Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals

Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, w...

Full description

Saved in:
Bibliographic Details
Published inStem cell reports Vol. 6; no. 1; pp. 150 - 162
Main Authors Maimets, Martti, Rocchi, Cecilia, Bron, Reinier, Pringle, Sarah, Kuipers, Jeroen, Giepmans, Ben N.G., Vries, Robert G.J., Clevers, Hans, de Haan, Gerald, van Os, Ronald, Coppes, Robert P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.01.2016
Elsevier
Subjects
Online AccessGet full text
ISSN2213-6711
2213-6711
DOI10.1016/j.stemcr.2015.11.009

Cover

Abstract Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM+ cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAMhigh cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation. [Display omitted] •EpCAMhigh cells generate salivary gland organoids in the presence of Wnt proteins•Wnt signaling is required for the maintenance of salivary gland stem cells in vitro•Wnt agonists promote long-term salivary gland stem cell expansion in culture•Expanded salivary gland stem cells regenerate damaged salivary glands in vivo Coppes and colleagues show that activation of Wnt signaling in EpCAMhigh cells purified from salivary gland (SG) tissue leads to the formation of organoids/miniglands, containing all SG lineages. Furthermore, Wnt proteins are required for self-renewal and robustly promote the long-term expansion of SG stem cells, which are efficiently able to regenerate radiation-damaged SG.
AbstractList Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM+ cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAMhigh cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation.
Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM(+) cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAM(high) cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation.Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM(+) cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAM(high) cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation.
Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM+ cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAMhigh cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation. [Display omitted] •EpCAMhigh cells generate salivary gland organoids in the presence of Wnt proteins•Wnt signaling is required for the maintenance of salivary gland stem cells in vitro•Wnt agonists promote long-term salivary gland stem cell expansion in culture•Expanded salivary gland stem cells regenerate damaged salivary glands in vivo Coppes and colleagues show that activation of Wnt signaling in EpCAMhigh cells purified from salivary gland (SG) tissue leads to the formation of organoids/miniglands, containing all SG lineages. Furthermore, Wnt proteins are required for self-renewal and robustly promote the long-term expansion of SG stem cells, which are efficiently able to regenerate radiation-damaged SG.
Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM + cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAM high cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation. • EpCAM high cells generate salivary gland organoids in the presence of Wnt proteins • Wnt signaling is required for the maintenance of salivary gland stem cells in vitro • Wnt agonists promote long-term salivary gland stem cell expansion in culture • Expanded salivary gland stem cells regenerate damaged salivary glands in vivo Coppes and colleagues show that activation of Wnt signaling in EpCAM high cells purified from salivary gland (SG) tissue leads to the formation of organoids/miniglands, containing all SG lineages. Furthermore, Wnt proteins are required for self-renewal and robustly promote the long-term expansion of SG stem cells, which are efficiently able to regenerate radiation-damaged SG.
Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM(+) cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAM(high) cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation.
Author Coppes, Robert P.
Clevers, Hans
Kuipers, Jeroen
de Haan, Gerald
Pringle, Sarah
van Os, Ronald
Rocchi, Cecilia
Vries, Robert G.J.
Bron, Reinier
Giepmans, Ben N.G.
Maimets, Martti
AuthorAffiliation 4 Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
3 Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
2 Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
1 Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
AuthorAffiliation_xml – name: 2 Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
– name: 1 Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
– name: 3 Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
– name: 4 Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
Author_xml – sequence: 1
  givenname: Martti
  surname: Maimets
  fullname: Maimets, Martti
  organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
– sequence: 2
  givenname: Cecilia
  surname: Rocchi
  fullname: Rocchi, Cecilia
  organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
– sequence: 3
  givenname: Reinier
  surname: Bron
  fullname: Bron, Reinier
  organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
– sequence: 4
  givenname: Sarah
  surname: Pringle
  fullname: Pringle, Sarah
  organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
– sequence: 5
  givenname: Jeroen
  surname: Kuipers
  fullname: Kuipers, Jeroen
  organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
– sequence: 6
  givenname: Ben N.G.
  surname: Giepmans
  fullname: Giepmans, Ben N.G.
  organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
– sequence: 7
  givenname: Robert G.J.
  surname: Vries
  fullname: Vries, Robert G.J.
  organization: Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
– sequence: 8
  givenname: Hans
  surname: Clevers
  fullname: Clevers, Hans
  organization: Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
– sequence: 9
  givenname: Gerald
  surname: de Haan
  fullname: de Haan, Gerald
  organization: Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
– sequence: 10
  givenname: Ronald
  surname: van Os
  fullname: van Os, Ronald
  organization: Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
– sequence: 11
  givenname: Robert P.
  surname: Coppes
  fullname: Coppes, Robert P.
  email: r.p.coppes@umcg.nl
  organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26724906$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFu1DAUjFArWkr_ACEfuSTYTmLHHJDQtpSVVirSFjhatvOyeJXYi-1d0b_hW_gyXHapWg7gy7Oe580bzzwrjpx3UBQvCK4IJuz1uooJJhMqiklbEVJhLJ4Up5SSumSckKMH95PiPMY1zkcIQhvytDihjNNGYHZafFx4typvIExo7n7--GxT8Ojy-0a5aL1DfkBLNdqdCrfoalSuR8u8F81gHCO6CHYHDulb9MUltLQrp8b4vDgecoHzQz0rPr2_vJl9KBfXV_PZu0VpGGtTaerODDUfemyEgQYwYE5aovnQCs01N4Kx3OaNzkJVPzDgXdvRviG0V92g6rNivuftvVrLTbBT1ii9svJ3w4eVVCFZM4JsVf65bjs9MNOA7hXhQrRUi1Z0uO7rzPV2z7XZ6gl6Ay4FNT4iffzi7Fe58jvZcJptZZng1YEg-G9biElONppsknLgt1ESznCWjxuaoS8f7rpf8ieSDGj2ABN8jAGGewjB8i58uZb78OVd-JIQmZPNY2_-GjM2qZRDzIrt-L_hgwGQE9tZCDIaC85AbwOYlC21_yb4BaBJzYE
CitedBy_id crossref_primary_10_3390_bioengineering11040346
crossref_primary_10_1002_term_2992
crossref_primary_10_1016_j_cjche_2020_11_013
crossref_primary_10_1016_j_tcb_2019_10_003
crossref_primary_10_1038_s41575_019_0255_2
crossref_primary_10_1111_pin_13325
crossref_primary_10_1111_jpi_12897
crossref_primary_10_1002_art_40659
crossref_primary_10_1111_joim_13075
crossref_primary_10_1038_s41598_019_47387_y
crossref_primary_10_1186_s13287_021_02133_y
crossref_primary_10_1002_adfm_202000097
crossref_primary_10_1101_cshperspect_a041380
crossref_primary_10_1111_cbdd_13704
crossref_primary_10_1038_s41584_021_00605_2
crossref_primary_10_1002_stem_2278
crossref_primary_10_1016_j_bbamcr_2024_119817
crossref_primary_10_3390_bioengineering9030121
crossref_primary_10_3390_biom9110657
crossref_primary_10_3390_biology13030147
crossref_primary_10_1016_j_eng_2021_04_017
crossref_primary_10_1021_acsabm_4c00028
crossref_primary_10_1126_scisignal_abk0599
crossref_primary_10_3390_cells9030642
crossref_primary_10_1016_j_isci_2024_109938
crossref_primary_10_1016_j_ijrobp_2018_02_034
crossref_primary_10_1242_dev_142497
crossref_primary_10_3390_cells9122649
crossref_primary_10_1152_physrev_00015_2021
crossref_primary_10_3390_cancers13040855
crossref_primary_10_1128_mmbr_00025_22
crossref_primary_10_3390_jpm12050789
crossref_primary_10_1080_13543784_2019_1631796
crossref_primary_10_1177_0022034517711146
crossref_primary_10_1242_bio_059267
crossref_primary_10_3389_fcell_2024_1433111
crossref_primary_10_1038_s41568_018_0007_6
crossref_primary_10_3389_fbioe_2022_1035647
crossref_primary_10_1016_j_yexcr_2019_05_030
crossref_primary_10_1038_s41596_019_0160_8
crossref_primary_10_1242_dev_140566
crossref_primary_10_1038_s41576_018_0051_9
crossref_primary_10_1158_1078_0432_CCR_18_0533
crossref_primary_10_1002_stem_2455
crossref_primary_10_3390_molecules26092658
crossref_primary_10_1038_s10038_017_0348_0
crossref_primary_10_1038_s43018_020_0102_y
crossref_primary_10_3390_bioengineering9010038
crossref_primary_10_1016_j_actbio_2016_12_049
crossref_primary_10_3390_biomedicines11020604
crossref_primary_10_1002_path_6209
crossref_primary_10_1053_j_gastro_2018_11_048
crossref_primary_10_1016_j_devcel_2016_08_014
crossref_primary_10_1016_j_radonc_2023_109984
crossref_primary_10_1080_09553002_2023_2188935
crossref_primary_10_1080_07853890_2022_2122550
crossref_primary_10_1016_j_archoralbio_2018_10_017
crossref_primary_10_1242_bio_042812
crossref_primary_10_1016_j_archoralbio_2021_105344
crossref_primary_10_1038_s41598_017_03681_1
crossref_primary_10_1038_s41598_018_20131_8
crossref_primary_10_1016_j_brainres_2019_146535
crossref_primary_10_3390_cancers13030367
crossref_primary_10_1016_j_isci_2022_105047
crossref_primary_10_1016_j_stem_2021_02_024
crossref_primary_10_3390_antiox10111666
crossref_primary_10_1242_dmm_039347
crossref_primary_10_3897_rrpharmacology_7_62118
crossref_primary_10_3390_gels8110730
crossref_primary_10_1016_j_ceb_2016_07_003
crossref_primary_10_1016_j_semcancer_2018_06_005
crossref_primary_10_1098_rstb_2017_0216
crossref_primary_10_1158_0008_5472_CAN_20_3499
crossref_primary_10_1186_s40364_022_00356_6
crossref_primary_10_1242_jcs_208728
crossref_primary_10_1002_stem_3046
crossref_primary_10_1016_j_celrep_2018_07_016
crossref_primary_10_1152_ajpcell_00120_2020
crossref_primary_10_1016_j_stemcr_2021_09_015
crossref_primary_10_1002_cpcb_76
crossref_primary_10_1016_j_stemcr_2022_09_015
crossref_primary_10_1002_cpz1_479
crossref_primary_10_1016_j_matbio_2016_09_004
crossref_primary_10_1007_s00018_024_05557_w
crossref_primary_10_1073_pnas_1802184115
crossref_primary_10_3389_fcell_2024_1346996
crossref_primary_10_1016_j_chembiol_2023_06_006
crossref_primary_10_1038_s41418_020_00662_2
crossref_primary_10_1177_09636897241303271
crossref_primary_10_3389_fcell_2021_698292
crossref_primary_10_3389_fmolb_2024_1382070
crossref_primary_10_3389_fphar_2021_662437
crossref_primary_10_1038_s41419_020_03074_9
crossref_primary_10_1016_j_stem_2023_12_006
crossref_primary_10_3390_dj9120144
crossref_primary_10_51335_organoid_2022_2_e2
crossref_primary_10_1016_j_radonc_2023_109845
crossref_primary_10_3389_fpubh_2018_00185
crossref_primary_10_1016_j_radonc_2017_07_008
crossref_primary_10_1016_j_molmed_2020_03_009
crossref_primary_10_1016_j_stemcr_2023_05_009
crossref_primary_10_3390_biomedicines11113034
crossref_primary_10_1007_s00018_020_03741_2
crossref_primary_10_1155_2016_7564689
crossref_primary_10_1155_2021_9922597
crossref_primary_10_1016_j_stemcr_2021_02_011
crossref_primary_10_1016_j_radonc_2019_04_028
crossref_primary_10_1016_j_radonc_2024_110093
crossref_primary_10_1667_RR15342_1
crossref_primary_10_1007_s00109_020_01990_z
crossref_primary_10_3390_cancers14215416
crossref_primary_10_1016_j_dld_2019_02_020
crossref_primary_10_1080_15548627_2021_1924036
crossref_primary_10_1016_j_slast_2023_03_004
crossref_primary_10_1038_s41591_024_03489_3
crossref_primary_10_1111_odi_12812
crossref_primary_10_1186_s13287_019_1541_1
crossref_primary_10_1002_advs_202400660
crossref_primary_10_1016_j_ceb_2017_12_011
crossref_primary_10_1016_j_bioactmat_2022_02_007
crossref_primary_10_1016_j_cell_2016_05_082
crossref_primary_10_1016_j_isci_2023_106695
crossref_primary_10_1016_j_biopha_2025_117870
crossref_primary_10_1016_j_cell_2019_11_038
crossref_primary_10_5466_ijoms_17_120
crossref_primary_10_11620_IJOB_2018_43_2_077
crossref_primary_10_1186_s13227_020_00171_w
crossref_primary_10_21769_BioProtoc_3386
crossref_primary_10_1016_j_jcyt_2021_11_003
crossref_primary_10_1016_j_slast_2023_03_002
crossref_primary_10_1021_acsbiomaterials_8b00894
crossref_primary_10_1038_s41405_024_00219_2
crossref_primary_10_1667_RR14810_1
crossref_primary_10_2186_ajps_10_230
crossref_primary_10_5966_sctm_2016_0083
crossref_primary_10_1007_s00018_019_03199_x
crossref_primary_10_1007_s10561_022_10029_1
crossref_primary_10_1038_s41467_022_30934_z
crossref_primary_10_1016_j_molimm_2024_06_010
crossref_primary_10_1021_acsbiomaterials_1c00745
crossref_primary_10_1038_s41374_022_00814_7
crossref_primary_10_3390_ijms22052302
crossref_primary_10_1111_odi_13475
crossref_primary_10_3390_ijms25020701
crossref_primary_10_1038_s42003_021_01876_x
crossref_primary_10_1016_j_biomaterials_2019_119245
crossref_primary_10_1089_ten_tea_2018_0308
crossref_primary_10_1007_s00109_017_1531_7
crossref_primary_10_3389_fimmu_2023_1175503
crossref_primary_10_1177_0022034521999298
crossref_primary_10_2108_zs160177
crossref_primary_10_1002_1878_0261_12750
crossref_primary_10_1016_j_celrep_2018_12_059
crossref_primary_10_1093_burnst_tkae003
crossref_primary_10_1002_ijc_33315
crossref_primary_10_1016_j_semcdb_2022_09_006
crossref_primary_10_1007_s00109_020_02010_w
crossref_primary_10_1056_NEJMra1806175
crossref_primary_10_1016_j_oraloncology_2022_106186
crossref_primary_10_1016_j_slast_2024_100132
crossref_primary_10_1038_s41536_020_00115_x
crossref_primary_10_1038_s41598_017_04099_5
crossref_primary_10_1172_jci_insight_122947
crossref_primary_10_1177_1073858420960112
crossref_primary_10_3390_cells10071723
crossref_primary_10_1016_j_addr_2023_115142
crossref_primary_10_1002_dvg_23211
crossref_primary_10_1038_s41368_023_00224_5
crossref_primary_10_3390_pharmaceutics16030435
crossref_primary_10_1016_j_cell_2017_05_016
crossref_primary_10_1667_RADE_21_00237_1
crossref_primary_10_1016_j_biotechadv_2019_107460
Cites_doi 10.1089/scd.2009.0499
10.1093/hmg/ddt105
10.1038/ng.239
10.1002/ar.1098
10.1016/j.diff.2008.10.006
10.1038/jid.2015.109
10.1172/JCI74096
10.1016/j.radonc.2013.05.020
10.1016/j.stemcr.2014.09.015
10.1038/nature01593
10.1158/0008-5472.CAN-07-0908
10.1038/nchembio.137
10.1038/nature07935
10.1242/dev.01690
10.1126/science.1192046
10.1016/j.stem.2009.11.013
10.1016/S0092-8674(01)00336-1
10.1242/dev.120.2.369
10.1126/science.1184733
10.1016/j.devcel.2015.02.013
10.1158/1078-0432.CCR-08-1449
10.1016/j.cell.2015.09.038
10.1177/10454411970080010301
10.1073/pnas.94.13.6770
10.1038/nature11826
10.1016/j.cell.2006.03.011
10.1002/jez.1401880304
10.1371/journal.pone.0002063
10.1038/nature06196
10.1126/science.1239730
10.1016/j.cell.2008.01.038
10.1016/j.radonc.2011.05.085
10.1038/emboj.2013.204
10.1073/pnas.0603824103
10.1016/j.ijrobp.2011.11.062
10.1002/ar.1092350316
10.1126/science.1248012
10.1002/stem.1327
10.1002/(SICI)1097-0185(19990301)254:3<408::AID-AR12>3.0.CO;2-G
10.1007/s004280100537
10.1016/j.stem.2010.03.020
10.1016/j.cell.2014.11.050
10.1074/jbc.M710308200
10.1002/hep.20063
10.1038/ncomms3498
10.1016/j.cell.2012.05.012
10.1016/j.celrep.2012.08.018
10.1111/j.1365-2613.2006.00500.x
ContentType Journal Article
Copyright 2016 The Authors
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
2016 The Authors 2016
Copyright_xml – notice: 2016 The Authors
– notice: Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2016 The Authors 2016
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.stemcr.2015.11.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-6711
EndPage 162
ExternalDocumentID oai_doaj_org_article_5a099b58bf6c4ebda179952b959803d3
PMC4720006
26724906
10_1016_j_stemcr_2015_11_009
S2213671115003458
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAVLU
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RCE
RIG
ROL
RPM
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c665t-c38cf37fd0c9ce4e0e07151b7f59b7b7c966e4e74b249adf6e78582d412da8fa3
IEDL.DBID M48
ISSN 2213-6711
IngestDate Mon Sep 08 19:51:30 EDT 2025
Thu Aug 21 14:07:57 EDT 2025
Fri Jul 11 15:23:58 EDT 2025
Thu Jan 02 22:22:24 EST 2025
Tue Jul 01 02:44:11 EDT 2025
Thu Apr 24 23:09:22 EDT 2025
Wed May 17 02:21:46 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c665t-c38cf37fd0c9ce4e0e07151b7f59b7b7c966e4e74b249adf6e78582d412da8fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.stemcr.2015.11.009
PMID 26724906
PQID 1760858042
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5a099b58bf6c4ebda179952b959803d3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4720006
proquest_miscellaneous_1760858042
pubmed_primary_26724906
crossref_primary_10_1016_j_stemcr_2015_11_009
crossref_citationtrail_10_1016_j_stemcr_2015_11_009
elsevier_sciencedirect_doi_10_1016_j_stemcr_2015_11_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-12
PublicationDateYYYYMMDD 2016-01-12
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stem cell reports
PublicationTitleAlternate Stem Cell Reports
PublicationYear 2016
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Barker, van Es, Kuipers, Kujala, van den Born, Cozijnsen, Haegebarth, Korving, Begthel, Peters (bib3) 2007; 449
Sokol, Kramer, Diercks, Kuipers, Jonkman, Pas, Giepmans (bib42) 2015; 135
Aure, Konieczny, Ovitt (bib1) 2015; 33
Yamamoto, Fukumoto, Yoshizaki, Iwamoto, Yamada, Tanaka, Suzuki, Aizawa, Arakaki, Yuasa (bib45) 2008; 283
Steinberg, Myers, Heim, Lathrop, Rebustini, Stewart, Larsen, Hoffman (bib43) 2005; 132
Morrison, Spradling (bib30) 2008; 132
Peifer, Sweeton, Casey, Wieschaus (bib36) 1994; 120
Huch, Bonfanti, Boj, Sato, Loomans, van de Wetering, Sojoodi, Li, Schuijers, Gracanin (bib19) 2013; 32
Dan, Riehle, Lazaro, Teoh, Haque, Campbell, Fausto (bib10) 2006; 103
Hai, Yang, Shangguan, Zhao, Boyer, Liu (bib17) 2012; 83
Osailan, Proctor, Carpenter, Paterson, McGurk (bib35) 2006; 87
Barker, Huch, Kujala, van de Wetering, Snippert, van Es, Sato, Stange, Begthel, van den Born (bib4) 2010; 6
Zetsche, Gootenberg, Abudayyeh, Slaymaker, Makarova, Essletzbichler, Volz, Joung, van der Oost, Regev (bib48) 2015; 163
Lombaert, Brunsting, Wierenga, Faber, Stokman, Kok, Visser, Kampinga, de Haan, Coppes (bib27) 2008; 3
Finch, He, Kelley, Uren, Schaudies, Popescu, Rudikoff, Aaronson, Varmus, Rubin (bib14) 1997; 94
Ihrler, Zietz, Sendelhofert, Lang, Blasenbreu-Vogt, Lohrs (bib23) 2002; 440
Nanduri, Lombaert, van der Zwaag, Faber, Brunsting, van Os, Coppes (bib32) 2013; 108
Hai, Yang, Millar, Choi, Taketo, Nagy, Liu (bib16) 2010; 19
Barker, Rookmaaker, Kujala, Ng, Leushacke, Snippert, van de Wetering, Tan, Van Es, Huch (bib5) 2012; 2
Man, Ball, Marchetti, Hand (bib29) 2001; 263
Schnell, Kuipers, Mueller, Veenstra-Algra, Sivagnanam, Giepmans (bib40) 2013; 22
Knox, Lombaert, Reed, Vitale-Cross, Gutkind, Hoffman (bib25) 2010; 329
Ogawa, Oshima, Imamura, Sekine, Ishida, Yamashita, Nakajima, Hirayama, Tachikawa, Tsuji (bib34) 2013; 4
Yamashita, Budhu, Forgues, Wang (bib46) 2007; 67
Zeng, Nusse (bib47) 2010; 6
Ball (bib2) 1974; 188
Nanduri, Maimets, Pringle, van der Zwaag, van Os, Coppes (bib31) 2011; 99
Snippert, Haegebarth, Kasper, Jaks, van Es, Barker, van de Wetering, van den Born, Begthel, Vries (bib41) 2010; 327
Chen, Dodge, Tang, Lu, Ma, Fan, Wei, Hao, Kilgore, Williams (bib6) 2009; 5
Clevers, Nusse (bib8) 2012; 149
Jaks, Barker, Kasper, van Es, Snippert, Clevers, Toftgard (bib24) 2008; 40
Nanduri, Baanstra, Faber, Rocchi, Zwart, de Haan, van Os, Coppes (bib33) 2014; 3
Huch, Dorrell, Boj, van Es, Li, van de Wetering, Sato, Hamer, Sasaki, Finegold (bib20) 2013; 494
Haara, Koivisto, Miettinen (bib15) 2009; 77
Sato, Vries, Snippert, van de Wetering, Barker, Stange, van Es, Abo, Kujala, Peters (bib39) 2009; 459
Hisatomi, Okumura, Nakamura, Matsumoto, Satoh, Nagano, Yamamoto, Endo (bib18) 2004; 39
Huch, Gehart, van Boxtel, Hamer, Blokzijl, Verstegen, Ellis, van Wenum, Fuchs, de Ligt (bib21) 2015; 160
Denny, Chai, Klauser, Denny (bib12) 1993; 235
Clevers, Loh, Nusse (bib9) 2014; 346
Denny, Denny (bib11) 1999; 254
Clarke, Fuller (bib7) 2006; 124
Lim, Tan, Koh, Chau, Yan, Kuo, van Amerongen, Klein, Nusse (bib26) 2013; 342
Xiao, Lin, Cao, Sirjani, Giaccia, Koong, Kong, Diehn, Le (bib44) 2014; 124
Huelsken, Vogel, Erdmann, Cotsarelis, Birchmeier (bib22) 2001; 105
Pringle, Van Os, Coppes (bib37) 2013; 31
Reya, Duncan, Ailles, Domen, Scherer, Willert, Hintz, Nusse, Weissman (bib38) 2003; 423
Denny, Ball, Redman (bib13) 1997; 8
Lombaert, Brunsting, Wierenga, Kampinga, de Haan, Coppes (bib28) 2008; 14
Jaks (10.1016/j.stemcr.2015.11.009_bib24) 2008; 40
Finch (10.1016/j.stemcr.2015.11.009_bib14) 1997; 94
Pringle (10.1016/j.stemcr.2015.11.009_bib37) 2013; 31
Clevers (10.1016/j.stemcr.2015.11.009_bib9) 2014; 346
Hai (10.1016/j.stemcr.2015.11.009_bib17) 2012; 83
Aure (10.1016/j.stemcr.2015.11.009_bib1) 2015; 33
Snippert (10.1016/j.stemcr.2015.11.009_bib41) 2010; 327
Xiao (10.1016/j.stemcr.2015.11.009_bib44) 2014; 124
Nanduri (10.1016/j.stemcr.2015.11.009_bib33) 2014; 3
Schnell (10.1016/j.stemcr.2015.11.009_bib40) 2013; 22
Yamashita (10.1016/j.stemcr.2015.11.009_bib46) 2007; 67
Clevers (10.1016/j.stemcr.2015.11.009_bib8) 2012; 149
Denny (10.1016/j.stemcr.2015.11.009_bib13) 1997; 8
Steinberg (10.1016/j.stemcr.2015.11.009_bib43) 2005; 132
Yamamoto (10.1016/j.stemcr.2015.11.009_bib45) 2008; 283
Osailan (10.1016/j.stemcr.2015.11.009_bib35) 2006; 87
Lombaert (10.1016/j.stemcr.2015.11.009_bib28) 2008; 14
Morrison (10.1016/j.stemcr.2015.11.009_bib30) 2008; 132
Ihrler (10.1016/j.stemcr.2015.11.009_bib23) 2002; 440
Denny (10.1016/j.stemcr.2015.11.009_bib11) 1999; 254
Barker (10.1016/j.stemcr.2015.11.009_bib5) 2012; 2
Zeng (10.1016/j.stemcr.2015.11.009_bib47) 2010; 6
Chen (10.1016/j.stemcr.2015.11.009_bib6) 2009; 5
Sato (10.1016/j.stemcr.2015.11.009_bib39) 2009; 459
Ogawa (10.1016/j.stemcr.2015.11.009_bib34) 2013; 4
Clarke (10.1016/j.stemcr.2015.11.009_bib7) 2006; 124
Zetsche (10.1016/j.stemcr.2015.11.009_bib48) 2015; 163
Huch (10.1016/j.stemcr.2015.11.009_bib21) 2015; 160
Huch (10.1016/j.stemcr.2015.11.009_bib19) 2013; 32
Hai (10.1016/j.stemcr.2015.11.009_bib16) 2010; 19
Peifer (10.1016/j.stemcr.2015.11.009_bib36) 1994; 120
Barker (10.1016/j.stemcr.2015.11.009_bib3) 2007; 449
Ball (10.1016/j.stemcr.2015.11.009_bib2) 1974; 188
Man (10.1016/j.stemcr.2015.11.009_bib29) 2001; 263
Lim (10.1016/j.stemcr.2015.11.009_bib26) 2013; 342
Dan (10.1016/j.stemcr.2015.11.009_bib10) 2006; 103
Haara (10.1016/j.stemcr.2015.11.009_bib15) 2009; 77
Knox (10.1016/j.stemcr.2015.11.009_bib25) 2010; 329
Nanduri (10.1016/j.stemcr.2015.11.009_bib31) 2011; 99
Lombaert (10.1016/j.stemcr.2015.11.009_bib27) 2008; 3
Huelsken (10.1016/j.stemcr.2015.11.009_bib22) 2001; 105
Denny (10.1016/j.stemcr.2015.11.009_bib12) 1993; 235
Reya (10.1016/j.stemcr.2015.11.009_bib38) 2003; 423
Sokol (10.1016/j.stemcr.2015.11.009_bib42) 2015; 135
Barker (10.1016/j.stemcr.2015.11.009_bib4) 2010; 6
Hisatomi (10.1016/j.stemcr.2015.11.009_bib18) 2004; 39
Huch (10.1016/j.stemcr.2015.11.009_bib20) 2013; 494
Nanduri (10.1016/j.stemcr.2015.11.009_bib32) 2013; 108
15716343 - Development. 2005 Mar;132(6):1223-34
25036711 - J Clin Invest. 2014 Aug;124(8):3364-77
25789704 - J Invest Dermatol. 2015 Jul;135(7):1763-70
8149915 - Development. 1994 Feb;120(2):369-80
25533785 - Cell. 2015 Jan 15;160(1-2):299-312
9063625 - Crit Rev Oral Biol Med. 1997;8(1):51-75
20929848 - Science. 2010 Sep 24;329(5999):1645-7
25448065 - Stem Cell Reports. 2014 Dec 9;3(6):957-64
26422227 - Cell. 2015 Oct 22;163(3):759-71
12717450 - Nature. 2003 May 22;423(6938):409-14
18849992 - Nat Genet. 2008 Nov;40(11):1291-9
12021927 - Virchows Arch. 2002 May;440(5):519-26
17934449 - Nature. 2007 Oct 25;449(7165):1003-7
10096673 - Anat Rec. 1999 Mar;254(3):408-17
25278615 - Science. 2014 Oct 3;346(6205):1248012
4836189 - J Exp Zool. 1974 Jun;188(3):277-88
19272528 - Differentiation. 2009 Mar;77(3):298-306
22342093 - Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):e109-16
14999685 - Hepatology. 2004 Mar;39(3):667-75
23769181 - Radiother Oncol. 2013 Sep;108(3):458-63
11371349 - Cell. 2001 May 18;105(4):533-45
19125156 - Nat Chem Biol. 2009 Feb;5(2):100-7
18446241 - PLoS One. 2008;3(4):e2063
19047101 - Clin Cancer Res. 2008 Dec 1;14(23):7741-50
16782807 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9912-7
20569694 - Cell Stem Cell. 2010 Jun 4;6(6):568-77
19329995 - Nature. 2009 May 14;459(7244):262-5
16564000 - Cell. 2006 Mar 24;124(6):1111-5
24045232 - EMBO J. 2013 Oct 16;32(20):2708-21
22682243 - Cell. 2012 Jun 8;149(6):1192-205
24084982 - Nat Commun. 2013;4:2498
11360236 - Anat Rec. 2001 Jun 1;263(2):202-14
18006828 - Cancer Res. 2007 Nov 15;67(22):10831-9
18559345 - J Biol Chem. 2008 Aug 22;283(34):23139-49
25843887 - Dev Cell. 2015 Apr 20;33(2):231-7
18295578 - Cell. 2008 Feb 22;132(4):598-611
24311688 - Science. 2013 Dec 6;342(6163):1226-30
23335219 - Stem Cells. 2013 Apr;31(4):613-9
22999937 - Cell Rep. 2012 Sep 27;2(3):540-52
8430917 - Anat Rec. 1993 Mar;235(3):475-85
20085740 - Cell Stem Cell. 2010 Jan 8;6(1):25-36
9192640 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6770-5
20367250 - Stem Cells Dev. 2010 Nov;19(11):1793-801
23354049 - Nature. 2013 Feb 14;494(7436):247-50
21719134 - Radiother Oncol. 2011 Jun;99(3):367-72
20223988 - Science. 2010 Mar 12;327(5971):1385-9
17222209 - Int J Exp Pathol. 2006 Dec;87(6):411-23
23462293 - Hum Mol Genet. 2013 Jul 1;22(13):2566-71
References_xml – volume: 124
  start-page: 1111
  year: 2006
  end-page: 1115
  ident: bib7
  article-title: Stem cells and cancer: two faces of eve
  publication-title: Cell
– volume: 8
  start-page: 51
  year: 1997
  end-page: 75
  ident: bib13
  article-title: Salivary glands: a paradigm for diversity of gland development
  publication-title: Crit. Rev. Oral Biol. Med.
– volume: 105
  start-page: 533
  year: 2001
  end-page: 545
  ident: bib22
  article-title: beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin
  publication-title: Cell
– volume: 132
  start-page: 598
  year: 2008
  end-page: 611
  ident: bib30
  article-title: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life
  publication-title: Cell
– volume: 254
  start-page: 408
  year: 1999
  end-page: 417
  ident: bib11
  article-title: Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland
  publication-title: Anat. Rec.
– volume: 160
  start-page: 299
  year: 2015
  end-page: 312
  ident: bib21
  article-title: Long-term culture of genome-stable bipotent stem cells from adult human liver
  publication-title: Cell
– volume: 132
  start-page: 1223
  year: 2005
  end-page: 1234
  ident: bib43
  article-title: FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis
  publication-title: Development
– volume: 235
  start-page: 475
  year: 1993
  end-page: 485
  ident: bib12
  article-title: Parenchymal cell proliferation and mechanisms for maintenance of granular duct and acinar cell populations in adult male mouse submandibular gland
  publication-title: Anat. Rec.
– volume: 94
  start-page: 6770
  year: 1997
  end-page: 6775
  ident: bib14
  article-title: Purification and molecular cloning of a secreted, frizzled-related antagonist of Wnt action
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 135
  start-page: 1763
  year: 2015
  end-page: 1770
  ident: bib42
  article-title: Large-scale electron microscopy maps of patient skin and mucosa provide insight into pathogenesis of blistering diseases
  publication-title: J. Invest. Dermatol.
– volume: 6
  start-page: 568
  year: 2010
  end-page: 577
  ident: bib47
  article-title: Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture
  publication-title: Cell Stem Cell
– volume: 32
  start-page: 2708
  year: 2013
  end-page: 2721
  ident: bib19
  article-title: Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis
  publication-title: EMBO J.
– volume: 3
  start-page: 957
  year: 2014
  end-page: 964
  ident: bib33
  article-title: Purification and ex vivo expansion of fully functional salivary gland stem cells
  publication-title: Stem Cell Rep.
– volume: 87
  start-page: 411
  year: 2006
  end-page: 423
  ident: bib35
  article-title: Recovery of rat submandibular salivary gland function following removal of obstruction: a sialometrical and sialochemical study
  publication-title: Int. J. Exp. Pathol.
– volume: 40
  start-page: 1291
  year: 2008
  end-page: 1299
  ident: bib24
  article-title: Lgr5 marks cycling, yet long-lived, hair follicle stem cells
  publication-title: Nat. Genet.
– volume: 14
  start-page: 7741
  year: 2008
  end-page: 7750
  ident: bib28
  article-title: Cytokine treatment improves parenchymal and vascular damage of salivary glands after irradiation
  publication-title: Clin. Cancer Res.
– volume: 31
  start-page: 613
  year: 2013
  end-page: 619
  ident: bib37
  article-title: Concise review: adult salivary gland stem cells and a potential therapy for xerostomia
  publication-title: Stem Cells
– volume: 77
  start-page: 298
  year: 2009
  end-page: 306
  ident: bib15
  article-title: EGF-receptor regulates salivary gland branching morphogenesis by supporting proliferation and maturation of epithelial cells and survival of mesenchymal cells
  publication-title: Differentiation
– volume: 99
  start-page: 367
  year: 2011
  end-page: 372
  ident: bib31
  article-title: Regeneration of irradiated salivary glands with stem cell marker expressing cells
  publication-title: Radiother. Oncol.
– volume: 327
  start-page: 1385
  year: 2010
  end-page: 1389
  ident: bib41
  article-title: Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin
  publication-title: Science
– volume: 188
  start-page: 277
  year: 1974
  end-page: 288
  ident: bib2
  article-title: Development of the rat salivary glands. 3. Mesenchymal specificity in the morphogenesis of the embryonic submaxillary and sublingual glands of the rat
  publication-title: J. Exp. Zool.
– volume: 108
  start-page: 458
  year: 2013
  end-page: 463
  ident: bib32
  article-title: Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland
  publication-title: Radiother. Oncol.
– volume: 346
  start-page: 1248012
  year: 2014
  ident: bib9
  article-title: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control
  publication-title: Science
– volume: 423
  start-page: 409
  year: 2003
  end-page: 414
  ident: bib38
  article-title: A role for Wnt signalling in self-renewal of haematopoietic stem cells
  publication-title: Nature
– volume: 124
  start-page: 3364
  year: 2014
  end-page: 3377
  ident: bib44
  article-title: Neurotrophic factor GDNF promotes survival of salivary stem cells
  publication-title: J. Clin. Invest.
– volume: 103
  start-page: 9912
  year: 2006
  end-page: 9917
  ident: bib10
  article-title: Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 67
  start-page: 10831
  year: 2007
  end-page: 10839
  ident: bib46
  article-title: Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma
  publication-title: Cancer Res.
– volume: 33
  start-page: 231
  year: 2015
  end-page: 237
  ident: bib1
  article-title: Salivary gland homeostasis is maintained through acinar cell self-duplication
  publication-title: Dev. Cell.
– volume: 449
  start-page: 1003
  year: 2007
  end-page: 1007
  ident: bib3
  article-title: Identification of stem cells in small intestine and colon by marker gene Lgr5
  publication-title: Nature
– volume: 329
  start-page: 1645
  year: 2010
  end-page: 1647
  ident: bib25
  article-title: Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis
  publication-title: Science
– volume: 459
  start-page: 262
  year: 2009
  end-page: 265
  ident: bib39
  article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
  publication-title: Nature
– volume: 39
  start-page: 667
  year: 2004
  end-page: 675
  ident: bib18
  article-title: Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages
  publication-title: Hepatology
– volume: 3
  start-page: e2063
  year: 2008
  ident: bib27
  article-title: Rescue of salivary gland function after stem cell transplantation in irradiated glands
  publication-title: PLoS One
– volume: 163
  start-page: 759
  year: 2015
  end-page: 771
  ident: bib48
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
– volume: 494
  start-page: 247
  year: 2013
  end-page: 250
  ident: bib20
  article-title: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration
  publication-title: Nature
– volume: 283
  start-page: 23139
  year: 2008
  end-page: 23149
  ident: bib45
  article-title: Platelet-derived growth factor receptor regulates salivary gland morphogenesis via fibroblast growth factor expression
  publication-title: J. Biol. Chem.
– volume: 263
  start-page: 202
  year: 2001
  end-page: 214
  ident: bib29
  article-title: Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats
  publication-title: Anat. Rec.
– volume: 342
  start-page: 1226
  year: 2013
  end-page: 1230
  ident: bib26
  article-title: Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling
  publication-title: Science
– volume: 440
  start-page: 519
  year: 2002
  end-page: 526
  ident: bib23
  article-title: A morphogenetic concept of salivary duct regeneration and metaplasia
  publication-title: Virchows Arch.
– volume: 22
  start-page: 2566
  year: 2013
  end-page: 2571
  ident: bib40
  article-title: Absence of cell-surface EpCAM in congenital tufting enteropathy
  publication-title: Hum. Mol. Genet.
– volume: 6
  start-page: 25
  year: 2010
  end-page: 36
  ident: bib4
  article-title: Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro
  publication-title: Cell Stem Cell
– volume: 2
  start-page: 540
  year: 2012
  end-page: 552
  ident: bib5
  article-title: Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development
  publication-title: Cell Rep.
– volume: 149
  start-page: 1192
  year: 2012
  end-page: 1205
  ident: bib8
  article-title: Wnt/beta-catenin signaling and disease
  publication-title: Cell
– volume: 5
  start-page: 100
  year: 2009
  end-page: 107
  ident: bib6
  article-title: Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer
  publication-title: Nat. Chem. Biol.
– volume: 83
  start-page: e109
  year: 2012
  end-page: e116
  ident: bib17
  article-title: Concurrent transient activation of Wnt/beta-catenin pathway prevents radiation damage to salivary glands
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 120
  start-page: 369
  year: 1994
  end-page: 380
  ident: bib36
  article-title: wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo
  publication-title: Development
– volume: 19
  start-page: 1793
  year: 2010
  end-page: 1801
  ident: bib16
  article-title: Wnt/beta-catenin signaling regulates postnatal development and regeneration of the salivary gland
  publication-title: Stem Cell Dev.
– volume: 4
  start-page: 2498
  year: 2013
  ident: bib34
  article-title: Functional salivary gland regeneration by transplantation of a bioengineered organ germ
  publication-title: Nat. Commun.
– volume: 19
  start-page: 1793
  year: 2010
  ident: 10.1016/j.stemcr.2015.11.009_bib16
  article-title: Wnt/beta-catenin signaling regulates postnatal development and regeneration of the salivary gland
  publication-title: Stem Cell Dev.
  doi: 10.1089/scd.2009.0499
– volume: 22
  start-page: 2566
  year: 2013
  ident: 10.1016/j.stemcr.2015.11.009_bib40
  article-title: Absence of cell-surface EpCAM in congenital tufting enteropathy
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt105
– volume: 40
  start-page: 1291
  year: 2008
  ident: 10.1016/j.stemcr.2015.11.009_bib24
  article-title: Lgr5 marks cycling, yet long-lived, hair follicle stem cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng.239
– volume: 263
  start-page: 202
  year: 2001
  ident: 10.1016/j.stemcr.2015.11.009_bib29
  article-title: Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1098
– volume: 77
  start-page: 298
  year: 2009
  ident: 10.1016/j.stemcr.2015.11.009_bib15
  article-title: EGF-receptor regulates salivary gland branching morphogenesis by supporting proliferation and maturation of epithelial cells and survival of mesenchymal cells
  publication-title: Differentiation
  doi: 10.1016/j.diff.2008.10.006
– volume: 135
  start-page: 1763
  year: 2015
  ident: 10.1016/j.stemcr.2015.11.009_bib42
  article-title: Large-scale electron microscopy maps of patient skin and mucosa provide insight into pathogenesis of blistering diseases
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2015.109
– volume: 124
  start-page: 3364
  year: 2014
  ident: 10.1016/j.stemcr.2015.11.009_bib44
  article-title: Neurotrophic factor GDNF promotes survival of salivary stem cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI74096
– volume: 108
  start-page: 458
  year: 2013
  ident: 10.1016/j.stemcr.2015.11.009_bib32
  article-title: Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2013.05.020
– volume: 3
  start-page: 957
  year: 2014
  ident: 10.1016/j.stemcr.2015.11.009_bib33
  article-title: Purification and ex vivo expansion of fully functional salivary gland stem cells
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2014.09.015
– volume: 423
  start-page: 409
  year: 2003
  ident: 10.1016/j.stemcr.2015.11.009_bib38
  article-title: A role for Wnt signalling in self-renewal of haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature01593
– volume: 67
  start-page: 10831
  year: 2007
  ident: 10.1016/j.stemcr.2015.11.009_bib46
  article-title: Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0908
– volume: 5
  start-page: 100
  year: 2009
  ident: 10.1016/j.stemcr.2015.11.009_bib6
  article-title: Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.137
– volume: 459
  start-page: 262
  year: 2009
  ident: 10.1016/j.stemcr.2015.11.009_bib39
  article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
  publication-title: Nature
  doi: 10.1038/nature07935
– volume: 132
  start-page: 1223
  year: 2005
  ident: 10.1016/j.stemcr.2015.11.009_bib43
  article-title: FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis
  publication-title: Development
  doi: 10.1242/dev.01690
– volume: 329
  start-page: 1645
  year: 2010
  ident: 10.1016/j.stemcr.2015.11.009_bib25
  article-title: Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis
  publication-title: Science
  doi: 10.1126/science.1192046
– volume: 6
  start-page: 25
  year: 2010
  ident: 10.1016/j.stemcr.2015.11.009_bib4
  article-title: Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.11.013
– volume: 105
  start-page: 533
  year: 2001
  ident: 10.1016/j.stemcr.2015.11.009_bib22
  article-title: beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00336-1
– volume: 120
  start-page: 369
  year: 1994
  ident: 10.1016/j.stemcr.2015.11.009_bib36
  article-title: wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo
  publication-title: Development
  doi: 10.1242/dev.120.2.369
– volume: 327
  start-page: 1385
  year: 2010
  ident: 10.1016/j.stemcr.2015.11.009_bib41
  article-title: Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin
  publication-title: Science
  doi: 10.1126/science.1184733
– volume: 33
  start-page: 231
  year: 2015
  ident: 10.1016/j.stemcr.2015.11.009_bib1
  article-title: Salivary gland homeostasis is maintained through acinar cell self-duplication
  publication-title: Dev. Cell.
  doi: 10.1016/j.devcel.2015.02.013
– volume: 14
  start-page: 7741
  year: 2008
  ident: 10.1016/j.stemcr.2015.11.009_bib28
  article-title: Cytokine treatment improves parenchymal and vascular damage of salivary glands after irradiation
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-1449
– volume: 163
  start-page: 759
  year: 2015
  ident: 10.1016/j.stemcr.2015.11.009_bib48
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 8
  start-page: 51
  year: 1997
  ident: 10.1016/j.stemcr.2015.11.009_bib13
  article-title: Salivary glands: a paradigm for diversity of gland development
  publication-title: Crit. Rev. Oral Biol. Med.
  doi: 10.1177/10454411970080010301
– volume: 94
  start-page: 6770
  year: 1997
  ident: 10.1016/j.stemcr.2015.11.009_bib14
  article-title: Purification and molecular cloning of a secreted, frizzled-related antagonist of Wnt action
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.13.6770
– volume: 494
  start-page: 247
  year: 2013
  ident: 10.1016/j.stemcr.2015.11.009_bib20
  article-title: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration
  publication-title: Nature
  doi: 10.1038/nature11826
– volume: 124
  start-page: 1111
  year: 2006
  ident: 10.1016/j.stemcr.2015.11.009_bib7
  article-title: Stem cells and cancer: two faces of eve
  publication-title: Cell
  doi: 10.1016/j.cell.2006.03.011
– volume: 188
  start-page: 277
  year: 1974
  ident: 10.1016/j.stemcr.2015.11.009_bib2
  article-title: Development of the rat salivary glands. 3. Mesenchymal specificity in the morphogenesis of the embryonic submaxillary and sublingual glands of the rat
  publication-title: J. Exp. Zool.
  doi: 10.1002/jez.1401880304
– volume: 3
  start-page: e2063
  year: 2008
  ident: 10.1016/j.stemcr.2015.11.009_bib27
  article-title: Rescue of salivary gland function after stem cell transplantation in irradiated glands
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002063
– volume: 449
  start-page: 1003
  year: 2007
  ident: 10.1016/j.stemcr.2015.11.009_bib3
  article-title: Identification of stem cells in small intestine and colon by marker gene Lgr5
  publication-title: Nature
  doi: 10.1038/nature06196
– volume: 342
  start-page: 1226
  year: 2013
  ident: 10.1016/j.stemcr.2015.11.009_bib26
  article-title: Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling
  publication-title: Science
  doi: 10.1126/science.1239730
– volume: 132
  start-page: 598
  year: 2008
  ident: 10.1016/j.stemcr.2015.11.009_bib30
  article-title: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.038
– volume: 99
  start-page: 367
  year: 2011
  ident: 10.1016/j.stemcr.2015.11.009_bib31
  article-title: Regeneration of irradiated salivary glands with stem cell marker expressing cells
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2011.05.085
– volume: 32
  start-page: 2708
  year: 2013
  ident: 10.1016/j.stemcr.2015.11.009_bib19
  article-title: Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.204
– volume: 103
  start-page: 9912
  year: 2006
  ident: 10.1016/j.stemcr.2015.11.009_bib10
  article-title: Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0603824103
– volume: 83
  start-page: e109
  year: 2012
  ident: 10.1016/j.stemcr.2015.11.009_bib17
  article-title: Concurrent transient activation of Wnt/beta-catenin pathway prevents radiation damage to salivary glands
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2011.11.062
– volume: 235
  start-page: 475
  year: 1993
  ident: 10.1016/j.stemcr.2015.11.009_bib12
  article-title: Parenchymal cell proliferation and mechanisms for maintenance of granular duct and acinar cell populations in adult male mouse submandibular gland
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1092350316
– volume: 346
  start-page: 1248012
  year: 2014
  ident: 10.1016/j.stemcr.2015.11.009_bib9
  article-title: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control
  publication-title: Science
  doi: 10.1126/science.1248012
– volume: 31
  start-page: 613
  year: 2013
  ident: 10.1016/j.stemcr.2015.11.009_bib37
  article-title: Concise review: adult salivary gland stem cells and a potential therapy for xerostomia
  publication-title: Stem Cells
  doi: 10.1002/stem.1327
– volume: 254
  start-page: 408
  year: 1999
  ident: 10.1016/j.stemcr.2015.11.009_bib11
  article-title: Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland
  publication-title: Anat. Rec.
  doi: 10.1002/(SICI)1097-0185(19990301)254:3<408::AID-AR12>3.0.CO;2-G
– volume: 440
  start-page: 519
  year: 2002
  ident: 10.1016/j.stemcr.2015.11.009_bib23
  article-title: A morphogenetic concept of salivary duct regeneration and metaplasia
  publication-title: Virchows Arch.
  doi: 10.1007/s004280100537
– volume: 6
  start-page: 568
  year: 2010
  ident: 10.1016/j.stemcr.2015.11.009_bib47
  article-title: Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.03.020
– volume: 160
  start-page: 299
  year: 2015
  ident: 10.1016/j.stemcr.2015.11.009_bib21
  article-title: Long-term culture of genome-stable bipotent stem cells from adult human liver
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.050
– volume: 283
  start-page: 23139
  year: 2008
  ident: 10.1016/j.stemcr.2015.11.009_bib45
  article-title: Platelet-derived growth factor receptor regulates salivary gland morphogenesis via fibroblast growth factor expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M710308200
– volume: 39
  start-page: 667
  year: 2004
  ident: 10.1016/j.stemcr.2015.11.009_bib18
  article-title: Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages
  publication-title: Hepatology
  doi: 10.1002/hep.20063
– volume: 4
  start-page: 2498
  year: 2013
  ident: 10.1016/j.stemcr.2015.11.009_bib34
  article-title: Functional salivary gland regeneration by transplantation of a bioengineered organ germ
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3498
– volume: 149
  start-page: 1192
  year: 2012
  ident: 10.1016/j.stemcr.2015.11.009_bib8
  article-title: Wnt/beta-catenin signaling and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.012
– volume: 2
  start-page: 540
  year: 2012
  ident: 10.1016/j.stemcr.2015.11.009_bib5
  article-title: Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.08.018
– volume: 87
  start-page: 411
  year: 2006
  ident: 10.1016/j.stemcr.2015.11.009_bib35
  article-title: Recovery of rat submandibular salivary gland function following removal of obstruction: a sialometrical and sialochemical study
  publication-title: Int. J. Exp. Pathol.
  doi: 10.1111/j.1365-2613.2006.00500.x
– reference: 23769181 - Radiother Oncol. 2013 Sep;108(3):458-63
– reference: 23354049 - Nature. 2013 Feb 14;494(7436):247-50
– reference: 14999685 - Hepatology. 2004 Mar;39(3):667-75
– reference: 4836189 - J Exp Zool. 1974 Jun;188(3):277-88
– reference: 18295578 - Cell. 2008 Feb 22;132(4):598-611
– reference: 20223988 - Science. 2010 Mar 12;327(5971):1385-9
– reference: 19047101 - Clin Cancer Res. 2008 Dec 1;14(23):7741-50
– reference: 11371349 - Cell. 2001 May 18;105(4):533-45
– reference: 24084982 - Nat Commun. 2013;4:2498
– reference: 11360236 - Anat Rec. 2001 Jun 1;263(2):202-14
– reference: 15716343 - Development. 2005 Mar;132(6):1223-34
– reference: 12717450 - Nature. 2003 May 22;423(6938):409-14
– reference: 18559345 - J Biol Chem. 2008 Aug 22;283(34):23139-49
– reference: 25448065 - Stem Cell Reports. 2014 Dec 9;3(6):957-64
– reference: 16782807 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9912-7
– reference: 20569694 - Cell Stem Cell. 2010 Jun 4;6(6):568-77
– reference: 12021927 - Virchows Arch. 2002 May;440(5):519-26
– reference: 10096673 - Anat Rec. 1999 Mar;254(3):408-17
– reference: 24311688 - Science. 2013 Dec 6;342(6163):1226-30
– reference: 17934449 - Nature. 2007 Oct 25;449(7165):1003-7
– reference: 19272528 - Differentiation. 2009 Mar;77(3):298-306
– reference: 16564000 - Cell. 2006 Mar 24;124(6):1111-5
– reference: 20085740 - Cell Stem Cell. 2010 Jan 8;6(1):25-36
– reference: 24045232 - EMBO J. 2013 Oct 16;32(20):2708-21
– reference: 20367250 - Stem Cells Dev. 2010 Nov;19(11):1793-801
– reference: 9192640 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6770-5
– reference: 20929848 - Science. 2010 Sep 24;329(5999):1645-7
– reference: 21719134 - Radiother Oncol. 2011 Jun;99(3):367-72
– reference: 18006828 - Cancer Res. 2007 Nov 15;67(22):10831-9
– reference: 19125156 - Nat Chem Biol. 2009 Feb;5(2):100-7
– reference: 22999937 - Cell Rep. 2012 Sep 27;2(3):540-52
– reference: 9063625 - Crit Rev Oral Biol Med. 1997;8(1):51-75
– reference: 17222209 - Int J Exp Pathol. 2006 Dec;87(6):411-23
– reference: 25036711 - J Clin Invest. 2014 Aug;124(8):3364-77
– reference: 8149915 - Development. 1994 Feb;120(2):369-80
– reference: 18446241 - PLoS One. 2008;3(4):e2063
– reference: 26422227 - Cell. 2015 Oct 22;163(3):759-71
– reference: 23462293 - Hum Mol Genet. 2013 Jul 1;22(13):2566-71
– reference: 18849992 - Nat Genet. 2008 Nov;40(11):1291-9
– reference: 8430917 - Anat Rec. 1993 Mar;235(3):475-85
– reference: 22682243 - Cell. 2012 Jun 8;149(6):1192-205
– reference: 25533785 - Cell. 2015 Jan 15;160(1-2):299-312
– reference: 25843887 - Dev Cell. 2015 Apr 20;33(2):231-7
– reference: 25789704 - J Invest Dermatol. 2015 Jul;135(7):1763-70
– reference: 25278615 - Science. 2014 Oct 3;346(6205):1248012
– reference: 22342093 - Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):e109-16
– reference: 19329995 - Nature. 2009 May 14;459(7244):262-5
– reference: 23335219 - Stem Cells. 2013 Apr;31(4):613-9
SSID ssj0000991241
Score 2.4793022
Snippet Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 150
SubjectTerms Animals
Antigens, Neoplasm - metabolism
beta Catenin - metabolism
Cell Adhesion Molecules - metabolism
Cell Culture Techniques
Cell Proliferation
Cell Self Renewal
Cells, Cultured
Epithelial Cell Adhesion Molecule
Female
Mice, Inbred C57BL
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
Mice, Transgenic
Microscopy, Confocal
Microscopy, Electron, Transmission
Radiation Injuries, Experimental - therapy
Salivary Glands - cytology
Salivary Glands - metabolism
Salivary Glands - radiation effects
Spheroids, Cellular - cytology
Spheroids, Cellular - metabolism
Stem Cell Transplantation - methods
Stem Cells - cytology
Stem Cells - metabolism
Stem Cells - ultrastructure
Time Factors
Wnt Signaling Pathway
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbhQxELVQpEhcEAnbsMlIXBu62_sxCQkBAUKaBHKz2luYaNSNJh2J-Zt8C19GVS-jGTjMhat7satcdr2yy8-EvAbUEPIIYQmSoWU8GJ853OQNkWuj8hRZhYHi5y_y9Jx_vBAXa1d9YU5YTw_cK-6tqADDOKFdkp5HF6qOwqx0Rhids9DxfOYmXwumrnrcA44Lo62yLFgmVVGM5-a65C4kSfZIB1qIN0jiifmIa36po-_fcE__ws-_syjX3NLJfXJvwJP0oJdjj9yJ9T7Z7W-YXD4gXz819WV2BtMv_VD_vv02axcNPf4FUwCuktEm0WmFm0GLJX2POY50Ck2mR3E-v6bvFjgTUrek3-uWTmeXSLX8kJyfHJ8dnWbDJQqZl1K0mWfaJ6ZSyL3xkcc8AqgQhVNJGKec8hDvQLHiDgKxKiQZlRa6DLwoQ6VTxR6Rnbqp4xNCVSqNY3k0SUiuYzRexQAOnnHFJFQxIWxUofUDwzhedDG3YyrZle0Vb1HxEHxYUPyEZKuvfvYMG1veP8TeWb2L_NhdAViNHazGbrOaCVFj39oBavQQAn4121L9q9EULIxE3F6p6tjcXNtCScCvGmbBCXncm8aqkaVUoN5cQr0bRrMhxeaTevajY_vmqjtN9fR_iP2M3AVRuiWkonxOdtrFTXwBoKp1L7vx8wcAJR4I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Open Access Journals (Elsevier)
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG8WCjIS17BJ_EqO7dJSECCkbWFvVvzaBq2SKk0l9t_wW_hlzOSxauBQiWMcO3bG43nYM58JeQNWg4s9uCUIhhZxl9vI4CGv8zzLVRw8K9BR_PxFnp7zjyux2iOLMRcGwyoH2d_L9E5aDyXzgZrzy7KcL9MU4cYSNGlixgUm_GJWKSbxrY52-yxgAYEKQ78L60fYYMyg68K8EC7ZIjBoIt4inCdGJt7QUB2Q_0RR_WuI_h1PeUNBndwn9wbLkh72g39A9nz1kNzp75rcPiJfP9XVOjoDQUw_VL9_fSvbpqbHP0EY4H4ZrQNdFngs1Gzpe4x2pEsYMl34zeaKvmtQJlKzpd-rli7LNYIuPybnJ8dni9NouE4hslKKNrIss4Gp4GKbW8997MG8EIlRQeRGGWXB84FixQ24ZIUL0qtMZKnjSeqKLBTsCdmv6so_I1SFNDcs9nkQkmfe51Z5B6qeccUkdDEjbCShtgPWOF55sdFjUNkP3RNeI-HBDdFA-BmJdq0ue6yNW-of4ezs6iJSdldQN2s9sIoWBXCAEZkJ0nJvXNFB4KUmF3kWM8dmRI1zqyeMB58qb-n-9cgKGtYkHrQUla-vr3SiJFiyGcjDGXnas8ZukKlUQN5YQr8Tppn8xfRNVV50uN9cdXlVz_97xC_IXXjqdpCS9IDst821fwk2VWtedYvmD4LGH20
  priority: 102
  providerName: Elsevier
Title Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals
URI https://dx.doi.org/10.1016/j.stemcr.2015.11.009
https://www.ncbi.nlm.nih.gov/pubmed/26724906
https://www.proquest.com/docview/1760858042
https://pubmed.ncbi.nlm.nih.gov/PMC4720006
https://doaj.org/article/5a099b58bf6c4ebda179952b959803d3
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaqIiReEDfLURmJ11RJbMfOA0K0tLRcAm0X9s2Kr2WrVQLZVOr-G34Lv4yZHEuXQ5V4yUMSx45n7PnGHn9DyFNADS724JYgGVrEXW4jg5u8znOVyzh4VqCj-O59djThr6diukWGnK19By7_6tphPqlJvdg9_7Z6DgP-2a9YLeQ8tsjumYhd5OTEE31X2h0jDObrAf9ph4fAoCXDGbp_FEaG4EyCY4J5kC6Yq5bVf8Nq_YlKfw-uvGCtDm-Q6z3MpC86vbhJtnx5i1ztEk-ubpMPb6tyFp3ArEyPyx_fP82buqIH5zAz4OIZrQIdF7hHVK_oKwx9pGNoPd33i8WSvqxxgqRmRT-XDR3PZ9iTd8jk8OBk_yjqcytENstEE1mmbGAyuNjm1nMfe8AaIjEyiNxIIy24QXBbcgPdULiQeamESh1PUleoULC7ZLusSn-fUBnS3LDY50FkXHmfW-kd2H3GJcugihFhQxdq2xOPY_6LhR4izE51JwONMgCfRIMMRiRal_raEW9c8v4eSmf9LtJmtzeqeqb7UahFAQpghDIhs9wbV7R8eKnJRa5i5tiIyEG2ukcgHbKAT80vqf7JoAoaBijuuhSlr86WOpEZwFoFk-OI3OtUY93IQcug3g2l2fiLzSfl_EtLAs5le8jqwX-XfEiuQfvb5aQkfUS2m_rMPwaA1ZiddmECrsfTPbi--ah22lH0EwDNKNw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s2Wl5G4hk1iO06OdGnZhW2FtFvYmxU79pJqlVRpKrH_ht_CL2Mmj1UDh0pcHTt2JuOZb-zxZ0LeAWrIfAthCZKheTxLjKdxkzezPE6k7yxLMVA8OY2mZ_zzSqz2yKQ_C4NplZ3tb216Y627knEnzfFFno8XYYh0YwFCGp9xEd8itwEN-Kjas9XhbqEFIBD4MAy8sIGHLfojdE2eF_IlG2QGDcR75PPE1MRrLqph8h94qn-R6N8Jldc81PEDcr-DlvRDO_qHZM8Wj8id9rLJ7WPydV4Wa28JlpjOit-_vuV1VdKjn2ANcMGMlo4uUtwXqrb0E6Y70gUMmU7sZnNJP1ZoFKne0u9FTRf5GlmXn5Cz46PlZOp19yl4JopE7RkWG8eky3yTGMutbwFfiEBLJxIttTQQ-kCx5BpisjRzkZWxiMOMB2GWxi5lT8l-URb2OaHShYlmvk2ciHhsbWKkzcDXMy5ZBF2MCOtFqExHNo53XmxUn1V2rlrBKxQ8xCEKBD8i3q7VRUu2cUP9Q_w7u7pIld0UlNVadbqiRAoaoEWsXWS41VnacOCFOhFJ7LOMjYjs_60aaB68Kr-h-7e9KiiYlLjTkha2vLpUgYwAysZgEEfkWasau0GGkQTx-hH0O1CawVcMnxT5j4b4m8vmYNXBf4_4Dbk7XZ7M1Xx2-uUFuQdPmuWkIHxJ9uvqyr4CgFXr180E-gP7OCKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Term+In%C2%A0Vitro+Expansion+of+Salivary+Gland+Stem+Cells+Driven+by+Wnt+Signals&rft.jtitle=Stem+cell+reports&rft.au=Maimets%2C+Martti&rft.au=Rocchi%2C+Cecilia&rft.au=Bron%2C+Reinier&rft.au=Pringle%2C+Sarah&rft.date=2016-01-12&rft.pub=Elsevier&rft.eissn=2213-6711&rft.volume=6&rft.issue=1&rft.spage=150&rft.epage=162&rft_id=info:doi/10.1016%2Fj.stemcr.2015.11.009&rft_id=info%3Apmid%2F26724906&rft.externalDocID=PMC4720006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon