Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals
Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, w...
Saved in:
Published in | Stem cell reports Vol. 6; no. 1; pp. 150 - 162 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.01.2016
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2213-6711 2213-6711 |
DOI | 10.1016/j.stemcr.2015.11.009 |
Cover
Abstract | Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM+ cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAMhigh cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation.
[Display omitted]
•EpCAMhigh cells generate salivary gland organoids in the presence of Wnt proteins•Wnt signaling is required for the maintenance of salivary gland stem cells in vitro•Wnt agonists promote long-term salivary gland stem cell expansion in culture•Expanded salivary gland stem cells regenerate damaged salivary glands in vivo
Coppes and colleagues show that activation of Wnt signaling in EpCAMhigh cells purified from salivary gland (SG) tissue leads to the formation of organoids/miniglands, containing all SG lineages. Furthermore, Wnt proteins are required for self-renewal and robustly promote the long-term expansion of SG stem cells, which are efficiently able to regenerate radiation-damaged SG. |
---|---|
AbstractList | Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM+ cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAMhigh cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation. Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM(+) cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAM(high) cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation.Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM(+) cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAM(high) cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation. Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM+ cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAMhigh cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation. [Display omitted] •EpCAMhigh cells generate salivary gland organoids in the presence of Wnt proteins•Wnt signaling is required for the maintenance of salivary gland stem cells in vitro•Wnt agonists promote long-term salivary gland stem cell expansion in culture•Expanded salivary gland stem cells regenerate damaged salivary glands in vivo Coppes and colleagues show that activation of Wnt signaling in EpCAMhigh cells purified from salivary gland (SG) tissue leads to the formation of organoids/miniglands, containing all SG lineages. Furthermore, Wnt proteins are required for self-renewal and robustly promote the long-term expansion of SG stem cells, which are efficiently able to regenerate radiation-damaged SG. Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM + cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAM high cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation. • EpCAM high cells generate salivary gland organoids in the presence of Wnt proteins • Wnt signaling is required for the maintenance of salivary gland stem cells in vitro • Wnt agonists promote long-term salivary gland stem cell expansion in culture • Expanded salivary gland stem cells regenerate damaged salivary glands in vivo Coppes and colleagues show that activation of Wnt signaling in EpCAM high cells purified from salivary gland (SG) tissue leads to the formation of organoids/miniglands, containing all SG lineages. Furthermore, Wnt proteins are required for self-renewal and robustly promote the long-term expansion of SG stem cells, which are efficiently able to regenerate radiation-damaged SG. Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM(+) cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAM(high) cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation. |
Author | Coppes, Robert P. Clevers, Hans Kuipers, Jeroen de Haan, Gerald Pringle, Sarah van Os, Ronald Rocchi, Cecilia Vries, Robert G.J. Bron, Reinier Giepmans, Ben N.G. Maimets, Martti |
AuthorAffiliation | 4 Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands 3 Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands 2 Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands 1 Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands |
AuthorAffiliation_xml | – name: 2 Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands – name: 1 Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands – name: 3 Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands – name: 4 Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands |
Author_xml | – sequence: 1 givenname: Martti surname: Maimets fullname: Maimets, Martti organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands – sequence: 2 givenname: Cecilia surname: Rocchi fullname: Rocchi, Cecilia organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands – sequence: 3 givenname: Reinier surname: Bron fullname: Bron, Reinier organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands – sequence: 4 givenname: Sarah surname: Pringle fullname: Pringle, Sarah organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands – sequence: 5 givenname: Jeroen surname: Kuipers fullname: Kuipers, Jeroen organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands – sequence: 6 givenname: Ben N.G. surname: Giepmans fullname: Giepmans, Ben N.G. organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands – sequence: 7 givenname: Robert G.J. surname: Vries fullname: Vries, Robert G.J. organization: Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands – sequence: 8 givenname: Hans surname: Clevers fullname: Clevers, Hans organization: Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands – sequence: 9 givenname: Gerald surname: de Haan fullname: de Haan, Gerald organization: Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands – sequence: 10 givenname: Ronald surname: van Os fullname: van Os, Ronald organization: Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands – sequence: 11 givenname: Robert P. surname: Coppes fullname: Coppes, Robert P. email: r.p.coppes@umcg.nl organization: Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26724906$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFu1DAUjFArWkr_ACEfuSTYTmLHHJDQtpSVVirSFjhatvOyeJXYi-1d0b_hW_gyXHapWg7gy7Oe580bzzwrjpx3UBQvCK4IJuz1uooJJhMqiklbEVJhLJ4Up5SSumSckKMH95PiPMY1zkcIQhvytDihjNNGYHZafFx4typvIExo7n7--GxT8Ojy-0a5aL1DfkBLNdqdCrfoalSuR8u8F81gHCO6CHYHDulb9MUltLQrp8b4vDgecoHzQz0rPr2_vJl9KBfXV_PZu0VpGGtTaerODDUfemyEgQYwYE5aovnQCs01N4Kx3OaNzkJVPzDgXdvRviG0V92g6rNivuftvVrLTbBT1ii9svJ3w4eVVCFZM4JsVf65bjs9MNOA7hXhQrRUi1Z0uO7rzPV2z7XZ6gl6Ay4FNT4iffzi7Fe58jvZcJptZZng1YEg-G9biElONppsknLgt1ESznCWjxuaoS8f7rpf8ieSDGj2ABN8jAGGewjB8i58uZb78OVd-JIQmZPNY2_-GjM2qZRDzIrt-L_hgwGQE9tZCDIaC85AbwOYlC21_yb4BaBJzYE |
CitedBy_id | crossref_primary_10_3390_bioengineering11040346 crossref_primary_10_1002_term_2992 crossref_primary_10_1016_j_cjche_2020_11_013 crossref_primary_10_1016_j_tcb_2019_10_003 crossref_primary_10_1038_s41575_019_0255_2 crossref_primary_10_1111_pin_13325 crossref_primary_10_1111_jpi_12897 crossref_primary_10_1002_art_40659 crossref_primary_10_1111_joim_13075 crossref_primary_10_1038_s41598_019_47387_y crossref_primary_10_1186_s13287_021_02133_y crossref_primary_10_1002_adfm_202000097 crossref_primary_10_1101_cshperspect_a041380 crossref_primary_10_1111_cbdd_13704 crossref_primary_10_1038_s41584_021_00605_2 crossref_primary_10_1002_stem_2278 crossref_primary_10_1016_j_bbamcr_2024_119817 crossref_primary_10_3390_bioengineering9030121 crossref_primary_10_3390_biom9110657 crossref_primary_10_3390_biology13030147 crossref_primary_10_1016_j_eng_2021_04_017 crossref_primary_10_1021_acsabm_4c00028 crossref_primary_10_1126_scisignal_abk0599 crossref_primary_10_3390_cells9030642 crossref_primary_10_1016_j_isci_2024_109938 crossref_primary_10_1016_j_ijrobp_2018_02_034 crossref_primary_10_1242_dev_142497 crossref_primary_10_3390_cells9122649 crossref_primary_10_1152_physrev_00015_2021 crossref_primary_10_3390_cancers13040855 crossref_primary_10_1128_mmbr_00025_22 crossref_primary_10_3390_jpm12050789 crossref_primary_10_1080_13543784_2019_1631796 crossref_primary_10_1177_0022034517711146 crossref_primary_10_1242_bio_059267 crossref_primary_10_3389_fcell_2024_1433111 crossref_primary_10_1038_s41568_018_0007_6 crossref_primary_10_3389_fbioe_2022_1035647 crossref_primary_10_1016_j_yexcr_2019_05_030 crossref_primary_10_1038_s41596_019_0160_8 crossref_primary_10_1242_dev_140566 crossref_primary_10_1038_s41576_018_0051_9 crossref_primary_10_1158_1078_0432_CCR_18_0533 crossref_primary_10_1002_stem_2455 crossref_primary_10_3390_molecules26092658 crossref_primary_10_1038_s10038_017_0348_0 crossref_primary_10_1038_s43018_020_0102_y crossref_primary_10_3390_bioengineering9010038 crossref_primary_10_1016_j_actbio_2016_12_049 crossref_primary_10_3390_biomedicines11020604 crossref_primary_10_1002_path_6209 crossref_primary_10_1053_j_gastro_2018_11_048 crossref_primary_10_1016_j_devcel_2016_08_014 crossref_primary_10_1016_j_radonc_2023_109984 crossref_primary_10_1080_09553002_2023_2188935 crossref_primary_10_1080_07853890_2022_2122550 crossref_primary_10_1016_j_archoralbio_2018_10_017 crossref_primary_10_1242_bio_042812 crossref_primary_10_1016_j_archoralbio_2021_105344 crossref_primary_10_1038_s41598_017_03681_1 crossref_primary_10_1038_s41598_018_20131_8 crossref_primary_10_1016_j_brainres_2019_146535 crossref_primary_10_3390_cancers13030367 crossref_primary_10_1016_j_isci_2022_105047 crossref_primary_10_1016_j_stem_2021_02_024 crossref_primary_10_3390_antiox10111666 crossref_primary_10_1242_dmm_039347 crossref_primary_10_3897_rrpharmacology_7_62118 crossref_primary_10_3390_gels8110730 crossref_primary_10_1016_j_ceb_2016_07_003 crossref_primary_10_1016_j_semcancer_2018_06_005 crossref_primary_10_1098_rstb_2017_0216 crossref_primary_10_1158_0008_5472_CAN_20_3499 crossref_primary_10_1186_s40364_022_00356_6 crossref_primary_10_1242_jcs_208728 crossref_primary_10_1002_stem_3046 crossref_primary_10_1016_j_celrep_2018_07_016 crossref_primary_10_1152_ajpcell_00120_2020 crossref_primary_10_1016_j_stemcr_2021_09_015 crossref_primary_10_1002_cpcb_76 crossref_primary_10_1016_j_stemcr_2022_09_015 crossref_primary_10_1002_cpz1_479 crossref_primary_10_1016_j_matbio_2016_09_004 crossref_primary_10_1007_s00018_024_05557_w crossref_primary_10_1073_pnas_1802184115 crossref_primary_10_3389_fcell_2024_1346996 crossref_primary_10_1016_j_chembiol_2023_06_006 crossref_primary_10_1038_s41418_020_00662_2 crossref_primary_10_1177_09636897241303271 crossref_primary_10_3389_fcell_2021_698292 crossref_primary_10_3389_fmolb_2024_1382070 crossref_primary_10_3389_fphar_2021_662437 crossref_primary_10_1038_s41419_020_03074_9 crossref_primary_10_1016_j_stem_2023_12_006 crossref_primary_10_3390_dj9120144 crossref_primary_10_51335_organoid_2022_2_e2 crossref_primary_10_1016_j_radonc_2023_109845 crossref_primary_10_3389_fpubh_2018_00185 crossref_primary_10_1016_j_radonc_2017_07_008 crossref_primary_10_1016_j_molmed_2020_03_009 crossref_primary_10_1016_j_stemcr_2023_05_009 crossref_primary_10_3390_biomedicines11113034 crossref_primary_10_1007_s00018_020_03741_2 crossref_primary_10_1155_2016_7564689 crossref_primary_10_1155_2021_9922597 crossref_primary_10_1016_j_stemcr_2021_02_011 crossref_primary_10_1016_j_radonc_2019_04_028 crossref_primary_10_1016_j_radonc_2024_110093 crossref_primary_10_1667_RR15342_1 crossref_primary_10_1007_s00109_020_01990_z crossref_primary_10_3390_cancers14215416 crossref_primary_10_1016_j_dld_2019_02_020 crossref_primary_10_1080_15548627_2021_1924036 crossref_primary_10_1016_j_slast_2023_03_004 crossref_primary_10_1038_s41591_024_03489_3 crossref_primary_10_1111_odi_12812 crossref_primary_10_1186_s13287_019_1541_1 crossref_primary_10_1002_advs_202400660 crossref_primary_10_1016_j_ceb_2017_12_011 crossref_primary_10_1016_j_bioactmat_2022_02_007 crossref_primary_10_1016_j_cell_2016_05_082 crossref_primary_10_1016_j_isci_2023_106695 crossref_primary_10_1016_j_biopha_2025_117870 crossref_primary_10_1016_j_cell_2019_11_038 crossref_primary_10_5466_ijoms_17_120 crossref_primary_10_11620_IJOB_2018_43_2_077 crossref_primary_10_1186_s13227_020_00171_w crossref_primary_10_21769_BioProtoc_3386 crossref_primary_10_1016_j_jcyt_2021_11_003 crossref_primary_10_1016_j_slast_2023_03_002 crossref_primary_10_1021_acsbiomaterials_8b00894 crossref_primary_10_1038_s41405_024_00219_2 crossref_primary_10_1667_RR14810_1 crossref_primary_10_2186_ajps_10_230 crossref_primary_10_5966_sctm_2016_0083 crossref_primary_10_1007_s00018_019_03199_x crossref_primary_10_1007_s10561_022_10029_1 crossref_primary_10_1038_s41467_022_30934_z crossref_primary_10_1016_j_molimm_2024_06_010 crossref_primary_10_1021_acsbiomaterials_1c00745 crossref_primary_10_1038_s41374_022_00814_7 crossref_primary_10_3390_ijms22052302 crossref_primary_10_1111_odi_13475 crossref_primary_10_3390_ijms25020701 crossref_primary_10_1038_s42003_021_01876_x crossref_primary_10_1016_j_biomaterials_2019_119245 crossref_primary_10_1089_ten_tea_2018_0308 crossref_primary_10_1007_s00109_017_1531_7 crossref_primary_10_3389_fimmu_2023_1175503 crossref_primary_10_1177_0022034521999298 crossref_primary_10_2108_zs160177 crossref_primary_10_1002_1878_0261_12750 crossref_primary_10_1016_j_celrep_2018_12_059 crossref_primary_10_1093_burnst_tkae003 crossref_primary_10_1002_ijc_33315 crossref_primary_10_1016_j_semcdb_2022_09_006 crossref_primary_10_1007_s00109_020_02010_w crossref_primary_10_1056_NEJMra1806175 crossref_primary_10_1016_j_oraloncology_2022_106186 crossref_primary_10_1016_j_slast_2024_100132 crossref_primary_10_1038_s41536_020_00115_x crossref_primary_10_1038_s41598_017_04099_5 crossref_primary_10_1172_jci_insight_122947 crossref_primary_10_1177_1073858420960112 crossref_primary_10_3390_cells10071723 crossref_primary_10_1016_j_addr_2023_115142 crossref_primary_10_1002_dvg_23211 crossref_primary_10_1038_s41368_023_00224_5 crossref_primary_10_3390_pharmaceutics16030435 crossref_primary_10_1016_j_cell_2017_05_016 crossref_primary_10_1667_RADE_21_00237_1 crossref_primary_10_1016_j_biotechadv_2019_107460 |
Cites_doi | 10.1089/scd.2009.0499 10.1093/hmg/ddt105 10.1038/ng.239 10.1002/ar.1098 10.1016/j.diff.2008.10.006 10.1038/jid.2015.109 10.1172/JCI74096 10.1016/j.radonc.2013.05.020 10.1016/j.stemcr.2014.09.015 10.1038/nature01593 10.1158/0008-5472.CAN-07-0908 10.1038/nchembio.137 10.1038/nature07935 10.1242/dev.01690 10.1126/science.1192046 10.1016/j.stem.2009.11.013 10.1016/S0092-8674(01)00336-1 10.1242/dev.120.2.369 10.1126/science.1184733 10.1016/j.devcel.2015.02.013 10.1158/1078-0432.CCR-08-1449 10.1016/j.cell.2015.09.038 10.1177/10454411970080010301 10.1073/pnas.94.13.6770 10.1038/nature11826 10.1016/j.cell.2006.03.011 10.1002/jez.1401880304 10.1371/journal.pone.0002063 10.1038/nature06196 10.1126/science.1239730 10.1016/j.cell.2008.01.038 10.1016/j.radonc.2011.05.085 10.1038/emboj.2013.204 10.1073/pnas.0603824103 10.1016/j.ijrobp.2011.11.062 10.1002/ar.1092350316 10.1126/science.1248012 10.1002/stem.1327 10.1002/(SICI)1097-0185(19990301)254:3<408::AID-AR12>3.0.CO;2-G 10.1007/s004280100537 10.1016/j.stem.2010.03.020 10.1016/j.cell.2014.11.050 10.1074/jbc.M710308200 10.1002/hep.20063 10.1038/ncomms3498 10.1016/j.cell.2012.05.012 10.1016/j.celrep.2012.08.018 10.1111/j.1365-2613.2006.00500.x |
ContentType | Journal Article |
Copyright | 2016 The Authors Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved. 2016 The Authors 2016 |
Copyright_xml | – notice: 2016 The Authors – notice: Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2016 The Authors 2016 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.stemcr.2015.11.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-6711 |
EndPage | 162 |
ExternalDocumentID | oai_doaj_org_article_5a099b58bf6c4ebda179952b959803d3 PMC4720006 26724906 10_1016_j_stemcr_2015_11_009 S2213671115003458 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAVLU AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ IXB KQ8 M41 M48 M~E NCXOZ O9- OK1 RCE RIG ROL RPM SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c665t-c38cf37fd0c9ce4e0e07151b7f59b7b7c966e4e74b249adf6e78582d412da8fa3 |
IEDL.DBID | M48 |
ISSN | 2213-6711 |
IngestDate | Mon Sep 08 19:51:30 EDT 2025 Thu Aug 21 14:07:57 EDT 2025 Fri Jul 11 15:23:58 EDT 2025 Thu Jan 02 22:22:24 EST 2025 Tue Jul 01 02:44:11 EDT 2025 Thu Apr 24 23:09:22 EDT 2025 Wed May 17 02:21:46 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c665t-c38cf37fd0c9ce4e0e07151b7f59b7b7c966e4e74b249adf6e78582d412da8fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.stemcr.2015.11.009 |
PMID | 26724906 |
PQID | 1760858042 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a099b58bf6c4ebda179952b959803d3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4720006 proquest_miscellaneous_1760858042 pubmed_primary_26724906 crossref_primary_10_1016_j_stemcr_2015_11_009 crossref_citationtrail_10_1016_j_stemcr_2015_11_009 elsevier_sciencedirect_doi_10_1016_j_stemcr_2015_11_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-12 |
PublicationDateYYYYMMDD | 2016-01-12 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stem cell reports |
PublicationTitleAlternate | Stem Cell Reports |
PublicationYear | 2016 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Barker, van Es, Kuipers, Kujala, van den Born, Cozijnsen, Haegebarth, Korving, Begthel, Peters (bib3) 2007; 449 Sokol, Kramer, Diercks, Kuipers, Jonkman, Pas, Giepmans (bib42) 2015; 135 Aure, Konieczny, Ovitt (bib1) 2015; 33 Yamamoto, Fukumoto, Yoshizaki, Iwamoto, Yamada, Tanaka, Suzuki, Aizawa, Arakaki, Yuasa (bib45) 2008; 283 Steinberg, Myers, Heim, Lathrop, Rebustini, Stewart, Larsen, Hoffman (bib43) 2005; 132 Morrison, Spradling (bib30) 2008; 132 Peifer, Sweeton, Casey, Wieschaus (bib36) 1994; 120 Huch, Bonfanti, Boj, Sato, Loomans, van de Wetering, Sojoodi, Li, Schuijers, Gracanin (bib19) 2013; 32 Dan, Riehle, Lazaro, Teoh, Haque, Campbell, Fausto (bib10) 2006; 103 Hai, Yang, Shangguan, Zhao, Boyer, Liu (bib17) 2012; 83 Osailan, Proctor, Carpenter, Paterson, McGurk (bib35) 2006; 87 Barker, Huch, Kujala, van de Wetering, Snippert, van Es, Sato, Stange, Begthel, van den Born (bib4) 2010; 6 Zetsche, Gootenberg, Abudayyeh, Slaymaker, Makarova, Essletzbichler, Volz, Joung, van der Oost, Regev (bib48) 2015; 163 Lombaert, Brunsting, Wierenga, Faber, Stokman, Kok, Visser, Kampinga, de Haan, Coppes (bib27) 2008; 3 Finch, He, Kelley, Uren, Schaudies, Popescu, Rudikoff, Aaronson, Varmus, Rubin (bib14) 1997; 94 Ihrler, Zietz, Sendelhofert, Lang, Blasenbreu-Vogt, Lohrs (bib23) 2002; 440 Nanduri, Lombaert, van der Zwaag, Faber, Brunsting, van Os, Coppes (bib32) 2013; 108 Hai, Yang, Millar, Choi, Taketo, Nagy, Liu (bib16) 2010; 19 Barker, Rookmaaker, Kujala, Ng, Leushacke, Snippert, van de Wetering, Tan, Van Es, Huch (bib5) 2012; 2 Man, Ball, Marchetti, Hand (bib29) 2001; 263 Schnell, Kuipers, Mueller, Veenstra-Algra, Sivagnanam, Giepmans (bib40) 2013; 22 Knox, Lombaert, Reed, Vitale-Cross, Gutkind, Hoffman (bib25) 2010; 329 Ogawa, Oshima, Imamura, Sekine, Ishida, Yamashita, Nakajima, Hirayama, Tachikawa, Tsuji (bib34) 2013; 4 Yamashita, Budhu, Forgues, Wang (bib46) 2007; 67 Zeng, Nusse (bib47) 2010; 6 Ball (bib2) 1974; 188 Nanduri, Maimets, Pringle, van der Zwaag, van Os, Coppes (bib31) 2011; 99 Snippert, Haegebarth, Kasper, Jaks, van Es, Barker, van de Wetering, van den Born, Begthel, Vries (bib41) 2010; 327 Chen, Dodge, Tang, Lu, Ma, Fan, Wei, Hao, Kilgore, Williams (bib6) 2009; 5 Clevers, Nusse (bib8) 2012; 149 Jaks, Barker, Kasper, van Es, Snippert, Clevers, Toftgard (bib24) 2008; 40 Nanduri, Baanstra, Faber, Rocchi, Zwart, de Haan, van Os, Coppes (bib33) 2014; 3 Huch, Dorrell, Boj, van Es, Li, van de Wetering, Sato, Hamer, Sasaki, Finegold (bib20) 2013; 494 Haara, Koivisto, Miettinen (bib15) 2009; 77 Sato, Vries, Snippert, van de Wetering, Barker, Stange, van Es, Abo, Kujala, Peters (bib39) 2009; 459 Hisatomi, Okumura, Nakamura, Matsumoto, Satoh, Nagano, Yamamoto, Endo (bib18) 2004; 39 Huch, Gehart, van Boxtel, Hamer, Blokzijl, Verstegen, Ellis, van Wenum, Fuchs, de Ligt (bib21) 2015; 160 Denny, Chai, Klauser, Denny (bib12) 1993; 235 Clevers, Loh, Nusse (bib9) 2014; 346 Denny, Denny (bib11) 1999; 254 Clarke, Fuller (bib7) 2006; 124 Lim, Tan, Koh, Chau, Yan, Kuo, van Amerongen, Klein, Nusse (bib26) 2013; 342 Xiao, Lin, Cao, Sirjani, Giaccia, Koong, Kong, Diehn, Le (bib44) 2014; 124 Huelsken, Vogel, Erdmann, Cotsarelis, Birchmeier (bib22) 2001; 105 Pringle, Van Os, Coppes (bib37) 2013; 31 Reya, Duncan, Ailles, Domen, Scherer, Willert, Hintz, Nusse, Weissman (bib38) 2003; 423 Denny, Ball, Redman (bib13) 1997; 8 Lombaert, Brunsting, Wierenga, Kampinga, de Haan, Coppes (bib28) 2008; 14 Jaks (10.1016/j.stemcr.2015.11.009_bib24) 2008; 40 Finch (10.1016/j.stemcr.2015.11.009_bib14) 1997; 94 Pringle (10.1016/j.stemcr.2015.11.009_bib37) 2013; 31 Clevers (10.1016/j.stemcr.2015.11.009_bib9) 2014; 346 Hai (10.1016/j.stemcr.2015.11.009_bib17) 2012; 83 Aure (10.1016/j.stemcr.2015.11.009_bib1) 2015; 33 Snippert (10.1016/j.stemcr.2015.11.009_bib41) 2010; 327 Xiao (10.1016/j.stemcr.2015.11.009_bib44) 2014; 124 Nanduri (10.1016/j.stemcr.2015.11.009_bib33) 2014; 3 Schnell (10.1016/j.stemcr.2015.11.009_bib40) 2013; 22 Yamashita (10.1016/j.stemcr.2015.11.009_bib46) 2007; 67 Clevers (10.1016/j.stemcr.2015.11.009_bib8) 2012; 149 Denny (10.1016/j.stemcr.2015.11.009_bib13) 1997; 8 Steinberg (10.1016/j.stemcr.2015.11.009_bib43) 2005; 132 Yamamoto (10.1016/j.stemcr.2015.11.009_bib45) 2008; 283 Osailan (10.1016/j.stemcr.2015.11.009_bib35) 2006; 87 Lombaert (10.1016/j.stemcr.2015.11.009_bib28) 2008; 14 Morrison (10.1016/j.stemcr.2015.11.009_bib30) 2008; 132 Ihrler (10.1016/j.stemcr.2015.11.009_bib23) 2002; 440 Denny (10.1016/j.stemcr.2015.11.009_bib11) 1999; 254 Barker (10.1016/j.stemcr.2015.11.009_bib5) 2012; 2 Zeng (10.1016/j.stemcr.2015.11.009_bib47) 2010; 6 Chen (10.1016/j.stemcr.2015.11.009_bib6) 2009; 5 Sato (10.1016/j.stemcr.2015.11.009_bib39) 2009; 459 Ogawa (10.1016/j.stemcr.2015.11.009_bib34) 2013; 4 Clarke (10.1016/j.stemcr.2015.11.009_bib7) 2006; 124 Zetsche (10.1016/j.stemcr.2015.11.009_bib48) 2015; 163 Huch (10.1016/j.stemcr.2015.11.009_bib21) 2015; 160 Huch (10.1016/j.stemcr.2015.11.009_bib19) 2013; 32 Hai (10.1016/j.stemcr.2015.11.009_bib16) 2010; 19 Peifer (10.1016/j.stemcr.2015.11.009_bib36) 1994; 120 Barker (10.1016/j.stemcr.2015.11.009_bib3) 2007; 449 Ball (10.1016/j.stemcr.2015.11.009_bib2) 1974; 188 Man (10.1016/j.stemcr.2015.11.009_bib29) 2001; 263 Lim (10.1016/j.stemcr.2015.11.009_bib26) 2013; 342 Dan (10.1016/j.stemcr.2015.11.009_bib10) 2006; 103 Haara (10.1016/j.stemcr.2015.11.009_bib15) 2009; 77 Knox (10.1016/j.stemcr.2015.11.009_bib25) 2010; 329 Nanduri (10.1016/j.stemcr.2015.11.009_bib31) 2011; 99 Lombaert (10.1016/j.stemcr.2015.11.009_bib27) 2008; 3 Huelsken (10.1016/j.stemcr.2015.11.009_bib22) 2001; 105 Denny (10.1016/j.stemcr.2015.11.009_bib12) 1993; 235 Reya (10.1016/j.stemcr.2015.11.009_bib38) 2003; 423 Sokol (10.1016/j.stemcr.2015.11.009_bib42) 2015; 135 Barker (10.1016/j.stemcr.2015.11.009_bib4) 2010; 6 Hisatomi (10.1016/j.stemcr.2015.11.009_bib18) 2004; 39 Huch (10.1016/j.stemcr.2015.11.009_bib20) 2013; 494 Nanduri (10.1016/j.stemcr.2015.11.009_bib32) 2013; 108 15716343 - Development. 2005 Mar;132(6):1223-34 25036711 - J Clin Invest. 2014 Aug;124(8):3364-77 25789704 - J Invest Dermatol. 2015 Jul;135(7):1763-70 8149915 - Development. 1994 Feb;120(2):369-80 25533785 - Cell. 2015 Jan 15;160(1-2):299-312 9063625 - Crit Rev Oral Biol Med. 1997;8(1):51-75 20929848 - Science. 2010 Sep 24;329(5999):1645-7 25448065 - Stem Cell Reports. 2014 Dec 9;3(6):957-64 26422227 - Cell. 2015 Oct 22;163(3):759-71 12717450 - Nature. 2003 May 22;423(6938):409-14 18849992 - Nat Genet. 2008 Nov;40(11):1291-9 12021927 - Virchows Arch. 2002 May;440(5):519-26 17934449 - Nature. 2007 Oct 25;449(7165):1003-7 10096673 - Anat Rec. 1999 Mar;254(3):408-17 25278615 - Science. 2014 Oct 3;346(6205):1248012 4836189 - J Exp Zool. 1974 Jun;188(3):277-88 19272528 - Differentiation. 2009 Mar;77(3):298-306 22342093 - Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):e109-16 14999685 - Hepatology. 2004 Mar;39(3):667-75 23769181 - Radiother Oncol. 2013 Sep;108(3):458-63 11371349 - Cell. 2001 May 18;105(4):533-45 19125156 - Nat Chem Biol. 2009 Feb;5(2):100-7 18446241 - PLoS One. 2008;3(4):e2063 19047101 - Clin Cancer Res. 2008 Dec 1;14(23):7741-50 16782807 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9912-7 20569694 - Cell Stem Cell. 2010 Jun 4;6(6):568-77 19329995 - Nature. 2009 May 14;459(7244):262-5 16564000 - Cell. 2006 Mar 24;124(6):1111-5 24045232 - EMBO J. 2013 Oct 16;32(20):2708-21 22682243 - Cell. 2012 Jun 8;149(6):1192-205 24084982 - Nat Commun. 2013;4:2498 11360236 - Anat Rec. 2001 Jun 1;263(2):202-14 18006828 - Cancer Res. 2007 Nov 15;67(22):10831-9 18559345 - J Biol Chem. 2008 Aug 22;283(34):23139-49 25843887 - Dev Cell. 2015 Apr 20;33(2):231-7 18295578 - Cell. 2008 Feb 22;132(4):598-611 24311688 - Science. 2013 Dec 6;342(6163):1226-30 23335219 - Stem Cells. 2013 Apr;31(4):613-9 22999937 - Cell Rep. 2012 Sep 27;2(3):540-52 8430917 - Anat Rec. 1993 Mar;235(3):475-85 20085740 - Cell Stem Cell. 2010 Jan 8;6(1):25-36 9192640 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6770-5 20367250 - Stem Cells Dev. 2010 Nov;19(11):1793-801 23354049 - Nature. 2013 Feb 14;494(7436):247-50 21719134 - Radiother Oncol. 2011 Jun;99(3):367-72 20223988 - Science. 2010 Mar 12;327(5971):1385-9 17222209 - Int J Exp Pathol. 2006 Dec;87(6):411-23 23462293 - Hum Mol Genet. 2013 Jul 1;22(13):2566-71 |
References_xml | – volume: 124 start-page: 1111 year: 2006 end-page: 1115 ident: bib7 article-title: Stem cells and cancer: two faces of eve publication-title: Cell – volume: 8 start-page: 51 year: 1997 end-page: 75 ident: bib13 article-title: Salivary glands: a paradigm for diversity of gland development publication-title: Crit. Rev. Oral Biol. Med. – volume: 105 start-page: 533 year: 2001 end-page: 545 ident: bib22 article-title: beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin publication-title: Cell – volume: 132 start-page: 598 year: 2008 end-page: 611 ident: bib30 article-title: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life publication-title: Cell – volume: 254 start-page: 408 year: 1999 end-page: 417 ident: bib11 article-title: Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland publication-title: Anat. Rec. – volume: 160 start-page: 299 year: 2015 end-page: 312 ident: bib21 article-title: Long-term culture of genome-stable bipotent stem cells from adult human liver publication-title: Cell – volume: 132 start-page: 1223 year: 2005 end-page: 1234 ident: bib43 article-title: FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis publication-title: Development – volume: 235 start-page: 475 year: 1993 end-page: 485 ident: bib12 article-title: Parenchymal cell proliferation and mechanisms for maintenance of granular duct and acinar cell populations in adult male mouse submandibular gland publication-title: Anat. Rec. – volume: 94 start-page: 6770 year: 1997 end-page: 6775 ident: bib14 article-title: Purification and molecular cloning of a secreted, frizzled-related antagonist of Wnt action publication-title: Proc. Natl. Acad. Sci. USA – volume: 135 start-page: 1763 year: 2015 end-page: 1770 ident: bib42 article-title: Large-scale electron microscopy maps of patient skin and mucosa provide insight into pathogenesis of blistering diseases publication-title: J. Invest. Dermatol. – volume: 6 start-page: 568 year: 2010 end-page: 577 ident: bib47 article-title: Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture publication-title: Cell Stem Cell – volume: 32 start-page: 2708 year: 2013 end-page: 2721 ident: bib19 article-title: Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis publication-title: EMBO J. – volume: 3 start-page: 957 year: 2014 end-page: 964 ident: bib33 article-title: Purification and ex vivo expansion of fully functional salivary gland stem cells publication-title: Stem Cell Rep. – volume: 87 start-page: 411 year: 2006 end-page: 423 ident: bib35 article-title: Recovery of rat submandibular salivary gland function following removal of obstruction: a sialometrical and sialochemical study publication-title: Int. J. Exp. Pathol. – volume: 40 start-page: 1291 year: 2008 end-page: 1299 ident: bib24 article-title: Lgr5 marks cycling, yet long-lived, hair follicle stem cells publication-title: Nat. Genet. – volume: 14 start-page: 7741 year: 2008 end-page: 7750 ident: bib28 article-title: Cytokine treatment improves parenchymal and vascular damage of salivary glands after irradiation publication-title: Clin. Cancer Res. – volume: 31 start-page: 613 year: 2013 end-page: 619 ident: bib37 article-title: Concise review: adult salivary gland stem cells and a potential therapy for xerostomia publication-title: Stem Cells – volume: 77 start-page: 298 year: 2009 end-page: 306 ident: bib15 article-title: EGF-receptor regulates salivary gland branching morphogenesis by supporting proliferation and maturation of epithelial cells and survival of mesenchymal cells publication-title: Differentiation – volume: 99 start-page: 367 year: 2011 end-page: 372 ident: bib31 article-title: Regeneration of irradiated salivary glands with stem cell marker expressing cells publication-title: Radiother. Oncol. – volume: 327 start-page: 1385 year: 2010 end-page: 1389 ident: bib41 article-title: Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin publication-title: Science – volume: 188 start-page: 277 year: 1974 end-page: 288 ident: bib2 article-title: Development of the rat salivary glands. 3. Mesenchymal specificity in the morphogenesis of the embryonic submaxillary and sublingual glands of the rat publication-title: J. Exp. Zool. – volume: 108 start-page: 458 year: 2013 end-page: 463 ident: bib32 article-title: Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland publication-title: Radiother. Oncol. – volume: 346 start-page: 1248012 year: 2014 ident: bib9 article-title: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control publication-title: Science – volume: 423 start-page: 409 year: 2003 end-page: 414 ident: bib38 article-title: A role for Wnt signalling in self-renewal of haematopoietic stem cells publication-title: Nature – volume: 124 start-page: 3364 year: 2014 end-page: 3377 ident: bib44 article-title: Neurotrophic factor GDNF promotes survival of salivary stem cells publication-title: J. Clin. Invest. – volume: 103 start-page: 9912 year: 2006 end-page: 9917 ident: bib10 article-title: Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages publication-title: Proc. Natl. Acad. Sci. USA – volume: 67 start-page: 10831 year: 2007 end-page: 10839 ident: bib46 article-title: Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma publication-title: Cancer Res. – volume: 33 start-page: 231 year: 2015 end-page: 237 ident: bib1 article-title: Salivary gland homeostasis is maintained through acinar cell self-duplication publication-title: Dev. Cell. – volume: 449 start-page: 1003 year: 2007 end-page: 1007 ident: bib3 article-title: Identification of stem cells in small intestine and colon by marker gene Lgr5 publication-title: Nature – volume: 329 start-page: 1645 year: 2010 end-page: 1647 ident: bib25 article-title: Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis publication-title: Science – volume: 459 start-page: 262 year: 2009 end-page: 265 ident: bib39 article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche publication-title: Nature – volume: 39 start-page: 667 year: 2004 end-page: 675 ident: bib18 article-title: Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages publication-title: Hepatology – volume: 3 start-page: e2063 year: 2008 ident: bib27 article-title: Rescue of salivary gland function after stem cell transplantation in irradiated glands publication-title: PLoS One – volume: 163 start-page: 759 year: 2015 end-page: 771 ident: bib48 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell – volume: 494 start-page: 247 year: 2013 end-page: 250 ident: bib20 article-title: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration publication-title: Nature – volume: 283 start-page: 23139 year: 2008 end-page: 23149 ident: bib45 article-title: Platelet-derived growth factor receptor regulates salivary gland morphogenesis via fibroblast growth factor expression publication-title: J. Biol. Chem. – volume: 263 start-page: 202 year: 2001 end-page: 214 ident: bib29 article-title: Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats publication-title: Anat. Rec. – volume: 342 start-page: 1226 year: 2013 end-page: 1230 ident: bib26 article-title: Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling publication-title: Science – volume: 440 start-page: 519 year: 2002 end-page: 526 ident: bib23 article-title: A morphogenetic concept of salivary duct regeneration and metaplasia publication-title: Virchows Arch. – volume: 22 start-page: 2566 year: 2013 end-page: 2571 ident: bib40 article-title: Absence of cell-surface EpCAM in congenital tufting enteropathy publication-title: Hum. Mol. Genet. – volume: 6 start-page: 25 year: 2010 end-page: 36 ident: bib4 article-title: Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro publication-title: Cell Stem Cell – volume: 2 start-page: 540 year: 2012 end-page: 552 ident: bib5 article-title: Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development publication-title: Cell Rep. – volume: 149 start-page: 1192 year: 2012 end-page: 1205 ident: bib8 article-title: Wnt/beta-catenin signaling and disease publication-title: Cell – volume: 5 start-page: 100 year: 2009 end-page: 107 ident: bib6 article-title: Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer publication-title: Nat. Chem. Biol. – volume: 83 start-page: e109 year: 2012 end-page: e116 ident: bib17 article-title: Concurrent transient activation of Wnt/beta-catenin pathway prevents radiation damage to salivary glands publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 120 start-page: 369 year: 1994 end-page: 380 ident: bib36 article-title: wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo publication-title: Development – volume: 19 start-page: 1793 year: 2010 end-page: 1801 ident: bib16 article-title: Wnt/beta-catenin signaling regulates postnatal development and regeneration of the salivary gland publication-title: Stem Cell Dev. – volume: 4 start-page: 2498 year: 2013 ident: bib34 article-title: Functional salivary gland regeneration by transplantation of a bioengineered organ germ publication-title: Nat. Commun. – volume: 19 start-page: 1793 year: 2010 ident: 10.1016/j.stemcr.2015.11.009_bib16 article-title: Wnt/beta-catenin signaling regulates postnatal development and regeneration of the salivary gland publication-title: Stem Cell Dev. doi: 10.1089/scd.2009.0499 – volume: 22 start-page: 2566 year: 2013 ident: 10.1016/j.stemcr.2015.11.009_bib40 article-title: Absence of cell-surface EpCAM in congenital tufting enteropathy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt105 – volume: 40 start-page: 1291 year: 2008 ident: 10.1016/j.stemcr.2015.11.009_bib24 article-title: Lgr5 marks cycling, yet long-lived, hair follicle stem cells publication-title: Nat. Genet. doi: 10.1038/ng.239 – volume: 263 start-page: 202 year: 2001 ident: 10.1016/j.stemcr.2015.11.009_bib29 article-title: Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats publication-title: Anat. Rec. doi: 10.1002/ar.1098 – volume: 77 start-page: 298 year: 2009 ident: 10.1016/j.stemcr.2015.11.009_bib15 article-title: EGF-receptor regulates salivary gland branching morphogenesis by supporting proliferation and maturation of epithelial cells and survival of mesenchymal cells publication-title: Differentiation doi: 10.1016/j.diff.2008.10.006 – volume: 135 start-page: 1763 year: 2015 ident: 10.1016/j.stemcr.2015.11.009_bib42 article-title: Large-scale electron microscopy maps of patient skin and mucosa provide insight into pathogenesis of blistering diseases publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2015.109 – volume: 124 start-page: 3364 year: 2014 ident: 10.1016/j.stemcr.2015.11.009_bib44 article-title: Neurotrophic factor GDNF promotes survival of salivary stem cells publication-title: J. Clin. Invest. doi: 10.1172/JCI74096 – volume: 108 start-page: 458 year: 2013 ident: 10.1016/j.stemcr.2015.11.009_bib32 article-title: Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2013.05.020 – volume: 3 start-page: 957 year: 2014 ident: 10.1016/j.stemcr.2015.11.009_bib33 article-title: Purification and ex vivo expansion of fully functional salivary gland stem cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2014.09.015 – volume: 423 start-page: 409 year: 2003 ident: 10.1016/j.stemcr.2015.11.009_bib38 article-title: A role for Wnt signalling in self-renewal of haematopoietic stem cells publication-title: Nature doi: 10.1038/nature01593 – volume: 67 start-page: 10831 year: 2007 ident: 10.1016/j.stemcr.2015.11.009_bib46 article-title: Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-0908 – volume: 5 start-page: 100 year: 2009 ident: 10.1016/j.stemcr.2015.11.009_bib6 article-title: Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.137 – volume: 459 start-page: 262 year: 2009 ident: 10.1016/j.stemcr.2015.11.009_bib39 article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche publication-title: Nature doi: 10.1038/nature07935 – volume: 132 start-page: 1223 year: 2005 ident: 10.1016/j.stemcr.2015.11.009_bib43 article-title: FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis publication-title: Development doi: 10.1242/dev.01690 – volume: 329 start-page: 1645 year: 2010 ident: 10.1016/j.stemcr.2015.11.009_bib25 article-title: Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis publication-title: Science doi: 10.1126/science.1192046 – volume: 6 start-page: 25 year: 2010 ident: 10.1016/j.stemcr.2015.11.009_bib4 article-title: Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.11.013 – volume: 105 start-page: 533 year: 2001 ident: 10.1016/j.stemcr.2015.11.009_bib22 article-title: beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin publication-title: Cell doi: 10.1016/S0092-8674(01)00336-1 – volume: 120 start-page: 369 year: 1994 ident: 10.1016/j.stemcr.2015.11.009_bib36 article-title: wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo publication-title: Development doi: 10.1242/dev.120.2.369 – volume: 327 start-page: 1385 year: 2010 ident: 10.1016/j.stemcr.2015.11.009_bib41 article-title: Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin publication-title: Science doi: 10.1126/science.1184733 – volume: 33 start-page: 231 year: 2015 ident: 10.1016/j.stemcr.2015.11.009_bib1 article-title: Salivary gland homeostasis is maintained through acinar cell self-duplication publication-title: Dev. Cell. doi: 10.1016/j.devcel.2015.02.013 – volume: 14 start-page: 7741 year: 2008 ident: 10.1016/j.stemcr.2015.11.009_bib28 article-title: Cytokine treatment improves parenchymal and vascular damage of salivary glands after irradiation publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-1449 – volume: 163 start-page: 759 year: 2015 ident: 10.1016/j.stemcr.2015.11.009_bib48 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 8 start-page: 51 year: 1997 ident: 10.1016/j.stemcr.2015.11.009_bib13 article-title: Salivary glands: a paradigm for diversity of gland development publication-title: Crit. Rev. Oral Biol. Med. doi: 10.1177/10454411970080010301 – volume: 94 start-page: 6770 year: 1997 ident: 10.1016/j.stemcr.2015.11.009_bib14 article-title: Purification and molecular cloning of a secreted, frizzled-related antagonist of Wnt action publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.13.6770 – volume: 494 start-page: 247 year: 2013 ident: 10.1016/j.stemcr.2015.11.009_bib20 article-title: In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration publication-title: Nature doi: 10.1038/nature11826 – volume: 124 start-page: 1111 year: 2006 ident: 10.1016/j.stemcr.2015.11.009_bib7 article-title: Stem cells and cancer: two faces of eve publication-title: Cell doi: 10.1016/j.cell.2006.03.011 – volume: 188 start-page: 277 year: 1974 ident: 10.1016/j.stemcr.2015.11.009_bib2 article-title: Development of the rat salivary glands. 3. Mesenchymal specificity in the morphogenesis of the embryonic submaxillary and sublingual glands of the rat publication-title: J. Exp. Zool. doi: 10.1002/jez.1401880304 – volume: 3 start-page: e2063 year: 2008 ident: 10.1016/j.stemcr.2015.11.009_bib27 article-title: Rescue of salivary gland function after stem cell transplantation in irradiated glands publication-title: PLoS One doi: 10.1371/journal.pone.0002063 – volume: 449 start-page: 1003 year: 2007 ident: 10.1016/j.stemcr.2015.11.009_bib3 article-title: Identification of stem cells in small intestine and colon by marker gene Lgr5 publication-title: Nature doi: 10.1038/nature06196 – volume: 342 start-page: 1226 year: 2013 ident: 10.1016/j.stemcr.2015.11.009_bib26 article-title: Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling publication-title: Science doi: 10.1126/science.1239730 – volume: 132 start-page: 598 year: 2008 ident: 10.1016/j.stemcr.2015.11.009_bib30 article-title: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life publication-title: Cell doi: 10.1016/j.cell.2008.01.038 – volume: 99 start-page: 367 year: 2011 ident: 10.1016/j.stemcr.2015.11.009_bib31 article-title: Regeneration of irradiated salivary glands with stem cell marker expressing cells publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2011.05.085 – volume: 32 start-page: 2708 year: 2013 ident: 10.1016/j.stemcr.2015.11.009_bib19 article-title: Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis publication-title: EMBO J. doi: 10.1038/emboj.2013.204 – volume: 103 start-page: 9912 year: 2006 ident: 10.1016/j.stemcr.2015.11.009_bib10 article-title: Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0603824103 – volume: 83 start-page: e109 year: 2012 ident: 10.1016/j.stemcr.2015.11.009_bib17 article-title: Concurrent transient activation of Wnt/beta-catenin pathway prevents radiation damage to salivary glands publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2011.11.062 – volume: 235 start-page: 475 year: 1993 ident: 10.1016/j.stemcr.2015.11.009_bib12 article-title: Parenchymal cell proliferation and mechanisms for maintenance of granular duct and acinar cell populations in adult male mouse submandibular gland publication-title: Anat. Rec. doi: 10.1002/ar.1092350316 – volume: 346 start-page: 1248012 year: 2014 ident: 10.1016/j.stemcr.2015.11.009_bib9 article-title: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control publication-title: Science doi: 10.1126/science.1248012 – volume: 31 start-page: 613 year: 2013 ident: 10.1016/j.stemcr.2015.11.009_bib37 article-title: Concise review: adult salivary gland stem cells and a potential therapy for xerostomia publication-title: Stem Cells doi: 10.1002/stem.1327 – volume: 254 start-page: 408 year: 1999 ident: 10.1016/j.stemcr.2015.11.009_bib11 article-title: Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland publication-title: Anat. Rec. doi: 10.1002/(SICI)1097-0185(19990301)254:3<408::AID-AR12>3.0.CO;2-G – volume: 440 start-page: 519 year: 2002 ident: 10.1016/j.stemcr.2015.11.009_bib23 article-title: A morphogenetic concept of salivary duct regeneration and metaplasia publication-title: Virchows Arch. doi: 10.1007/s004280100537 – volume: 6 start-page: 568 year: 2010 ident: 10.1016/j.stemcr.2015.11.009_bib47 article-title: Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.03.020 – volume: 160 start-page: 299 year: 2015 ident: 10.1016/j.stemcr.2015.11.009_bib21 article-title: Long-term culture of genome-stable bipotent stem cells from adult human liver publication-title: Cell doi: 10.1016/j.cell.2014.11.050 – volume: 283 start-page: 23139 year: 2008 ident: 10.1016/j.stemcr.2015.11.009_bib45 article-title: Platelet-derived growth factor receptor regulates salivary gland morphogenesis via fibroblast growth factor expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M710308200 – volume: 39 start-page: 667 year: 2004 ident: 10.1016/j.stemcr.2015.11.009_bib18 article-title: Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages publication-title: Hepatology doi: 10.1002/hep.20063 – volume: 4 start-page: 2498 year: 2013 ident: 10.1016/j.stemcr.2015.11.009_bib34 article-title: Functional salivary gland regeneration by transplantation of a bioengineered organ germ publication-title: Nat. Commun. doi: 10.1038/ncomms3498 – volume: 149 start-page: 1192 year: 2012 ident: 10.1016/j.stemcr.2015.11.009_bib8 article-title: Wnt/beta-catenin signaling and disease publication-title: Cell doi: 10.1016/j.cell.2012.05.012 – volume: 2 start-page: 540 year: 2012 ident: 10.1016/j.stemcr.2015.11.009_bib5 article-title: Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.08.018 – volume: 87 start-page: 411 year: 2006 ident: 10.1016/j.stemcr.2015.11.009_bib35 article-title: Recovery of rat submandibular salivary gland function following removal of obstruction: a sialometrical and sialochemical study publication-title: Int. J. Exp. Pathol. doi: 10.1111/j.1365-2613.2006.00500.x – reference: 23769181 - Radiother Oncol. 2013 Sep;108(3):458-63 – reference: 23354049 - Nature. 2013 Feb 14;494(7436):247-50 – reference: 14999685 - Hepatology. 2004 Mar;39(3):667-75 – reference: 4836189 - J Exp Zool. 1974 Jun;188(3):277-88 – reference: 18295578 - Cell. 2008 Feb 22;132(4):598-611 – reference: 20223988 - Science. 2010 Mar 12;327(5971):1385-9 – reference: 19047101 - Clin Cancer Res. 2008 Dec 1;14(23):7741-50 – reference: 11371349 - Cell. 2001 May 18;105(4):533-45 – reference: 24084982 - Nat Commun. 2013;4:2498 – reference: 11360236 - Anat Rec. 2001 Jun 1;263(2):202-14 – reference: 15716343 - Development. 2005 Mar;132(6):1223-34 – reference: 12717450 - Nature. 2003 May 22;423(6938):409-14 – reference: 18559345 - J Biol Chem. 2008 Aug 22;283(34):23139-49 – reference: 25448065 - Stem Cell Reports. 2014 Dec 9;3(6):957-64 – reference: 16782807 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9912-7 – reference: 20569694 - Cell Stem Cell. 2010 Jun 4;6(6):568-77 – reference: 12021927 - Virchows Arch. 2002 May;440(5):519-26 – reference: 10096673 - Anat Rec. 1999 Mar;254(3):408-17 – reference: 24311688 - Science. 2013 Dec 6;342(6163):1226-30 – reference: 17934449 - Nature. 2007 Oct 25;449(7165):1003-7 – reference: 19272528 - Differentiation. 2009 Mar;77(3):298-306 – reference: 16564000 - Cell. 2006 Mar 24;124(6):1111-5 – reference: 20085740 - Cell Stem Cell. 2010 Jan 8;6(1):25-36 – reference: 24045232 - EMBO J. 2013 Oct 16;32(20):2708-21 – reference: 20367250 - Stem Cells Dev. 2010 Nov;19(11):1793-801 – reference: 9192640 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6770-5 – reference: 20929848 - Science. 2010 Sep 24;329(5999):1645-7 – reference: 21719134 - Radiother Oncol. 2011 Jun;99(3):367-72 – reference: 18006828 - Cancer Res. 2007 Nov 15;67(22):10831-9 – reference: 19125156 - Nat Chem Biol. 2009 Feb;5(2):100-7 – reference: 22999937 - Cell Rep. 2012 Sep 27;2(3):540-52 – reference: 9063625 - Crit Rev Oral Biol Med. 1997;8(1):51-75 – reference: 17222209 - Int J Exp Pathol. 2006 Dec;87(6):411-23 – reference: 25036711 - J Clin Invest. 2014 Aug;124(8):3364-77 – reference: 8149915 - Development. 1994 Feb;120(2):369-80 – reference: 18446241 - PLoS One. 2008;3(4):e2063 – reference: 26422227 - Cell. 2015 Oct 22;163(3):759-71 – reference: 23462293 - Hum Mol Genet. 2013 Jul 1;22(13):2566-71 – reference: 18849992 - Nat Genet. 2008 Nov;40(11):1291-9 – reference: 8430917 - Anat Rec. 1993 Mar;235(3):475-85 – reference: 22682243 - Cell. 2012 Jun 8;149(6):1192-205 – reference: 25533785 - Cell. 2015 Jan 15;160(1-2):299-312 – reference: 25843887 - Dev Cell. 2015 Apr 20;33(2):231-7 – reference: 25789704 - J Invest Dermatol. 2015 Jul;135(7):1763-70 – reference: 25278615 - Science. 2014 Oct 3;346(6205):1248012 – reference: 22342093 - Int J Radiat Oncol Biol Phys. 2012 May 1;83(1):e109-16 – reference: 19329995 - Nature. 2009 May 14;459(7244):262-5 – reference: 23335219 - Stem Cells. 2013 Apr;31(4):613-9 |
SSID | ssj0000991241 |
Score | 2.4793022 |
Snippet | Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 150 |
SubjectTerms | Animals Antigens, Neoplasm - metabolism beta Catenin - metabolism Cell Adhesion Molecules - metabolism Cell Culture Techniques Cell Proliferation Cell Self Renewal Cells, Cultured Epithelial Cell Adhesion Molecule Female Mice, Inbred C57BL Mice, Inbred NOD Mice, Knockout Mice, SCID Mice, Transgenic Microscopy, Confocal Microscopy, Electron, Transmission Radiation Injuries, Experimental - therapy Salivary Glands - cytology Salivary Glands - metabolism Salivary Glands - radiation effects Spheroids, Cellular - cytology Spheroids, Cellular - metabolism Stem Cell Transplantation - methods Stem Cells - cytology Stem Cells - metabolism Stem Cells - ultrastructure Time Factors Wnt Signaling Pathway |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JbhQxELVQpEhcEAnbsMlIXBu62_sxCQkBAUKaBHKz2luYaNSNJh2J-Zt8C19GVS-jGTjMhat7satcdr2yy8-EvAbUEPIIYQmSoWU8GJ853OQNkWuj8hRZhYHi5y_y9Jx_vBAXa1d9YU5YTw_cK-6tqADDOKFdkp5HF6qOwqx0Rhids9DxfOYmXwumrnrcA44Lo62yLFgmVVGM5-a65C4kSfZIB1qIN0jiifmIa36po-_fcE__ws-_syjX3NLJfXJvwJP0oJdjj9yJ9T7Z7W-YXD4gXz819WV2BtMv_VD_vv02axcNPf4FUwCuktEm0WmFm0GLJX2POY50Ck2mR3E-v6bvFjgTUrek3-uWTmeXSLX8kJyfHJ8dnWbDJQqZl1K0mWfaJ6ZSyL3xkcc8AqgQhVNJGKec8hDvQLHiDgKxKiQZlRa6DLwoQ6VTxR6Rnbqp4xNCVSqNY3k0SUiuYzRexQAOnnHFJFQxIWxUofUDwzhedDG3YyrZle0Vb1HxEHxYUPyEZKuvfvYMG1veP8TeWb2L_NhdAViNHazGbrOaCVFj39oBavQQAn4121L9q9EULIxE3F6p6tjcXNtCScCvGmbBCXncm8aqkaVUoN5cQr0bRrMhxeaTevajY_vmqjtN9fR_iP2M3AVRuiWkonxOdtrFTXwBoKp1L7vx8wcAJR4I priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Open Access Journals (Elsevier) dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG8WCjIS17BJ_EqO7dJSECCkbWFvVvzaBq2SKk0l9t_wW_hlzOSxauBQiWMcO3bG43nYM58JeQNWg4s9uCUIhhZxl9vI4CGv8zzLVRw8K9BR_PxFnp7zjyux2iOLMRcGwyoH2d_L9E5aDyXzgZrzy7KcL9MU4cYSNGlixgUm_GJWKSbxrY52-yxgAYEKQ78L60fYYMyg68K8EC7ZIjBoIt4inCdGJt7QUB2Q_0RR_WuI_h1PeUNBndwn9wbLkh72g39A9nz1kNzp75rcPiJfP9XVOjoDQUw_VL9_fSvbpqbHP0EY4H4ZrQNdFngs1Gzpe4x2pEsYMl34zeaKvmtQJlKzpd-rli7LNYIuPybnJ8dni9NouE4hslKKNrIss4Gp4GKbW8997MG8EIlRQeRGGWXB84FixQ24ZIUL0qtMZKnjSeqKLBTsCdmv6so_I1SFNDcs9nkQkmfe51Z5B6qeccUkdDEjbCShtgPWOF55sdFjUNkP3RNeI-HBDdFA-BmJdq0ue6yNW-of4ezs6iJSdldQN2s9sIoWBXCAEZkJ0nJvXNFB4KUmF3kWM8dmRI1zqyeMB58qb-n-9cgKGtYkHrQUla-vr3SiJFiyGcjDGXnas8ZukKlUQN5YQr8Tppn8xfRNVV50uN9cdXlVz_97xC_IXXjqdpCS9IDst821fwk2VWtedYvmD4LGH20 priority: 102 providerName: Elsevier |
Title | Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals |
URI | https://dx.doi.org/10.1016/j.stemcr.2015.11.009 https://www.ncbi.nlm.nih.gov/pubmed/26724906 https://www.proquest.com/docview/1760858042 https://pubmed.ncbi.nlm.nih.gov/PMC4720006 https://doaj.org/article/5a099b58bf6c4ebda179952b959803d3 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaqIiReEDfLURmJ11RJbMfOA0K0tLRcAm0X9s2Kr2WrVQLZVOr-G34Lv4yZHEuXQ5V4yUMSx45n7PnGHn9DyFNADS724JYgGVrEXW4jg5u8znOVyzh4VqCj-O59djThr6diukWGnK19By7_6tphPqlJvdg9_7Z6DgP-2a9YLeQ8tsjumYhd5OTEE31X2h0jDObrAf9ph4fAoCXDGbp_FEaG4EyCY4J5kC6Yq5bVf8Nq_YlKfw-uvGCtDm-Q6z3MpC86vbhJtnx5i1ztEk-ubpMPb6tyFp3ArEyPyx_fP82buqIH5zAz4OIZrQIdF7hHVK_oKwx9pGNoPd33i8WSvqxxgqRmRT-XDR3PZ9iTd8jk8OBk_yjqcytENstEE1mmbGAyuNjm1nMfe8AaIjEyiNxIIy24QXBbcgPdULiQeamESh1PUleoULC7ZLusSn-fUBnS3LDY50FkXHmfW-kd2H3GJcugihFhQxdq2xOPY_6LhR4izE51JwONMgCfRIMMRiRal_raEW9c8v4eSmf9LtJmtzeqeqb7UahFAQpghDIhs9wbV7R8eKnJRa5i5tiIyEG2ukcgHbKAT80vqf7JoAoaBijuuhSlr86WOpEZwFoFk-OI3OtUY93IQcug3g2l2fiLzSfl_EtLAs5le8jqwX-XfEiuQfvb5aQkfUS2m_rMPwaA1ZiddmECrsfTPbi--ah22lH0EwDNKNw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s2Wl5G4hk1iO06OdGnZhW2FtFvYmxU79pJqlVRpKrH_ht_CL2Mmj1UDh0pcHTt2JuOZb-zxZ0LeAWrIfAthCZKheTxLjKdxkzezPE6k7yxLMVA8OY2mZ_zzSqz2yKQ_C4NplZ3tb216Y627knEnzfFFno8XYYh0YwFCGp9xEd8itwEN-Kjas9XhbqEFIBD4MAy8sIGHLfojdE2eF_IlG2QGDcR75PPE1MRrLqph8h94qn-R6N8Jldc81PEDcr-DlvRDO_qHZM8Wj8id9rLJ7WPydV4Wa28JlpjOit-_vuV1VdKjn2ANcMGMlo4uUtwXqrb0E6Y70gUMmU7sZnNJP1ZoFKne0u9FTRf5GlmXn5Cz46PlZOp19yl4JopE7RkWG8eky3yTGMutbwFfiEBLJxIttTQQ-kCx5BpisjRzkZWxiMOMB2GWxi5lT8l-URb2OaHShYlmvk2ciHhsbWKkzcDXMy5ZBF2MCOtFqExHNo53XmxUn1V2rlrBKxQ8xCEKBD8i3q7VRUu2cUP9Q_w7u7pIld0UlNVadbqiRAoaoEWsXWS41VnacOCFOhFJ7LOMjYjs_60aaB68Kr-h-7e9KiiYlLjTkha2vLpUgYwAysZgEEfkWasau0GGkQTx-hH0O1CawVcMnxT5j4b4m8vmYNXBf4_4Dbk7XZ7M1Xx2-uUFuQdPmuWkIHxJ9uvqyr4CgFXr180E-gP7OCKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Term+In%C2%A0Vitro+Expansion+of+Salivary+Gland+Stem+Cells+Driven+by+Wnt+Signals&rft.jtitle=Stem+cell+reports&rft.au=Maimets%2C+Martti&rft.au=Rocchi%2C+Cecilia&rft.au=Bron%2C+Reinier&rft.au=Pringle%2C+Sarah&rft.date=2016-01-12&rft.pub=Elsevier&rft.eissn=2213-6711&rft.volume=6&rft.issue=1&rft.spage=150&rft.epage=162&rft_id=info:doi/10.1016%2Fj.stemcr.2015.11.009&rft_id=info%3Apmid%2F26724906&rft.externalDocID=PMC4720006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon |