A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing

Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predomina...

Full description

Saved in:
Bibliographic Details
Published inJournal of extracellular vesicles Vol. 5; no. 1; pp. 31242 - n/a
Main Authors Vogel, Robert, Coumans, Frank A. W., Maltesen, Raluca G., Böing, Anita N., Bonnington, Katherine E., Broekman, Marike L., Broom, Murray F., Buzás, Edit I., Christiansen, Gunna, Hajji, Najat, Kristensen, Søren R., Kuehn, Meta J., Lund, Sigrid M., Maas, Sybren L. N., Nieuwland, Rienk, Osteikoetxea, Xabier, Schnoor, Rosalie, Scicluna, Benjamin J., Shambrook, Mitch, de Vrij, Jeroen, Mann, Stephen I., Hill, Andrew F., Pedersen, Shona
Format Journal Article
LanguageEnglish
Published Sweden Taylor & Francis 01.01.2016
John Wiley & Sons, Inc
Co-Action Publishing
Wiley
Subjects
Online AccessGet full text
ISSN2001-3078
2001-3078
DOI10.3402/jev.v5.31242

Cover

Abstract Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.
AbstractList Background Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in‐depth quantification, measurement and identification of EV sub‐populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. Materials and Methods A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. Results PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. Conclusion The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.
Background: Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. Materials and Methods: A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. Results: PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. Conclusion: The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.
Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations.BACKGROUNDUnderstanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations.A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets.MATERIALS AND METHODSA standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets.PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs.RESULTSPCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs.The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.CONCLUSIONThe results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.
Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.
Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. A standardized methodology to measure the concentration of extracellular vesicles (EVs) has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV) and consecutively measured with tunable resistive pulse sensing (TRPS). Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA) were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV) and EV (filtered with qEV) concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.
Author Buzás, Edit I.
Pedersen, Shona
de Vrij, Jeroen
Hill, Andrew F.
Lund, Sigrid M.
Coumans, Frank A. W.
Maltesen, Raluca G.
Maas, Sybren L. N.
Schnoor, Rosalie
Broom, Murray F.
Kuehn, Meta J.
Vogel, Robert
Böing, Anita N.
Broekman, Marike L.
Nieuwland, Rienk
Kristensen, Søren R.
Hajji, Najat
Shambrook, Mitch
Scicluna, Benjamin J.
Osteikoetxea, Xabier
Christiansen, Gunna
Bonnington, Katherine E.
Mann, Stephen I.
AuthorAffiliation 10 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
3 Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
8 Department of Biomedicine, Aarhus University, Aarhus, Denmark
1 School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, Australia
9 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
5 Department of Biochemistry, Duke University, Medical Centre, Durham, NC, USA
6 Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
4 Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
2 Izon Science Ltd., Burnside, Christchurch, New Zealand
7 Department of Genetics, Cell and Immunobiology, Semmelweis University
AuthorAffiliation_xml – name: 4 Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
– name: 1 School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, Australia
– name: 5 Department of Biochemistry, Duke University, Medical Centre, Durham, NC, USA
– name: 8 Department of Biomedicine, Aarhus University, Aarhus, Denmark
– name: 9 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
– name: 3 Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
– name: 6 Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
– name: 10 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
– name: 2 Izon Science Ltd., Burnside, Christchurch, New Zealand
– name: 7 Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
Author_xml – sequence: 1
  givenname: Robert
  surname: Vogel
  fullname: Vogel, Robert
  organization: Izon Science Ltd., Burnside
– sequence: 2
  givenname: Frank A. W.
  surname: Coumans
  fullname: Coumans, Frank A. W.
  organization: Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam
– sequence: 3
  givenname: Raluca G.
  surname: Maltesen
  fullname: Maltesen, Raluca G.
  organization: Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital
– sequence: 4
  givenname: Anita N.
  surname: Böing
  fullname: Böing, Anita N.
  organization: Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam
– sequence: 5
  givenname: Katherine E.
  surname: Bonnington
  fullname: Bonnington, Katherine E.
  organization: Department of Biochemistry, Duke University, Medical Centre
– sequence: 6
  givenname: Marike L.
  surname: Broekman
  fullname: Broekman, Marike L.
  organization: Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht
– sequence: 7
  givenname: Murray F.
  surname: Broom
  fullname: Broom, Murray F.
  organization: Izon Science Ltd., Burnside
– sequence: 8
  givenname: Edit I.
  surname: Buzás
  fullname: Buzás, Edit I.
  organization: Department of Genetics, Cell and Immunobiology, Semmelweis University
– sequence: 9
  givenname: Gunna
  surname: Christiansen
  fullname: Christiansen, Gunna
  organization: Department of Biomedicine, Aarhus University
– sequence: 10
  givenname: Najat
  surname: Hajji
  fullname: Hajji, Najat
  organization: Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam
– sequence: 11
  givenname: Søren R.
  surname: Kristensen
  fullname: Kristensen, Søren R.
  organization: Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital
– sequence: 12
  givenname: Meta J.
  surname: Kuehn
  fullname: Kuehn, Meta J.
  organization: Department of Biochemistry, Duke University, Medical Centre
– sequence: 13
  givenname: Sigrid M.
  surname: Lund
  fullname: Lund, Sigrid M.
  organization: Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital
– sequence: 14
  givenname: Sybren L. N.
  surname: Maas
  fullname: Maas, Sybren L. N.
  organization: Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht
– sequence: 15
  givenname: Rienk
  surname: Nieuwland
  fullname: Nieuwland, Rienk
  organization: Laboratory of Experimental Clinical Chemistry, Academic Medical Centre, University of Amsterdam
– sequence: 16
  givenname: Xabier
  surname: Osteikoetxea
  fullname: Osteikoetxea, Xabier
  organization: Department of Genetics, Cell and Immunobiology, Semmelweis University
– sequence: 17
  givenname: Rosalie
  surname: Schnoor
  fullname: Schnoor, Rosalie
  organization: Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht
– sequence: 18
  givenname: Benjamin J.
  surname: Scicluna
  fullname: Scicluna, Benjamin J.
  organization: Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University
– sequence: 19
  givenname: Mitch
  surname: Shambrook
  fullname: Shambrook, Mitch
  organization: Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University
– sequence: 20
  givenname: Jeroen
  surname: de Vrij
  fullname: de Vrij, Jeroen
  organization: Department of Neurosurgery and Brain Center Rudolf Magnus, University Medical Center Utrecht
– sequence: 21
  givenname: Stephen I.
  surname: Mann
  fullname: Mann, Stephen I.
  organization: Izon Science Ltd., Burnside
– sequence: 22
  givenname: Andrew F.
  surname: Hill
  fullname: Hill, Andrew F.
  organization: Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University
– sequence: 23
  givenname: Shona
  surname: Pedersen
  fullname: Pedersen, Shona
  email: shp@rn.dk
  organization: Department of Clinical Biochemistry and Clinical Medicine, Aalborg University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27680301$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1v1DAQxSNUREvpjTOyxIUDuzi2kzgXpLZqoagSF-BqOfZk16vEXmwnZfnrcTalaiuoL_HHb95Mnt7L7MA6C1n2OsdLyjD5sIFxORZLmhNGnmVHBON8QXHFD-7tD7OTEDY4rZrlBa9fZIekKjmmOD_K4ikKUVotvTa_QaMe4tppFB3SEMH3xgKKa0DKWQU2ehmNs8i1CH6lg4KuGzrp0QjBqA4CGoKxKxQHK5sOkE_XIZoR0HboAqAAdnp_lT1vZTqf3H6Ps--XF9_OPy-uv366Oj-9XqiyLOmCqoYTAtBIhauGS5lGbpmEosqB44I0jClOi7YEyRUrMKcl4zwvpFK6krmkx9nVrKud3IitN730O-GkEfsL51dC-jgNLlhRAmZc60ZpVlZ1U5C8LVvAVDeYQZ20Ps5a26HpQc9mdA9EH75YsxYrN4oCM8wJTQLvbgW8-zlAiKI3YTJQWnBDEDknqWdFqgl9-wjduMHbZJWguCaUMYarpyiSOmJapwQk6s39ue8G_huBBLyfAeVdCB7aOyTHYgqZSCETYyH2IUs4eYQrE_epSH9tuv8VFXPRjelg92QD8eXiBzm7xJiwyYhqrjO2db6XN853WkS565xvvbTKJEf-2fEPiiH6vA
CitedBy_id crossref_primary_10_1002_jev2_12059
crossref_primary_10_1016_j_prp_2025_155878
crossref_primary_10_3389_fcell_2021_793363
crossref_primary_10_1186_s12575_024_00243_4
crossref_primary_10_1016_j_isci_2021_102906
crossref_primary_10_3390_pharmaceutics15112623
crossref_primary_10_1038_s41598_018_23505_0
crossref_primary_10_1002_INMD_20240049
crossref_primary_10_31083_j_fbl2707205
crossref_primary_10_1080_20013078_2020_1816641
crossref_primary_10_1021_acs_analchem_9b05736
crossref_primary_10_1097_HCO_0000000000000510
crossref_primary_10_3390_bioengineering6010007
crossref_primary_10_1111_apha_13346
crossref_primary_10_1002_jev2_12052
crossref_primary_10_1016_j_biotechadv_2023_108122
crossref_primary_10_1038_s41596_024_01082_z
crossref_primary_10_3390_ijms23074005
crossref_primary_10_1136_thoraxjnl_2020_216370
crossref_primary_10_1016_j_jtcvs_2023_03_033
crossref_primary_10_1080_20013078_2018_1555419
crossref_primary_10_3390_s18103175
crossref_primary_10_1186_s13287_021_02174_3
crossref_primary_10_1002_adbi_201900305
crossref_primary_10_3390_cancers13174330
crossref_primary_10_1002_wnan_1835
crossref_primary_10_3390_cells8070727
crossref_primary_10_1186_s40104_024_01102_8
crossref_primary_10_1109_ACCESS_2018_2828038
crossref_primary_10_1146_annurev_food_072023_034354
crossref_primary_10_1158_0008_5472_CAN_17_3703
crossref_primary_10_1177_1559325819891004
crossref_primary_10_1186_s40364_024_00639_0
crossref_primary_10_1371_journal_pone_0210835
crossref_primary_10_1038_s41598_021_82452_5
crossref_primary_10_3390_cells11020186
crossref_primary_10_1021_acs_analchem_1c00693
crossref_primary_10_3390_ijms23031028
crossref_primary_10_1002_med_21453
crossref_primary_10_1016_j_biopha_2023_115297
crossref_primary_10_1186_s12885_024_12312_8
crossref_primary_10_1007_s00249_017_1252_4
crossref_primary_10_1016_j_ebiom_2019_04_039
crossref_primary_10_1080_09687688_2017_1400602
crossref_primary_10_3389_fphys_2017_00904
crossref_primary_10_1371_journal_pone_0284875
crossref_primary_10_2116_analsci_20R001
crossref_primary_10_5812_jjcmb_107622
crossref_primary_10_1016_j_bcp_2018_02_004
crossref_primary_10_1080_10408347_2020_1802220
crossref_primary_10_3390_genes12101636
crossref_primary_10_1155_2017_7197598
crossref_primary_10_1002_jcp_31061
crossref_primary_10_1016_j_bios_2020_112056
crossref_primary_10_1177_20417314231174609
crossref_primary_10_1007_s11051_020_04840_8
crossref_primary_10_3390_membranes13090752
crossref_primary_10_1002_med_22035
crossref_primary_10_1021_acsbiomaterials_7b00572
crossref_primary_10_1039_D1RA01576A
crossref_primary_10_1016_j_ymeth_2020_02_002
crossref_primary_10_1002_pmic_202000118
crossref_primary_10_3390_cimb46050264
crossref_primary_10_3390_chemosensors11010045
crossref_primary_10_1021_acs_analchem_3c02476
crossref_primary_10_1016_j_xphs_2021_07_012
crossref_primary_10_1038_s41598_021_87822_7
crossref_primary_10_1007_s12033_021_00300_3
crossref_primary_10_1088_1361_6528_aa8d89
crossref_primary_10_1016_j_ijpharm_2024_124097
crossref_primary_10_1016_j_crtox_2023_100134
crossref_primary_10_1186_s12987_021_00299_4
crossref_primary_10_3390_cancers13123076
crossref_primary_10_1007_s10549_021_06474_3
crossref_primary_10_1016_j_xphs_2022_01_012
crossref_primary_10_3389_fimmu_2021_795372
crossref_primary_10_1021_acs_analchem_7b05106
crossref_primary_10_3389_fcell_2020_593386
crossref_primary_10_1098_rstb_2016_0479
crossref_primary_10_1007_s11427_020_1905_7
crossref_primary_10_1016_j_biomaterials_2020_120467
crossref_primary_10_1016_j_heliyon_2024_e30328
crossref_primary_10_1021_acsami_4c14224
crossref_primary_10_1134_S2635167624600792
crossref_primary_10_1074_mcp_RA117_000267
crossref_primary_10_4155_fmc_2018_0417
crossref_primary_10_1039_D3AN01027A
crossref_primary_10_1021_acs_chemrev_7b00534
crossref_primary_10_3390_bios11120518
crossref_primary_10_1007_s12033_017_0009_8
crossref_primary_10_1016_j_omtm_2020_07_012
crossref_primary_10_3390_mi11050458
crossref_primary_10_1016_j_exer_2024_109831
crossref_primary_10_1080_20013078_2017_1344087
crossref_primary_10_1002_adhm_202000893
crossref_primary_10_1134_S1990747819030036
crossref_primary_10_3390_cancers15071984
crossref_primary_10_1161_CIRCRESAHA_117_309417
crossref_primary_10_1039_D1AN00024A
crossref_primary_10_3389_fncel_2020_573345
crossref_primary_10_1016_j_nbd_2018_11_002
crossref_primary_10_3389_fcell_2020_00011
crossref_primary_10_3390_bios10110173
crossref_primary_10_3390_ijms21228723
crossref_primary_10_1002_adhm_202100538
crossref_primary_10_3389_fimmu_2022_904679
crossref_primary_10_1021_acsnano_4c04396
crossref_primary_10_3390_ijms24043663
crossref_primary_10_1016_j_tibtech_2020_05_012
crossref_primary_10_3390_ijms252011013
crossref_primary_10_3389_fmicb_2021_804813
crossref_primary_10_1021_acs_analchem_2c04631
crossref_primary_10_3390_life12111733
crossref_primary_10_1016_j_trac_2024_117672
crossref_primary_10_1021_acs_langmuir_8b04209
crossref_primary_10_1371_journal_pone_0249603
crossref_primary_10_1016_j_micron_2022_103341
crossref_primary_10_1016_j_sna_2022_113832
crossref_primary_10_1007_s00401_021_02367_3
crossref_primary_10_3390_ph14040289
crossref_primary_10_2147_IJN_S421342
crossref_primary_10_3389_fbioe_2020_00525
crossref_primary_10_1002_jex2_77
crossref_primary_10_3390_ijms22010440
crossref_primary_10_1002_elps_202100202
crossref_primary_10_3390_cancers15041307
crossref_primary_10_32604_or_2023_030401
crossref_primary_10_1038_s41467_024_46557_5
crossref_primary_10_1002_advs_202002596
crossref_primary_10_1080_20013078_2018_1454777
crossref_primary_10_1002_cbf_4035
crossref_primary_10_1038_s41598_017_14981_x
crossref_primary_10_3389_fcvm_2018_00187
crossref_primary_10_3724_SP_J_1123_2021_07005
Cites_doi 10.1096/fj.11-202077
10.1021/nn3020322
10.3389/fimmu.2015.00203
10.3402/jev.v4.27269
10.1016/j.jconrel.2014.12.041
10.1124/pr.112.005983
10.3402/jev.v3.23743
10.1007/978-1-4939-2550-6_15
10.1021/acs.langmuir.5b01402
10.1039/C5OB01451D
10.1002/0471143030.cb0322s30
10.1073/pnas.1002622107
10.1002/smll.201001129
10.1111/j.1538-7836.2010.04047.x
10.1016/j.snb.2006.08.031
10.3402/jev.v3.23298
10.1186/1471-2164-7-142
10.3402/jev.v3.23430
10.1016/j.jcis.2013.02.030
10.1038/srep07639
10.3402/jev.v2i0.20360
10.1016/j.bios.2011.09.040
10.3402/jev.v4.27066
10.1021/la2038763
10.1038/nbt.1807
10.2217/nnm.12.173
10.1016/S0006-3495(98)78033-6
10.1021/acs.analchem.5b01636
10.1021/i100001a013
10.1038/ncb1800
10.1021/ac2030915
10.1007/BF01025983
10.1103/PhysRevE.68.011306
10.1016/j.jcis.2014.05.013
10.1016/j.powtec.2013.04.009
10.1111/jth.12602
10.1016/j.nantod.2011.08.012
10.1016/j.jconrel.2014.07.049
10.1038/ncomms1180
10.1021/ac200195n
ContentType Journal Article
Copyright 2016 Robert Vogel et al. 2016
2016 Robert Vogel et al.
Copyright Taylor & Francis Ltd. 2016
Copyright John Wiley & Sons, Inc. 2016
Copyright_xml – notice: 2016 Robert Vogel et al. 2016
– notice: 2016 Robert Vogel et al.
– notice: Copyright Taylor & Francis Ltd. 2016
– notice: Copyright John Wiley & Sons, Inc. 2016
DBID 0YH
24P
AAYXX
CITATION
NPM
7QP
8FE
8FH
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3402/jev.v5.31242
DatabaseName Taylor & Francis Open Access
Wiley Online Library Open Access
CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
ProQuest Central Student

PubMed
ProQuest Central Student
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2001-3078
EndPage n/a
ExternalDocumentID oai_doaj_org_article_456e048ddbcd4679b521f6fe03db04e9
PMC5040823
27680301
10_3402_jev_v5_31242
JEV2BF00243
11821261
Genre Research Article
article
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Institutes of Health (NIH)
  funderid: R01GM099471
– fundername: STW
– fundername: NIGMS NIH HHS
  grantid: R01 GM099471
GroupedDBID 0R~
0YH
1OC
24P
53G
5VS
8FE
8FH
8WT
AAHHS
AAHJG
ABDBF
ABQXS
ACCFJ
ACGFS
ACPRK
ACUHS
ADBBV
ADRAZ
AEEZP
AEGXH
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
DIK
EBS
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
KQ8
LK8
M48
M4Z
M7P
M~E
OK1
PIMPY
PROAC
RNS
RPM
TDBHL
TFW
ABMDY
ACCMX
ACESK
IAO
IHR
INH
IPNFZ
ITC
RIG
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QP
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
WIN
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c6663-3cb822eebac07b8aa030f4ae571e8052b44c835f6ea8c45083648815accd7a1a3
IEDL.DBID M48
ISSN 2001-3078
IngestDate Wed Aug 27 01:30:02 EDT 2025
Thu Aug 21 18:21:02 EDT 2025
Thu Sep 04 16:16:51 EDT 2025
Wed Aug 13 09:36:15 EDT 2025
Wed Aug 13 06:31:21 EDT 2025
Wed Feb 19 01:58:21 EST 2025
Tue Jul 01 03:56:41 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Wed Jan 22 16:33:31 EST 2025
Wed Dec 25 09:02:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Coulter counter
EV
resistive pulse sensing
nanopores
extracellular vesicles
nanoparticles
micropores
exosomes
microparticles
concentration
colloids
Language English
License open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Attribution-NonCommercial
http://creativecommons.org/licenses/by-nc/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6663-3cb822eebac07b8aa030f4ae571e8052b44c835f6ea8c45083648815accd7a1a3
Notes Supplementary files
Responsible Editor: Dolores Di Vizio, Cedars‐Sinai, USA.
under ‘Article Tools’.
To access the supplementary material to this article, please see
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Responsible Editor: Dolores Di Vizio, Cedars-Sinai, USA.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3402/jev.v5.31242
PMID 27680301
PQID 2082039001
PQPubID 2030046
PageCount 13
ParticipantIDs proquest_journals_3092344407
crossref_primary_10_3402_jev_v5_31242
crossref_citationtrail_10_3402_jev_v5_31242
wiley_primary_10_3402_jev_v5_31242_JEV2BF00243
proquest_miscellaneous_1825217273
pubmed_primary_27680301
doaj_primary_oai_doaj_org_article_456e048ddbcd4679b521f6fe03db04e9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5040823
informaworld_taylorfrancis_310_3402_jev_v5_31242
proquest_journals_2082039001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace Sweden
PublicationPlace_xml – name: Sweden
– name: Abingdon
PublicationTitle Journal of extracellular vesicles
PublicationTitleAlternate J Extracell Vesicles
PublicationYear 2016
Publisher Taylor & Francis
John Wiley & Sons, Inc
Co-Action Publishing
Wiley
Publisher_xml – name: Taylor & Francis
– name: John Wiley & Sons, Inc
– name: Co-Action Publishing
– name: Wiley
References 2015; 13
2007; 123
2015; 6
2015; 5
2015; 4
2011; 2
2013; 2
2010; 107
2012
2013; 405
2015; 31
2015; 200
2011; 83
2006; 7
2006
2013; 245
2008; 10
2014; 195
2013; 8
2008; 440
2011; 6
2015; 1295
2012; 31
1981; 20
1990; 60
2014; 3
2014; 429
2015; 87
2003; 68
2014
2012; 26
1998; 74
2012; 6
2011; 27
2011; 29
2014; 12
2012; 64
2010; 6
2012; 84
2010; 8
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Li X (e_1_2_7_10_1) 2008
Böing AN (e_1_2_7_14_1) 2014
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
25279113 - J Extracell Vesicles. 2014 Sep 08;3:null
25559219 - Sci Rep. 2015 Jan 06;5:7639
22369672 - Anal Chem. 2012 Apr 3;84(7):3125-31
9635780 - Biophys J. 1998 Jun;74(6):3264-72
16762068 - BMC Genomics. 2006 Jun 08;7:142
21434639 - Anal Chem. 2011 May 1;83(9):3499-506
24511372 - J Extracell Vesicles. 2014 Feb 04;3:null
25820723 - Methods Mol Biol. 2015;1295:179-209
22809054 - ACS Nano. 2012 Aug 28;6(8):6990-7
19011622 - Nat Cell Biol. 2008 Dec;10(12):1470-6
25999947 - Front Immunol. 2015 May 04;6:203
22017459 - Langmuir. 2011 Dec 6;27(23):14394-400
21423189 - Nat Biotechnol. 2011 Apr;29(4):341-5
25094032 - J Control Release. 2014 Dec 10;195:72-85
22722893 - Pharmacol Rev. 2012 Jul;64(3):676-705
20979105 - Small. 2010 Dec 6;6(23):2653-8
21285958 - Nat Commun. 2011 Feb 01;2:180
24818656 - J Thromb Haemost. 2014 Jul;12(7):1182-92
24683445 - J Extracell Vesicles. 2014 Mar 26;3:null
25979354 - J Extracell Vesicles. 2015 May 14;4:27066
25819214 - J Extracell Vesicles. 2015 Mar 26;4:27269
24009894 - J Extracell Vesicles. 2013 May 27;2:null
24935188 - J Colloid Interface Sci. 2014 Sep 1;429:45-52
25555362 - J Control Release. 2015 Feb 28;200:87-96
12935136 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011306
22034585 - Nano Today. 2011 Oct 1;6(5):531-545
25970769 - Langmuir. 2015 Jun 16;31(23):6577-87
26291637 - Anal Chem. 2015 Sep 15;87(18):9225-33
22019099 - Biosens Bioelectron. 2012 Jan 15;31(1):17-25
20831623 - J Thromb Haemost. 2010 Nov;8(11):2571-4
26264754 - Org Biomol Chem. 2015 Oct 14;13(38):9775-82
20624969 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13342-7
23759321 - J Colloid Interface Sci. 2013 Sep 1;405:322-30
18228490 - Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22
23384702 - Nanomedicine (Lond). 2013 Sep;8(9):1443-58
18369940 - Methods Mol Biol. 2008;440:97-110
22767229 - FASEB J. 2012 Oct;26(10):4160-73
References_xml – volume: 3
  start-page: 23743
  year: 2014
  article-title: Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell‐free blood
  publication-title: J Extracell Vesicles.
– volume: 29
  start-page: 341
  year: 2011
  end-page: 5
  article-title: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes
  publication-title: Nat Biotechnol.
– volume: 12
  start-page: 1182
  year: 2014
  end-page: 92
  article-title: Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing
  publication-title: J Thromb Haemost.
– volume: 200
  start-page: 87
  year: 2015
  end-page: 96
  article-title: Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics
  publication-title: J Control Release.
– volume: 6
  start-page: 6990
  year: 2012
  end-page: 7
  article-title: Simultaneous size and zeta‐potential measurements of individual nanoparticles in dispersion using size‐tunable pore sensors
  publication-title: ACS Nano.
– volume: 27
  start-page: 14394
  year: 2011
  end-page: 400
  article-title: Quantitative nanostructural and single‐molecule force spectroscopy biomolecular analysis of human‐saliva‐derived exosomes
  publication-title: Langmuir.
– volume: 74
  start-page: 3264
  year: 1998
  end-page: 72
  article-title: Vesicle size distributions measured by flow field‐flow fractionation coupled with multiangle light scattering
  publication-title: Biophys J.
– volume: 2
  start-page: 180
  year: 2011
  article-title: Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences
  publication-title: Nat Commun.
– volume: 6
  start-page: 2653
  year: 2010
  end-page: 8
  article-title: Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy
  publication-title: Small.
– volume: 7
  start-page: 142
  year: 2006
  article-title: Centering, scaling, and transformations: improving the biological information content of metabolomics data
  publication-title: BMC Genomics.
– volume: 20
  start-page: 66
  year: 1981
  end-page: 71
  article-title: Porosity of a mass of solid particles having a range of sizes
  publication-title: Ind Eng Chem Fundamen.
– volume: 4
  start-page: 27066
  year: 2015
  article-title: Biological properties of extracellular vesicles and their physiological functions
  publication-title: J Extracell Vesicles.
– volume: 6
  start-page: 203
  year: 2015
  article-title: Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications
  publication-title: Front Immunol.
– volume: 31
  start-page: 17
  year: 2012
  end-page: 25
  article-title: Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions
  publication-title: Biosens Bioelectron.
– volume: 13
  start-page: 9775
  year: 2015
  end-page: 82
  article-title: Differential detergent sensitivity of extracellular vesicle subpopulations
  publication-title: Org Biomol Chem.
– volume: 2
  start-page: 20360
  year: 2013
  article-title: Standardization of sample collection, isolation and analysis methods in extracellular vesicle research
  publication-title: J Extracell Vesicles.
– volume: 3
  start-page: 23298
  year: 2014
  article-title: Towards traceable size determination of extracellular vesicles
  publication-title: J Extracell Vesicles.
– year: 2006
  article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids
  publication-title: Current Protocols in Cell Biology.
– volume: 26
  start-page: 4160
  year: 2012
  end-page: 73
  article-title: Prion‐infected cells regulate the release of exosomes with distinct ultrastructural features
  publication-title: FASEB J.
– volume: 60
  start-page: 561
  year: 1990
  end-page: 83
  article-title: Geometric properties of random disk packings
  publication-title: J Stat Phy.
– volume: 3
  start-page: 23430
  year: 2014
  article-title: Single step isolation of extracellular vesicles by size‐exclusion chromatography
  publication-title: J Extracell Vesicles.
– start-page: 330
  year: 2012
  end-page: 337
– volume: 6
  start-page: 531
  year: 2011
  end-page: 45
  article-title: Advances in resistive pulse sensors: devices bridging the void between molecular and microscopic detection
  publication-title: Nano Today.
– start-page: 118
  year: 2014
– volume: 87
  start-page: 9225
  year: 2015
  end-page: 33
  article-title: Size characterization and quantification of exosomes by asymmetrical‐flow field‐flow fractionation
  publication-title: Anal Chem.
– volume: 245
  start-page: 28
  year: 2013
  end-page: 34
  article-title: Random close packing fractions of lognormal distributions of hard spheres
  publication-title: Powder Technol.
– volume: 8
  start-page: 1443
  year: 2013
  end-page: 58
  article-title: Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing
  publication-title: Nanomedicine.
– volume: 64
  start-page: 676
  year: 2012
  end-page: 705
  article-title: Classification, functions, and clinical relevance of extracellular vesicles
  publication-title: Pharmacol Rev.
– volume: 68
  start-page: 011306
  year: 2003
  article-title: Jamming at zero temperature and zero applied stress: the epitome of disorder
  publication-title: Phys Rev E.
– volume: 10
  start-page: 1470
  year: 2008
  end-page: 6
  article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers
  publication-title: Nat Cell Biol.
– volume: 31
  start-page: 6577
  year: 2015
  end-page: 87
  article-title: Observations of tunable resistive pulse sensing for exosome analysis: improving system sensitivity and stability
  publication-title: Langmuir.
– volume: 83
  start-page: 3499
  year: 2011
  end-page: 506
  article-title: Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor
  publication-title: Anal Chem.
– volume: 195
  start-page: 72
  year: 2014
  end-page: 85
  article-title: Extracellular vesicles as drug delivery systems: lessons from the liposome field
  publication-title: J Control Release.
– volume: 8
  start-page: 2571
  year: 2010
  end-page: 4
  article-title: Standardization of platelet‐derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop
  publication-title: J Thromb Haemost.
– volume: 440
  start-page: 97
  year: 2008
  end-page: 110
– volume: 429
  start-page: 45
  year: 2014
  end-page: 52
  article-title: Nanoparticle zeta‐potential measurements using tunable resistive pulse sensing with variable pressure
  publication-title: J Colloid Interface Sci.
– volume: 5
  start-page: 7639
  year: 2015
  article-title: Analysis of exosome purification methods using a model liposome system and tunable‐resistive pulse sensing
  publication-title: Sci Rep.
– volume: 4
  start-page: 27269
  year: 2015
  article-title: Ready‐made chromatography columns for extracellular vesicle isolation from plasma
  publication-title: J Extracell Vesicles.
– volume: 1295
  start-page: 179
  year: 2015
  end-page: 209
  article-title: A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density‐gradient separation, and immunoaffinity capture methods
  publication-title: Methods Mol Biol.
– volume: 84
  start-page: 3125
  year: 2012
  end-page: 31
  article-title: A variable pressure method for characterizing nanoparticle surface charge using pore sensors
  publication-title: Anal Chem.
– volume: 107
  start-page: 13342
  year: 2010
  end-page: 7
  article-title: Magnetic nanoparticle‐based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery
  publication-title: Proc Natl Acad Sci USA.
– volume: 123
  start-page: 325
  year: 2007
  end-page: 30
  article-title: Dynamically resizable nanometre‐scale apertures for molecular sensing
  publication-title: Sens Actuators B Chem.
– volume: 405
  start-page: 322
  year: 2013
  end-page: 30
  article-title: A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions
  publication-title: J Colloid Interface Sci.
– ident: e_1_2_7_11_1
  doi: 10.1096/fj.11-202077
– ident: e_1_2_7_24_1
  doi: 10.1021/nn3020322
– ident: e_1_2_7_4_1
  doi: 10.3389/fimmu.2015.00203
– ident: e_1_2_7_15_1
  doi: 10.3402/jev.v4.27269
– start-page: 97
  volume-title: Fractionation of subcellular membrane vesicles of epithelial and nonepithelial cells by OptiPrep™ density gradient ultracentrifugation. Exocytosis and endocytosis: methods in molecular biology
  year: 2008
  ident: e_1_2_7_10_1
– ident: e_1_2_7_33_1
  doi: 10.1016/j.jconrel.2014.12.041
– ident: e_1_2_7_3_1
  doi: 10.1124/pr.112.005983
– ident: e_1_2_7_5_1
  doi: 10.3402/jev.v3.23743
– ident: e_1_2_7_13_1
  doi: 10.1007/978-1-4939-2550-6_15
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.langmuir.5b01402
– ident: e_1_2_7_29_1
  doi: 10.1039/C5OB01451D
– ident: e_1_2_7_9_1
  doi: 10.1002/0471143030.cb0322s30
– ident: e_1_2_7_12_1
  doi: 10.1073/pnas.1002622107
– ident: e_1_2_7_19_1
  doi: 10.1002/smll.201001129
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1538-7836.2010.04047.x
– ident: e_1_2_7_18_1
  doi: 10.1016/j.snb.2006.08.031
– ident: e_1_2_7_34_1
  doi: 10.3402/jev.v3.23298
– ident: e_1_2_7_31_1
  doi: 10.1186/1471-2164-7-142
– ident: e_1_2_7_16_1
  doi: 10.3402/jev.v3.23430
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jcis.2013.02.030
– ident: e_1_2_7_27_1
  doi: 10.1038/srep07639
– ident: e_1_2_7_32_1
  doi: 10.3402/jev.v2i0.20360
– ident: e_1_2_7_20_1
  doi: 10.1016/j.bios.2011.09.040
– ident: e_1_2_7_2_1
  doi: 10.3402/jev.v4.27066
– ident: e_1_2_7_38_1
  doi: 10.1021/la2038763
– ident: e_1_2_7_6_1
  doi: 10.1038/nbt.1807
– ident: e_1_2_7_22_1
  doi: 10.2217/nnm.12.173
– ident: e_1_2_7_7_1
  doi: 10.1016/S0006-3495(98)78033-6
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.analchem.5b01636
– start-page: 118
  volume-title: Single‐step isolation of extracellular vesicles from plasma by size‐exclusion chromatography
  year: 2014
  ident: e_1_2_7_14_1
– ident: e_1_2_7_42_1
  doi: 10.1021/i100001a013
– ident: e_1_2_7_36_1
  doi: 10.1038/ncb1800
– ident: e_1_2_7_23_1
  doi: 10.1021/ac2030915
– ident: e_1_2_7_30_1
– ident: e_1_2_7_41_1
  doi: 10.1007/BF01025983
– ident: e_1_2_7_43_1
  doi: 10.1103/PhysRevE.68.011306
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jcis.2014.05.013
– ident: e_1_2_7_40_1
  doi: 10.1016/j.powtec.2013.04.009
– ident: e_1_2_7_17_1
  doi: 10.1111/jth.12602
– ident: e_1_2_7_26_1
  doi: 10.1016/j.nantod.2011.08.012
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jconrel.2014.07.049
– ident: e_1_2_7_37_1
  doi: 10.1038/ncomms1180
– ident: e_1_2_7_21_1
  doi: 10.1021/ac200195n
– reference: 22019099 - Biosens Bioelectron. 2012 Jan 15;31(1):17-25
– reference: 21434639 - Anal Chem. 2011 May 1;83(9):3499-506
– reference: 21423189 - Nat Biotechnol. 2011 Apr;29(4):341-5
– reference: 19011622 - Nat Cell Biol. 2008 Dec;10(12):1470-6
– reference: 22722893 - Pharmacol Rev. 2012 Jul;64(3):676-705
– reference: 24935188 - J Colloid Interface Sci. 2014 Sep 1;429:45-52
– reference: 22034585 - Nano Today. 2011 Oct 1;6(5):531-545
– reference: 18228490 - Curr Protoc Cell Biol. 2006 Apr;Chapter 3:Unit 3.22
– reference: 20624969 - Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13342-7
– reference: 25094032 - J Control Release. 2014 Dec 10;195:72-85
– reference: 9635780 - Biophys J. 1998 Jun;74(6):3264-72
– reference: 20831623 - J Thromb Haemost. 2010 Nov;8(11):2571-4
– reference: 25279113 - J Extracell Vesicles. 2014 Sep 08;3:null
– reference: 23384702 - Nanomedicine (Lond). 2013 Sep;8(9):1443-58
– reference: 25820723 - Methods Mol Biol. 2015;1295:179-209
– reference: 20979105 - Small. 2010 Dec 6;6(23):2653-8
– reference: 22767229 - FASEB J. 2012 Oct;26(10):4160-73
– reference: 22369672 - Anal Chem. 2012 Apr 3;84(7):3125-31
– reference: 25999947 - Front Immunol. 2015 May 04;6:203
– reference: 25819214 - J Extracell Vesicles. 2015 Mar 26;4:27269
– reference: 25555362 - J Control Release. 2015 Feb 28;200:87-96
– reference: 26291637 - Anal Chem. 2015 Sep 15;87(18):9225-33
– reference: 12935136 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011306
– reference: 16762068 - BMC Genomics. 2006 Jun 08;7:142
– reference: 24818656 - J Thromb Haemost. 2014 Jul;12(7):1182-92
– reference: 25970769 - Langmuir. 2015 Jun 16;31(23):6577-87
– reference: 21285958 - Nat Commun. 2011 Feb 01;2:180
– reference: 24009894 - J Extracell Vesicles. 2013 May 27;2:null
– reference: 22017459 - Langmuir. 2011 Dec 6;27(23):14394-400
– reference: 23759321 - J Colloid Interface Sci. 2013 Sep 1;405:322-30
– reference: 18369940 - Methods Mol Biol. 2008;440:97-110
– reference: 25979354 - J Extracell Vesicles. 2015 May 14;4:27066
– reference: 24683445 - J Extracell Vesicles. 2014 Mar 26;3:null
– reference: 25559219 - Sci Rep. 2015 Jan 06;5:7639
– reference: 24511372 - J Extracell Vesicles. 2014 Feb 04;3:null
– reference: 22809054 - ACS Nano. 2012 Aug 28;6(8):6990-7
– reference: 26264754 - Org Biomol Chem. 2015 Oct 14;13(38):9775-82
SSID ssj0000941589
Score 2.388878
Snippet Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely reliant on...
Background Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely...
Background Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely...
Background: Understanding the pathogenic role of extracellular vesicles (EVs) in disease and their potential diagnostic and therapeutic utility is extremely...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31242
SubjectTerms Biomarkers
Blood levels
colloids
concentration
Coulter counter
Data processing
Disease
Drug delivery systems
Exosomes
Extracellular vesicles
Feasibility studies
Flow cytometry
Laboratories
Lipids
Liposomes
Methods
microparticles
micropores
Microscopy
nanoparticles
nanopores
Original
Plasma
Pore size
Principal components analysis
resistive pulse sensing
Science
Sodium
Statistical analysis
Surfactants
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiG8CBRkJTiitE9tJfGxRV1UlOFHUm-WPcWmFslU3Gwl-PWM7u9qFBS5c11ay8cx43rPGbwh5K7ugwHleqpaLUhjAkDIqlKGx3krpOU835D5-ak7PxdmFvNho9RVrwrI8cF64Q0zwgF7mvXUeg1pZzDehCcC4t0xAurrHFNsgU9e5Xq6SncqV7hw50uE1jAejRIpai3orByWp_l-ESnfBzd-rJjfRbEpHswfk_oQj6VH-_w_JHegfkbu5s-T3x2Q4oqtDgqsf4GluFE2HOfVT_QtQhH7UxVuL_SSdS-eB4l59a-JpfixPpSMsUtkcjeXxl3RYpptWFCl63BpGoDdLTK10Eavg-8sn5Hx28vnDaTk1WCgdshZecmcRHwBY41hrO2Mw4gPaS7YVxFYHVgiHCC00YDononB8g_FeSeOcb01l-FOy1897eE6o6nyL277lnnUCoLZtF--02sqwxrFGFeT9asm1m9THYxOMbxpZSDSQRgPpUepkoIK8W8--yaobf5h3HK23nhO1stMP6EF68iD9Lw8qCNu0vR7SUUnIfU3wPTvfu7_yDz3F_ELXEU1xhXl_5zBniKWFQAJdkDfrYQzmaFPTw3y50Ej2ZJ0gZUGeZW9bf1uNxDDy14K0W3649fHbI_3V1yQYLllsK47PPEge-9cl1WcnX-rjWVKqfPE_lvcluYcgczq22id7w-0SXiGQG-zrFLM_AW83SZU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELaWrpC4IN4EFmQkOKEsTmzncUBoi1qtVqJCiEV7s_xKWYSS0qaR4NczdpywhbLX2mrqzHjm-6bzQOglL6rSakPjMqcsZtLClZJlFVeZMopzQ6mvkPuwyE7P2dkFvzhAi6EWxqVVDjbRG2rTaBcjB5IOvgoIOknerX7EbmqU-3d1GKEhw2gF89a3GLuBDsEkczJBh9PZ4uOnMeoCZCbhRdlnwFPgTm--2e6440BdU5bu-Cbfwv-vBqb7YOi_2ZRXUa53U_M76HbAl_ikV4i76MDW99DNfuLkz_uoPcFD8ODylzW4HyCN2wabkBdjMUBCrF01Yx1a6uKmwmDD19JF-V3aKu7sxqfTYZc2v8Tt1ldgYaDuzmR0Fq-24HLxxmXH18sH6Hw--_z-NA6DF2INbIbGVCvADdYqqUmuCinBElQgR54n1o1AUIxpQG5VZmWhmWson4EdSDhIweQykfQhmtRNbR8jXBYmB3egqCEFszZVeeFqXVUiSaZJVkbo9fDKhQ5dyd1wjO8C2IkTkAABiY4LL6AIvRp3r_puHP_ZN3XSG_e4Htr-g2a9FOFKCoCOFuyXMUobcBelAiRTZZUl1CjCLPw0clX2ovUhlKqfdwLP2fvco0E_RLAFG_FHc_cuUwIYmzEg1hF6MS7DJXcylbVtthsBJJCnHmpG6FGvbePZUiCMjtdGKN_Rw53D767Ul199I3FO3Lhx-M5jr7HXvlJxNvuSTue-g-WT64_5FN0CWBkCVUdo0q639hlAt1Y9D_fxNyq5Rv4
  priority: 102
  providerName: ProQuest
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxJuUgowEJ5TixHYexxZ1taoEJ4rKyfJzKUJJtZuNVH49M0426tIFidNKsbNJPJ6Z77PmQchbWYXaW8fTuuQiFdqDSuk6pKEwzkjpOI8Zcp8-F_NzcXYhL_ZItcmFwbBK5NBhKBQRbTUqtzaxAwkHuvPhh--PeglsE9zLHXI3L-EXdjL7Np9OV4C0ZLKqh0j3Wzdt-aBYqv-PQqW74ObtqMmbaDa6o9lD8mDEkfR4EPwjsuebx-Te0Fny-gnpjunmkODyl3d0aBRNu5a6Mf7FU4B-1GLWYjOWzqVtoGCrlxpP8zE8lfZ-FcPmKIbHL2i3jplWFCg6mobe06s1uFa6wij4ZvGUnM9Ov3ycp2ODhdQCa-EptwbwgfdGW1aaSmvQ-ADykmXmsdWBEcICQguF15UVWDi-AH3PpLbWlTrT_BnZb9rGvyC0rlwJZt9wxyrhfW7KCnNaTaZZYVlRJ-T9ZsmVHauPYxOMnwpYCApIgYBUL1UUUELeTbOvhqobf5l3gtKb5mCt7HihXS7UqHoKIKIHO-WcsQ7cQm0AsYQieMadYcLDq7GbslddPCoJQ18TeM7O5x5u9ocadX6lckRTvAa_v3OYM8DSQgCBTsibaRiUGWWqG9-uVwrInswjpEzI82G3Td-WAzFE_pqQcmsfbn389khz-T0WDJcM24rDfx7FHfvPJVVnp1_zk1msVHnw_yvzktwHSDkeUh2S_W659q8AtnXmddTQ3zrHRAg
  priority: 102
  providerName: Taylor & Francis
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0Ivgifhtbywr6JNEku5uPx1Z6lILig5W-LfsxOVskKXe5gP71ndnkwp2eQl9vk80l8_WbYfY3jL1VZV2B8yKuCiFjaQBNylR1XOfWW6W8EOGE3Ocv-em5PLtQF2PBjc7CDPwQU8GNLCP4azJwY8MUEiEDaegV9B96hTknBpm77B7iekEansmvU40FU5dUhSl4oXMI1bkcet9pi4-bG2xFpUDe_wd16S4A-ncf5Sa-DQFq9og9HJElPxpU4TG7A80Tdn-YNfnrKeuO-LpscPkbPB9GR_Ou5X7siAGOYJA7OsfYjGS6vK05eu-Fofo-NazyHpahkY5Tw_ycd6tw9opj0k7Oogd-vcJgy5fUF9_Mn7Hz2cm3T6fxOHIhdpjHiFg4i4gBwBqXFLY0Bn1AjRJURQo0_MBK6RCz1TmY0kmiks_RA6TKOOcLkxrxnO01bQMvGa9KX2AgsMInpQTIbFHSKVebmiR3SV5F7P36k2s38pHTWIyfGvMSEpBGAele6SCgiL2brr4eeDj-cd0xSW-6htizww_tYq5HY9QIGgE9l_fWeQwUlUUMU-c1JMLbRAL-tWRT9roLxZN6mHSCz9n53IO1fujRCyx1RvhKVKh7O5dFguhaSkypI_ZmWkbzJpmaBtrVUmP6p7IAMiP2YtC26d0yTBUpo41YsaWHWy-_vdJc_ggU4iqhQeO452Bi__2k-uzke3Y8C9yVr257wz57gBBzLFodsL1usYLXCOM6exhs9QbP4UUd
  priority: 102
  providerName: Wiley-Blackwell
Title A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing
URI https://www.tandfonline.com/doi/abs/10.3402/jev.v5.31242
https://onlinelibrary.wiley.com/doi/abs/10.3402%2Fjev.v5.31242
https://www.ncbi.nlm.nih.gov/pubmed/27680301
https://www.proquest.com/docview/2082039001
https://www.proquest.com/docview/3092344407
https://www.proquest.com/docview/1825217273
https://pubmed.ncbi.nlm.nih.gov/PMC5040823
https://doaj.org/article/456e048ddbcd4679b521f6fe03db04e9
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEONrgVEZCZ5QihPb-XhAaJ1aqklME6KoPFn-Stk0JaNNI8Zfz9lJq5UVxEseaitpfHe-3-9yvkPoNc-K3GpDwzylLGTSgknJvAiLRBnFuaHUn5D7dJaMJ-x0yqc7aNVttFvAxVZq5_pJTeZX_Z8_bj6Awb93jBPoz7tL2_QbDuwT3M0u2vdfilwSXwf0L9v8uYj7fng-hwgUO2uz4O_cYMM_-TL-fxQx3QZF72ZU3ka63lWNHqIHHcbEx61SHKAdWz5C99qukzePUX2MVwGEi1_W4LaJNK4rbLrcGIsBFmLtTjSWXVldXBUY9vG5dJF-l7qKG7vwKXXYpc7PcL30p7Aw0He3bTQWXy_B7eKFy5AvZ0_QZDT8cjIOu-YLoQZGQ0OqFWAHa5XUJFWZlLAbFCBLnkbWtUFQjGlAb0ViZaaZKyqfwF4Qcam1SWUk6VO0V1alPUQ4z0wKLkFRQzJmbazSzJ13VZEkiSZJHqC3qyUXuqtM7hpkXAlgKE5AAgQkGi68gAL0Zj37uq3I8Zd5Aye99RxXR9v_UM1nojNLAfDRwh5mjNIGXEauAM0USWEJNYowC3-N3Ja9qH0YpWh7nsBztj73aKUfYqXOInZIi-age1uHKQGczRiQ6wC9Wg-DoTuZytJWy4UAIshjDzcD9KzVtvW7xUAaHbcNULqhhxsvvzlSXnz3xcQ5cS3H4Z59r7H_XFJxOvwaD0a-iuXz_xTDC3QfMGYXtTpCe_V8aV8CjqtVD-2Sb2O4xuy8h_YHw7Pzzz0fE4Hrx2nU8yb8G6X3TVI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviHEtDDASe0IZSezcHia0slbdrUJoQ3vzfEsZQklp0qLx4_htHDtOWaHsba-xFcc5x-d85_hcEHoTpXmmpSJelhDqUa7hSPEs9_JYKBFFihCbIXc8ioen9OAsOltDv9pcGBNW2cpEK6hVKY2PHIx00FVgoPvB-8l3z3SNMrerbQsN7lorqB1bYswldhzqyx9gwlU7-3tA760wHPRPPgw912XAkwDdiUekACWpteDST0TKObB9Dh8dJYE29f4FpRJgSh5rnkpqqqfHwPRBBEuqhAecwHtvoXVqHCgdtN7rjz5-Wnh5wHgKojRrIu4J2Grvvur59jwCUzmk4ZIutC0D_iqYugr2_hu9eRVVW7U4uI_uOTyLdxsG3EBruniAbjcdLi8fonoXt86Ki59a4aZhNa5LrFwcjsYAQbE02ZOFK-GLyxyDzphyc6tgwmTxXFc2fA-bMP0xrmc24wtP4XFl5DWezEDF48pE4xfjR-j0RkjwGHWKstBPEc5SlYD6EUT5KdU6FElqcmtFwP1Y-nHWRW_bX86kq4JumnF8Y2ANGQIxIBCbR8wSqIu2FrMnTfWP_8zrGeot5pia3fZBOR0zJwIYQFUN8lIpIRWop0wAcsrjXPtECZ9q-DT_Ku1ZbV02edNfBdZZue5myx_MyZ6K_TkpK4eJD5ieUjDku-j1YhiEiqEpL3Q5qxgYnVFooW0XPWm4bbG3EAxUY0d3UbLEh0ubXx4pLr7YwuWRb9qbwzu3Lcde-0vZQf9z2BvYipnPrt_mK3RneHJ8xI72R4fP0V2AtM5Jtok69XSmXwBsrMVLdzYxOr9pcfAbcPuDyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJhAviDuFAUZiTyhbEtu5PExoZa12gWpCDO3N8y1lCCWlSYvGT-RXcew4ZYWxt73GVhzn2Od8n30uCL1mWZEbpUmQp4QGVBjYUiIvgiKRWjKmCXERch9Gyd4xPThhJyvoVxcLY90qO53oFLWulD0jB5IOtgoIehhtFd4t4mh3-HbyPbAVpOxNa1dOQ_gyC3rbpRvzQR6H5vwH0Ll6e38XZL8Rx8PBp3d7ga84ECiA8SQgSoLBNEYKFaYyEwK2QAETYGlkbO5_SakCyFIkRmSK2kzqCWyAiMGQOhWRIPDeG2gthQkCEVzrD0ZHHxcnPkCkIpblrfc9Ad629dXMN-cMaHNM4yW76MoH_JU89TII_K8n50WE7Uzk8C6647Et3mkX4z20Ysr76GZb7fL8AWp2cHdwcfbTaNwWr8ZNhbX3yTEY4ChWNpKy9Ol8cVVgEMJU2BsG6zKL56Z2rnzYuuyPcTNz0V94Co9rq7vxZAbmHtfWM78cP0TH1yKCR2i1rErzBOE80ymYIkl0mFFjYplmNs5WRiJMVJjkPfSm--Vc-YzotjDHNw7MyAqIg4D4nHEnoB7aWPSetJlA_tOvb6W36GPzd7sH1XTMvTrgAFsN6E6tpdJgqnIJKKpIChMSLUNq4NPCi7LnjTu-KdpaKzDOpeOud-uDez1U8z-75tJmEgK-pxRIfQ-9WjSDgrEyFaWpZjUHAspiB3N76HG72hZzi4GsWk7dQ-nSOlya_HJLefbFJTFnoS11Du_cdCv2yl_KDwaf4_7QZc98evU0X6JboBb4-_3R4TN0G9CtPy9bR6vNdGaeA4Js5Au_NTE6vW5t8BuucYgN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+standardized+method+to+determine+the+concentration+of+extracellular+vesicles+using+tunable+resistive+pulse+sensing&rft.jtitle=Journal+of+extracellular+vesicles&rft.au=Vogel%2C+Robert&rft.au=Coumans%2C+Frank+A.+W.&rft.au=Maltesen%2C+Raluca+G.&rft.au=B%C3%B6ing%2C+Anita+N.&rft.date=2016-01-01&rft.issn=2001-3078&rft.eissn=2001-3078&rft.volume=5&rft.issue=1&rft_id=info:doi/10.3402%2Fjev.v5.31242&rft.externalDBID=n%2Fa&rft.externalDocID=10_3402_jev_v5_31242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-3078&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-3078&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-3078&client=summon