A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing
Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predomina...
Saved in:
Published in | Journal of extracellular vesicles Vol. 5; no. 1; pp. 31242 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Sweden
Taylor & Francis
01.01.2016
John Wiley & Sons, Inc Co-Action Publishing Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2001-3078 2001-3078 |
DOI | 10.3402/jev.v5.31242 |
Cover
Abstract | Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations.
A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets.
PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs.
The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements. |
---|---|
AbstractList | Background
Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in‐depth quantification, measurement and identification of EV sub‐populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations.
Materials and Methods
A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets.
Results
PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs.
Conclusion
The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements. Background: Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. Materials and Methods: A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. Results: PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. Conclusion: The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements. Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations.BACKGROUNDUnderstanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations.A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets.MATERIALS AND METHODSA standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets.PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs.RESULTSPCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs.The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.CONCLUSIONThe results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements. Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements. Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements. |
Author | Buzás, Edit I. Pedersen, Shona de Vrij, Jeroen Hill, Andrew F. Lund, Sigrid M. Coumans, Frank A. W. Maltesen, Raluca G. Maas, Sybren L. N. Schnoor, Rosalie Broom, Murray F. Kuehn, Meta J. Vogel, Robert Böing, Anita N. Broekman, Marike L. Nieuwland, Rienk Kristensen, Søren R. Hajji, Najat Shambrook, Mitch Scicluna, Benjamin J. Osteikoetxea, Xabier Christiansen, Gunna Bonnington, Katherine E. Mann, Stephen I. |
AuthorAffiliation | 10 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia 3 Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands 8 Department of Biomedicine, Aarhus University, Aarhus, Denmark 1 School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, Australia 9 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia 5 Department of Biochemistry, Duke University, Medical Centre, Durham, NC, USA 6 Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands 4 Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark 2 Izon Science Ltd., Burnside, Christchurch, New Zealand 7 Department of Genetics, Cell and Immunobiology, Semmelweis University |
AuthorAffiliation_xml | – name: 4 Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark – name: 1 School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, Australia – name: 5 Department of Biochemistry, Duke University, Medical Centre, Durham, NC, USA – name: 8 Department of Biomedicine, Aarhus University, Aarhus, Denmark – name: 9 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia – name: 3 Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands – name: 6 Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands – name: 10 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia – name: 2 Izon Science Ltd., Burnside, Christchurch, New Zealand – name: 7 Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary |
Author_xml | – sequence: 1 givenname: Robert surname: Vogel fullname: Vogel, Robert organization: Izon Science Ltd., Burnside – sequence: 2 givenname: Frank A. W. surname: Coumans fullname: Coumans, Frank A. W. organization: Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam – sequence: 3 givenname: Raluca G. surname: Maltesen fullname: Maltesen, Raluca G. organization: Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital – sequence: 4 givenname: Anita N. surname: Böing fullname: Böing, Anita N. organization: Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam – sequence: 5 givenname: Katherine E. surname: Bonnington fullname: Bonnington, Katherine E. organization: Department of Biochemistry, Duke University, Medical Centre – sequence: 6 givenname: Marike L. surname: Broekman fullname: Broekman, Marike L. organization: Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht – sequence: 7 givenname: Murray F. surname: Broom fullname: Broom, Murray F. organization: Izon Science Ltd., Burnside – sequence: 8 givenname: Edit I. surname: Buzás fullname: Buzás, Edit I. organization: Department of Genetics, Cell and Immunobiology, Semmelweis University – sequence: 9 givenname: Gunna surname: Christiansen fullname: Christiansen, Gunna organization: Department of Biomedicine, Aarhus University – sequence: 10 givenname: Najat surname: Hajji fullname: Hajji, Najat organization: Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam – sequence: 11 givenname: Søren R. surname: Kristensen fullname: Kristensen, Søren R. organization: Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital – sequence: 12 givenname: Meta J. surname: Kuehn fullname: Kuehn, Meta J. organization: Department of Biochemistry, Duke University, Medical Centre – sequence: 13 givenname: Sigrid M. surname: Lund fullname: Lund, Sigrid M. organization: Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital – sequence: 14 givenname: Sybren L. N. surname: Maas fullname: Maas, Sybren L. N. organization: Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht – sequence: 15 givenname: Rienk surname: Nieuwland fullname: Nieuwland, Rienk organization: Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam – sequence: 16 givenname: Xabier surname: Osteikoetxea fullname: Osteikoetxea, Xabier organization: Department of Genetics, Cell and Immunobiology, Semmelweis University – sequence: 17 givenname: Rosalie surname: Schnoor fullname: Schnoor, Rosalie organization: Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht – sequence: 18 givenname: Benjamin J. surname: Scicluna fullname: Scicluna, Benjamin J. organization: Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University – sequence: 19 givenname: Mitch surname: Shambrook fullname: Shambrook, Mitch organization: Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University – sequence: 20 givenname: Jeroen surname: de Vrij fullname: de Vrij, Jeroen organization: Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht – sequence: 21 givenname: Stephen I. surname: Mann fullname: Mann, Stephen I. organization: Izon Science Ltd., Burnside – sequence: 22 givenname: Andrew F. surname: Hill fullname: Hill, Andrew F. organization: Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University – sequence: 23 givenname: Shona surname: Pedersen fullname: Pedersen, Shona email: shp@rn.dk organization: Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27680301$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1v1DAQxSNUREvpjTOyxIUDuzi2kzgXpLZqoagSF-BqOfZk16vEXmwnZfnrcTalaiuoL_HHb95Mnt7L7MA6C1n2OsdLyjD5sIFxORZLmhNGnmVHBON8QXHFD-7tD7OTEDY4rZrlBa9fZIekKjmmOD_K4ikKUVotvTa_QaMe4tppFB3SEMH3xgKKa0DKWQU2ehmNs8i1CH6lg4KuGzrp0QjBqA4CGoKxKxQHK5sOkE_XIZoR0HboAqAAdnp_lT1vZTqf3H6Ps--XF9_OPy-uv366Oj-9XqiyLOmCqoYTAtBIhauGS5lGbpmEosqB44I0jClOi7YEyRUrMKcl4zwvpFK6krmkx9nVrKud3IitN730O-GkEfsL51dC-jgNLlhRAmZc60ZpVlZ1U5C8LVvAVDeYQZ20Ps5a26HpQc9mdA9EH75YsxYrN4oCM8wJTQLvbgW8-zlAiKI3YTJQWnBDEDknqWdFqgl9-wjduMHbZJWguCaUMYarpyiSOmJapwQk6s39ue8G_huBBLyfAeVdCB7aOyTHYgqZSCETYyH2IUs4eYQrE_epSH9tuv8VFXPRjelg92QD8eXiBzm7xJiwyYhqrjO2db6XN853WkS565xvvbTKJEf-2fEPiiH6vA |
CitedBy_id | crossref_primary_10_1002_jev2_12059 crossref_primary_10_1016_j_prp_2025_155878 crossref_primary_10_3389_fcell_2021_793363 crossref_primary_10_1186_s12575_024_00243_4 crossref_primary_10_1016_j_isci_2021_102906 crossref_primary_10_3390_pharmaceutics15112623 crossref_primary_10_1038_s41598_018_23505_0 crossref_primary_10_1002_INMD_20240049 crossref_primary_10_31083_j_fbl2707205 crossref_primary_10_1080_20013078_2020_1816641 crossref_primary_10_1021_acs_analchem_9b05736 crossref_primary_10_1097_HCO_0000000000000510 crossref_primary_10_3390_bioengineering6010007 crossref_primary_10_1111_apha_13346 crossref_primary_10_1002_jev2_12052 crossref_primary_10_1016_j_biotechadv_2023_108122 crossref_primary_10_1038_s41596_024_01082_z crossref_primary_10_3390_ijms23074005 crossref_primary_10_1136_thoraxjnl_2020_216370 crossref_primary_10_1016_j_jtcvs_2023_03_033 crossref_primary_10_1080_20013078_2018_1555419 crossref_primary_10_3390_s18103175 crossref_primary_10_1186_s13287_021_02174_3 crossref_primary_10_1002_adbi_201900305 crossref_primary_10_3390_cancers13174330 crossref_primary_10_1002_wnan_1835 crossref_primary_10_3390_cells8070727 crossref_primary_10_1186_s40104_024_01102_8 crossref_primary_10_1109_ACCESS_2018_2828038 crossref_primary_10_1146_annurev_food_072023_034354 crossref_primary_10_1158_0008_5472_CAN_17_3703 crossref_primary_10_1177_1559325819891004 crossref_primary_10_1186_s40364_024_00639_0 crossref_primary_10_1371_journal_pone_0210835 crossref_primary_10_1038_s41598_021_82452_5 crossref_primary_10_3390_cells11020186 crossref_primary_10_1021_acs_analchem_1c00693 crossref_primary_10_3390_ijms23031028 crossref_primary_10_1002_med_21453 crossref_primary_10_1016_j_biopha_2023_115297 crossref_primary_10_1186_s12885_024_12312_8 crossref_primary_10_1007_s00249_017_1252_4 crossref_primary_10_1016_j_ebiom_2019_04_039 crossref_primary_10_1080_09687688_2017_1400602 crossref_primary_10_3389_fphys_2017_00904 crossref_primary_10_1371_journal_pone_0284875 crossref_primary_10_2116_analsci_20R001 crossref_primary_10_5812_jjcmb_107622 crossref_primary_10_1016_j_bcp_2018_02_004 crossref_primary_10_1080_10408347_2020_1802220 crossref_primary_10_3390_genes12101636 crossref_primary_10_1155_2017_7197598 crossref_primary_10_1002_jcp_31061 crossref_primary_10_1016_j_bios_2020_112056 crossref_primary_10_1177_20417314231174609 crossref_primary_10_1007_s11051_020_04840_8 crossref_primary_10_3390_membranes13090752 crossref_primary_10_1002_med_22035 crossref_primary_10_1021_acsbiomaterials_7b00572 crossref_primary_10_1039_D1RA01576A crossref_primary_10_1016_j_ymeth_2020_02_002 crossref_primary_10_1002_pmic_202000118 crossref_primary_10_3390_cimb46050264 crossref_primary_10_3390_chemosensors11010045 crossref_primary_10_1021_acs_analchem_3c02476 crossref_primary_10_1016_j_xphs_2021_07_012 crossref_primary_10_1038_s41598_021_87822_7 crossref_primary_10_1007_s12033_021_00300_3 crossref_primary_10_1088_1361_6528_aa8d89 crossref_primary_10_1016_j_ijpharm_2024_124097 crossref_primary_10_1016_j_crtox_2023_100134 crossref_primary_10_1186_s12987_021_00299_4 crossref_primary_10_3390_cancers13123076 crossref_primary_10_1007_s10549_021_06474_3 crossref_primary_10_1016_j_xphs_2022_01_012 crossref_primary_10_3389_fimmu_2021_795372 crossref_primary_10_1021_acs_analchem_7b05106 crossref_primary_10_3389_fcell_2020_593386 crossref_primary_10_1098_rstb_2016_0479 crossref_primary_10_1007_s11427_020_1905_7 crossref_primary_10_1016_j_biomaterials_2020_120467 crossref_primary_10_1016_j_heliyon_2024_e30328 crossref_primary_10_1021_acsami_4c14224 crossref_primary_10_1134_S2635167624600792 crossref_primary_10_1074_mcp_RA117_000267 crossref_primary_10_4155_fmc_2018_0417 crossref_primary_10_1039_D3AN01027A crossref_primary_10_1021_acs_chemrev_7b00534 crossref_primary_10_3390_bios11120518 crossref_primary_10_1007_s12033_017_0009_8 crossref_primary_10_1016_j_omtm_2020_07_012 crossref_primary_10_3390_mi11050458 crossref_primary_10_1016_j_exer_2024_109831 crossref_primary_10_1080_20013078_2017_1344087 crossref_primary_10_1002_adhm_202000893 crossref_primary_10_1134_S1990747819030036 crossref_primary_10_3390_cancers15071984 crossref_primary_10_1161_CIRCRESAHA_117_309417 crossref_primary_10_1039_D1AN00024A crossref_primary_10_3389_fncel_2020_573345 crossref_primary_10_1016_j_nbd_2018_11_002 crossref_primary_10_3389_fcell_2020_00011 crossref_primary_10_3390_bios10110173 crossref_primary_10_3390_ijms21228723 crossref_primary_10_1002_adhm_202100538 crossref_primary_10_3389_fimmu_2022_904679 crossref_primary_10_1021_acsnano_4c04396 crossref_primary_10_3390_ijms24043663 crossref_primary_10_1016_j_tibtech_2020_05_012 crossref_primary_10_3390_ijms252011013 crossref_primary_10_3389_fmicb_2021_804813 crossref_primary_10_1021_acs_analchem_2c04631 crossref_primary_10_3390_life12111733 crossref_primary_10_1016_j_trac_2024_117672 crossref_primary_10_1021_acs_langmuir_8b04209 crossref_primary_10_1371_journal_pone_0249603 crossref_primary_10_1016_j_micron_2022_103341 crossref_primary_10_1016_j_sna_2022_113832 crossref_primary_10_1007_s00401_021_02367_3 crossref_primary_10_3390_ph14040289 crossref_primary_10_2147_IJN_S421342 crossref_primary_10_3389_fbioe_2020_00525 crossref_primary_10_1002_jex2_77 crossref_primary_10_3390_ijms22010440 crossref_primary_10_1002_elps_202100202 crossref_primary_10_3390_cancers15041307 crossref_primary_10_32604_or_2023_030401 crossref_primary_10_1038_s41467_024_46557_5 crossref_primary_10_1002_advs_202002596 crossref_primary_10_1080_20013078_2018_1454777 crossref_primary_10_1002_cbf_4035 crossref_primary_10_1038_s41598_017_14981_x crossref_primary_10_3389_fcvm_2018_00187 crossref_primary_10_3724_SP_J_1123_2021_07005 |
Cites_doi | 10.1096/fj.11-202077 10.1021/nn3020322 10.3389/fimmu.2015.00203 10.3402/jev.v4.27269 10.1016/j.jconrel.2014.12.041 10.1124/pr.112.005983 10.3402/jev.v3.23743 10.1007/978-1-4939-2550-6_15 10.1021/acs.langmuir.5b01402 10.1039/C5OB01451D 10.1002/0471143030.cb0322s30 10.1073/pnas.1002622107 10.1002/smll.201001129 10.1111/j.1538-7836.2010.04047.x 10.1016/j.snb.2006.08.031 10.3402/jev.v3.23298 10.1186/1471-2164-7-142 10.3402/jev.v3.23430 10.1016/j.jcis.2013.02.030 10.1038/srep07639 10.3402/jev.v2i0.20360 10.1016/j.bios.2011.09.040 10.3402/jev.v4.27066 10.1021/la2038763 10.1038/nbt.1807 10.2217/nnm.12.173 10.1016/S0006-3495(98)78033-6 10.1021/acs.analchem.5b01636 10.1021/i100001a013 10.1038/ncb1800 10.1021/ac2030915 10.1007/BF01025983 10.1103/PhysRevE.68.011306 10.1016/j.jcis.2014.05.013 10.1016/j.powtec.2013.04.009 10.1111/jth.12602 10.1016/j.nantod.2011.08.012 10.1016/j.jconrel.2014.07.049 10.1038/ncomms1180 10.1021/ac200195n |
ContentType | Journal Article |
Copyright | 2016 Robert Vogel et al. 2016 2016 Robert Vogel et al. Copyright Taylor & Francis Ltd. 2016 Copyright John Wiley & Sons, Inc. 2016 |
Copyright_xml | – notice: 2016 Robert Vogel et al. 2016 – notice: 2016 Robert Vogel et al. – notice: Copyright Taylor & Francis Ltd. 2016 – notice: Copyright John Wiley & Sons, Inc. 2016 |
DBID | 0YH 24P AAYXX CITATION NPM 7QP 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3402/jev.v5.31242 |
DatabaseName | Taylor & Francis Open Access Wiley Online Library Open Access CrossRef PubMed Calcium & Calcified Tissue Abstracts ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student PubMed ProQuest Central Student |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2001-3078 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_456e048ddbcd4679b521f6fe03db04e9 PMC5040823 27680301 10_3402_jev_v5_31242 JEV2BF00243 11821261 |
Genre | Research Article article Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: National Institutes of Health (NIH) funderid: R01GM099471 – fundername: STW – fundername: NIGMS NIH HHS grantid: R01 GM099471 |
GroupedDBID | 0R~ 0YH 1OC 24P 53G 5VS 8FE 8FH 8WT AAHHS AAHJG ABDBF ABQXS ACCFJ ACGFS ACPRK ACUHS ADBBV ADRAZ AEEZP AEGXH AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU DIK EBS EJD GROUPED_DOAJ GX1 H13 HCIFZ HYE KQ8 LK8 M48 M4Z M7P M~E OK1 PIMPY PROAC RNS RPM TDBHL TFW ABMDY ACCMX ACESK IAO IHR INH IPNFZ ITC RIG AAYXX CITATION PHGZM PHGZT NPM 7QP AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS WIN 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c6663-3cb822eebac07b8aa030f4ae571e8052b44c835f6ea8c45083648815accd7a1a3 |
IEDL.DBID | M48 |
ISSN | 2001-3078 |
IngestDate | Wed Aug 27 01:30:02 EDT 2025 Thu Aug 21 18:21:02 EDT 2025 Thu Sep 04 16:16:51 EDT 2025 Wed Aug 13 09:36:15 EDT 2025 Wed Aug 13 06:31:21 EDT 2025 Wed Feb 19 01:58:21 EST 2025 Tue Jul 01 03:56:41 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Wed Jan 22 16:33:31 EST 2025 Wed Dec 25 09:02:11 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Coulter counter EV resistive pulse sensing nanopores extracellular vesicles nanoparticles micropores exosomes microparticles concentration colloids |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6663-3cb822eebac07b8aa030f4ae571e8052b44c835f6ea8c45083648815accd7a1a3 |
Notes | Supplementary files Responsible Editor: Dolores Di Vizio, Cedars‐Sinai, USA. under ‘Article Tools’. To access the supplementary material to this article, please see ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Responsible Editor: Dolores Di Vizio, Cedars-Sinai, USA. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3402/jev.v5.31242 |
PMID | 27680301 |
PQID | 2082039001 |
PQPubID | 2030046 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3092344407 crossref_primary_10_3402_jev_v5_31242 crossref_citationtrail_10_3402_jev_v5_31242 wiley_primary_10_3402_jev_v5_31242_JEV2BF00243 proquest_miscellaneous_1825217273 pubmed_primary_27680301 doaj_primary_oai_doaj_org_article_456e048ddbcd4679b521f6fe03db04e9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5040823 informaworld_taylorfrancis_310_3402_jev_v5_31242 proquest_journals_2082039001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | Sweden |
PublicationPlace_xml | – name: Sweden – name: Abingdon |
PublicationTitle | Journal of extracellular vesicles |
PublicationTitleAlternate | J Extracell Vesicles |
PublicationYear | 2016 |
Publisher | Taylor & Francis John Wiley & Sons, Inc Co-Action Publishing Wiley |
Publisher_xml | – name: Taylor & Francis – name: John Wiley & Sons, Inc – name: Co-Action Publishing – name: Wiley |
References | 2015; 13 2007; 123 2015; 6 2015; 5 2015; 4 2011; 2 2013; 2 2010; 107 2012 2013; 405 2015; 31 2015; 200 2011; 83 2006; 7 2006 2013; 245 2008; 10 2014; 195 2013; 8 2008; 440 2011; 6 2015; 1295 2012; 31 1981; 20 1990; 60 2014; 3 2014; 429 2015; 87 2003; 68 2014 2012; 26 1998; 74 2012; 6 2011; 27 2011; 29 2014; 12 2012; 64 2010; 6 2012; 84 2010; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Li X (e_1_2_7_10_1) 2008 Böing AN (e_1_2_7_14_1) 2014 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 25279113 - J Extracell Vesicles. 2014 Sep 08;3:null 25559219 - Sci Rep. 2015 Jan 06;5:7639 22369672 - Anal Chem. 2012 Apr 3;84(7):3125-31 9635780 - Biophys J. 1998 Jun;74(6):3264-72 16762068 - BMC Genomics. 2006 Jun 08;7:142 21434639 - Anal Chem. 2011 May 1;83(9):3499-506 24511372 - J Extracell Vesicles. 2014 Feb 04;3:null 25820723 - Methods Mol Biol. 2015;1295:179-209 22809054 - ACS Nano. 2012 Aug 28;6(8):6990-7 19011622 - Nat Cell Biol. 2008 Dec;10(12):1470-6 25999947 - Front Immunol. 2015 May 04;6:203 22017459 - Langmuir. 2011 Dec 6;27(23):14394-400 21423189 - Nat Biotechnol. 2011 Apr;29(4):341-5 25094032 - J Control Release. 2014 Dec 10;195:72-85 22722893 - Pharmacol Rev. 2012 Jul;64(3):676-705 20979105 - Small. 2010 Dec 6;6(23):2653-8 21285958 - Nat Commun. 2011 Feb 01;2:180 24818656 - J Thromb Haemost. 2014 Jul;12(7):1182-92 24683445 - J Extracell Vesicles. 2014 Mar 26;3:null 25979354 - J Extracell Vesicles. 2015 May 14;4:27066 25819214 - J Extracell Vesicles. 2015 Mar 26;4:27269 24009894 - J Extracell Vesicles. 2013 May 27;2:null 24935188 - J Colloid Interface Sci. 2014 Sep 1;429:45-52 25555362 - J Control Release. 2015 Feb 28;200:87-96 12935136 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011306 22034585 - Nano Today. 2011 Oct 1;6(5):531-545 25970769 - Langmuir. 2015 Jun 16;31(23):6577-87 26291637 - Anal Chem. 2015 Sep 15;87(18):9225-33 22019099 - Biosens Bioelectron. 2012 Jan 15;31(1):17-25 20831623 - J Thromb Haemost. 2010 Nov;8(11):2571-4 26264754 - Org Biomol Chem. 2015 Oct 14;13(38):9775-82 20624969 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13342-7 23759321 - J Colloid Interface Sci. 2013 Sep 1;405:322-30 18228490 - Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22 23384702 - Nanomedicine (Lond). 2013 Sep;8(9):1443-58 18369940 - Methods Mol Biol. 2008;440:97-110 22767229 - FASEB J. 2012 Oct;26(10):4160-73 |
References_xml | – volume: 3 start-page: 23743 year: 2014 article-title: Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell‐free blood publication-title: J Extracell Vesicles. – volume: 29 start-page: 341 year: 2011 end-page: 5 article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes publication-title: Nat Biotechnol. – volume: 12 start-page: 1182 year: 2014 end-page: 92 article-title: Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing publication-title: J Thromb Haemost. – volume: 200 start-page: 87 year: 2015 end-page: 96 article-title: Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics publication-title: J Control Release. – volume: 6 start-page: 6990 year: 2012 end-page: 7 article-title: Simultaneous size and zeta‐potential measurements of individual nanoparticles in dispersion using size‐tunable pore sensors publication-title: ACS Nano. – volume: 27 start-page: 14394 year: 2011 end-page: 400 article-title: Quantitative nanostructural and single‐molecule force spectroscopy biomolecular analysis of human‐saliva‐derived exosomes publication-title: Langmuir. – volume: 74 start-page: 3264 year: 1998 end-page: 72 article-title: Vesicle size distributions measured by flow field‐flow fractionation coupled with multiangle light scattering publication-title: Biophys J. – volume: 2 start-page: 180 year: 2011 article-title: Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences publication-title: Nat Commun. – volume: 6 start-page: 2653 year: 2010 end-page: 8 article-title: Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy publication-title: Small. – volume: 7 start-page: 142 year: 2006 article-title: Centering, scaling, and transformations: improving the biological information content of metabolomics data publication-title: BMC Genomics. – volume: 20 start-page: 66 year: 1981 end-page: 71 article-title: Porosity of a mass of solid particles having a range of sizes publication-title: Ind Eng Chem Fundamen. – volume: 4 start-page: 27066 year: 2015 article-title: Biological properties of extracellular vesicles and their physiological functions publication-title: J Extracell Vesicles. – volume: 6 start-page: 203 year: 2015 article-title: Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications publication-title: Front Immunol. – volume: 31 start-page: 17 year: 2012 end-page: 25 article-title: Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions publication-title: Biosens Bioelectron. – volume: 13 start-page: 9775 year: 2015 end-page: 82 article-title: Differential detergent sensitivity of extracellular vesicle subpopulations publication-title: Org Biomol Chem. – volume: 2 start-page: 20360 year: 2013 article-title: Standardization of sample collection, isolation and analysis methods in extracellular vesicle research publication-title: J Extracell Vesicles. – volume: 3 start-page: 23298 year: 2014 article-title: Towards traceable size determination of extracellular vesicles publication-title: J Extracell Vesicles. – year: 2006 article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids publication-title: Current Protocols in Cell Biology. – volume: 26 start-page: 4160 year: 2012 end-page: 73 article-title: Prion‐infected cells regulate the release of exosomes with distinct ultrastructural features publication-title: FASEB J. – volume: 60 start-page: 561 year: 1990 end-page: 83 article-title: Geometric properties of random disk packings publication-title: J Stat Phy. – volume: 3 start-page: 23430 year: 2014 article-title: Single step isolation of extracellular vesicles by size‐exclusion chromatography publication-title: J Extracell Vesicles. – start-page: 330 year: 2012 end-page: 337 – volume: 6 start-page: 531 year: 2011 end-page: 45 article-title: Advances in resistive pulse sensors: devices bridging the void between molecular and microscopic detection publication-title: Nano Today. – start-page: 118 year: 2014 – volume: 87 start-page: 9225 year: 2015 end-page: 33 article-title: Size characterization and quantification of exosomes by asymmetrical‐flow field‐flow fractionation publication-title: Anal Chem. – volume: 245 start-page: 28 year: 2013 end-page: 34 article-title: Random close packing fractions of lognormal distributions of hard spheres publication-title: Powder Technol. – volume: 8 start-page: 1443 year: 2013 end-page: 58 article-title: Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing publication-title: Nanomedicine. – volume: 64 start-page: 676 year: 2012 end-page: 705 article-title: Classification, functions, and clinical relevance of extracellular vesicles publication-title: Pharmacol Rev. – volume: 68 start-page: 011306 year: 2003 article-title: Jamming at zero temperature and zero applied stress: the epitome of disorder publication-title: Phys Rev E. – volume: 10 start-page: 1470 year: 2008 end-page: 6 article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers publication-title: Nat Cell Biol. – volume: 31 start-page: 6577 year: 2015 end-page: 87 article-title: Observations of tunable resistive pulse sensing for exosome analysis: improving system sensitivity and stability publication-title: Langmuir. – volume: 83 start-page: 3499 year: 2011 end-page: 506 article-title: Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor publication-title: Anal Chem. – volume: 195 start-page: 72 year: 2014 end-page: 85 article-title: Extracellular vesicles as drug delivery systems: lessons from the liposome field publication-title: J Control Release. – volume: 8 start-page: 2571 year: 2010 end-page: 4 article-title: Standardization of platelet‐derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop publication-title: J Thromb Haemost. – volume: 440 start-page: 97 year: 2008 end-page: 110 – volume: 429 start-page: 45 year: 2014 end-page: 52 article-title: Nanoparticle zeta‐potential measurements using tunable resistive pulse sensing with variable pressure publication-title: J Colloid Interface Sci. – volume: 5 start-page: 7639 year: 2015 article-title: Analysis of exosome purification methods using a model liposome system and tunable‐resistive pulse sensing publication-title: Sci Rep. – volume: 4 start-page: 27269 year: 2015 article-title: Ready‐made chromatography columns for extracellular vesicle isolation from plasma publication-title: J Extracell Vesicles. – volume: 1295 start-page: 179 year: 2015 end-page: 209 article-title: A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density‐gradient separation, and immunoaffinity capture methods publication-title: Methods Mol Biol. – volume: 84 start-page: 3125 year: 2012 end-page: 31 article-title: A variable pressure method for characterizing nanoparticle surface charge using pore sensors publication-title: Anal Chem. – volume: 107 start-page: 13342 year: 2010 end-page: 7 article-title: Magnetic nanoparticle‐based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery publication-title: Proc Natl Acad Sci USA. – volume: 123 start-page: 325 year: 2007 end-page: 30 article-title: Dynamically resizable nanometre‐scale apertures for molecular sensing publication-title: Sens Actuators B Chem. – volume: 405 start-page: 322 year: 2013 end-page: 30 article-title: A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions publication-title: J Colloid Interface Sci. – ident: e_1_2_7_11_1 doi: 10.1096/fj.11-202077 – ident: e_1_2_7_24_1 doi: 10.1021/nn3020322 – ident: e_1_2_7_4_1 doi: 10.3389/fimmu.2015.00203 – ident: e_1_2_7_15_1 doi: 10.3402/jev.v4.27269 – start-page: 97 volume-title: Fractionation of subcellular membrane vesicles of epithelial and nonepithelial cells by OptiPrep™ density gradient ultracentrifugation. Exocytosis and endocytosis: methods in molecular biology year: 2008 ident: e_1_2_7_10_1 – ident: e_1_2_7_33_1 doi: 10.1016/j.jconrel.2014.12.041 – ident: e_1_2_7_3_1 doi: 10.1124/pr.112.005983 – ident: e_1_2_7_5_1 doi: 10.3402/jev.v3.23743 – ident: e_1_2_7_13_1 doi: 10.1007/978-1-4939-2550-6_15 – ident: e_1_2_7_28_1 doi: 10.1021/acs.langmuir.5b01402 – ident: e_1_2_7_29_1 doi: 10.1039/C5OB01451D – ident: e_1_2_7_9_1 doi: 10.1002/0471143030.cb0322s30 – ident: e_1_2_7_12_1 doi: 10.1073/pnas.1002622107 – ident: e_1_2_7_19_1 doi: 10.1002/smll.201001129 – ident: e_1_2_7_44_1 doi: 10.1111/j.1538-7836.2010.04047.x – ident: e_1_2_7_18_1 doi: 10.1016/j.snb.2006.08.031 – ident: e_1_2_7_34_1 doi: 10.3402/jev.v3.23298 – ident: e_1_2_7_31_1 doi: 10.1186/1471-2164-7-142 – ident: e_1_2_7_16_1 doi: 10.3402/jev.v3.23430 – ident: e_1_2_7_39_1 doi: 10.1016/j.jcis.2013.02.030 – ident: e_1_2_7_27_1 doi: 10.1038/srep07639 – ident: e_1_2_7_32_1 doi: 10.3402/jev.v2i0.20360 – ident: e_1_2_7_20_1 doi: 10.1016/j.bios.2011.09.040 – ident: e_1_2_7_2_1 doi: 10.3402/jev.v4.27066 – ident: e_1_2_7_38_1 doi: 10.1021/la2038763 – ident: e_1_2_7_6_1 doi: 10.1038/nbt.1807 – ident: e_1_2_7_22_1 doi: 10.2217/nnm.12.173 – ident: e_1_2_7_7_1 doi: 10.1016/S0006-3495(98)78033-6 – ident: e_1_2_7_8_1 doi: 10.1021/acs.analchem.5b01636 – start-page: 118 volume-title: Single‐step isolation of extracellular vesicles from plasma by size‐exclusion chromatography year: 2014 ident: e_1_2_7_14_1 – ident: e_1_2_7_42_1 doi: 10.1021/i100001a013 – ident: e_1_2_7_36_1 doi: 10.1038/ncb1800 – ident: e_1_2_7_23_1 doi: 10.1021/ac2030915 – ident: e_1_2_7_30_1 – ident: e_1_2_7_41_1 doi: 10.1007/BF01025983 – ident: e_1_2_7_43_1 doi: 10.1103/PhysRevE.68.011306 – ident: e_1_2_7_25_1 doi: 10.1016/j.jcis.2014.05.013 – ident: e_1_2_7_40_1 doi: 10.1016/j.powtec.2013.04.009 – ident: e_1_2_7_17_1 doi: 10.1111/jth.12602 – ident: e_1_2_7_26_1 doi: 10.1016/j.nantod.2011.08.012 – ident: e_1_2_7_35_1 doi: 10.1016/j.jconrel.2014.07.049 – ident: e_1_2_7_37_1 doi: 10.1038/ncomms1180 – ident: e_1_2_7_21_1 doi: 10.1021/ac200195n – reference: 22019099 - Biosens Bioelectron. 2012 Jan 15;31(1):17-25 – reference: 21434639 - Anal Chem. 2011 May 1;83(9):3499-506 – reference: 21423189 - Nat Biotechnol. 2011 Apr;29(4):341-5 – reference: 19011622 - Nat Cell Biol. 2008 Dec;10(12):1470-6 – reference: 22722893 - Pharmacol Rev. 2012 Jul;64(3):676-705 – reference: 24935188 - J Colloid Interface Sci. 2014 Sep 1;429:45-52 – reference: 22034585 - Nano Today. 2011 Oct 1;6(5):531-545 – reference: 18228490 - Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22 – reference: 20624969 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13342-7 – reference: 25094032 - J Control Release. 2014 Dec 10;195:72-85 – reference: 9635780 - Biophys J. 1998 Jun;74(6):3264-72 – reference: 20831623 - J Thromb Haemost. 2010 Nov;8(11):2571-4 – reference: 25279113 - J Extracell Vesicles. 2014 Sep 08;3:null – reference: 23384702 - Nanomedicine (Lond). 2013 Sep;8(9):1443-58 – reference: 25820723 - Methods Mol Biol. 2015;1295:179-209 – reference: 20979105 - Small. 2010 Dec 6;6(23):2653-8 – reference: 22767229 - FASEB J. 2012 Oct;26(10):4160-73 – reference: 22369672 - Anal Chem. 2012 Apr 3;84(7):3125-31 – reference: 25999947 - Front Immunol. 2015 May 04;6:203 – reference: 25819214 - J Extracell Vesicles. 2015 Mar 26;4:27269 – reference: 25555362 - J Control Release. 2015 Feb 28;200:87-96 – reference: 26291637 - Anal Chem. 2015 Sep 15;87(18):9225-33 – reference: 12935136 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011306 – reference: 16762068 - BMC Genomics. 2006 Jun 08;7:142 – reference: 24818656 - J Thromb Haemost. 2014 Jul;12(7):1182-92 – reference: 25970769 - Langmuir. 2015 Jun 16;31(23):6577-87 – reference: 21285958 - Nat Commun. 2011 Feb 01;2:180 – reference: 24009894 - J Extracell Vesicles. 2013 May 27;2:null – reference: 22017459 - Langmuir. 2011 Dec 6;27(23):14394-400 – reference: 23759321 - J Colloid Interface Sci. 2013 Sep 1;405:322-30 – reference: 18369940 - Methods Mol Biol. 2008;440:97-110 – reference: 25979354 - J Extracell Vesicles. 2015 May 14;4:27066 – reference: 24683445 - J Extracell Vesicles. 2014 Mar 26;3:null – reference: 25559219 - Sci Rep. 2015 Jan 06;5:7639 – reference: 24511372 - J Extracell Vesicles. 2014 Feb 04;3:null – reference: 22809054 - ACS Nano. 2012 Aug 28;6(8):6990-7 – reference: 26264754 - Org Biomol Chem. 2015 Oct 14;13(38):9775-82 |
SSID | ssj0000941589 |
Score | 2.388878 |
Snippet | Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on... Background Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely... Background Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely... Background: Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 31242 |
SubjectTerms | Biomarkers Blood levels colloids concentration Coulter counter Data processing Disease Drug delivery systems Exosomes Extracellular vesicles Feasibility studies Flow cytometry Laboratories Lipids Liposomes Methods microparticles micropores Microscopy nanoparticles nanopores Original Plasma Pore size Principal components analysis resistive pulse sensing Science Sodium Statistical analysis Surfactants |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiG8CBRkJTiitE9tJfGxRV1UlOFHUm-WPcWmFslU3Gwl-PWM7u9qFBS5c11ay8cx43rPGbwh5K7ugwHleqpaLUhjAkDIqlKGx3krpOU835D5-ak7PxdmFvNho9RVrwrI8cF64Q0zwgF7mvXUeg1pZzDehCcC4t0xAurrHFNsgU9e5Xq6SncqV7hw50uE1jAejRIpai3orByWp_l-ESnfBzd-rJjfRbEpHswfk_oQj6VH-_w_JHegfkbu5s-T3x2Q4oqtDgqsf4GluFE2HOfVT_QtQhH7UxVuL_SSdS-eB4l59a-JpfixPpSMsUtkcjeXxl3RYpptWFCl63BpGoDdLTK10Eavg-8sn5Hx28vnDaTk1WCgdshZecmcRHwBY41hrO2Mw4gPaS7YVxFYHVgiHCC00YDononB8g_FeSeOcb01l-FOy1897eE6o6nyL277lnnUCoLZtF--02sqwxrFGFeT9asm1m9THYxOMbxpZSDSQRgPpUepkoIK8W8--yaobf5h3HK23nhO1stMP6EF68iD9Lw8qCNu0vR7SUUnIfU3wPTvfu7_yDz3F_ELXEU1xhXl_5zBniKWFQAJdkDfrYQzmaFPTw3y50Ej2ZJ0gZUGeZW9bf1uNxDDy14K0W3649fHbI_3V1yQYLllsK47PPEge-9cl1WcnX-rjWVKqfPE_lvcluYcgczq22id7w-0SXiGQG-zrFLM_AW83SZU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELaWrpC4IN4EFmQkOKEsTmzncUBoi1qtVqJCiEV7s_xKWYSS0qaR4NczdpywhbLX2mrqzHjm-6bzQOglL6rSakPjMqcsZtLClZJlFVeZMopzQ6mvkPuwyE7P2dkFvzhAi6EWxqVVDjbRG2rTaBcjB5IOvgoIOknerX7EbmqU-3d1GKEhw2gF89a3GLuBDsEkczJBh9PZ4uOnMeoCZCbhRdlnwFPgTm--2e6440BdU5bu-Cbfwv-vBqb7YOi_2ZRXUa53U_M76HbAl_ikV4i76MDW99DNfuLkz_uoPcFD8ODylzW4HyCN2wabkBdjMUBCrF01Yx1a6uKmwmDD19JF-V3aKu7sxqfTYZc2v8Tt1ldgYaDuzmR0Fq-24HLxxmXH18sH6Hw--_z-NA6DF2INbIbGVCvADdYqqUmuCinBElQgR54n1o1AUIxpQG5VZmWhmWson4EdSDhIweQykfQhmtRNbR8jXBYmB3egqCEFszZVeeFqXVUiSaZJVkbo9fDKhQ5dyd1wjO8C2IkTkAABiY4LL6AIvRp3r_puHP_ZN3XSG_e4Htr-g2a9FOFKCoCOFuyXMUobcBelAiRTZZUl1CjCLPw0clX2ovUhlKqfdwLP2fvco0E_RLAFG_FHc_cuUwIYmzEg1hF6MS7DJXcylbVtthsBJJCnHmpG6FGvbePZUiCMjtdGKN_Rw53D767Ul199I3FO3Lhx-M5jr7HXvlJxNvuSTue-g-WT64_5FN0CWBkCVUdo0q639hlAt1Y9D_fxNyq5Rv4 priority: 102 providerName: ProQuest – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxJuUgowEJ5TixHYexxZ1taoEJ4rKyfJzKUJJtZuNVH49M0426tIFidNKsbNJPJ6Z77PmQchbWYXaW8fTuuQiFdqDSuk6pKEwzkjpOI8Zcp8-F_NzcXYhL_ZItcmFwbBK5NBhKBQRbTUqtzaxAwkHuvPhh--PeglsE9zLHXI3L-EXdjL7Np9OV4C0ZLKqh0j3Wzdt-aBYqv-PQqW74ObtqMmbaDa6o9lD8mDEkfR4EPwjsuebx-Te0Fny-gnpjunmkODyl3d0aBRNu5a6Mf7FU4B-1GLWYjOWzqVtoGCrlxpP8zE8lfZ-FcPmKIbHL2i3jplWFCg6mobe06s1uFa6wij4ZvGUnM9Ov3ycp2ODhdQCa-EptwbwgfdGW1aaSmvQ-ADykmXmsdWBEcICQguF15UVWDi-AH3PpLbWlTrT_BnZb9rGvyC0rlwJZt9wxyrhfW7KCnNaTaZZYVlRJ-T9ZsmVHauPYxOMnwpYCApIgYBUL1UUUELeTbOvhqobf5l3gtKb5mCt7HihXS7UqHoKIKIHO-WcsQ7cQm0AsYQieMadYcLDq7GbslddPCoJQ18TeM7O5x5u9ocadX6lckRTvAa_v3OYM8DSQgCBTsibaRiUGWWqG9-uVwrInswjpEzI82G3Td-WAzFE_pqQcmsfbn389khz-T0WDJcM24rDfx7FHfvPJVVnp1_zk1msVHnw_yvzktwHSDkeUh2S_W659q8AtnXmddTQ3zrHRAg priority: 102 providerName: Taylor & Francis – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0Ivgifhtbywr6JNEku5uPx1Z6lILig5W-LfsxOVskKXe5gP71ndnkwp2eQl9vk80l8_WbYfY3jL1VZV2B8yKuCiFjaQBNylR1XOfWW6W8EOGE3Ocv-em5PLtQF2PBjc7CDPwQU8GNLCP4azJwY8MUEiEDaegV9B96hTknBpm77B7iekEansmvU40FU5dUhSl4oXMI1bkcet9pi4-bG2xFpUDe_wd16S4A-ncf5Sa-DQFq9og9HJElPxpU4TG7A80Tdn-YNfnrKeuO-LpscPkbPB9GR_Ou5X7siAGOYJA7OsfYjGS6vK05eu-Fofo-NazyHpahkY5Tw_ycd6tw9opj0k7Oogd-vcJgy5fUF9_Mn7Hz2cm3T6fxOHIhdpjHiFg4i4gBwBqXFLY0Bn1AjRJURQo0_MBK6RCz1TmY0kmiks_RA6TKOOcLkxrxnO01bQMvGa9KX2AgsMInpQTIbFHSKVebmiR3SV5F7P36k2s38pHTWIyfGvMSEpBGAele6SCgiL2brr4eeDj-cd0xSW-6htizww_tYq5HY9QIGgE9l_fWeQwUlUUMU-c1JMLbRAL-tWRT9roLxZN6mHSCz9n53IO1fujRCyx1RvhKVKh7O5dFguhaSkypI_ZmWkbzJpmaBtrVUmP6p7IAMiP2YtC26d0yTBUpo41YsaWHWy-_vdJc_ggU4iqhQeO452Bi__2k-uzke3Y8C9yVr257wz57gBBzLFodsL1usYLXCOM6exhs9QbP4UUd priority: 102 providerName: Wiley-Blackwell |
Title | A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing |
URI | https://www.tandfonline.com/doi/abs/10.3402/jev.v5.31242 https://onlinelibrary.wiley.com/doi/abs/10.3402%2Fjev.v5.31242 https://www.ncbi.nlm.nih.gov/pubmed/27680301 https://www.proquest.com/docview/2082039001 https://www.proquest.com/docview/3092344407 https://www.proquest.com/docview/1825217273 https://pubmed.ncbi.nlm.nih.gov/PMC5040823 https://doaj.org/article/456e048ddbcd4679b521f6fe03db04e9 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEONrgVEZCZ5QihPb-XhAaJ1aqklME6KoPFn-Stk0JaNNI8Zfz9lJq5UVxEseaitpfHe-3-9yvkPoNc-K3GpDwzylLGTSgknJvAiLRBnFuaHUn5D7dJaMJ-x0yqc7aNVttFvAxVZq5_pJTeZX_Z8_bj6Awb93jBPoz7tL2_QbDuwT3M0u2vdfilwSXwf0L9v8uYj7fng-hwgUO2uz4O_cYMM_-TL-fxQx3QZF72ZU3ka63lWNHqIHHcbEx61SHKAdWz5C99qukzePUX2MVwGEi1_W4LaJNK4rbLrcGIsBFmLtTjSWXVldXBUY9vG5dJF-l7qKG7vwKXXYpc7PcL30p7Aw0He3bTQWXy_B7eKFy5AvZ0_QZDT8cjIOu-YLoQZGQ0OqFWAHa5XUJFWZlLAbFCBLnkbWtUFQjGlAb0ViZaaZKyqfwF4Qcam1SWUk6VO0V1alPUQ4z0wKLkFRQzJmbazSzJ13VZEkiSZJHqC3qyUXuqtM7hpkXAlgKE5AAgQkGi68gAL0Zj37uq3I8Zd5Aye99RxXR9v_UM1nojNLAfDRwh5mjNIGXEauAM0USWEJNYowC3-N3Ja9qH0YpWh7nsBztj73aKUfYqXOInZIi-age1uHKQGczRiQ6wC9Wg-DoTuZytJWy4UAIshjDzcD9KzVtvW7xUAaHbcNULqhhxsvvzlSXnz3xcQ5cS3H4Z59r7H_XFJxOvwaD0a-iuXz_xTDC3QfMGYXtTpCe_V8aV8CjqtVD-2Sb2O4xuy8h_YHw7Pzzz0fE4Hrx2nU8yb8G6X3TVI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviHEtDDASe0IZSezcHia0slbdrUJoQ3vzfEsZQklp0qLx4_htHDtOWaHsba-xFcc5x-d85_hcEHoTpXmmpSJelhDqUa7hSPEs9_JYKBFFihCbIXc8ioen9OAsOltDv9pcGBNW2cpEK6hVKY2PHIx00FVgoPvB-8l3z3SNMrerbQsN7lorqB1bYswldhzqyx9gwlU7-3tA760wHPRPPgw912XAkwDdiUekACWpteDST0TKObB9Dh8dJYE29f4FpRJgSh5rnkpqqqfHwPRBBEuqhAecwHtvoXVqHCgdtN7rjz5-Wnh5wHgKojRrIu4J2Grvvur59jwCUzmk4ZIutC0D_iqYugr2_hu9eRVVW7U4uI_uOTyLdxsG3EBruniAbjcdLi8fonoXt86Ki59a4aZhNa5LrFwcjsYAQbE02ZOFK-GLyxyDzphyc6tgwmTxXFc2fA-bMP0xrmc24wtP4XFl5DWezEDF48pE4xfjR-j0RkjwGHWKstBPEc5SlYD6EUT5KdU6FElqcmtFwP1Y-nHWRW_bX86kq4JumnF8Y2ANGQIxIBCbR8wSqIu2FrMnTfWP_8zrGeot5pia3fZBOR0zJwIYQFUN8lIpIRWop0wAcsrjXPtECZ9q-DT_Ku1ZbV02edNfBdZZue5myx_MyZ6K_TkpK4eJD5ieUjDku-j1YhiEiqEpL3Q5qxgYnVFooW0XPWm4bbG3EAxUY0d3UbLEh0ubXx4pLr7YwuWRb9qbwzu3Lcde-0vZQf9z2BvYipnPrt_mK3RneHJ8xI72R4fP0V2AtM5Jtok69XSmXwBsrMVLdzYxOr9pcfAbcPuDyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJhAviDuFAUZiTyhbEtu5PExoZa12gWpCDO3N8y1lCCWlSYvGT-RXcew4ZYWxt73GVhzn2Od8n30uCL1mWZEbpUmQp4QGVBjYUiIvgiKRWjKmCXERch9Gyd4xPThhJyvoVxcLY90qO53oFLWulD0jB5IOtgoIehhtFd4t4mh3-HbyPbAVpOxNa1dOQ_gyC3rbpRvzQR6H5vwH0Ll6e38XZL8Rx8PBp3d7ga84ECiA8SQgSoLBNEYKFaYyEwK2QAETYGlkbO5_SakCyFIkRmSK2kzqCWyAiMGQOhWRIPDeG2gthQkCEVzrD0ZHHxcnPkCkIpblrfc9Ad629dXMN-cMaHNM4yW76MoH_JU89TII_K8n50WE7Uzk8C6647Et3mkX4z20Ysr76GZb7fL8AWp2cHdwcfbTaNwWr8ZNhbX3yTEY4ChWNpKy9Ol8cVVgEMJU2BsG6zKL56Z2rnzYuuyPcTNz0V94Co9rq7vxZAbmHtfWM78cP0TH1yKCR2i1rErzBOE80ymYIkl0mFFjYplmNs5WRiJMVJjkPfSm--Vc-YzotjDHNw7MyAqIg4D4nHEnoB7aWPSetJlA_tOvb6W36GPzd7sH1XTMvTrgAFsN6E6tpdJgqnIJKKpIChMSLUNq4NPCi7LnjTu-KdpaKzDOpeOud-uDez1U8z-75tJmEgK-pxRIfQ-9WjSDgrEyFaWpZjUHAspiB3N76HG72hZzi4GsWk7dQ-nSOlya_HJLefbFJTFnoS11Du_cdCv2yl_KDwaf4_7QZc98evU0X6JboBb4-_3R4TN0G9CtPy9bR6vNdGaeA4Js5Au_NTE6vW5t8BuucYgN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+standardized+method+to+determine+the+concentration+of+extracellular+vesicles+using+tunable+resistive+pulse+sensing&rft.jtitle=Journal+of+extracellular+vesicles&rft.au=Vogel%2C+Robert&rft.au=Coumans%2C+Frank+A.+W.&rft.au=Maltesen%2C+Raluca+G.&rft.au=B%C3%B6ing%2C+Anita+N.&rft.date=2016-01-01&rft.issn=2001-3078&rft.eissn=2001-3078&rft.volume=5&rft.issue=1&rft_id=info:doi/10.3402%2Fjev.v5.31242&rft.externalDBID=n%2Fa&rft.externalDocID=10_3402_jev_v5_31242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-3078&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-3078&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-3078&client=summon |