bb7746cb2d19612efa5697b2787833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-13-331
PMID 23237380
PQID 1289037328
PQPubID 44065
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_9792dba1cc624ba5a257a6065f7f4b06
unpaywall_primary_10_1186_1471_2105_13_331
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3577497
proquest_miscellaneous_1315619605
proquest_miscellaneous_1312171210
proquest_journals_1289037328
gale_infotracmisc_A534495802
gale_infotracacademiconefile_A534495802
gale_incontextgauss_ISR_A534495802
pubmed_primary_23237380
crossref_citationtrail_10_1186_1471_2105_13_331
crossref_primary_10_1186_1471_2105_13_331
springer_journals_10_1186_1471_2105_13_331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-13
PublicationDateYYYYMMDD 2012-12-13
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-13
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2012
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References ME Dinger (5681_CR26) 2008; 4
E Bernstein (5681_CR12) 2005; 19
B Langmead (5681_CR31) 2009; 10
M Garber (5681_CR23) 2011; 8
SY Ng (5681_CR8) 2012; 31
5681_CR46
C Trapnell (5681_CR19) 2009; 25
D Bu (5681_CR48) 2012; 40
M Guttman (5681_CR14) 2010; 28
KD Pruitt (5681_CR33) 2007; 35
J Goecks (5681_CR41) 2010; 11
PP Amaral (5681_CR2) 2008; 319
B Giardine (5681_CR43) 2005; 15
MF Lin (5681_CR40) 2011; 27
P Bertone (5681_CR5) 2004; 306
TR Mercer (5681_CR1) 2009; 10
RD Finn (5681_CR44) 2008; 36
T Hubbard (5681_CR32) 2002; 30
TF Consortium (5681_CR50) 2005; 309
M Guttman (5681_CR7) 2011; 477
T Nagano (5681_CR15) 2011; 145
C Trapnell (5681_CR22) 2012; 7
5681_CR36
5681_CR34
AC Perkins (5681_CR29) 1995; 375
JL Rinn (5681_CR6) 2007; 129
H Wickham (5681_CR47) 2009
5681_CR30
A Mortazavi (5681_CR17) 2008; 5
A Roberts (5681_CR18) 2011; 12
D Blankenberg (5681_CR42) 2011; 27
M Guttman (5681_CR11) 2012; 482
I Kozarewa (5681_CR20) 2009; 6
MN Cabili (5681_CR13) 2011; 25
MR Tallack (5681_CR27) 2012
H Li (5681_CR37) 2009; 25
IJ Miller (5681_CR28) 1993; 13
JL Rinn (5681_CR9) 2012; 81
C Trapnell (5681_CR21) 2010; 28
Y Benjamini (5681_CR45) 1995; 57
P Kapranov (5681_CR4) 2007; 316
A Pauli (5681_CR16) 2012; 22
Y Okazaki (5681_CR25) 2002; 420
F Hsu (5681_CR35) 2006; 22
5681_CR10
A Roberts (5681_CR38) 2011; 27
X Robin (5681_CR39) 2011; 12
H Nakaya (5681_CR24) 2007; 8
M Baker (5681_CR3) 2011; 8
LT Sam (5681_CR51) 2011; 6
KJ Livak (5681_CR49) 2001
19043537 - PLoS Comput Biol. 2008 Nov;4(11):e1000176
17604720 - Cell. 2007 Jun 29;129(7):1311-23
21697122 - Bioinformatics. 2011 Sep 1;27(17):2325-9
17386095 - Genome Biol. 2007;8(3):R43
21890647 - Genes Dev. 2011 Sep 15;25(18):1915-27
18039703 - Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8
11846609 - Methods. 2001 Dec;25(4):402-8
21414208 - BMC Bioinformatics. 2011;12:77
17130148 - Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5
19287394 - Nat Methods. 2009 Apr;6(4):291-5
22135294 - Nucleic Acids Res. 2012 Jan;40(Database issue):D210-5
19188922 - Nat Rev Genet. 2009 Mar;10(3):155-9
19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
12466851 - Nature. 2002 Dec 5;420(6915):563-73
22110045 - Genome Res. 2012 Mar;22(3):577-91
22193719 - EMBO J. 2012 Feb 1;31(3):522-33
22835905 - Genome Res. 2012 Dec;22(12):2385-98
20738864 - Genome Biol. 2010;11(8):R86
17510325 - Science. 2007 Jun 8;316(5830):1484-8
16024654 - Genes Dev. 2005 Jul 15;19(14):1635-55
22337053 - Nature. 2012 Feb 16;482(7385):339-46
16169926 - Genome Res. 2005 Oct;15(10):1451-5
22363342 - Front Genet. 2012 Feb 15;3:17
22663078 - Annu Rev Biochem. 2012;81:145-66
21496640 - Cell. 2011 Apr 15;145(2):178-81
15539566 - Science. 2004 Dec 24;306(5705):2242-6
7753195 - Nature. 1995 May 25;375(6529):318-22
19261174 - Genome Biol. 2009;10(3):R25
21874018 - Nature. 2011 Sep 15;477(7364):295-300
18516045 - Nat Methods. 2008 Jul;5(7):621-8
20436464 - Nat Biotechnol. 2010 May;28(5):511-5
21390249 - PLoS One. 2011;6(3):e17305
21410973 - Genome Biol. 2011;12(3):R22
21623353 - Nat Methods. 2011 Jun;8(6):469-77
21775304 - Bioinformatics. 2011 Sep 1;27(17):2426-8
16141072 - Science. 2005 Sep 2;309(5740):1559-63
19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
16500937 - Bioinformatics. 2006 May 1;22(9):1036-46
11752248 - Nucleic Acids Res. 2002 Jan 1;30(1):38-41
18369136 - Science. 2008 Mar 28;319(5871):1787-9
21685081 - Bioinformatics. 2011 Jul 1;27(13):i275-82
22383036 - Nat Protoc. 2012 Mar;7(3):562-78
20436462 - Nat Biotechnol. 2010 May;28(5):503-10
7682653 - Mol Cell Biol. 1993 May;13(5):2776-86
References_xml – volume: 10
  start-page: R25
  issue: 3
  year: 2009
  ident: 5681_CR31
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-3-r25
– volume: 25
  start-page: 2078
  issue: 16
  year: 2009
  ident: 5681_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– ident: 5681_CR10
  doi: 10.3389/fgene.2012.00017
– volume: 482
  start-page: 339
  issue: 7385
  year: 2012
  ident: 5681_CR11
  publication-title: Nature
  doi: 10.1038/nature10887
– volume: 309
  start-page: 1559
  issue: 5740
  year: 2005
  ident: 5681_CR50
  publication-title: Science
  doi: 10.1126/science.1112014
– volume: 8
  start-page: 379
  issue: 5
  year: 2011
  ident: 5681_CR3
  publication-title: Nat Meth
  doi: 10.1038/nmeth0511-379
– volume: 27
  start-page: 2426
  issue: 17
  year: 2011
  ident: 5681_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr398
– volume: 306
  start-page: 2242
  issue: 5705
  year: 2004
  ident: 5681_CR5
  publication-title: Science
  doi: 10.1126/science.1103388
– volume: 57
  start-page: 289
  year: 1995
  ident: 5681_CR45
  publication-title: J Royal Stat Soc
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 8
  start-page: R43
  issue: 3
  year: 2007
  ident: 5681_CR24
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-3-r43
– volume: 129
  start-page: 1311
  issue: 7
  year: 2007
  ident: 5681_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.022
– volume: 19
  start-page: 1635
  issue: 14
  year: 2005
  ident: 5681_CR12
  publication-title: Genes & Dev
  doi: 10.1101/gad.1324305
– volume: 25
  start-page: 1915
  issue: 18
  year: 2011
  ident: 5681_CR13
  publication-title: Genes & Dev
  doi: 10.1101/gad.17446611
– start-page: 402
  volume-title: Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method
  year: 2001
  ident: 5681_CR49
– volume: 28
  start-page: 503
  issue: 5
  year: 2010
  ident: 5681_CR14
  publication-title: Nat Biotech
  doi: 10.1038/nbt.1633
– volume: 6
  start-page: e17305
  issue: 3
  year: 2011
  ident: 5681_CR51
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0017305
– volume: 12
  start-page: 77
  year: 2011
  ident: 5681_CR39
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 27
  start-page: i275
  issue: 13
  year: 2011
  ident: 5681_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr209
– volume: 81
  start-page: 145
  year: 2012
  ident: 5681_CR9
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-051410-092902
– volume: 22
  start-page: 577
  issue: 3
  year: 2012
  ident: 5681_CR16
  publication-title: Genome Res
  doi: 10.1101/gr.133009.111
– volume: 27
  start-page: 2325
  issue: 17
  year: 2011
  ident: 5681_CR38
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr355
– volume: 22
  start-page: 1036
  issue: 9
  year: 2006
  ident: 5681_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl048
– volume-title: ggplot2: elegant graphics for data analysis
  year: 2009
  ident: 5681_CR47
  doi: 10.1007/978-0-387-98141-3
– volume-title: Genome Research
  year: 2012
  ident: 5681_CR27
– ident: 5681_CR30
– ident: 5681_CR46
– volume: 35
  start-page: D61
  issue: suppl 1
  year: 2007
  ident: 5681_CR33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl842
– ident: 5681_CR34
– volume: 319
  start-page: 1787
  issue: 5871
  year: 2008
  ident: 5681_CR2
  publication-title: Science
  doi: 10.1126/science.1155472
– volume: 28
  start-page: 511
  issue: 5
  year: 2010
  ident: 5681_CR21
  publication-title: Nat Biotech
  doi: 10.1038/nbt.1621
– volume: 4
  start-page: e1000176
  issue: 11
  year: 2008
  ident: 5681_CR26
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000176
– volume: 36
  start-page: D281
  issue: suppl 1
  year: 2008
  ident: 5681_CR44
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 155
  issue: 3
  year: 2009
  ident: 5681_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2521
– volume: 8
  start-page: 469
  issue: 6
  year: 2011
  ident: 5681_CR23
  publication-title: Nat Meth
  doi: 10.1038/nmeth.1613
– volume: 12
  start-page: R22
  issue: 3
  year: 2011
  ident: 5681_CR18
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-3-r22
– ident: 5681_CR36
– volume: 7
  start-page: 562
  issue: 3
  year: 2012
  ident: 5681_CR22
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2012.016
– volume: 40
  start-page: D210
  issue: D1
  year: 2012
  ident: 5681_CR48
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1175
– volume: 31
  start-page: 522
  issue: 3
  year: 2012
  ident: 5681_CR8
  publication-title: EMBO J
  doi: 10.1038/emboj.2011.459
– volume: 25
  start-page: 1105
  issue: 9
  year: 2009
  ident: 5681_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 15
  start-page: 1451
  issue: 10
  year: 2005
  ident: 5681_CR43
  publication-title: Genome Res
  doi: 10.1101/gr.4086505
– volume: 145
  start-page: 178
  issue: 2
  year: 2011
  ident: 5681_CR15
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.014
– volume: 30
  start-page: 38
  year: 2002
  ident: 5681_CR32
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/30.1.38
– volume: 13
  start-page: 2776
  issue: 5
  year: 1993
  ident: 5681_CR28
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.13.5.2776
– volume: 375
  start-page: 318
  issue: 6529
  year: 1995
  ident: 5681_CR29
  publication-title: Nature
  doi: 10.1038/375318a0
– volume: 6
  start-page: 291
  issue: 4
  year: 2009
  ident: 5681_CR20
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1311
– volume: 420
  start-page: 563
  issue: 6915
  year: 2002
  ident: 5681_CR25
  publication-title: Nature
  doi: 10.1038/nature01266
– volume: 316
  start-page: 1484
  issue: 5830
  year: 2007
  ident: 5681_CR4
  publication-title: Science
  doi: 10.1126/science.1138341
– volume: 11
  start-page: R86
  issue: 8
  year: 2010
  ident: 5681_CR41
  publication-title: Genome Biology
  doi: 10.1186/gb-2010-11-8-r86
– volume: 477
  start-page: 295
  issue: 7364
  year: 2011
  ident: 5681_CR7
  publication-title: Nature
  doi: 10.1038/nature10398
– volume: 5
  start-page: 621
  year: 2008
  ident: 5681_CR17
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1226
– reference: 16141072 - Science. 2005 Sep 2;309(5740):1559-63
– reference: 16169926 - Genome Res. 2005 Oct;15(10):1451-5
– reference: 21775304 - Bioinformatics. 2011 Sep 1;27(17):2426-8
– reference: 18039703 - Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8
– reference: 15539566 - Science. 2004 Dec 24;306(5705):2242-6
– reference: 21496640 - Cell. 2011 Apr 15;145(2):178-81
– reference: 21874018 - Nature. 2011 Sep 15;477(7364):295-300
– reference: 7753195 - Nature. 1995 May 25;375(6529):318-22
– reference: 22363342 - Front Genet. 2012 Feb 15;3:17
– reference: 21623353 - Nat Methods. 2011 Jun;8(6):469-77
– reference: 21414208 - BMC Bioinformatics. 2011;12:77
– reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
– reference: 21390249 - PLoS One. 2011;6(3):e17305
– reference: 17386095 - Genome Biol. 2007;8(3):R43
– reference: 11846609 - Methods. 2001 Dec;25(4):402-8
– reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8
– reference: 22337053 - Nature. 2012 Feb 16;482(7385):339-46
– reference: 22110045 - Genome Res. 2012 Mar;22(3):577-91
– reference: 21685081 - Bioinformatics. 2011 Jul 1;27(13):i275-82
– reference: 22663078 - Annu Rev Biochem. 2012;81:145-66
– reference: 18369136 - Science. 2008 Mar 28;319(5871):1787-9
– reference: 19188922 - Nat Rev Genet. 2009 Mar;10(3):155-9
– reference: 21890647 - Genes Dev. 2011 Sep 15;25(18):1915-27
– reference: 17604720 - Cell. 2007 Jun 29;129(7):1311-23
– reference: 17130148 - Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5
– reference: 17510325 - Science. 2007 Jun 8;316(5830):1484-8
– reference: 7682653 - Mol Cell Biol. 1993 May;13(5):2776-86
– reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5
– reference: 22193719 - EMBO J. 2012 Feb 1;31(3):522-33
– reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
– reference: 19043537 - PLoS Comput Biol. 2008 Nov;4(11):e1000176
– reference: 21410973 - Genome Biol. 2011;12(3):R22
– reference: 16024654 - Genes Dev. 2005 Jul 15;19(14):1635-55
– reference: 19287394 - Nat Methods. 2009 Apr;6(4):291-5
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 22135294 - Nucleic Acids Res. 2012 Jan;40(Database issue):D210-5
– reference: 21697122 - Bioinformatics. 2011 Sep 1;27(17):2325-9
– reference: 22835905 - Genome Res. 2012 Dec;22(12):2385-98
– reference: 12466851 - Nature. 2002 Dec 5;420(6915):563-73
– reference: 20738864 - Genome Biol. 2010;11(8):R86
– reference: 22383036 - Nat Protoc. 2012 Mar;7(3):562-78
– reference: 11752248 - Nucleic Acids Res. 2002 Jan 1;30(1):38-41
– reference: 16500937 - Bioinformatics. 2006 May 1;22(9):1036-46
– reference: 20436462 - Nat Biotechnol. 2010 May;28(5):503-10
SSID ssj0017805
Score 2.4187272
Snippet Background Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify...
Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify lncRNAs...
Background Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify...
Doc number: 331 Abstract Background: Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is...
Background: Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to identify...
Abstract Background Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing (RNA-Seq). However, it is still not trivial to...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 331
SubjectTerms Algorithms
Analysis
Animals
Base Sequence
Bioinformatics
Biomedical and Life Sciences
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Data processing
Exons
Gene expression
Genome
Genomes
Genomics
High-Throughput Nucleotide Sequencing
Kruppel-Like Transcription Factors - genetics
Life Sciences
Methods
Mice
Mice, Knockout
Microarrays
non-coding RNA
Open Reading Frames
Research Article
RNA
RNA sequencing
RNA, Long Noncoding - genetics
Rodents
Sequence Analysis, RNA - methods
Sequence Analysis, RNA - statistics & numerical data
Studies
Transcriptome - genetics
Transcriptome analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3_a9UwEA8yEPWH4fdVp0QRxEF4TZs0zY9PcUzFIZuDgT-ENE2mrLRz7z1l_713_ear4vaLv7XNBdK7S-6ud_0cIS9KpbSKhWCB84xBvCGY5aVk2lqlpbCWt8XjH_ezvSPx_lger7X6wpqwDh64Y9xMK52UheXOZYkorLSgYxa8bhlUEEUHth3negim-vwBIvW3_xUpziCokUOCMs9m4zPGU9Y1l_ttkFrc_r9P5zXz9Gfp5Jg_vUVurOoze_HTVtWaidq9TTZ735LOu3e6Q675-i653nWbvLhHvnw6x6wMSoI2gdbND1_RqqlP4LJmrkErRg_25wuKpq2kQAZ37NB_p1hHinPwO4GnH6rA6WkNJ2mzWtIWoPY-Odp9-_nNHut7KzAHAcuSQRwlgy6FtsAPJ73LwfUBZy-3QeWZ1qXjRQGuYeaKpIRdyhMfrMy0KhLY4nmaPiAbsDi_RahQQceC-xh9hbLgufdBSJEoH3stCx6R2cBg43rgcex_UZk2AMkzgyIxKBLDUwMiicirccZZB7pxCe1rlNlIh3DZ7QNQItMrkblKiSLyHCVuEBCjxoqbE7taLMy7wwMzl6mAIDKPk4i87IlCA-t3tv-BAbiAGFoTyu0JJexYNx0eFMv0J8bCcMz4pgidFJFn4zDOxCq42oN84Y05RJAI-XYpDbjEEJfKiDzsdHXkDXjPCGQFs9VEiyfMm47U3762mOOpBGXQKiI7g76vLf2fotkZd8SVcnz0P-T4mNwEh7bt1sPTbbKxPF_5J-A0Loun7fnwC7h5Xg0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJwQ8IL4JDGQQEmKS1Tix4_gBoQ5tGiCqqWPSJB4sJ3EKIkq6foD233OXJlkDory19Vly78t3ucvvCHmVKaWVLwTLOY8Y5BuCWZ5Jpq1VWgpred08_nkcHZ-Jj-fyfIeM23dhsK2y9Ym1o86qFJ-RDzlWxEKElnk3u2A4NQqrq-0IDduMVsje1hBj18hugMhYA7J7cDg-mXR1BUTwb4uVcTTk4JoZ0EnGQ7YeNHd1OdUY_n976o2r6s82yq6WeovcWJUze_nLFsXGdXV0h9xu4kw6WivGXbLjynvk-nry5OV98vVkjhUalAqtclpWP11Bi6qcwseSpRXeaHQyHi0oXnMZBTL4xk7dBcWeUtyDzwwc_VTknP4owatWqyWtwWofkLOjwy_vj1kzZ4GlkLwsGeRUMteZ0Bb4kUqXxhAGQeAX21zFkdZZypMEwsQoTYIMLJYHLrcy0ioJwNzjMHxIBnA495hQoXLtC-58jBuyhMfO5UKKQDnfaZlwjwxbBpu0ASHHWRiFqZORODIoEoMiMTw0IBKPvOl2zNYAHFtoD1BmHR1CZ9c_VPOpaSzRaKWDLLE8TaNAJFZacFoW0jiZq1wkfuSRlyhxg-AYJXbfTO1qsTAfTidmJEMBCWXsBx553RDlFZw_tc3LDMAFxNPqUe71KMF60_5yq1im8R4Lc6XrHnnRLeNO7IgrHcgX_jEouEIl30oD4THkqNIjj9a62vEGImkEtYLdqqfFPeb1V8rv32r88VCCMmjlkf1W3zeO_k_R7HcW8V85PtnOlKfkJoSt9UweHu6RwXK-cs8gNFwmzxt7_w2Rj1ox
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3raxQxEA9SEfWD-Ha1lSiCWAjd7Oax-XiWlqpYpLVQ8EPIZpMqLru1d9fS_96Zvb3l1kfFb3eXyZGdR2ZmZ_ILIa8qrY1OhWCRc8Ug3xDM8Uoy45w2UjjHu-bxj_tq70i8P5bH_fsOPAuzWr_nhdrisHkySEsk4znL8cD0dXBRqivLqu2hXoDI_Msi5B9mjZxOh83_-w684oJ-bY8caqS3yc15c-ouL1xdr7ih3bvkTh8_0slC4PfItdDcJzcWN0pePiBfPp1h5QW5TdtIm_Y81LRumxP42DDfoqeiB_uTKUX3VVEgg2_sMPyg2CuKc_BdQKAf6sjp9wZ2y3Y-ox0I7UNytLvzeXuP9fcnMA9JyYxBriSjqYRxwA8vgy8gvIGArnBRF8qYyvOyhPBP-TKrwBJ5FqKTyugyAzMu8vwRWYPFhSeECh1NKnhIMR6oSl6EEIUUmQ5pMLLkCdlaMtj6Hlwc77iobZdkFMqiSCyKxPLcgkgS8maYcboA1riC9i3KbKBDSOzuB9AU21uYNdpkVem49yoTpZMONiMH6ZmMOooyVQl5iRK3CHrRYFfNiZtPp_bd4YGdyFxAolikWUJe90SxhfV71x9SAC4gTtaIcn1ECVbpx8NLxbL9rjC1HKu6OcIjJeTFMIwzsdOtCSBfeGIOWSLCul1JA2Ev5J4yIY8XujrwBiJkBKuC2XqkxSPmjUeab187XPFcgjIYnZDNpb6vLP2votkcLOKfcnz6P__8jNyC4LS7eYfn62RtdjYPGxAAzsrnne3_BE6qSxs
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTgh44HsQGCggJMSktHViJ_FjQUwDRFVtVBriwbIdp0wLSdcP0PjrucuXmgFDSLyl8Vlyznfnu_rud4Q8T6JIREPGvJTS0IN4g3mKJtwTSkWCM6VomTz-YRweTNm7Y368RSZNLYz-avRJUYOGIlBxf7MMPauqHLCLgl0M5klaKX0cDigYWQ_CF-7RwAuwsHo75OCd98j2dDwZfSqLjGqS5rbyN9M6p1MJ4v-rqd44qy7mUbaXqdfJ1XU-V-ffVZZtnFf7N8lZ86VVmsppf73SffPjAgjk_2TFLXKjdm7dUSWNt8mWze-QK1W7y_O75PNkgddCKApukbp58c1mblbkM3jMPVPgMeoejkdLF8_WxAUy-OUd2TMXE1lxDv5RYd33WUrd0xxMebFeuSVC7j0y3X_z8fWBVzd38AxETCsPAjmeioQJBes13JoYfC_wNmOVRnEoRGKo1uCbhkb7CZgJ6ttU8VBE2gcbEwfBDunB4uwD4rIoFUNG7RCdlUTT2NqUceZHdmgF19Qhg2ZTpamRz7EBRybLCCgOJbJMIsskDSSwzCEv2xnzCvXjEtpXKCctHeJ1ly-KxUzW6i9FJPxEK2pM6DOtuAJLqSB25GmUMj0MHfIMpUwiIkeOKT8ztV4u5dujQzniAYMoNh76DnlRE6UFrN-ouoICuIAgXh3K3Q4lmAzTHW6EWdYmaykpXjkHiN3kkKftMM7ENLzcwv7CF1MIYRFz7lIa8MlB9bhD7lf60fIG3HdE0oLZUUdzOszrjuQnX0rQ84CDMIjIIXuNjm0s_Y9bs9dq4V_38eG_ED8i18BzLtsC0WCX9FaLtX0M3ulKP6kNzk9gJYLl
  priority: 102
  providerName: Unpaywall
Title Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study
URI https://link.springer.com/article/10.1186/1471-2105-13-331
https://www.ncbi.nlm.nih.gov/pubmed/23237380
https://www.proquest.com/docview/1289037328
https://www.proquest.com/docview/1312171210
https://www.proquest.com/docview/1315619605
https://pubmed.ncbi.nlm.nih.gov/PMC3577497
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-13-331
https://doaj.org/article/9792dba1cc624ba5a257a6065f7f4b06
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgEwIeEN8ERhUQEmJSWJzYcfyAUFetjKJVVUulIh4sJ3EKIkq2fgD977lLk66BMSRe0iQ-S-59-O5i-3eEvEiEkMJlzEkpDRzIN5ijacIdqbWQnGlNy83jJ_3geMx6Ez45Px5dMXB-YWqH9aTGs-z1z7PVWzD4N6XBh8EBhQnWgdSFO9R3fDxUvQt-SmIhhxN2vqaA6P31QuUFvRAW2PcQ6Mdt-KgSyv_PCXvLY_2-m3KzpHqTXF_mp3r1Q2fZltfq3ia3qnDTbq_14w65YvK75Nq6AOXqHvk8mOFCDQrHLlI7L76bzM6KfAq3uRMX6NjsYb89t9HbJTaQwZMzMmc2bi3FPvjpwNgfspTa33KYXIvlwi4xa--TcffoY-fYqcotODHkMAsHUiueyoRJDayJuYlDiIYg_gt1KsJAyiSmUQTRYhBHXgKGSz2Tah5IEXlg9aHvPyA7MDjziNhMpNJl1LgYPiQRDY1JGWeeMK6RPKIWOagZrOIKixxLYmSqzEnCQKF0FEpHUV-BdCzyatPjdI3DcQntIcpsQ4cI2uWLYjZVlUEqKaSXRJrGceCxSHMNc5eGbI6nImWRG1jkOUpcIUZGjptwpno5n6v3o6Fqc59BXhm6nkVeVkRpAeOPdXWmAbiAsFoNyr0GJRhx3GyuFUvVNqAoLgL7iKZkkWebZuyJG-NyA_KFf0whqUQUuEtpIEqGVJVb5OFaVze8qVXeIqKhxQ3mNVvyr19KGHKfgzJIYZH9Wt-3hv5X0exvLOKfcnz832N6Qm5AYFtW7aH-HtlZzJbmKQSPi6hFroqJgGvYfdciu-12b9SD38Oj_mAIbztBp1V-lmmVcwe0jPuD9qdf0G9r7A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtQw0KqKUOEBcRMoYBAIUclqnNhx_IBQOaouPYR6SCvxYJzEKYgo2e5B1Z_iG5nJ1S6I5alvu-vxypl7PJMZQl5kSmnlC8FyziMG8YZglmeSaWuVlsJaXheP7-5FW0fi01AOl8iv7l0YLKvsdGKtqLMqxTvydY4ZsRBby7wdnTCcGoXZ1W6ERsMW2-7sFEK2yZvBB6DvyyDY_Hj4fou1UwVYCq76lEEEIXOdCW25UKl0aQxGH9yc2OYqjrTOUp4k4BRFaRJkwJ88cLmVkVZJAMwd4wUoqPwrIgRdAvKjhn2Ax3E-QJcKjaN1-H_OIKSSjIesGWN3bvrqCQF_24ELhvDPIs0-U3udrMzKkT07tUVxwRhu3iQ3Wi-WbjRsd4ssufI2udrMtTy7Q758HmP-B2lOq5yW1U9X0KIqj-FjydIK7SXd39uYUDSiGQUw-MYO3AnFilXcgzcSjm4XOac_StDZ1WxK61a4d8nRpeD7HlmGw7kHhAqVa19w56NXkiU8di4XUgTK-U7LhHtkvUOwSdsW5zhpozB1qBNHBklikCSGhwZI4pHX_Y5R095jAew7pFkPh4256x-q8bFp5dxopYMssTxNo0AkVlpQiRaCRJmrXCR-5JHnSHGDrTdKrO05trPJxAwO9s2GDAWEq7EfeORVC5RXcP7Utq9KABawW9cc5OocJOiGdH65YyzT6qaJOZckjzzrl3En1tuVDugLT8whVsXmcgthwPmGCFh65H7Dqz1uwE_HllmwW81x8Rzy5lfK79_q7uahBGbQyiNrHb9fOPo_SbPWS8R_6fhwMVKekpWtw90dszPY235EroGDXE__4eEqWZ6OZ-4xOKHT5Ekt-ZR8vWxV8xt3sY7I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELfQEK8PiDeBAQYhISZZrRM7jj-WwrQxqKaNSZP2wXISuyCipPQB2n_PXZJGDY8hvrX1uXLu5bvc-WdCXuZKaTUUgnnOYwb5hmCW55Jpa5WWwlpeN49_nMR7J-L9qTxtX7gt1t3u65Jkc6YBUZrK5WCW-8bEk3jAwaUySFYk4xGL8Bj1ZQF7G95gMI7HXRUB8frXpck_zOptRTVi_-9-eWNj-rVpsquc3iDXVuXMnv-wRbGxOe3eIjfbqJKOGjW4TS658g650twzeX6XnB3OsR6DMqCVp2X13RW0qMopfCxZVuH-RY8mowXFTS2nQAbf2LH7RrGDFOfgGwJHDwrP6dcSfGi1WtIamvYeOdl992m8x9pbFVgGqcqSQQYlvc6FtsCPTLosgaAHwrzEepXEWucZT1MICuMsDXOwTx46b2WsVRqCcSdRdJ9sweLcQ0KF8noouEPWizzliXNeSBEqN3RapjwggzWDTdZCjuPNF4WpU48kNigSgyIxPDIgkoC87mbMGriNC2jfoMw6OgTKrn-o5lPT2p3RSod5anmWxaFIrbTgoiwkbdIrL9JhHJAXKHGDUBgl9tpM7WqxMPvHR2YkIwHpYzIMA_KqJfIVrD-z7dEF4AKiZ_Uot3uUYKtZf3itWKb1FQvDsdYbIWhSQJ53wzgT-99KB_KFJ-aQOyLY24U0EAxDRioD8qDR1Y43EDcjhBXMVj0t7jGvP1J--VyjjUcSlEGrgOys9X1j6X8VzU5nEf-U46P_-edn5Orh213zYX9y8Jhch-i1vpqHR9tkazlfuScQIS7Tp7Ub-Am5JFZR
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemTgh44HsQGCggJMSktHViJ_FjQUwDRFVtVBriwbIdp0wLSdcP0PjrucuXmgFDSLyl8Vlyznfnu_rud4Q8T6JIREPGvJTS0IN4g3mKJtwTSkWCM6VomTz-YRweTNm7Y368RSZNLYz-avRJUYOGIlBxf7MMPauqHLCLgl0M5klaKX0cDigYWQ_CF-7RwAuwsHo75OCd98j2dDwZfSqLjGqS5rbyN9M6p1MJ4v-rqd44qy7mUbaXqdfJ1XU-V-ffVZZtnFf7N8lZ86VVmsppf73SffPjAgjk_2TFLXKjdm7dUSWNt8mWze-QK1W7y_O75PNkgddCKApukbp58c1mblbkM3jMPVPgMeoejkdLF8_WxAUy-OUd2TMXE1lxDv5RYd33WUrd0xxMebFeuSVC7j0y3X_z8fWBVzd38AxETCsPAjmeioQJBes13JoYfC_wNmOVRnEoRGKo1uCbhkb7CZgJ6ttU8VBE2gcbEwfBDunB4uwD4rIoFUNG7RCdlUTT2NqUceZHdmgF19Qhg2ZTpamRz7EBRybLCCgOJbJMIsskDSSwzCEv2xnzCvXjEtpXKCctHeJ1ly-KxUzW6i9FJPxEK2pM6DOtuAJLqSB25GmUMj0MHfIMpUwiIkeOKT8ztV4u5dujQzniAYMoNh76DnlRE6UFrN-ouoICuIAgXh3K3Q4lmAzTHW6EWdYmaykpXjkHiN3kkKftMM7ENLzcwv7CF1MIYRFz7lIa8MlB9bhD7lf60fIG3HdE0oLZUUdzOszrjuQnX0rQ84CDMIjIIXuNjm0s_Y9bs9dq4V_38eG_ED8i18BzLtsC0WCX9FaLtX0M3ulKP6kNzk9gJYLl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+novel+long+non-coding+RNAs+based+on+RNA-Seq+data+of+mouse+Klf1+knockout+study&rft.jtitle=BMC+bioinformatics&rft.au=Sun%2C+Lei&rft.au=Zhang%2C+Zhihua&rft.au=Bailey%2C+Timothy+L&rft.au=Perkins%2C+Andrew+C&rft.date=2012-12-13&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=13&rft.spage=331&rft.epage=331&rft_id=info:doi/10.1186%2F1471-2105-13-331&rft_id=info%3Apmid%2F23237380&rft.externalDocID=PMC3577497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon