Parallel Normalized Filtered X- LMS Algorithm for Noise Cancellation Using Multiple Sub-Filters Approach

In this paper, a novel approach of noise cancellation algorithm using Parallel Normalized Filtered x-LMS (P-NFxLMS) is proposed. The degraded audio signal quality can be improved by using adaptive filters. In general, Least Mean Square (LMS) adaptive filtering algorithms are used to recover corrupte...

Full description

Saved in:
Bibliographic Details
Published inI-Manager's Journal on Digital Signal Processing Vol. 4; no. 4; p. 17
Main Authors Anitha, B, Sailaja, C
Format Journal Article
LanguageEnglish
Published Nagercoil iManager Publications 01.10.2016
Subjects
Online AccessGet full text
ISSN2321-7480
2322-0368
DOI10.26634/jdp.4.4.8312

Cover

Abstract In this paper, a novel approach of noise cancellation algorithm using Parallel Normalized Filtered x-LMS (P-NFxLMS) is proposed. The degraded audio signal quality can be improved by using adaptive filters. In general, Least Mean Square (LMS) adaptive filtering algorithms are used to recover corrupted signal. The implementation of LMS algorithm is simple. LMS algorithm exhibits degraded performance if the desired signal has large power fluctuations. The Normalized Fx LMS is also computationally simple and improves the performance of LMS algorithm. In this paper, an algorithm is proposed to decompose a long adaptive filter into multiple sub-filters with lower order, and are implemented in parallel to increase the convergence speed. Finally, the proposed Parallel Normalized Filtered x-LMS (P-NFxLMS) algorithm yields faster convergence with minimum Mean Square Error.
AbstractList In this paper, a novel approach of noise cancellation algorithm using Parallel Normalized Filtered x-LMS (P-NFxLMS) is proposed. The degraded audio signal quality can be improved by using adaptive filters. In general, Least Mean Square (LMS) adaptive filtering algorithms are used to recover corrupted signal. The implementation of LMS algorithm is simple. LMS algorithm exhibits degraded performance if the desired signal has large power fluctuations. The Normalized Fx LMS is also computationally simple and improves the performance of LMS algorithm. In this paper, an algorithm is proposed to decompose a long adaptive filter into multiple sub-filters with lower order, and are implemented in parallel to increase the convergence speed. Finally, the proposed Parallel Normalized Filtered x-LMS (P-NFxLMS) algorithm yields faster convergence with minimum Mean Square Error.
Author C., SAILAJA
B., ANITHA
Author_xml – sequence: 1
  givenname: B
  surname: Anitha
  fullname: Anitha, B
– sequence: 2
  givenname: C
  surname: Sailaja
  fullname: Sailaja, C
BookMark eNotkL1PwzAUxC0EEqV0ZLfE7OKPxHHGqqKA1AJSi8QWufZL68pNgp0M8NdjWnTDu-GnO727QZdN2wBCd4xOuZQiezjYbpolKcH4BRpxwTmhQqrLk2ekyBS9RpMYD5RSQWmZZ3KE9u86aO_B49c2HLV3P2DxwvkeQjKfBC9Xazzzuza4fn_EdRsS6CLguW4MeK971zb4I7pmh1eD713nAa-HLTlnRDzrutBqs79FV7X2ESb_d4w2i8fN_Jks355e5rMlMVJKUnAtJGjFc6m2puYFQEFtDsZQEDLjTGVKaVXm1ChmrS2tBltSRSmDUpmtGKP7c2xq_Rog9tWhHUKTGiumipwXLL2dKHKmTGhjDFBXXXBHHb4rRqvTnFWas8qS_uYUv_nwaew
Cites_doi 10.1109/LSP.2013.2282396
10.1109/TE.2003.822632
10.12720/ijsps.4.2.172-176
10.1109/TASL.2011.2169789
10.1016/j.jsv.2009.07.023
10.1109/TASL.2012.2223673
10.26634/jdp.3.3.3593
10.1109/78.752618
10.1109/ICCCT.2010.5640392
ContentType Journal Article
Copyright 2016 i-manager publications. All rights reserved.
Copyright_xml – notice: 2016 i-manager publications. All rights reserved.
CorporateAuthor Assistant Professor, Department of Electronics and Communication Engineering, Guru Nanak Institutions Technical Campus, Telangana, India
Associate Professor, Department of Electronics and Communication Engineering, Guru Nanak Institutions Technical Campus, Telangana, India
CorporateAuthor_xml – name: Assistant Professor, Department of Electronics and Communication Engineering, Guru Nanak Institutions Technical Campus, Telangana, India
– name: Associate Professor, Department of Electronics and Communication Engineering, Guru Nanak Institutions Technical Campus, Telangana, India
DBID AAYXX
CITATION
04Q
04S
04U
04V
04W
04X
8FE
8FG
ABUWG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.26634/jdp.4.4.8312
DatabaseName CrossRef
India Database (Proquest)
India Database: Business
India Database: History
India Database: Literature & Language
India Database: Science & Technology
India Database: Social Sciences
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Indian Journals: Literature & Language
ProQuest Central Korea
ProQuest Central (New)
ProQuest Indian Journals
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Indian Journals: Social Sciences
ProQuest Technology Collection
ProQuest SciTech Collection
Indian Journals: History
Advanced Technologies & Aerospace Database
Indian Journals: Business
ProQuest One Academic UKI Edition
Indian Journals: Science & Technology
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2322-0368
ExternalDocumentID 4319692021
10_26634_jdp_4_4_8312
Genre Feature
GroupedDBID 04Q
04S
04U
04V
04W
04X
8FE
8FG
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
HCIFZ
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PUEGO
DWQXO
PKEHL
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c666-72a36ea82568bcf27ee70d5ecc0e364218488a8950c81ddd9daed908001e98cb3
IEDL.DBID BENPR
ISSN 2321-7480
IngestDate Fri Jul 25 10:40:11 EDT 2025
Wed Oct 01 01:39:05 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c666-72a36ea82568bcf27ee70d5ecc0e364218488a8950c81ddd9daed908001e98cb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1875271546
PQPubID 2037360
ParticipantIDs proquest_journals_1875271546
crossref_primary_10_26634_jdp_4_4_8312
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 20161001
  day: 01
PublicationDecade 2010
PublicationPlace Nagercoil
PublicationPlace_xml – name: Nagercoil
PublicationTitle I-Manager's Journal on Digital Signal Processing
PublicationYear 2016
Publisher iManager Publications
Publisher_xml – name: iManager Publications
References key-10.26634/8312-10
key-10.26634/8312-2
key-10.26634/8312-12
key-10.26634/8312-3
key-10.26634/8312-11
key-10.26634/8312-14
key-10.26634/8312-1
key-10.26634/8312-13
key-10.26634/8312-15
key-10.26634/8312-6
key-10.26634/8312-7
key-10.26634/8312-4
key-10.26634/8312-5
key-10.26634/8312-8
key-10.26634/8312-9
References_xml – ident: key-10.26634/8312-15
– ident: key-10.26634/8312-8
  doi: 10.1109/LSP.2013.2282396
– ident: key-10.26634/8312-14
  doi: 10.1109/TE.2003.822632
– ident: key-10.26634/8312-13
  doi: 10.12720/ijsps.4.2.172-176
– ident: key-10.26634/8312-10
– ident: key-10.26634/8312-12
– ident: key-10.26634/8312-11
– ident: key-10.26634/8312-1
  doi: 10.1109/TASL.2011.2169789
– ident: key-10.26634/8312-2
  doi: 10.1016/j.jsv.2009.07.023
– ident: key-10.26634/8312-7
  doi: 10.1109/TASL.2012.2223673
– ident: key-10.26634/8312-9
  doi: 10.26634/jdp.3.3.3593
– ident: key-10.26634/8312-4
– ident: key-10.26634/8312-6
  doi: 10.1109/78.752618
– ident: key-10.26634/8312-3
– ident: key-10.26634/8312-5
  doi: 10.1109/ICCCT.2010.5640392
SSID ssj0003009546
Score 1.9666378
Snippet In this paper, a novel approach of noise cancellation algorithm using Parallel Normalized Filtered x-LMS (P-NFxLMS) is proposed. The degraded audio signal...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 17
SubjectTerms Algorithms
Filters
Noise control
Title Parallel Normalized Filtered X- LMS Algorithm for Noise Cancellation Using Multiple Sub-Filters Approach
URI https://www.proquest.com/docview/1875271546
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2322-0368
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003009546
  issn: 2321-7480
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2322-0368
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003009546
  issn: 2321-7480
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFG4QLl6MRo0okh6Mtwpbu647GIOESYwsRDHhtrRrh5gJCHjxr_d1PzRcTC9L1izZe-l732tfvw-hK88YQ2kCtYnQAWGuSonyREKETn3GNDU8l_MZRXz4yh6n3rSGououjG2rrGJiHqj1MrF75B0HgLXrQ8Lnd6tPYlWj7OlqJaEhS2kFfZtTjO2hhmuZseqocT-Ixs-_uy7UQgpWKM65jiXS7BbEm5CnKOu869UNgyGo4-4mqt04nSef8BAdlKgR9wo3H6GaWRyj2ViurRJKhiMLPLP5t9E4nNvjb3iYkqfRC-5lM_iJ7dsHBnAK8-Ybg_vW0VnRA4fzlgE8KtsKMcQRUnxig3sl3fgJmoSDSX9ISt0EkkAxQnxXUm4klH5cqCR1fWP8rvbAV11D7b1WAYtWisDrJgBWtQ60NDqwyNExgUgUPUX1xXJhzhA2klGhFE95wKBOkYGnUydRngp8l0mRNtF1ZaN4VbBjxFBV5MaMwZgxg2GN2UStyoJxuUg28Z9Lz_9_fYH2Aafwooeuherb9Ze5BCywVW20J8KHdunmH_q_tOg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELWW7WG5rECA9qOAD8DNtLGdxD6sUCmtWrapVmxX6i2y40kpCt2yKULw3_hvjPMB2gu3ypdIsSzleeJ5Y4_nEfIqBAAhMoxNlNNMcpszG6qMKZfHUjoBUSXnk8yjyY38uAyXB-R3exfGp1W2a2K1ULvbzO-R9wIk1jxGhx-9235jXjXKn662EhqmkVZwF1WJseZixyX8_IEhXHkx_YDz_Zrz8WgxnLBGZYBlSN1ZzI2IwGCgFCmb5TwGiPsuxC_rg_C3QBWauFE67GdI7ZzTzoDTnmcFoFVmBQ77gHSkkBpjv8770fzq099NHuEZjKwF7njg63b26zqf6BaF7H1x27cSmxIBv-8X77uFyteNH5HjhqTSQW1Vj8kBbJ6Q1ZW588IrBZ17nlusf4Gj47U_bceHJZsl13RQrBCz3eevFLkw9luXQIferoo65Y5WGQo0abIYKS5brB6ipIOmuvlTstgHgM_I4eZ2AyeEgpFCWRvlkZYYFhkdujzIbGh1zKVR-Sl502KUbutiHCkGMRWYKYKZSmwezFPSbRFMm3-yTP9Z0Nn_X78kR5NFMktn0_nlOXmIFCmq0_e65HB39x2eIw3Z2RfNZFOS7tm8_gClXvBe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Normalized+Filtered+X-LMS+Algorithm+for+Noise+Cancellation+Using+Multiple+Sub-Filters+Approach&rft.jtitle=I-Manager%27s+Journal+on+Digital+Signal+Processing&rft.au=Anitha%2C+B&rft.au=Sailaja%2C+C&rft.date=2016-10-01&rft.pub=iManager+Publications&rft.issn=2321-7480&rft.eissn=2322-0368&rft.volume=4&rft.issue=4&rft.spage=17&rft_id=info:doi/10.26634%2Fjdp.4.4.8312&rft.externalDocID=4319692021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2321-7480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2321-7480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2321-7480&client=summon